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Abstract

The development of axenic in vitro growth models of the human malaria

parasite Plasmodium falciparum, has been pivotal in accelerating knowledge of this

very important human pathogen. Despite the importance of this pathogen, there

have been very few studies relating to the metabolism of the parasite. Furthermore,

much of the preceding studies have been undertaken using culture conditions that

do not accurately represent the physiological environment of the human host. There

is a need to address whether different nutrient environments would trigger a parasite

response at the systems level promoting a metabolic rewiring that would have an

effect in progeny generation or life cycle progression. Because of its robustness, re-

producibility and suitability for footprinting studies, NMR spectroscopy was chosen

as the analytic technique for the study. One of the disadvantages of NMR is limited

availability of software for identification and quantification of metabolites. This was

taken as an opportunity to develop a pipeline using free, open-source programming

framework.

This tool was used to find unique and discriminatory metabolic profiles for

both uninfected and P. falciparum infected red blood cells at various life-cycle stages

using cell extracts and extracellular material. With the aim of studying parasite

development in physiological conditions a culture medium mimicking human blood

conditions was developed and tested on P. falciparum infected RBCs finding both

phenotypic and metabolic differences.

Further studies consisted of the development of tightly synchronised parasite

cultures that were followed during 54 h using NMR-based metabolomics to assess

xiii



consumption and excretion of metabolites in media, and high content imaging and

bright field microscopy to assess parasite size and progeny. The measurements were

taken under three different nutritional conditions: usual in vitro, physiological-like

and hypoglycaemic. In usual culturing conditions P. falciparum 3D7 life cycle lasted

around 45 h. During the early stages there was moderate consumption of glucose

and glutamine and excretion of lactate, alanine and glycerol. During the mature

trophozoite stages and schizonts, glucose uptake dramatically increased with a con-

sequent augmentation of the lactate, alanine and glycerol production. These were

excreted but their function was not clear. It was observed that these “wasteful”

products were proportionally lower in the early developmental stages than in the

later ones, suggesting a higher demand of raw materials (glucose) for biomass pro-

duction during the early stages. During the late trophozoite stage the most abundant

amino acids in the haemoglobin chain (leucine, valine and glycine) were excreted, a

likely consequence of the need for space to finish maturation. Myoinositol, which is

essential for creation of membranes was also avidly consumed.

When comparing these findings with parasites growing in more physiological

conditions there was a noticeable delay in the life cycle of at least 9 h. Conse-

quently haemoglobin digestive products were excreted later in the time course. A

decrease in the progeny resulting from schizonts containing significantly fewer mero-

zoites was also observed. Parasites growing in physiological conditions but chal-

lenged with lower glucose availability also presented a further delay of the life-cycle

and a decreased number of merozoites with respect to usual laboratory conditions.

Haemoglobin degradation products were also excreted later in the life cycle and at

lower rates compared to the parasites grown in complete media.

These results suggest that there are significant differences between in vivo

and in vitro life-cycles of P. falciparum. Such effects as the reduction in growth rates

and elongation of the life cycle, if not accounted for, could severely compromise the

in vivo results of in vitro drug killing rates assays.
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Chapter 1

Introduction

1.1 The burden of malaria in the world

Malaria is a prominent disease with an extremely high burden worldwide. In 2015

alone it caused over 200 million cases (see Figure 1.1) and this is a figure from a year

in which 37% reduction of its incidence was reported [1]. Malaria is a vector-borne

infectious disease, whose pathology and symptoms are caused by a protozoan para-

site of the genus Plasmodium. Plasmodium spp. are transmitted to humans by the

bite of the specific arthropod vector, the female Anopheles mosquitoes. Anopheles

habitat is distributed across the world [2], but currently malaria incidence affects

the warmest areas of the planet including Africa, Central and South America and

South-East Asia (malaria distribution across the world shown in Figure 1.2). How-

ever, in the past malaria outbreaks have occurred in colder climates as for example

Canada in 1820s [3] and in Mediterranean countries [4] but improvements in the

health systems, control programmes and general infrastructure, have allowed the

elimination of the Plasmodium parasite from more developed countries. Although

climate change and other environmental factors are increasing the risk of malaria

outbreaks in countries where elimination was established [5] and resistance emer-

gence is a major problem, it has been historically proven that by applying the correct

control measures and providing access to good health conditions, eradication is pos-

sible. Further examples are the elimination of the disease on islands such as the

Falkland Islands, Mauritius, Taiwan and rapidly developing tropical regions such

as Hong Kong [6]. Thus this is a very challenging matter for the poorest countries

in which access to medication and control resources are very limited. Programmes

such as the Roll Back Malaria partnership, the Grand Challenges supported by the

Bill and Melinda Gates Foundation or the recent creation of Ross Fund are helping
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to pave the way towards the reality of malaria eradication.

Figure 1.1: Estimated malaria cases and deaths 2000-2015. World Health
Organisation (WHO) [1].

Figure 1.2: Classification of countries by stage of malaria eradication (De-
cember 2013). WHO [1].

1.1.1 The disease

Malaria symptoms usually manifest 8-25 days post-infection, as consequence of the

release of parasites into the blood stream. Malaria disease can be classified in
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uncomplicated or severe. Uncomplicated malaria symptoms are flu-like (unspecific)

including headaches,fever, chills and body aches, which makes diagnosis difficult

[7]. The most typical symptom is the cyclical occurrence of shivers and high fever

every 36 to 72 h depending on the Plasmodium species. Severe malaria results

when infections are complicated by abnormalities in patient’s blood and metabolism

such as severe anaemia, hypoglycaemia and lactic acidosis. Other specific signs

include the presence of haemoglobin in the urine and retinal damage [8]. More

severe symptoms of the disease involve organ failure. The most severe case presents

when cerebral malaria is developed (only caused by P. falciparum). Cerebral malaria

includes neurological symptoms that range from abnormal posturing to seizures or

coma [7] and in all cases prompt diagnosis and treatment are paramount to avoid

fatal outcomes. Consequences of the disease are not limited to the obvious health

burden but also the socio-economic factors that it involves, not only in health care

expenses but also in labour and productivity decrease with the consequential effect

in family economy.

1.1.2 Control strategies of malaria

Methods to control and ultimately eradicate malaria can be classified as prevention

or treatment.

1.1.2.1 Prevention

Prevention of malaria can be classified as vector control, vaccine development or

preventive chemotherapy. Vector control tools include insecticide-treated mosquito

nets [9] and indoor residual spraying [10]. These measures have been proven very

effective in reducing malaria prevalence in highly populated areas. However insecti-

cide resistance is a serious threat and existing methods of vector control need to be

improved to achieve malaria elimination targets [11]. Disease prevention has also

been tried by vaccine development but due to the high antigen variability of the

parasite and the different life stages, no vaccine with over 70% protective effect has

been achieved [12, 13]. Antimalarial drugs have applications beyond curing patients

and they are used in prevention, especially in high risk groups such as pregnant

women and children.

1.1.2.2 Treatment

Medication reduces mortality and diminishes transmission. The most widely spread

antimalarial drugs can be classified into five main categories, according to both their
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structure and biological activity [14]. Even though resistance has developed to all of

them [15, 16], they are the most common way of fighting the disease. These drugs

target mostly the specialised organelles of the parasite, generally in the erythrocyte

stage. Their modes of action can be classified into the following groups:

1. Quinoline-containing drugs (QCDs)

Since their introduction in the 1940s, these drugs have been essential in the

treatment of malaria. QCDs are a broad group of drugs that include quinines,

4-aminoquinolines, 8-aminoquinolines and quinolinemethanols [17]. Nowa-

days, these drugs are classified in two types: type-1 which are weak bases

and hydrophilic and type-2 that are even weaker bases and lipid soluble at

neutral pH [18]. Their core structure is a central solid aromatic nitrogen ring

whose properties would vary depending on the functional groups added to

the main quinoline molecule. Some examples of these antimalarial drugs are

chloroquine, quinine and mefloquine. QCDs act primarily on haem disposal

in the food vacuole of the parasite. Under normal conditions, haemoglobin

is degraded and haem, which is cytotoxic, is generated and detoxified by the

formation of an inert crystal called hemozoin [14] (see Section 1.3). The QCDs

form complexes with haem in order to prevent its conversion to an inner ele-

ment and therefore keeping its cytotoxic character. Resistance is conferred by

multiple gene mutations and different mechanisms have been described, from

a reduced accumulation of drug in the cell to an alteration in the transport

processes [19]. Even though all QCDs are thought to act in a similar way, their

effects on the feeding process are slightly different. For example, type-1 drugs

(chloroquine, amodiaquine and piperaquine) cause an accumulation of undi-

gested haemoglobin which suggests an inhibition of haemoglobin digestion.

However type-2 drugs (quinine and mefloquine) do not show an accumulation

of haemoglobin, indicating an inhibition of the ingestion of host haemoglobin

[20].

2. Antifolates drugs and combinations

The malaria parasite can synthesise and salvage folate precursors, whilst mam-

mals have no de novo synthesis and rely on dietary sources, meaning that dis-

turbing this pathway would definitely have a negative impact on the parasite.

Antifolates are classified in two classes: type-1 that mimic p-aminobenzoic

acid (pABA), competing for the active site of dihydropteroate synthase (EC

2.5.1.15) and type-2 that inhibit dihydrofolate reductase (EC 1.5.1.3). Both

inhibit the folate pathway which results in decreased pyrimidine synthesis,
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hence, reduced DNA [18].

3. Hydroxynapthaquinones: Atovaquone

Atovaquone (ATQ) is used for treatment and prevention of malaria, usually in

combination with the antifolate proguanil (PG). The mitochondrial electron

transport chain is critical for parasite survival and ATQ acts principally on

mitochondrial functions, specifically inhibiting the cytochrome bc1 complex by

kidnapping ubiquinone and consequently collapsing the mitochondrial mem-

brane potential [21]. It also acts on the dihydroorotate dehydrogenase (EC

1.3.3.1), which catalyses the reaction from dihydroorotate to orotate, bridging

pyrimidine biosynthesis and the mitochondrial electron transport system [22].

The half maximal inhibitory concentration (IC50) of ATQ and PG are reduced

when used together. Even though PG inhibits the dihydrofolate reductase (EC

1.5.1.3), the effect of both drugs in the pyrimidine biosynthesis seems to not

explain the synergistic effect [23] so it has been suggested that PG affects a

mitochondrial function that becomes essential when ATQ inhibits the electron

transport chain [21].

4. Endoperoxide compounds: Artemisinin group

The endoperoxides are active throughout all the phases of the asexual intra-

erythrocytic cycle and also work on young gametocytes. Artemisinin and

derivates have a trioxide ring with endoperoxide bridge (C-O-O-C), which dif-

fers in its nitrogen content from most antimalarial drugs and this gives them

several advantages over others such as their speed of action or little cross resis-

tance with other drugs. However, they have short elimination half-lives which

results in inability to eliminate all parasites during the treatment, resulting in

recrudescent infections [24]. The current hypothesis of their mode of action

relies on the formation of C-centred radicals by a reductive cleavage of the

peroxide by ferroheme ferrous-protoporphyrin IX (Fe(II)PPIX). These radi-

cals would alkylate biomolecules creating general damage and leading to the

death of the parasite. There are further hypotheses that indicate a role in the

haem crystallisation process which would result in general damage or other

potential mechanisms that consider artemisinin as a source of hydroperoxide

that causes the death of the parasite. Resistance to artemisinin has been re-

ported since 2009 [25], and it has been suggested to be multigenic and share

similarities with the quinoline family [26]. It has also been indicated from tran-

scriptomic studies that this resistance may be associated with the increased

capacity of protein synthesis in the schizont stage because it counteracts the
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protein damage caused by the oxidative stress and/or protein alkylation effect

of this drug [27].

5. Antibiotics

All plastids arose by endosymbiosis of a primitive prokaryotic cell. Following

this primary endosymbiosis, some other plastids are thought to have been

laterally transferred to other organisms and Plasmodium is one of them [28].

Thus, Plasmodium apicoplast and mitochondrion present certain susceptibility

to several antibiotics. A good representative of this drug type is fusidic acid.

It slows down bacterial translation and blocks peptidyl tRNA in the ribosomal

P site [29]. The effect of fusidic acid is immediate and even though ribosomes

continue working, they do it very slowly [30].

Resistance poses a problem for malaria control. For P. falciparum the use of

two or more drugs with different modes of action in combination is the recommended

treatment to provide an adequate cure rate and also delay development of resistance.

The most widely used, and recommended by the WHO, is artemisinin-based combi-

nation therapy (ACT) in which the quick acting artemisinin (or one of its derivatives)

is administrated with a drug from a different class such as mefloquine, amodiaquine,

piperaquine or lumefantrine [31, 32]. Chloroquine is still the first line of treatment

for P. vivax [33] and P. ovale, while primaquine is used to treat the liver stages

of P. vivax [34]. Resistance emergence is an increasing concern due to the limited

recent antimalarial drug developments [35]. In the last decade, numerous novel an-

timalarial inhibitors and targets have been, and currently are, evaluated to provide

alternatives for treating drug-resistant malaria parasites. Some of the targets being

evaluated are chromatin-modifying enzymes, parasitic metabolic pathways (e.g. the

coenzyme A pathway), parasite transporters and mitochondrial enzymes [36]. The

most successful up-to-date new compounds have been the spiroindolones, a new class

of fast-acting schizont-targeting drugs that present activity against drug-resistant

Plasmodium through targeting protein synthesis in the malaria parasite [37]. Ef-

forts to keep researching for compounds and alternatives to control drug resistance

emergence are still crucial in the path towards malaria eradication.

1.1.3 Malaria eradication strategies would benefit from implemen-

tation of nutritional factors in their design

Mosquito population control and drug treatment and prevention are not enough

to completely eradicate the disease. Socio-economic changes also need to be im-

plemented, facilitating the access to health care and increasing surveillance for the
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disease. An improvement in other health areas such as sanitation and nutrition

will also aid the control and eradication of the disease. For example, children with

severe malnutrition are not only more vulnerable to disease but also do not present

the usual symptoms of malaria, thus obstructing diagnosis and treatment [38]. The

relationship between poverty and disease can be illustrated by looking at the world

map of undernourishment (see Figure 1.3), which widely overlaps with the regions

where malaria is endemic.

Figure 1.3: The world map of undernourishment 2014-2015. Source: Food
and Agriculture Organisation of the United Nations (FAO).

Nutritional deficiencies are linked with increased susceptibility to infectious

diseases [39]. In the same way that nutritional excesses have been linked with genetic

mutation and disease proliferation [40], nutritional deficiencies often exhibit complex

interactions with infectious diseases. For example the micronutrient zinc, when low

in plasma has been related to increased mortality from malaria [41]. Zinc deficiency

affects immune responses and exacerbates malaria for which the immune response

relies on macrophage killing of infected cells [42]. Moreover, studies have shown a

protective effect of zinc supplementation during malaria infection. Supplementation

of zinc to the diet of mice during P. berghei infection resulted in decreased oxidative

stress markers [43]. Overall Plasmodium as a parasite is affected by its host’s health

and better strategies for malaria control need to implement nutritional factors in

their design.
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1.2 Plasmodium

The genus Plasmodium comprises over 200 species that infect a wide range of hosts

from humans to bats, squirrels, marsupials, rodents or birds. In fact, much of

our knowledge of pathogenesis depends on studies in non-human species such as the

rodent parasites P. berghei and P. yoelii and in vitro cultures. There are five species

of malaria parasites that affect humans namely; P. falciparum, P. vivax, P. malariae,

P. ovale and P. knowlesi. P. vivax and P. ovale present dormant forms during

their life cycle called hypnozoites that can cause relapsing infections. However,

the most severe manifestations of the disease are caused by P. falciparum, thus

patients suffering from malaria are classified into uncomplicated or severe malaria.

Different species present susceptibility to different drugs, thus correct identification

is paramount for successful treatment. P. falciparum [44] and to a much lesser

extent P. vivax [45] are the main causes of disease and death from malaria. Due to

its importance in disease and robust culturing methods available, P. falciparum is

the species of interest in this thesis.

1.2.1 Brief summary of Plasmodium falciparum life cycle and intra-

erythrocytic stages

P. falciparum life cycle involves stages in humans and mosquitoes [46]. The infection

is initiated when sporozoites are injected with the saliva of a feeding mosquito.

Sporozoites are then carried by the circulatory system to the liver where they invade

hepatocytes. The intracellular parasite undergoes asexual replication within the

hepatocyte, which culminates in the production of merozoites that are released into

the bloodstream. The merozoites invade erythrocytes and undergo an enlargement

period in their life cycle as trophozoites (which in their early stages are referred to as

ring form due to their morphology). Trophozoites have an active metabolism that

includes the proteolysis of host haemoglobin (this is further reviewed in Section

1.3). This stage ends with multiple rounds of nuclear division (schizont stages)

resulting in a final burst of merozoites, which will start the cycle again (see Figure

1.4) lasting, in total, around 48 hours [47, 46]. The blood stage of the infection

is responsible for much of the disease pathology, with the typical fever episodes

occurring coincidently with the erythrocyte burst [48]. A variable percentage of

parasites (typically 1%, but can be more, depending on selective pressure [49])

do not carry on with the asexual cycle and instead they differentiate into sexual

forms known as macro and microgametocytes. Gametocytogenesis is modulated by

environmental factors [50] with the percentage of gametocytes produced increased
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under stress conditions. Ingestion into the mosquito also induces gametocytogenesis

and breaking away from the host erythrocyte. These gametes join together into a

zygote, which is the only diploid stage, and meiosis occurs within it. During this

process, Plasmodium shows recombination between genes determining characters

such as enzymes, antigens, drug resistance and virulence [51]. The zygote develops

into a motile ookinete, which penetrates the gut epithelial cells of the mosquito and

matures into an oocyst [52]. Multiple rounds of asexual replication will result in

the production of sporozoites, which are released into the mosquito hemocele and

migrate to the salivary glands, thus completing the life cycle [47, 46, 52]. The life

stage that has been studied in this project is the intra-erytrhocytic one; thus further

sections expand upon processes related to this stage.
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~	  48	  h	  
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Figure 1.4: P. falciparum life cycle with special emphasis on intra-
erythrocytic stages. After a mosquito meal, sporozoites are released into the
blood stream. There they travel to the liver where they colonise hepatocytes and
reproduce releasing a large number of merozoites into the blood stream. Each suc-
cessful merozoite colonises an erythrocyte and in a period of approximately 48 h
will develop into an assortment of forms with different appearances and metabolic
profiles (rings and trophozoites) until nuclear division starts being evident in a syn-
cytium form called schizont. Schizonts will burst releasing into the blood stream
between 8-32 merozoites to carry on the asexual life cycle. A proportion of new
invading merozoites will differentiate into single male or female gametocytes.
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1.2.1.1 Red blood cell (RBC) invasion and immune evasion strategies

All merozoites of the Plasmodium species must undergo apical reorientation and

engage with binding receptors on the RBC to induce invagination of the erythrocyte

bilayer, resulting in engulfment of the parasite [53]. Receptors that mediate this

step are one of the limiting factors for most of the Plasmodium species, that can

only invade cells with specific types of these receptors. However P. falciparum has

redundant invasion pathways, some of which rely on interactions with glycoproteins

containing sialic acid residues but others do not [54, 55]. This gives this species the

most versatility, allowing it to have a high rate of RBC invasion success.

Once the parasite has invaded the RBC a full remodelling of the membrane

and the metabolism of the erythrocyte converts the RBC to a carcass to fulfil the

needs of the parasite. Some of these modifications involve the transport to the host

of virulent proteins. The best characterised is P. falciparum erythrocyte membrane

protein 1 (PfEMP1) which is involved in placental and cerebral malaria [56], its

capability to adhere to endothelial cells is another important feature exclusive to

P.falciparum. Only gametocytes and late trophozoites are able to undergo this ad-

hesion step and this allows them to evade the immune system. They are sequestered

in various organs including the brain and placenta; these are the most dangerous

forms of the disease. Parasites in the placenta can cause premature delivery, low

birth weight and increased mortality in both newborn and mother [57]. Accumu-

lation in the brain is related to cerebral malaria, the most aggressive form of the

disease.

1.2.1.2 Trophozoite stage: ring and trophozoite

The trophozoite stage comprises of a series of structural modifications, size enlarge-

ment and drastic shape remodelling that allows a more efficient invasion and coloni-

sation of the host red blood cell. The merozoite is highly specialised to find, attach

and colonise a RBC, utilising a core complement of organelles found in most eukary-

otic cells. These include: a nucleus, endoplasmic reticulum (ER), a mitochondrion

and Golgi apparatus and others not that common including a non-photosynthesising

plastid (apicoplast) and some other apical organelles typical from apicomplexan pro-

tozoa and mostly involved in invasion [58]. After invasion, the parasites rapidly

flattens into a ring, thus giving its name to the early trophozoite stages [59]. Dur-

ing this early trophozoite stage the centre of the parasite is thin and contains few

structures, which are spread towards the edge of the parasite. Nuclear shape varies

from sausage-like to a disk and this is what gives the ring appearance when look-
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ing at Giemsa-stained slides. From this stage the parasite starts to establish an

exomembrane system in the host cell cytoplasm to communicate with the extra-

cellular environment [60]. The parasite starts feeding from the surrounding RBC

through the cytostome [61]; this forms a tube to connect with the host cell. A second

feeding mechanism is also observed consisting of small vesicles formed from either

the cytostomal tube or the food vacuole [62]. Haemoglobin starts being digested, the

globular part is used as amino acid source but the haem derivative is toxic and thus

is converted into the inert haemozoin crystals that accumulate within the pigment

vacuole [63].

Afterwards, there is an increase in the number of ribosomes, ER enlarges and

Golgi shows more complexity, all signs of very active protein synthesis and traffick-

ing. Mitochondrion and apicoplast, which are attached to each other, increase in

size and the apicoplast contacts the food vacuole, which indicates some metabolic in-

teraction [64]. After which, the surface of the trophozoite enlarges and membranous

structures can be observed in the host cell. These are the Maurer’s clefts, which have

not been completely functionally characterised but they are thought to be involved

in a parasite’s unique secretory compartment used to route parasite proteins across

the host erythrocyte towards the extracellular membrane where they play a role in

nutrient uptake and immune evasion [65]. After feeding is established, the parasite

exports various proteins into the RBC cytoplasm and surface. These proteins are

classified into two types depending on whether they contain a motif called Parasite

Export Element (PEXEL) [66, 67]; those without it are transmembrane proteins.

Maurer’s clefts play a crucial role in the storage and transport of these proteins [68].

Finally, at around 12 h after invasion, the RBC membrane undergoes changes caus-

ing increased permeability to a wide range of low molecular weight compounds such

as isoleucine in a range of changes called NPP (new permeation pathways) [69, 70].

By mid-trophozoite stage an almost autonomous parasite has proliferated consid-

erably and increased in size and complexity with a very much enlarged rough ER.

Further changes occur associated with the RBC membrane that allow the parasite

to adhere to endothelial cells. An illustrated representation of a mature trophozoite

can be observed in Figure 1.5 , adapted from [64].
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Figure 1.5: Mid-trophozoite stage of P. falciparum. This figure represents the
parasite only (without the RBC). Note the pigment vacuole is where the haemozoin
is stored and it is equivalent to inclusion bodies in bacteria Source: [64].

1.2.1.3 Schizonts

Schizont stages are defined by nuclear division. During this last stage, DNA repli-

cation, which started in the trophozoite stage must be completed by undergoing

several rounds of mitosis to create progenies ranging from 8 to 32 cells. Nuclear

division is accompanied by rough ER and ribosomal proliferation and later by the

multiplication of mitochondria and apicoplast [64]. All these components are needed

to assemble fully viable merozoites that would have everything necessary to invade

a red blood cell and proliferate in the same manner.

1.3 P. falciparum metabolism

The information concerning the malaria parasite metabolic make-up, connectivity

and regulation has been collated in different databases (see in Table 1.1). This

information has been used to create different mathematical models [71, 72]. A

summary of key metabolic pathway databases for Plasmodium is given in Table 1.1.
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Table 1.1: Plasmodium-specific databases.

Name Description Reference

PlasmoDB Functional genomic database for Plasmodium
spp. that provides a resource for data analysis
and visualization on a gene-by-gene or genome-
wide scale with recent implementation of path-
way and metabolite search.

[73]

Malaria Parasite
Metabolic Path-
ways (MPMP)

This website contains over 120 maps that in-
clude not only classical biochemical pathways,
but also biological processes dealing with repli-
cation, transcription and translation, cell-cell
interactions, protein trafficking and transport
among others.

[74, 75]

PlasmoCyc Database that integrates pathway information
with information about the complete genome
of P. falciparum 3D7, using its annotated ge-
nomic sequence. In addition to the annotations
provided in the genome database, this contains
956 additional annotations to hypothetical pro-
teins found by the GeneQuiz annotation system.
216 chokepoint enzymes (those that uniquely de-
grade a specific substrate or produce a specific
product) were identified.

[76]

1.3.1 Central Carbon Metabolism

The classic textbook scheme of central carbon metabolism includes glycolysis, the

pentose phosphate pathway and the tricarboxylic acid (TCA) cycle. Typically each

molecule of glucose would be broken down into intermediate sugars during glycolysis.

These would then feed processes such as the pentose phosphate pathway and build

nucleic acid intermediates. Pyruvate, the product of glycolysis is decarboxylated

into acetyl coenzyme A (acetyl-CoA) and enters the TCA cycle. TCA intermediates

provide metabolic precursors for amino acid synthesis and NADH and FADH2, which

are processed in the electron transport chain, generating up to 38 ATP molecules

for glucose molecule. However, the intra-erythrocytic asexual stages of the malaria

parasite do not follow the canonical central carbon metabolism and catabolism in

the Krebs cycle is highly impaired. The parasite actively ferments glucose as a

primary source of energy instead of obtaining it from the TCA cycle. It increases

the utilisation of glucose to between 50 and 100 times the rate of uninfected host red

cells [77] and up to 85% of that metabolised glucose is converted to lactate. This
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process provides 2 ATP molecules, much less than the possible 38 by TCA cycle.

Further insights into this metabolic rewiring are discussed in Section 1.3.1.3.

1.3.1.1 Glycolysis

Glycolysis is a tightly regulated pathway with steps catalysed by the enzymes hex-

okinase (HK, EC. 2.7.1.1), phosphofructokinase (PFK, EC. 2.7.1.11) and pyruvate

kinase (PK, EC. 2.7.1.40) of which the second is the most important. The parasite

generates its own glycolytic enzymes [78, 79] and reduces competition by inhibiting

glucose consumption by uninfected erythrocytes [80]. Glucose uptake is significantly

higher in infected erythrocytes and so are the activities of most of enzymes with a

role in the parasite’s glycolysis, especially HK, aldolase (EC. 4.1.2.13), enolase (EC.

4.2.1.11) and PK [78]. The most notable differences between the Plasmodium gly-

colytic enzymes and mammal’s are summarised in Table 1.2. These modifications

allow for a more efficient glucose entry into the parasite and promote a higher gly-

colytic flux with the subsequent production of glycolytic intermediates that feed

other pathways involved in biomass production but with the final product pyru-

vate fermented into lactate. Other peculiarities of glycolytic products include the

production and excretion of glycerol [81] and alanine. Further discussion follows in

Section 1.3.1.3 and Figure 1.7.
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1.3.1.2 TCA cycle and electron transport chain

The glycolytic product pyruvate does not follow canonical metabolism into acetyl-

CoA into the mitochondrion to enter the Krebs cycle. Pyruvate is mostly fermented

into lactic acid, which is excreted [102]. There is a small flux of pyruvate that is

converted into acetyl-CoA and that follows metabolism in the Krebs cycle [103].

This is a recent finding after a polemic against the nature of the Krebs cycle in

Plasmodium resulted in the retraction of a publication in Nature which described the

Plasmodium Krebs cycle as being bifurcated [104]. The Krebs cycle has always been

a questionable element in the biochemistry of the parasite. During the asexual stages

there is almost no flux into it; however, this is reversed during the asexual stages

where a programmed remodeling of central carbon metabolism is observed [103],

which might be related to parasite survival in the mosquito vector. The pyruvate

dehydrogenase (PDH) is localised in the apicoplast and as such cannot contribute to

the mitochondrial acetyl-CoA and its consequent incorporation in the Krebs cycle.

However, a branch chain ketoacid dehydrogenase (BCKDH, EC 1.2.4.4), with PDH

activity contributes to acetyl-CoA entering the Krebs cycle [105]. Nevertheless the

rate of acetyl-CoA production is much slower than the rate pyruvate is produced

from glycolysis [105], which is translated to high lactate production by the parasite.

Despite the low contribution of acetyl-CoA, the TCA is driven by glutaminol-

ysis [103, 106, 105]. Glutamine is actively taken up by the parasite, converted into

glutamate and incorporated in the TCA via α-ketoglutarate. This is linked to an

active transport of oxaloacetate into the cytoplasm where it is converted into phos-

phoenolpyruvate (PEP) by the phophoenolpyruvate carboxykinase (PEPCK, EC

4.1.1.49). It has been thought that glutaminolysis has a role in maintenance of

ubiquinone levels for pyrimidine biosynthesis (essential for the dihydroorotate de-

hydrogenase (EC 1.3.5.2) step converting dihydroorotate into orotate, see Figure

1.6). However, with exception of the enzymes with multiple functions such as MQO

(malate-quinone reductase, EC 1.1.5.4) and FH (fumarate hydratase, EC 4.2.1.2),

the TCA cycle and glutaminolysis are not essential for asexual stages in vitro [107].

Atypical mitochondrial function does not relate solely to the TCA. As shown

in Figure 1.6, the electron transport chain (ETC) of P. falciparum is also atypical

with low oxygen consumption and very low synthesis of ATP [108]. Other pecu-

liarities involve the absence of typical transmembrane Complex I. Instead, the type

II NADH:quinone oxidoreductase (PFNDH2) is not involved in proton pumping

but enables oxidation of NADH, which presents advantages such as a reduction of

mitochondrial superoxide generation and potential DNA damage [108]. Another

important role is played by the glycerol-3P dehydrogenase, which is linked to the
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glycerol shuttle and converts glycerol-3P into dihydroacetone phosphate (DHAP)

that is returned to the cytosol where it can be reincorporated into glycolysis or

used for other purposes such as lipid formation or glycerol production and excre-

tion. Finally it is also worth mentioning the presence in the ETC of dihydroorotate

dehydrogenase which converts dihydroorotate in orotate, both precursors for DNA

syntesis. Complex V, ATP synthase, makes a minimal contribution to ATP synthesis

but it is essential for parasite survival [109].

1.3.1.3 High proliferating cells; the role of a high lactic fermentation in

cancer and malaria.

P. falciparum presents a very active glycolytic flux that finishes with high levels of

lactic fermentation (and other products such as glycerol and alanine) and a sub-

sequent low flux into the mitochondrion and a reduction of ATP formed. This is

particularly striking when compared to the sexual stages where the parasite follows

the typical catabolism pathway, maximising ATP production [103]. An evolution-

ary reason for this particular metabolic rewiring might be linked to other highly

proliferating cells such as yeast and cancer cells. P. falciparum seeks to produce

up to 32 merozoites every 48 h and even though trading 38 ATPs for 2 might

seem not economical, when crunching the numbers an energetic advantage can be

clearly accounted for [110, 111]. Glycolytic intermediates are used as precursors

for biomass production. For example glucose-6P feeds the pentose phosphate path-

way that via 5’-phosphoribosyl α-pyrophosphate (PRPP) synthesises nucleotides.

Glyceraldehyde-3P is a precursor for lipid biosynthesis [112] and isoprenoid biosyn-

thesis [113]. The DHAP formed by the glycerol-3P DH in the mitochondrion can

be converted into the latter to further feed these anaplerotic pathways. PEP, which

is actively formed via glycolysis and glutaminolysis, feeds the shikimate pathway,

essential for folate biosynthesis via p-amino benzoic acid (pABA) [114] (see Figure

1.7). This has been recently reviewed and compared with the well described modern

concept of the Warbug effect [115, 110, 116] in cancer cells [111].
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Figure 1.7: Similarities between cancer cells and P. falciparum. Principal
end products of glucose consumption (shown in red boxes) are similar in both cancer
cells and asexual intraerythrocytic malaria parasites. A high glycolytic flux main-
tains rate-limiting glycolytic intermediates to support nucleotide (via glucose-6-P to
PRPP) and lipid biosynthesis (via DHAP to glycerol-3P). Anapleorotic glutaminoly-
sis follows past part of the TCA cycle through -ketoglutarate. Subsequent conversion
to PEP by PEPCK, allows for further synthesis of biosynthetic intermediates (e.g.
via shikimate pathway and isoprenoid biosynthesis) [111].
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The preference for fermentative glycolysis even under aerobic conditions

(Warbug effect) has the obvious consequence of high production of lactic acid, which

is excreted as a waste product. The consistent use of this metabolic rewiring to-

gether with high rates of glutaminolysis by highly proliferating cells has generated

different hypotheses for its role. To the above-mentioned role in rapid prolifer-

ation via production of biosynthetic precursors, there is a complementary theory

presented by Newsholme et al. [117]. Defining sensitivity as the quantitative re-

lationship between the change of concentration of a regulator and its consequent

change in enzyme activity; the authors suggested that high fluxes are required for

high sensitivity of the pathways involved in creation of biomass to specific regulators

i.e. to permit high rates of proliferation when required. Simplifying the glycolytic

flux to the system presented in Figure 1.8, if the flux towards one branch is in great

excess (lactate, represented as Jb vs DNA production represented as Ja), then the

sensitivity of the low-flux pathway to regulators will be elevated. This can be proved

by calculating the intrinsic sensitivity of the production of biomass (Ja) by E2 to

the regulator X as a function of the intrinsic sensitivities of the different enzymes

to the presence of substrate and to the presence of regulator (see Equation 1.1).

When plotting the net sensitivity of Ja to X versus the flux to waste (Jb), sensi-

tivity increases when Jb is greater (simulation of Equation 1.1 presented in Figure

1.9). Thus, it is proposed that high rates of glycolysis and glutaminolysis not only

supply precursors for biomass production but also provide an effective proliferation

control system. This hypothesis has been further supported in other publications

studying cancer cell metabolism. It has been observed that glucose and glutamine

consumption still greatly exceeds the catabolic and anabolic needs of cancer cells

thus supporting the hypothesis towards a control role in this metabolic reprogram-

ming [118, 119, 120, 121].

In addition, recent studies of cancer cells have shown how lactate is an im-

portant signalling molecule, triggering the stabilisation of hypoxia inducible factor

1α (HIF-1α) [122], which triggers the expression of vascular endothelial growth fac-

tor (VEGF) [123], resulting in angiogenesis. It has also been suggested that regions

of high lactate and subsequent low pH modulate the activity of the local immune

response, helping to create immune tolerance [124]. The role of lactate has also been

proposed as an energy reservoir in cases of severe decreases in glucose availability. In

tumors containing aerobic and hypoxic regions, aerobic cancer cells take up lactate

via monocarboxylate transporter 1 (MCT1) and utilise it for oxidative phosphoryla-

tion, allowing the hypoxic cells to keep utilising glucose. MCT1 knock-outs cannot

use lactic acid and thus, in glucose deprivation conditions, only the cells with access
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to the sugar can survive [125, 126]. The potential role that lactate might play in

malaria has not been investigated.

Figure 1.8: Representative diagram of the system presented in [117]. A
new role for the high flux towards lactate (Jb) is proposed by which when the right
regulator is detected (X), some of the Jb flux can be redirected towards biomass
production (Ja) in a more efficient manner than otherwise. This is supported by
Equation 1.1, which simulation is shown in Figure 1.9.

SJaX =
SiE2

X × SiE3
B × Jb

SiE3
B × Jb+ SiE2

B × Ja
(1.1)
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Figure 1.9: Newsholme et al. model simulation. As the flux to waste/lactate
increases (x-axis, Jb), the sensitivity of a regulator (y-axis, SxJa) to trigger the
biomass production (Ja, legend) increases. Simulation was build from Equation 1.1
by keeping all terms constant to 1 but Ja,Jb and SJaX .

1.3.2 Amino acid metabolism

Plasmodium, among other eukaryotes, has lost the ability to synthesise nine of the

20 amino acids which are phenylalanine (Phe), tryptophan (Trp), isoleucine (Ile),

leucine (Leu), valine (Val), lysine (Lys), histidine (His), threonine (Thr) and methio-

nine (Met). P. falciparum has retained the ability to synthesise only seven amino

acids namely alanine (Ala), aspartate (Asp), asparagine (Asn), glutamate (Glu),

glutamine (Gln), glycine (Gly) and proline (Pro) [127]. Despite lacking the means

to produce 13 amino acids, intra-erythrocytic P. falciparum can grow in medium

containing only three of these amino acids namely cysteine (Cys), Met and Ile.

Regardless of the existence of biosynthetic pathways to form them, in order to sus-

tain minimum continuous growth, glutamine, glutamate and proline also need to be

supplied exogenously [128]. The reason why no other amino acids need to be sup-

plemented in medium despite the absence of biosynthetic pathways is the capability

of the malaria parasite to ingest the host’s haemoglobin and use the globular part

to salvage amino acids. Haemoglobin degradation takes place in the food vacuole

and it is mediated by over ten proteases [129]. This process releases haem, which is

not used or recycled [130], instead it is transformed into pigmented crystals called
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hemozoin [131]. These can be observed using electron microscopy but their agglom-

eration can be appreciated already in bright field microscopy (see Figure 1.10). The

hemozoin formation process is still not completely understood but it is a highly in-

teresting area given its relevance in aminoquinolines mode of action and resistance

emergence [132]. Catalytic enzymes and contributing lipids have recently been char-

acterised [133, 134, 135] and associated to the formation of a complex comprising

many of those proteases identified and a haem detoxification protein [136].

Haemoglobin is the most abundant protein in erythrocytes and between 25-

80% is consumed from the early trophozoite (ring) stage [62]. Amino acids de-

rived from the globin are incorporated into proteins [137] and also used for energy

metabolism [131]. Even though P. falciparum has redundant pathways for amino

acid supplies [138] haemoglobin degradation is essential for parasite survival even

in rich medium conditions, but parasites growing in medium lacking most amino

acids are most sensitive to haemoglobin proteolysis blockers [139]. The necessity of

this process even in rich culture conditions points towards additional roles, some of

which might be involved in reduction of the osmotic pressure within the host ery-

throcyte to prevent its premature lysis [140]. Of all the amino acids salvaged, only

16% are incorporated into proteins, the rest are excreted into the medium [141].

This is believed to provide space to the subsequently growing parasite.

Figure 1.10: Giemsa stained P. falciparum infected erythrozytes in mature
trophozoite (T) and schizont (S) stages. Structures seen include nuclei (N),
hemozoin pigment (H) and food vacuole (V). In the schizont stage merozoites (Ms)
can be counted.

1.3.3 Nucleotide biosynthesis

Plasmodium spp. lack a de novo purine salvage pathway and they rely on exogenous

sources [142, 143]. Purine nucleosides are transported across the parasite plasma
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membrane by the NT1 transporter [144]. Hypoxanthine is the preferred precursor

for purine biosynthesis, routinely supplied in in vitro cultures and taken up in vivo

from the erythrocyte purine pool [143]. Adenosine can also be used prior conversion

to hypoxanthine through the enzymes adenosine deaminase (ADA, EC 3.5.4.4) and

purine nucleoside phosphorylase (PNP, EC 2.4.2.1). Once taken up, hypoxanthine

is converted to inosine monophosphate (IMP) by hypoxanthine-guanine-xanthine

phosphoribosyltransferases (EC 2.4.2.8 and EC 2.4.2.22) that serves as precursor for

the other purine nucleotides. These enzymes are highly expressed in Plasmodium

[145, 146].

On the contrary, the parasite is capable of pyrimidine de novo biosynthesis

from aspartate and carbamoyl phosphate, similar to other eukaryotes. The lat-

ter is formed from bicarbonate and glutamine. As mentioned in Section 1.3.1.2,

one of the enzymes of this pathway, essential for the parasite’s development, is

localised in the mitochondrion (dihydroorotate dehydrogenase EC 1.3.5.2) and de-

pends on ubiquinone to fulfil its function [147]. Pyrimidine synthesis also requires

folates which also rely on pABA (para-aminobenzoic acid, made in the apicoplast

through the shikimate pathway) and which the parasite can also synthesise de novo.

These are another drug targets exploited to treat malaria, with drugs such as

pyrimethamine that target the dihydrofolate reductase, however resistant pheno-

types are widely spread [148, 149].

1.3.4 Apicoplast metabolism

The apicoplast is a non-photosynthetic plastid that harbours several plant-like metabolic

pathways such as isoprenoid biosynthesis, part of the haem synthesis pathway and a

type II fatty acid synthesis (FASII) [150, 151]. Despite the high rates of haemoglobin

consumption, Plasmodium cannot use the human haem and synthesises its own.

Haem biosynthesis is initiated in the mitrochondrion from glycine and succinyl-CoA

[152] and finished in the apicoplast [153].

FAS II is dispensable in blood-stage parasite but crucial in liver and mosquito

stages of P. falciparum [154, 155]. Initially the parasite was thought to rely com-

pletely in the host for fatty acid production [156, 157] and in fact parasites can

scavenge, modify and incorporate exogenously supplied fatty acids [158, 141]. The

discovery of FASII has led to identification of compounds with antimalarial activity

[159, 160] and it has been proposed as vaccine candidate [154]. FASII is responsible

for synthesis of lipoic acid [161] and incorporation of fatty acids into precursors for

membrane lipid synthesis [153].

The only indispensable apicoplast function during the intraerythrocytic stages
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of P. falciparum is isoprenoid biosynthesis [162]. Isoprenoids functions range from

prosthetic enzyme groups to forming the basis of ubiquinones and dolichols. The

isoprenoid pathway in the parasite is similar to plants which is different to the clas-

sical acetate/mevalonate in mammals mainly in its starting compounds which are

pyruvate and glyceraldehyde 3 phosphate [163], both produced during glycolysis.

1.3.5 ROS

Plasmodium induces high oxidant stress within the host erythrocyte mostly due

to haemoglobin degradation which produces haem and numerous reactive oxygen

species (ROS) such as H2O2. The parasite deals with ROS with the host’s su-

peroxide dismutase (SOD) and catalase [164] and also produces high quantities of

reduced gluthathione (GSH). GSH at millimolar concentrations plays a pivotal role

in antioxidant defence. GSH serves as electron donor for the reduction of peroxides,

being reduced to gluthathione disulphide (GSSG) which cycles back into GSH by

converting NADPH into NADP. The latter is reduced back to NADPH through the

pentose phosphate pathway [165].

1.4 Metabolites, not only biochemical intermediates

Metabolites are not just intermediates and products of the metabolism. They have

regulatory power on their own. In every cell replication there are checkpoints that

allow the cell to progress to the next step of replication, or not. These checkpoints

take into account cellular status and environmental signals. Among those are specific

metabolites which function as nutrients such as vitamins A and D, iron, folic acid

or glucose [166]. For example, folic acid deficiency not only results in cell cycle

inhibition, but also has a role in DNA methylation in humans [167].

In organisms such as the malaria parasite with a very complex life cycle

in very diverse hosts, tightly controlled mechanisms for survival under changing

environments are key for success and epigenetic mechanisms are crucial for Plas-

modium adaptation. They regulate numerous processes including nutrient uptake

[168]. Plasmodium infected erythrocytes present an increased permeability to many

solutes [169], which is essential for nutrient uptake and waste excretion. This is

thought to be mediated by Plasmodium surface anion channel (PSAC) [170] which is

associated with a genetic locus containing two paralogous genes clag3.1 and clag3.2

(PF3D7 0302500 and PF3D7 0302200) [171] which expression is mutually exclusive

[172, 173] by default. However under strong selective pressure, parasites can activate

more than one clag3 [174]. Clag3 silencing is associated with a repressive histone
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mark (methylation site, typical epigenetic mechanism) thus providing a link between

epigenetic signals as responses to the environment. Furthermore it has been shown

that parasites are able to adapt to environmental stress such as the drug blasticin

and reduce expression of PSAC to impair drug uptake via epigenetic mechanisms

[175, 176]. Thus, nutrient environment can trigger epigenetic signals that would

promote metabolic rewiring with consequent adaptation to new environments.

The study of the effect of nutrient deprivation has not been possible in a

high-throughput manner until the recent emergence of metabolomics. By apply-

ing controlled changes to growing parasites, effects on metabolism rewiring can be

detected and bound to specific processes. Challenges are not merely technological

but also encountered throughout biological experimentation. The development of

continuous cultures of the malaria parasite in vitro was a challenging process that

once achieved has been conserved almost unchanged for over 40 years since its con-

ception [177]. However in the usual in vitro conditions parasites grow in abundance

with over double the glucose concentration available than in human, three times the

glutamine and over one order of magnitude higher vitamins amongst others [178].

Growing the parasites in such rich media, where most of the experiments and bio-

logical insights are made is equivalent to the design human trials on obese cohorts.

They are part of the population but they are not a representative group of most

of it. For the malaria parasite this is even more emphasized given that its media

is its host and unfortunately malaria is most widely spread amongst the poorest

where malnutrition and disease are most interlinked. There is a need therefore, to

adapt laboratory methods to more physiological conditions in order to improve our

experimentation models but also to gain insight on what adaptation mechanisms

parasites undertake and how those might influence drug effectiveness and dosage.

1.5 Metabolomics as an emerging field

The recent development of the omics methodologies have allowed to collect large

datasets used to predict global behaviours of a system based on the interactions

found [179, 180, 181]. Omics take into account all constituents of a system using

both in vitro and in silico methods. Numerous omics fields have emerged and

developed including genomics, proteomics and metabolomics. The aim of these

fields is to tackle challenging problems whilst looking at entire systems at any level

of organisation. This approach differs from the reductionist one commonly used in

biology and allows the discovery of emerging properties.

Historically, the first omics to be developed was genomics [180]. Genomics
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expanded in to transcriptomics, which in turn led to the development of proteomics

and finally metabolomics and other omics such as epigenomics or fluxomics. The

metabolome determines phenotype and is affected by changes in gene expression,

mutation in the genome or misregulation of proteins. These factors might have

small effects on metabolic fluxes but a large effect on metabolite concentration.

Metabolomics seems an ideal level at which to analyse a change in the system as it

considers changes at all levels and ultimately represents compounds that determine

phenotype. However, metabolomics as an emerging field is relatively unexplored, es-

pecially if compared to genomics or transcriptomics. Metabolomics studies provide

quantitative and qualitative information, which describes broadly the biochemical

status of an organism under certain conditions. The conditions in which a system

is studied can result in large variation in measurements [179, 182]. A variety of

environmental conditions, drugs and stress conditions can all be tested. These per-

turbations provoke changes in the systems that can be identified although they might

not be based in a genotypic change. Furthermore, metabolite profiling can elucidate

links and relations that occur primarily through regulation at the metabolic level

[179, 183, 180, 181]. Metabolomics is starting its golden era; projects such as the

human metabolome database [184], created in 2007, determine the foundations to

study different human disease in this level of organization. Metabolomics is also

emerging in the field of plants in order to gain more understanding of gene function

and elucidate the evolutionary divergence between ecotypes [183]. Metabolomics

also has a great impact on biotechnology helping in breeding tastier cultivars and

improvements of food processing procedures [185], assessing the quality of processed

green tea [186] and distinguishing among olive oils produced in different districts

[187].

Metabolic models have proven to be useful to study the metabolome and its

internal and external relationships [180, 188]. A metabolic model is a representation

of the network of biochemical reactions and transmembrane transporters that the

cell uses to produce energy to grow and reproduce. Detailed pathway modelling

can only be achieved using quantitative information derived from precise kinetic

data [189], which techniques such as mass spectromety (MS) and nuclear magnetic

resonance (NMR) can provide. Metabolic modelling can also be used to generate

further hypotheses which can be experimentally tested to shed light upon cellular

behaviour, thus iteratively producing refined models and insight into the system

studied [190]. These models range from global views of cellular systems or more

detailed ones with narrower scope [191] and ultimately, they not only increase the

biological understanding of complex systems but also, allow the creation of novel
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biotechnology with well defined targets for drugs.

To be a useful tool, metabolite profiling must be fast, consistent, sensitive

and suitable for mechanisation, as well as covering a significant number of metabo-

lites [183]. Metabolome measurement is, however, a multi-step process, laborious

and time-consuming. A brief and general diagram of the metabolomics work-flow is

shown in Figure 1.11. Briefly, first biological samples need to be obtained, in the case

of cells they need to be cultured and grown to amounts on which metabolites can be

quantified which varies depending on the technique of choice. Opposite to genomic

studies, cell handling can be a source of artificial variation and might introduce

artefacts in the study [192], thus careful and robust methods need to be in practice.

Secondly, the metabolism must be quenched usually following a time-course experi-

ment in which different treatments are applied to the cells. For absolute metabolite

quantitation, it is important to add isotopic internal standards in this step, so that

the standards experience equal chances for degradative and absorptive losses as the

endogenous compounds [193, 194]. Samples need to be kept at low temperatures to

avoid degradation before and during the extraction process. Different techniques and

instruments can be used for signal detection, but only two provide both qualitative

and quantitative data: mass spectrometry (in concrete terms, liquid chromatogra-

phy tandem mass spectrometry (LC-MS/MS), gas chromatography mass spectrom-

etry (GC-MS)), and Nuclear Magnetic Resonance (NMR) [195, 196, 197]. The data

obtained should be normalized and processed before further analyses. These can

range from multivariate statistics to pure comparison of metabolite levels between

conditions tested.

Metabolomics methodologies can be classified into targeted and untargeted.

Whilst targeted approaches measure a defined group of characterised and biochem-

ically annotated metabolites, untargeted performs a holistic analysis of all the mea-

surable metabolites regardless on whether they are known or not. The latter presents

the opportunity of discovery of new metabolites, inherent to the sample analysed

however it also presents the challenge of novel metabolite identification and biochem-

ical assignment, which is not trivial. To tackle this task a combination of statistical

methods for prediction of metabolites and assignment of chemical groups [198] cou-

pled with in silico predictions powered by the information collated in databases such

as the Human Metabolome Database [184] or the Madison Metabolomics Consor-

tium Database [199] and analyses in both NMR and MS of the unknown sample are

needed.
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Figure 1.11: Metabolomics work-flow. Biological samples are processed and in
the case of cellular and tissue samples metabolites are extracted prior to analyses
by NMR or MS. Data are scaled and normalised and statistical analyses can be
performed with different aims.

1.5.1 Mass Spectrometry

1.5.1.1 Principle

Mass-spectrometry (MS) is the study of molecular structure by measuring mass-to-

charge ratios (m/z) of ionised molecules in a magnetic field in vacuum conditions to

avoid influence from molecules in the air. In a magnetic field, ions can be deflected

and under the same magnetic strength their deflection depends on their mass. By

measuring the deflection the mass can be inferred. The standard steps in a mass

spectrometer are ionisation (to ensure the molecules can be deflected), acceleration

(to ensure all ions have the same kinetic energy), deflection (by the magnetic field)

and detection. Thus a basic mass spectrometer consists of and ion source (to con-

vert molecules into ions), a mass analyser and a detector (see diagram in Figure

1.12). The most common mass analyser are time of flight (TOF) and orbitrap [200].

Detection can be improved by using tandem MS, which is a mass spectrometer able
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of several rounds of MS, allowing further fragmentation and very accurate mass

determination [201].
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Figure 1.12: Diagram of a simple mass spectrometer A sample is injected into
the spectrometer and the molecules are ionized and accelerated. The ions are then
separated by their mass and charge via electromagnetic deflection and ions properly
aligned are detected. Note that the entire system is in vacuum.

1.5.1.2 MS approaches in metabolomics

One of the limitations of MS is that only ionised molecules can be measured. In

complex samples such as metabolite extracts, variable ionization and ion suppression

effects may impair exact quantification. To compensate these limitations further

techniques have been applied.

LC-MS Prior to MS, a step of high-performance LC (HPLC) is implemented [201].

During HPLC the sample is passed through a column by liquid (typically a mix-

ture of water and organic solvents such as methanol) at high pressure. This step

allows the sample to be eluted in different fractions depending on the sample inter-

action with the column matrix (thus different columns would interact different with

metabolites and favour extractions of different kinds i.e. hydrophilic or hydrophobic

metabolites).

GC-MS Prior to MS, the sample is vaporised and the volatile molecules are

pushed through a column by an inert gas at high temperature (usually helium).

Once in the column the molecules interact with the column coating. This coating
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can be varied to favour detection of specific metabolites. The major limitation of

this technique is that the metabolites to analyse need to be volatile (or derivatised

to be volatile) and fairly stable at high temperatures [202].

Others Even though the current gold standard techniques for MS are LC and

GC, others are being developed and quickly integrated in analyses pipelines. Some

examples are ultrahigh-performance LC (UHPLC) [203] or Capillary Electrophoresis

MS (CE MS). In CE-MS, charged analytes from a given sample are separated in

a capillary by electric charge and then their electrophoretic mobility allowing for

separation by charge and mass [204]. The field is rapidly advancing and even though

the review of the different techniques falls outside the scope of this project, it is

worthwhile mentioning the recent development of Rapid evaporative ionization MS

(REIMS), which coupled with an endoscopic polypectomy snare allows real time in

vivo metabolomics studies of living tissue [205].

1.5.2 Fourier Transformed Nuclear Magnetic Resonance Spectroscopy

1.5.2.1 Principle

NMR spectroscopy exploits the magnetic properties of some nuclei and their in-

teractions when immersed in a strong external magnetic field to study molecular

structure [206]. Some nuclei (such as 1H, 13C, 15N, 31P) possess a spin value which

enables them to produce a nuclear magnetic moment. In their natural state, these

nuclei are found oriented in random directions and when in a strong external mag-

netic field, they can either align with the field (lower energy) or against it (higher

energy). By pulsing different electromagnetic waves these nucleic can flip from the

more stable alignment (low energy) to the less stable (higher energy), a phenomenon

known as resonance condition. This also causes the synchronisation of the magneti-

sation vectors, consequently inducing a signal in the detector. As the nuclei lose

the absorbed energy the signal slowly decays and the system returns to its origi-

nal state. The recorded diminishing signal is referred as a Free Induction Decay

(FID). Upon Fourier transformation it registers as the typical NMR peaks. The

resonant frequency and intensity of the signal are proportional to the strength of

the magnetic field of the spectrometer, for example in a 14.1 Tesla magnetic field,

protons resonate at 600 MHz. A simple diagram of NMR spectrometer arrangement

is shown in Figure 1.13. Each atom experiences not only the magnetisation of the

external magnetic field but also the magnetic field of neighbour atoms. The position

of each peak in the spectrum represents its chemical shift in respect to the exter-

34



nal magnetic field and it is measured in part per million (ppm). This definition is

independent of the external magnetic field strength and consequently data taken at

different spectrometers can be compared.
1H NMR spectra have a small chemical shift (0-15 ppm) which results in

major overlap when analysing complex samples such as metabolite extracts. To

overcome this problem two dimensional experiments are applied, either homonu-

clear (H-H) or heteronuclear that in case of metabolomics very often consists of

heteronuclear single-quantum correlation spectroscopy (HSQC, H-C) experiments

that analyse all carbons bound to hydrogen in the sample. The limitation of study-

ing solely carbon lies in the low abundance of the 13C isotope (only 1.1%). However,

molecules enriched in 13C can be used not only to boost the signal but also to trace

their break down in the metabolism of the organism of study.

Radio 
frequency 

input 

Radio frequency 

Spectrum 

Magnetic Field 

Figure 1.13: Basic arrangement of an NMR spectrometer The sample is
placed in the magnetic field where it is excited via pulses of the radio frequency
input. The relaxation signal is registered in the output circuit and used to generate
the signal that is Fourier transformed into the spectrum.

1.5.2.2 NMR approaches used in metabolomics

Even though NMR is a reasonably established analytical technique (discovered in

1944 by Isidor Isaac Rabi and experimentally developed in the 50s by F. Bloch

and E. Purcell), its use in metabolomics is recent. The first real application of

NMR to the analysis of biofluids was done in the early 80s [207, 208] but it was

not until some NMR technical improvements in the 90s such as the introduction

of cryo-probes to boost sensitivity that made NMR spectroscopy a counterpart to
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MS in metabolomics studies [209]. The incorporation of robotics in NMR analyses

has allowed for establishment of high-throughput assays that can analyse up to 100

samples a day and monitor between 20 and 70 compounds [210, 211].

1.5.3 Advantages and shortcomings of MS and NMR

MS is a universal detector of ionised compounds with very high resolution and sen-

sitivity (reaching fmol). Its sensitivity is the main reason of its frequent adoption,

thus many analysis methods have been developed along with specialised software

and databases. Robust methods have been published for the detection of up to 200

metabolites [212] that have been exploited for the analysis on many different organ-

isms. However, MS is limited to the analysis of ionizable molecules, requires a very

time consuming sample preparation and if a targeted approach is used, numerous

standards need to be prepared with each run of experimentation, increasing vastly

the data acquisition time. NMR spectroscopy makes it possible to perform struc-

tural analysis of many metabolites in crude extracts, cells suspensions, intact tissues

or whole organisms [213]. However nowadays sensitivity is still one of the major is-

sues of this technique with only highly abundant metabolites being detected (ranges

from micromolar to millimolar). Nevertheless NMR spectroscopy has numerous ad-

vantages, amongst them: it does not need time-consuming sample preparation steps,

it is quantitative [214], non-destructive (which provides extra analysis options for

the same sample) and very robust with high reproducibility between experiments

and between laboratories. Because of the later, NMR standards can be run in inde-

pendent runs and do not need to be repeated while they are prepared and acquired

in the same conditions than the experimental samples. NMR can also differentiate

between molecules with the same mass but different conformation. This is crucial

to analyse sugars. NMR can for example differentiate between α and β glucose

and between glucose, galactose and mannose that even though have same masses,

they all have slightly different structural conformations and very different roles in

metabolism. These make NMR spectroscopy best suited for untargeted profiling

of metabolites. An overview of the main advantages and disadvantages of both

analytical techniques is shown in Table 1.3.
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Table 1.3: MS and NMR pros and cons

Technique Advantages Disadvantages

MS

- High sensitivity and

specificity

- Chemical modification

needed

- Many analysis resources

available

- Destructive to sample

NMR

- Non destructive - Less sensitive

- Low per-experiment cost - Signal overlap

- No need for derivatization

& Not selective

- Limited resources for

analysis

- Robust and reproducible

1.5.4 Metabolomics of the malaria parasite

Even though the field of Plasmodium metabolomics is still in its infancy, it has al-

ready shown its incredible potential. As presented in Section 1.3, the conundrum of

the Krebs cycle and mitochondrial function of the different life stages of the malaria

parasite has been elucidated thanks to metabolomics studies [103, 106, 105, 107].

Metabolomics studies have also been used to trace glucose metabolism in infected

erythrocytes and discover novel metabolites such as glycerol [81] which is not ex-

creted as a wasteful product in humans. Metabolic steps unpredicted by genomic

studies have also been discovered by metabolomics such as the conversion of arginine

to ornithine by parasite arginase [195] linked to the clinical hypoargininemia ob-

served in patients. Other novel pathways have also been unveiled such as carotenoid

biosynthesis [215] or parasite-specific lipid biosynthesis [158]. Further studies have

also linked some parasite specific fatty acids to parasite-mediated host immune mod-

ulation [216], emphasising the power that metabolites have as molecular signals.

Extensive metabolite profiles of the malaria parasite have been published

[217, 218, 219, 195] and comparative studies between resistant and susceptible strains

have proved effective to discriminate between them [217]. Other studies have in-

volved perturbation of the parasite’s enzymes to study the effect of polyamine de-

pletion as an anti-malarial strategy by inhibiting the S-adenosylmethionine decar-

boxylase and ornithine decarboxylase [220]. Metabolic profiling has also been used

to further explore the mode of action of drugs. A battery of drugs with known and

unknown modes of action were used to profile their effects and more insight was

gained in the mode of action of some. For example the novel compound Torin 2 was
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found to inhibit haemoglobin metabolism. The endoperoxide dihydroartemisinin

was found to disrupt haemoglobin catabolism and pyrimidine biosynthesis which

results in an increased glucose flux towards malate production [221]. Other studies

have been done to link metabolic responses with multidrug resistance. For exam-

ple P. falciparum multidrug resistance-associated protein 1 has been related to the

export of folate from parasite to erythrocyte [222].

Numerous studies have been done to better understand the metabolism of

the parasite and its response to drugs. Most of them are studies of only the intracel-

lular metabolome with very brief mention to the analysis of extracellular medium.

This is a completely non-invasive approach with far less sources of variation in its

processing that consists of measuring the extracellular metabolites (consumed and

excreted) of a given culture i.e. its footprint. Studying the parasite footprint can

provide very useful information. For example by analysing the uptake of 2-13C Glu-

cose by infected and uninfected red blood cells, it was observed that infected cells

down regulate the glucose utilisation of uninfected ones [223]. Discovery of glycerol

production by the parasite was done by looking at cellular suspensions containing

the extracellular media [81]. Identification of acetate excretion by gametocytes has

also been shown by analysis of the footprint [103]. Footprinting has also served

to study metabolic alterations in mice infected with P. berghei in different tissues

[224] and sex dimorphism have been observed during early stages of infection when

females showed greater alterations in urine metabolites and males in serum. Metabo-

lite profiles of serum samples from patients with different malaria severity have also

served to classify them into disease categories, proving its potential for diagnostics

[225]. Not only parasites, but also their hosts have been studied by metabolomic ap-

proaches and used to identify possible metabolic targets in future drug development

[226]

However, many questions are still left to be answered regarding the Plas-

modium footprint that might aid the understanding of the metabolic mechanisms

by which the parasite reacts to the environment. It has been shown that the parasite

can react to changes in oxygen availability by elongating their life cycle [227] but no

footprinting nor fingerprinting studies have been done to understand what are the

metabolic responses associated with it. Further understanding of the methods to

slow its life cycle are paramount to further comprehend some of the processes related

to drug resistance. Plasmodium early asexual stages can respond to artemisinins by

arresting metabolic processes such as protein synthesis and glycolysis (entering in

what is known as dormancy). This response is responsible for the increased tolerance

against artemisinins [228, 229]. Dormancy capabilities are highly linked with resis-
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tant phenotypes This metabolic arrest differs from the changes observed in apoptotic

parasites [230]. Thus footprinting monitoring may aid on the characterisation on

resistant strains.

After it was shown that the parasite can delay its life cycle responding to

environmental conditions such as hyperoxia [227] or some nutritional impairments

such as asparagine synthesis [231] or isoleucine deprivation [232] the main question

left unanswered is, whether and how the parasite adapts its metabolism and life

cycle to different environments and whether this adaptation results in different rates

of replication, drug susceptibility and transmissibility. In vitro studies remain the

gold standard not only in malaria metabolomics but also as first line on the drug

discovery pipeline. However as mentioned in Section 1.4, culture media and healthy

host’s nutritional conditions are vastly different [178] and there is a need to study

what is the impact on growing the parasite in such rich conditions with respect

to experimental outputs and assess whether metabolic adaptation plays a role in

parasite survival on hosts under different nutritional challenges.

1.6 Aims and Objectives

In light of the knowledge gap on the nature of environmental adaptation of the

malaria parasite, there is a need to address whether different nutrient environments

would trigger a response on the parasite at the systems level promoting a metabolic

rewiring that would have an effect in progeny generation or life cycle progression.

Most studies on nutritional requirements of Plasmodium were done in the 80s and

focus solely on viability reports [128, 233, 234] while more recent studies have mainly

focused on the effect of deprivation of one amino acid by either not supplementing

it in the media [232] or disrupting the machinery for its use [231]. The overarch-

ing aim of this thesis was to characterise major metabolic parasite features during

intra-erythrocytic growth and development in multiple environments. This aim was

addressed through the following specific objectives, also summarised in Figure 1.14.
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To develop a 
quantitative NMR-

based 
metabolomics 

platform 

To assess 
parasite-stage 

dependent 
differences in 

central metabolism 
with minimal 
perturbation 

To prepare, 
validate and test 

the effects on 
parasite growth of 
physiological-like 
culture medium  

To characterise the 
effect of nutrient 
availability on: 
•  parasite growth 
•  development 
•  progeny 
generation 

Chapter 3 Chapter 4 Chapter 5 Chapter 6 

Figure 1.14: Objectives.

• To develop a quantitative NMR-based metabolomics platform for the assess-

ment of intracellular and excreted parasite metabolites (Chapter 3).

• To assess parasite-stage dependent differences in central metabolism in normal

in vitro conditions to ensure life cycle monitoring with minimal perturbation

of the natural host-parasite environment (Chapter 4).

• To prepare, validate and test the effects on parasite growth of RPMI-based

culture medium mimicking physiological conditions (Chapter 5).

• To characterise the effect of nutrient availability on parasite growth and de-

velopment and the relationship between parasite metabolism, growth and

progeny, as determined by bright field microscopy, high-content imaging and

NMR metabolomics (Chapter 6).
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Chapter 2

General Materials and Methods

All the procedures involving the culture of Plasmodium falciparum were performed

in a CAT 3 lab inside a class II microbiology safety cabinet (NU-S434-500E, NuiAIRE)

using aseptic technique. 70% ethanol was used when opening and closing the fume

hood as well as when introducing material inside it. All the solutions have been

filter sterilised using a 0.22 µm membrane filter unless stated otherwise.

2.1 Cryopreservation and parasite retrieval

2.1.1 Parasite retrieval

All cultures of Plasmodium falciparum strain 3D7 were stored in liquid nitrogen.

A vial was removed from cold storage and thawed at 37 ◦C for approximately 2

minutes. Then a volume of 12% NaCl, equal to 0.1X the volume of the vial, was

added drop by drop while gently shaking the tube, which was then left standing

for 5 min. Next, 10 volumes of 1.6% NaCl were added in the same way and the

tube was immediately centrifuged at 500 g and 20 ◦C for 5 min. The supernatant

was discarded and 10 volumes of complete culture media were added as previously

described for the NaCl solutions. This was centrifuged as above and the supernatant

was discarded leaving the pellet ready to be cultured in a 25 mL flask following

routine culturing techniques described in Section 2.2.

2.1.2 Cryopreservation

2.1.2.1 Cryopreservation solution

Cryopreservation solution was prepared as follows; 4.2% (w/v) sorbitol was dissolved

in 0.95% (w/v) NaCl solution (prepared in distilled water). To this 35% (v/v)
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glycerol was added before sterilisation by filtration and storage at 4 ◦C until use.

2.1.2.2 Cryopreservation procedure.

Parasite cultures at a parasitaemia greater than 5% and highly synchronous at ring

stage were transferred to 50 mL tubes and centrifuged at 500 g for 5 min at RT.

The supernatant was discarded and an equal volume of cryopreservation solution

(Section 2.1.2.1) was added to the pellet. This suspension was left to equilibrate for

5 min at RT. Finally aliquots of 1000 µL were transferred to cryotubes that were

transferred to permanent storage in a liquid nitrogen tank where they are kept in

the gas phase of the element.

2.2 Maintenance of Plasmodium falciparum in vitro

2.2.1 Standard culture media

P. falciparum was cultured in RPMI-1640 R8758 (Sigma Aldrich) supplemented with

0.04 mM hypoxanthine (section 2.2.1.1) and 0.25% Albumax I (section 2.2.1.2). In

order to avoid contamination 0.02 mg mL−1 of gentamicin was added. Medium was

buffered to pH 7.4 with 25 mM of the phosphate buffer HEPES (section 2.2.1.3).

Then the medium was filtered and stored at RT until use for a maximum of one

week. (Storage at room temperature allows identification of possible contamination

in the media.)

2.2.1.1 Hypoxanthine

A 4 mM stock solution was prepared by dissolving hypoxanthine powder in a 0.1

mM NaOH solution. The solution was filtered-sterilised and kept at 4 ◦C for a

maximum of 3 months.

2.2.1.2 Albumax I

A solution of 5% (w/v) Albumax I (Gibco CAS 11020-039) was prepared, filtered

and stored at 4 ◦C for a maximum period of 6 months.

2.2.1.3 HEPES

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, Amresco CAS 7365-

45-9) buffer was prepared as a 1M stock in distilled water, pH 7.4 and sterile filtered.

HEPES was stored at 4 ◦C for a maximum of 6 months.
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2.2.1.4 Gentamicin

Gentamicin was acquired from Sigma-Aldrich in sterile vials at 50 mg mL−1 and

kept at 4 ◦C.

2.2.2 Red blood cells

Fresh human blood type O+ in citrate-phosphate-dextrose bags was received every

fortnight from the North West Regional Blood Transfusion Service in the UK. This

blood had been tested for common pathogens such as HIV (Human Immunodefi-

ciency virus) and HBV (Hepatitis B Virus). The blood was kept in the bags at 4 ◦C

until it was aliquoted into 50 mL falcons. Aliquots of 25 mL were washed in 45 mL

of RPMI 1640 R8758 before centrifuging at 1800 g for 5 min. Supernatants were

discarded and the washing step was repeated twice more. The washed pellet was

kept at 4 ◦C for a maximum of one week.

2.2.3 Culture conditions

Pellets obtained after retrieval (as explained in section 2.1.1) were cultured in 75

mL culture flasks at 2% haematocrit. Media was changed a minimun of once a day

and parasitaemia was kept under 12% in order to reduce stress for nutrients and

host competition (see section 2.2.3.1 for further details) [235]. However, it should be

noted that higher parasitaemias were needed for metabolomics experiments. These

flasks were gassed (as described in section 2.2.3.2) and kept in an incubator at 37
◦C.

2.2.3.1 Daily monitoring: thin blood smears

Culture flasks were removed from the incubator with care in order to avoid distur-

bance of the monolayer created in the bottom of the flasks. A monolayer aliquot of

approximate 10 µL was removed using a Pasteur pipette in order to prepare a smear

on a glass microscope slide. This was fixed with absolute methanol and placed in

10% Giemsa solution for 10 min to stain. The slide was then washed in running

water and dried using a hair dryer. The slide was then visualised under a 100× lens

of a microscope using immersion oil. Parasitaemia was estimated by dividing the

number of infected red blood cells (iRBC) between the total number of cells, count-

ing a minimum of 500 cells per slide. This resolution also allows the monitoring of

the life stage of the parasite.

Parasitaemia was calculated daily to assess a suitable dilution for the para-

sites in culture. Typically, healthy asynchronous cultures increase their population
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twice every day. Well-synchronised cultures increase their parasitaemia 4× every

cycle ( which is 48 h for P. falciparum).

2.2.3.2 Culture gas phase

The environment for optimal growth of the malaria parasite must contain a lowered

oxygen and raised carbon dioxide level [236]. Consequently, prior to incubation,

each flask was gassed with a combination of 3% oxygen, 4% carbon dioxide and 93%

nitrogen obtained from a tank supplied by British Oxygen Special Gases. The gas

was administered through a length of pre-sterilised silicon rubber tube with a 0.22

µm pore size filter attached to a single used sterile filter pipette. Each flask was

gassed for approximately 1 minute based on 75 cm2 culture flask or 30 s for 25 cm2

flasks.

2.3 Synchronisation of cultures

Within the human body, P. falciparum displays synchrony in its life stages, but in

culture it tends to be asynchronous thus producing a mixed population consisting

on a number of life-stages [177]. In order to identify stage-specific susceptibilities to

different treatments a synchronous culture is required. The method used involved

double round of synchronisation by sorbitol, which promotes late trophozoite lysis

by modifying its osmolarity [237]. By exposing the parasites to a solution of the

sugar, high enrichment of the early ring stages was achieved. The method consisted

of incubating the cell pellet of a culture in 5 volumes of a pre-warmed 5% sorbitol

solution for 25 min in a water bath at 37 ◦C and mixing gently every 5 min. After

incubation the tube was centrifuged at 500 g for 5 min and the supernatant was

discarded, followed by two further washes with 20 volumes of complete medium.

Finally the cells were reintroduced into culture for 48 h prior experimentation to

allow the cultures to recover.

The sorbitol synchronisation results in a population of parasites synchronous

with life stages within 10 to 18 h of each other [238]. This window is sufficient for

routine culturing but for metabolomics experiments more accuracy was needed. In

order to achieve high synchrony, the above protocol was repeated 42 h after the first

synchronisation, resulting in a reduction of the synchronisation window to less than

8 h.
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2.4 Culture media. Design and preparation

One of the aims of this project was to determine the effect of the nutrient availability

in the life cycle of P. falciparum. Five variations of RPMI culture media were used

in these experiments: commercial RPMI (R8758, Sigma), RPMI prepared in-house,

blood-like RPMI (which is RPMI media formulation at physiological conditions)

and a modification of the latter with 2/5 standard glucose content. Values for the

physiological conditions used in the preparation of blood-like RPMI were obtained

from LeRoux et al. (2009) [178] and completed by the information found in the Hu-

man Metabolome Database (HMDB) [184]. Within the HMDB, several conditions

were reported as intervals and in this case the upper bound was always selected for

the production of blood-like RPMI (Table 2.1. Osmolarity of the final mixture was

calculated and salts were adjusted to keep it within physiological range (280-295

mOsm/Kg).

2.4.1 Preparation and storage of stocks

Each component for the different media were prepared in 50 mL aliquots, sterile

filtered and stored at −80 ◦C until use (see Table 2.2). Each aliquot was thawed

for use and stored at 4 ◦C for a maximum of a week. Asparagine, glutamine, and

sodium bicarbonate were added immediately prior to use (due to their instability in

solution).

2.4.2 Mixture and storage

The media were prepared as in Table 2.2, pH adjusted to 7.4 and filter-sterilised.

Media was stored at 4 ◦C for a maximum of 6 months. Aliquots without glucose were

also prepared in order to perform the experiments with labelled glucose, in which

case, this was added immediately prior to the experiment. Immediately prior to the

experiment, albumax, HEPES and gentamicin were added in the same proportion

stated in section 2.2.1. Hypoxanthine is added as 0.04 mM in the in-house produced

RPMI and as 0.004 mM in the blood-like media, consistent with the value reported

in the HMDB.
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Table 2.1: Concentrations of RPMI culture media.

Compounds RPMI (mM) Blood-like RPMI (mM)

Inorganic Salts

Calcium Nitrate 4H2O 0.423 2.380

Magnesium Sulfate 0.406 0.830

Potassium Chloride 5.365 4.150

Sodium Bicarbonate 23.807 25.713

Sodium Chloride 116.507 110.891

Sodium Phosphate Dibasic (anhydrous) 5.635 0.380

Amino Acids

L-Arginine 1.148 0.110

L-Asparagine (anhydrous) 0.378 0.043

L-Aspartic Acid 0.150 0.021

L-Cystine 2HCl 0.271 0.110

L-Glutamic Acid 0.136 0.047

L-Glutamine 2.053 0.600

Glycine 0.133 0.240

L-Histidine 0.072 0.085

Hydroxy-L-Proline 0.177 0.016

L-Isoleucine 0.381 0.071

L-Leucine 0.381 0.170

L-Lysine HCl 0.219 0.250

L-Methionine 0.101 0.028

L-Phenylalanine 0.091 0.078

L-Proline 0.174 0.190

L-Serine 0.285 0.140

L-Threonine 0.168 0.180

L-Tryptophan 0.024 0.046

L-Tyrosine 2Na 2H2O 0.159 0.084

L-Valine 0.171 0.230

Vitamins

D-Biotin 0.001 0.000

Choline Chloride 0.021 0.008

Folic Acid 0.002 0.000

myo-Inositol 0.194 0.030

Niacinamide 0.008 0.000

p-Aminobenzoic Acid 0.007 0.015

D-Pantothenic Acid (hemicalcium) 0.001 0.004

Pyridoxine HCl 0.005 0.000

Riboflavin 0.001 0.001

Thiamine HCl 0.003 0.000

Vitamin B12 0.000 0.000

Other

D-Glucose 11.101 5.000

Glutathione (reduced) 0.003 0.037

Phenol Red Na 0.015 0.015
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Table 2.2: Stock solutions details.

Compounds Stock solution (mM) CAS Company

Inorganic Salts

Calcium Nitrate 4H2O 423.460 13477-34-4 Sigma-Aldrich

Magnesium Sulfate 405.729 10034-99-8 Analar

Potassium Chloride 1341.202 7447-40-7 Fluka

Sodium Bicarbonate 144-59-8 Sigma-Aldrich

Sodium Chloride 4928.131 7647-14-5 Sigma-Aldrich

Sodium Phosphate Dibasic (anhydrous) 433.925 7558-79-4 Analar

Amino Acids

L-Arginine 399.541 74-79-3 Sigma-Aldrich

L-Asparagine (anhydrous) 70-47-3 Fluka

L-Aspartic Acid 26.520 56-84-8 Sigma-Aldrich

L-Cystine 2HCl 83.229 56-89-3 Sigma-Aldrich

L-Glutamic Acid 46.979 56-86-0 Sigma-Aldrich

L-Glutamine 56-85-9 Sigma-Aldrich

Glycine 133.209 56-40-6 Sigma-Aldrich

L-Histidine 71.565 04/02/7048 Sigma-Aldrich

Hydroxy-L-Proline 176.788 51-35-4 Sigma-Aldrich

L-Isoleucine 251.220 73-32-5 Sigma-Aldrich

L-Leucine 148.171 61-90-5 Sigma-Aldrich

L-Lysine HCl 219.058 657-27-2 Sigma-Aldrich

L-Methionine 100.536 63-68-3 Sigma-Aldrich

L-Phenylalanine 90.799 63-91-2 Sigma-Aldrich

L-Proline 173.717 147-85-3 Sigma-Aldrich

L-Serine 285.470 56-45-1 Fluka

L-Threonine 167.926 72-19-5 Sigma-Aldrich

L-Tryptophan 24.486 73-22-3 Sigma-Aldrich

L-Tyrosine 2Na 2H2O 160.000 60-18-4 Sigma-Aldrich

L-Valine 170.721 72-18-4 Fluka

Vitamins

D-Biotin 0.819 58-85-5 Sigma-Aldrich

Choline Chloride 21.490 67-48-1 Sigma-Aldrich

Folic Acid 2.266 59-30-3 Sigma-Aldrich

myo-Inositol 194.229 87-89-8 Sigma-Aldrich

Niacinamide 8.190 98-90-0 Sigma-Aldrich

p-Aminobenzoic Acid 7.294 150-13-0 Sigma-Aldrich

D-Pantothenic Acid (hemicalcium) 0.514 137-08-06 Sigma-Aldrich

Pyridoxine HCl 4.768 58-56-0 Sigma-Aldrich

Riboflavin 0.531 83-88-5 Sigma-Aldrich

Thiamine HCl 3.324 67-03-8 Sigma-Aldrich

Vitamin B12 0.004 68-19-9 Sigma-Aldrich

Other

D-Glucose 50-99-7 Sigma-Aldrich

Glutathione (reduced) 3.186 70-18-8 Sigma-Aldrich

Phenol Red Na 143-74-8 Sigma-Aldrich
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2.5 Metabolite extraction

An extraction method based on Olszewski et al. and Beckonet et al. [239, 240]

was implemented as follows. Extraction solution must be at least 4 times times the

volume of the sample. Due to the need to process more than 400 µL of complete

sample, multiple aliquots were used of the same culture. These were then pooled

post-extraction into 15 mL Falcon tubes. For each 400 µL sample, 1 to 3 Eppendorfs

of 2 mL capacity were labelled. Also a 15 mL tube per complete sample and an

2 mL eppendorf for media sample. The three eppendorfs, namely 1, 2a, and 2b

were chilled on dry ice. Tube one contained a volume equal to 4 times the cells of

the extraction solution, of a 20:20:10 mixture of acetonitrile (CAS 75-05-8, Sigma-

Aldrich, HPLC pure solvent), methanol (CAS 67-56-1, Sigma-Aldrich, HPLC pure

solvent), and water (CAS 7732-18-5, Sigma-Aldrich, HPLC pure) respectively. Tube

1 also contained the internal standard TSP (3-(Trimethylsilyl)propionic-2,2,3,3-d4

acid, CAS 24493-21-8, Sigma-Aldrich) at 2.5 mM.

The extraction process is shown in Figure 2.1. After incubation, a sample of

supernatant equivalent to the volume of cells taken was collected in the media tube

and a sample of at least 1.4×109 cells was taken and washed twice in ice cold 1×
PBS (Phosphate Buffered Saline). Aliquots of 400 µL per sample were taken and

rapidly deposited in tube 1, vortexed vigorously and left on dry ice. When all the

samples were collected they were vortexed again and kept on dry ice for 15 min,

vortexing every 5 min.

After this step there were two modalities of the method that will be further

discussed in Chapter 3 but briefly:

a) Single extraction. The samples were centrifuged at 16000 g for 10 min at 4
◦C. The supernatant was then transferred to the 15 mL tube where all of the

aliquots of tube 1 from the same cell sample were pooled together. Then the

samples were stored at −80 ◦C until the next step.

b) Double extraction. The samples were centrifuged at 500 g for 5 min at

4 ◦C. The supernatant was then transferred to tube 2a and stored on dry

ice. The pellet was resuspended with 1 mL of pre-chilled extraction solution,

vortexed and sonicated on ice for 15 min. The samples were immediately cen-

trifuged at 16000 g for 5 min at 4 ◦C. The supernatant was transferred to tube

2b and the pellet discarded. Both tube 2a and 2b were centrifuged at 16000 g

for 10 min at 4 ◦C. Finally all the supernatants of the same cell sample were

pooled in a Falcon that was stored at −80 ◦C until further experimentation.
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Figure 2.1: Metabolite extraction. (a) Single. (b) Double. ES stands for
extraction solution. The internal standards were added in one of the tubes with
the extraction solution. This figure shows the main differences between metabolite
extraction procedures.
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2.6 The effect of glutamine on glycolytic flux

2.6.1 Ringer’s solution

Ringer’s solution was prepared in distilled water adding 106 mM NaCl (CAS 7647-

14-15, Sigma-Aldrich), 24 mM NaHCO3 (CAS 144-59-8, Sigma-Aldrich), 5.4 mM

KCl (CAS 7447-40-7, Fluka), 1.2 mM CaCl2 (CAS 10043-52-4, Sigma-Aldrich),

1 mM Na2HPO4 (CAS 7558-79-4, Analar), and 0.8 mM MgCl2 (CAS 7786-30-3,

Sigma-Aldrich). Then it was adjusted to pH 7.4, filter-sterilised and stored at 4 ◦C.

2.6.2 Experimental procedure

900 µL of highly synchronous P. falciparum cultures at 10.4% parasitaemia were

incubated for 2 h in 10 mL of pre-warmed Ringer’s solution containing different levels

of glucose and glutamine, which were shown in Table 2.3. For each condition two

solutions were prepared, one with U-13C-glucose and other with unlabelled glucose

and parasites were incubated in both. An RBC control was also incubated for each

condition, using Ringer’s solution containing labelled glucose. The incubation was

performed in a 6-well plate (Nunc cell-culture treated multidishes, 6-well, round-

bottomed, Thermo) deposited in a modular incubator chamber (PAT. NO. 532414,

Billups-Rottenberg) containing a paper towel wet with distilled water in the bottom

to maintain humidity levels. The chamber was gassed for two min as describe

in section 2.2.3.2. After incubation, metabolites were extracted using the double

extraction method described in section 2.5 b) and processed as described in Section

2.7.

Table 2.3: Concentrations of glucose and glutamine.

Conditions Glucose [mM] Glutamine [mM]

A 5 0
B 5 0.6
C 5 2
D 1 0
E 1 0.6
F 1 2
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2.7 NMR Analysis

2.7.1 Sample preparation for analysis in the NMR

At least 24 h before the NMR analysis, both extracts and media samples were freeze-

dried. The dried samples were stored at −80 ◦C or directly prepared for analysis.

Samples were resuspended in 300 µL of NMR buffer (100 mM sodium phosphate

buffer (Na2HPO4, CAS 7558-79-4 and NaH2PO4, CAS 7558-80-7), pH 7.4 in 2H2O)

and vortexed vigorously. Then they were centrifuged at 16000 g for 5 min. 280 µL

of the supernatant was transferred to a 3 mm diameter NMR tube with a Pasteur

pipette.

2.7.2 NMR set-up and parameters

1D 1H and 2D 1H-13C heteronuclear single-quantum correlation (HSQC) spectra of

each sample were acquired using Topsin 3.1 on a Bruker Avance III 600 MHz spec-

trometer. NMR set up was performed daily by calibrating the temperature of the

machine to 25 ◦C using a methanol thermometer [241] and the tuning or shimming

of the spectrometer followed by the optimisation of acquisition parameters O1 to

optimise the suppression of the residual H2O signal and DE to ensure baseline re-

producibility. 2D HSQC were acquired in 4 transients, with 8192 directly acquired

points and 1028 increments with sweep and offset optimised for aliphatic metabo-

lites. Spectrum was then Fourier transformed with standardised shifted sine bell

window function, zero-filled, and phased in TopSpin. A full list of parameters is

provided in Appendix A.

2.7.3 Metabolite identification

Phased spectrum was introduced in CCPNmr software [242] for further analysis.

Metabolites were identified by overlapping spectra of different hydrophilic metabo-

lite standards with our query spectra. Initially an in silico collection of spectra

provided by the metabolomics project [243] was used and then further expanded by

importing spectra from the Madison Metabolomics Consortium Database [199]. The

metabolite candidates identified by this method were then confirmed by running a

reference sample of the specific metabolites in the same conditions as our spectra.

2.7.4 Preparation of standards for the creation of calibration curves

For all the metabolites identified, calibration curves were created. For each metabo-

lite, solutions in 2H2O at 0.1, 0.2, 0.5, 1, 2, 5, and 10 mM were prepared. These

51



also contained the standards TSP and imidazole at 2.5 and 5 mM respectively. The

samples were analysed in the spectrometer and HSQC spectra were acquired as de-

tailed in Section 2.7.2. The spectra were entered into CCPNmr software to calculate

heights and volumes of each peak. These were normalised by the TSP signal and

plotted against concentration. A linear fit was obtained for each 1H-13C one bond

correlation peak. These will be further discussed in Chapter 3.

2.7.5 NMR Data analysis

2.7.5.1 Cell extracts

The values for the height and volume of all the peaks found in the spectra were

extracted in a comma separated value (csv) file. Detailed information on the design

of this analysis is provided in Chapter 3 but briefly, the pipeline of analysis for each

sample dataset described below.

1. Cleaning: the file was formatted and redundant information removed.

2. Normalisation: the heights and volumes of the peaks were divided by the

height and volume of TSP respectively.

3. Nomenclature: The peak reference codes were substituted by the corre-

sponding IUPAC (International Union of Pure and Applied Chemistry) nomen-

clature for each carbon.

4. Analysis: Schematic representations in Figure 2.2. Data from differently

labelled samples were processed separately. The natural abundance samples

were used to calculate the concentration of the sample. Further processing al-

lowed the estimation of intracellular concentrations. The heights and volumes

of both natural abundance and labelled samples were used to calculate the

labelled ratio per carbon or each metabolite found in the sample.
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Figure 2.2: Sample analysis and concentration calculations. “V” stands for
volume, “NRBC” stands for number of RBCs, “Nparasites” stands for number of
parasites, “parasit” stands for parasitaemia and “Nat.Abund.” stands for natural
abundance

5. Calculation of concentrations: By using the calibration curves, heights

and volumes of peaks were translated into concentration values.

6. Calculation of intracellular concentrations: By having an homologous

uninfected growth that is extracted and processed in the same manner as the

infected one, intracellular concentrations can be estimated. The moles present

in the non-infected RBC of the sample were subtracted from the mixed RBC

+ infected RBC sample. This was calculated by using the data from the RBC

control sample scaled down by removing the percentage of infected RBC in

the query sample.

7. Plot concentrations

2.7.5.2 Calculation of moles consumed or excreted: Media samples.

Media samples concentrations were calculated using the calibration curves. A cor-

rection factor to account for the difference between volume sampled and volume
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in the NMR tube was implemented and concentrations used for further analysis.

When estimation of consumption and excretion of moles per cell were required,

further steps were implemented (see Figure 2.3).

Figure 2.3: Media samples analysis pipeline

2.8 Imaging sample preparation and analysis

2.8.1 High content Imaging.

Tetramethylrhodamine ethyl ester perchlorate (TMRE, CAS 115532-52-0, Sigma

Aldrich) and Hoechst 33342 (CAS 23491-52-3, Invitrogen) were diluted in culture

media to a concentration of 200 nM and 2 µg/mL respectively. Aliquots were pre-

pared and frozen at the start of the experiment and were stored for no longer than

a week. At each time point an aliquot was defrosted 30 min prior sampling and

50 µL and plated into the Cell Carrier-384 Black, optically clear bottom with lid

(Perkin Elmer, product number 6007558). Cell suspensions at 0.02% haematocrit

were prepared from each culture at each time point. 50 µL of each suspension was

added to a well of the Cell Carrier, adjusting the final concentration of the dyes to

100 nM of TMRE and 1 µg/mL of Hoechst 33342. The plate was incubated for 30

min prior to measurement at RT.
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Plates were read in a PerkinElmer Operetta High Content Imaging System

(Operetta) using the software Harmony. Images at 60X magnification from three

channels were obtained i.e. Brightfield (exposure 400ms), Hoechst 33342 (exposure

50ms) and TMRE (exposure 500ms) of at least 56 fields per well. Excitation and

transmission were 100%.

The data from the measurements was analysed in two phases. First Harmony

was used to extract the data from the images. The parameters used to select the

regions were (a) TMRE: find image with a threshold of 0.43 and object clustering

allowed. Select a population with an area of 0.4<x>55 µm, roundness >0.4 and

Intensity>2000. (b) Hoechst was selected with image region, threshold set to 0.73,

allowing clustering and the selected population was cut by taking regions with an

area of 0.5<x>50, roundness>0.4 and Intensity >250. Second the evaluation data

was extracted and further cleaned using the statistical software R. The analysis

pipeline will be discussed in Chapter 6 but briefly the data is further cleaned by

removing fields with artifacts, then outliers are removed in two phases: first by

further constriction of the area size and secondly by removing the top and bottom

10% quantiles. This is followed by the calculation of the mean and standard error

and consecutive visualisation in plots and statistical analysis.

2.8.2 Bright field microscopy

Slides were prepared as explained in section 2.2. These were visualised in an Olym-

pus bx-60 microscope and digitalised with the aid of a Nikon camera attached to it

using the software NIS Elements v.3. These images were exported as tiff and further

analysed with Fiji (Image J, version 2.0.0). Images were calibrated and converted to

8 bits followed by manually adjusting the threshold until regions of interest (ROI)

were selected. The resulting image was made binary and converted to mask where

ROIs were analysed obtaining measurement of area, intensity, circularity and solid-

ity. Note that intensity is defined as area × mean gray value, circularity is defined

as (4π × area)/perimeter2 and solidity as area/convex area. Measurements of at

least 30 parasites per treatment were obtained and used for statistical tests.

2.8.2.1 Bright field analysis validation

Image analysis procedure was validated by repeating the analysis on a representative

image ten times (see Figure 2.4). The measurements of area were used to calculate

the estimated coefficient of variation defined as the standard deviation divided by

the mean of the sample. Results, presented in Table 2.4 did not exceed a 3.5% what
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indicates good levels of repeatability.
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Figure 2.4: Bright field analysis validation (a) Representative image used for
validation. The four parasite areas were measured following the steps described in
Section 2.8.2 ten times; (b) Box plots of the area measurements of the four parasites
in the 10 iterations. Box plots represent median of the data (black line) contained
into the first and third quantiles (box). Segments reach the maximum and minimum
value excluding outliers.
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Table 2.4: Image analysis validation statistics

Mean Standard Deviation Coefficient of Variation

Parasite 1 11.0804 0.1665 0.015
Parasite 2 10.8083 0.1548 0.0143
Parasite 3 14.5324 0.4936 0.034
Parasite 4 11.041 0.1805 0.0163

2.9 Life-cycle time course experiment

P. falciparum 3D7 cultures were tightly synchronised (section 2.3) in two consecutive

cycles. In the next consecutive cycle all the cultures were pooled together and 1.2 mL

pellet aliquots at 3% parasitaemia were incubated in triplicate in different media:

complete media, blood-like media and low glucose blood-like media (2 mM) (see

section 2.4). These parasites were grown for 45 h changing media every 12h. After

the incubation sampling was started, every 3 h an aliquot of 1.2 mL was taken from

each flask. This aliquot was centrifuged at 13000g, 1 mL of the supernatant was

collected in an sterile tube for NMR analysis, 5 µL of the pellet were used to prepare

a bright field microscopy preparation and 1.2-1.8 µL were used to make a dilution for

high content imaging as described above. Samples of media before incubation were

also taken as well as samples after 3 h incubation with only RBCs in order to assess

the background of the RBCs when analysing the metabolite samples. The sampling

was planned to last until hour 48 post sampling start. However, after 48 h, those

parasites growing in both blood-like and low glucose blood-like media were not fully

developed. The experiment was prolonged until hour 54 when parasites growing in

blood-like media showed some early life-stages forms. However low glucose blood

like media were still in late development stages. The experiment was stopped but

flasks of parasites in blood-like and low glucose blood like media were left in the

incubator until hour 74 to confirm the presence of early life-stages parasites. All the

samples were processed as described above and results are discussed in Chapter 6.

2.10 Statistical analyses

2.10.1 Statistical hypothesis tests

Univariate statistical tests for difference in means were used to determine if two sets

of data were significantly different. This was determined from the p-value calculated

in the test. The p-value is a measure of likelihood to obtain data with the difference

in means as large or larger as one in the tested data under the null-hypothesis.
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The null-hypothesis assumes that there is no difference between the datasets. An

arbitrary significance level (usually α=0.05) is used as a cut-off for rejecting the

null-hypothesis. Confidence interval for the difference in means was also reported.

A confidence interval is a range of numbers calculated to contain a statistic, in

this case the difference in means 95% of the time. It gives a good measure of the

uncertainty about the statistic.

Data variances were assumed to be unequal for robustness. Data normality

was assessed by the Shapiro-Wilk test in order to select a suitable statistical test.

Where data were confirmed to be normally distributed unpaired unequal variances

t-tests (or Welch’s tests) were applied. Where data were not normally distributed,

the non-parametric Mann-Whitney-Wilcoxon rank-sum tests were used.

Calculated p-values were adjusted to account for the false discovery rate.

This multiple testing correction is required in order to reduce false positive findings.

Benjamini-Hochberg procedure was used for p-value adjustment. The formula used

is the in-built “p.adjust” function in the statistical software R that given a vector ‘v’

of p-values, returns an adjusted vector by applying the formula pBH = pn/i where

p is the original p-value, n is the number of tests performed and i is the rank of the

p-value calculated from ordering the ‘v’ vector of p values from smallest to largest

and rank them from 1 to v. The hypotheses were rejected if adjusted p-values were

lower than the significance level α=0.05.

2.10.2 Principal Component Analysis (PCA)

PCA is a linear transformation of the data that converts a set of correlated variables

into uncorrelated principal components. The principal components are constructed

in such a manner that the first principal component accounts for the maximum

variation in the original data, the second one - orthogonal to the first one - accounts

for the maximum of the variance unexplained by the first, etc. This procedure re-

sults in a set of uncorrelated variables (principal components (PCs)) that are sorted

by the variance they account for. In most datasets the first few principal compo-

nents account for the majority of variance and the rest of the principal components

can be discarded with minimal loss of information. This allows a reduction in the

dimensionality of the original dataset for easier data visualisation and modeling.

PCA was used as a exploratory data analysis tool to unveil hidden structure

of the data and was calculated on mean centred and scaled data. PCA scores plots

of the first two or three PCs gave information of the relation between samples given

that relative distances between points in such scores plots can be interpreted as

similarities between samples. All plots reported in this thesis contained information
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of the percentage of variance explained by each PC.

The proportions of each of the original variables in the principal components

have been represented in loading plots which inform on the contribution of each

variable to the distribution of points in the scores plots and thus their influence in

either similarities or differences.

2.10.3 Propagation of error

Estimation of consumption/excretion of metabolites per cell were calculated per-

forming arithmetic operations on the means of each variable. Each of those vari-

ables had associated an uncertainty (standard deviation) that upon combination in

arithmetic operations increased in a non-linear manner. In order to estimate the

error propagation the formulas in Table 2.5, derived from the Gaussian equation for

normally-distributed errors, were used.

Table 2.5: Propagation of error formula calculation

Function Standard Deviation

f = aA |a|σA
f = aA+ bB

√
a2σ2A + b2σ2B + 2abσAB

f = aA− bB
√
a2σ2A + b2σ2B − 2abσAB

f = AB
√

(σAA ) + (σBB ) + 2σAB
AB

f = A/B
√

(σAA ) + (σBB )− 2σAB
AB

2.10.4 Analysis of covariance (ANCOVA)

ANCOVA combines features of ANOVA (analysis of variance) and regression. It

augments the ANOVA model with more additional quantitative variables (covari-

ates), which are related to the response variable. ANCOVA was used as a way to

assess the effect of the different nutrient concentrations in either growth or metabo-

lite consumption and excretion. ANCOVA can be used to compare two or more

regression lines by testing the effect of a factor (in this case the three media CM, BL

and LG) on a dependent variable (parasite size/metabolite consumption/excretion)

while controlling for the effect of a continuous co-variable (in this case time). AN-

COVA allows us to find out if intercepts and slopes are different between factors.
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Chapter 3

A tailored method to identify

and quantify metabolites of

Plasmodium falciparum in cell

and media samples using

Nuclear Magnetic Resonance

(NMR)

3.1 Introduction: P. falciparum intra-erythrocyte meta-

bolic network revealed by metabolomics

Understanding of the parasite’s metabolism is paramount, not only because of its

role in malaria pathogenesis but also because it is a target of antimalarial drugs

[221] and for many of them the mode of action is not well characterised [244].

Attempts to unveil the metabolic network of the parasite has been investigated by

in vivo biochemistry or indirectly by inference from genomic data and bioinformatic

studies [71, 72]. The development of metabolomic technologies enabled the study at

the systems level of the parasite and consequently the first metabolomic studies to

understand P. falciparum blood stages metabolism were published. Shortly after the

publication of Nuclear Magnetic Resonance (NMR) analyses of metabolic responses

of mice infected with Plasmodium berghei using biofluids [218], two metabolic studies

in cellular extracts P. falciparum were published in 2009 by independent groups.
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Teng et al. [219] used 1H NMR spectroscopy to analyse the metabolome of

late trophozoite stages of P. falciparum that were isolated from the host red blood

cell (RBC) by a treatment with saponin. Sample sizes of 1-4 ×108 cells (equiva-

lent to 105 µL of cell pellet) were extracted using 4 different extraction solutions:

perchloric acid, methanol/water, methanol/chloroform/water or methanol and they

were compared. Around 40 metabolites were identified and quantified followed by

estimation of intracellular concentrations. Partial least squares was used to com-

pare the extraction methods. The authors concluded that perchloric acid was the

most advantageous solution although results were broadly similar among extrac-

tions. However perchloric acid poses a problem for metabolomic studies by NMR

spectroscopy. As an acidic solution, perchloric acid would vary the sample’s pH,

which can severely affect spectra acquisition. Thus a protocol that involved the use

of an acid as extraction solution would require an obligatory step to adjust pH prior

to NMR acquisition, increasing the complexity of the sample processing. Super-

natants were also collected and used to assess metabolite loss during the separation

of parasites and RBCs. Overall the work by Teng et al. set out the methodology

and precedence for metabolomics by NMR spectroscopy of P. falciparum. More-

over, the same group has recently use this method to profile chloroquine sensitive

and resistant strains of P. falciparum [217].

The Llinás group [195] used synchronised cultures of P. falciparum 3D7

to take samples at seven time points during its 48-hour blood stage, which were

analysed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)

method developed by Lu et al. [212]. Samples consisted of 50 µL (equivalent to

9.5×107 cells) of cell pellet of either infected (at 10% parasitaemia) or non-infected

RBCs and the supernatants that were extracted as described in [239]. Overall

90 metabolites were detected and quantified over the time course. These span a

wide range of metabolic pathways such as amino acids, nucleotides and central

carbon metabolism intermediates. This study revealed a modulation of metabo-

lite levels by the parasite (in contrast with the low metabolism of the RBC) with

numerous metabolites varying in phase with intra-erythrocytic development, gen-

erally increasing concentration from ring stages to trophozoite stages and slightly

decreasing towards the end of the incubation, coinciding with very mature schizonts

and formation of merozoites. The authors considered noteworthy the high parasite

consumption of arginine, consistent with the typical hypoargininemea observed in

humans infected with malaria, which is associated with the cerebral pathogenesis of

the disease.

Continuing with the quest to elucidate how central carbon metabolism of P.
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falciparum works, the Llinás’ group traced 13C-labelled compounds and published

a controversial paper in which they stated that the Krebs cycle was not only largely

disconnected from glycolysis but also presented a branched structure, different from

the canonical cyclical flux [104]. However this communication was retracted in 2013

[245]. Central carbon metabolism of the blood stages of P. falciparum was finally

elucidated by MacRae et al. analysis 13C-Glucose and 13C-Glutamine flux through

glycolysis and glutaminolysis using LC-MS/MS. This study confirmed that the par-

asite uses a canonical Krebs cycle, despite the flux from glycolysis being very low

during the asexual stages and that most of the carbon skeletons of the Krebs cycle

are instead provided by glutaminolysis [103]. The lack of pyruvate dehydrogenase

(PDH) in the mitochondrion that could convert pyruvate in to acetyl-CoA influ-

enced the hypothesis of a dysfunctional Krebs cycle. However a branched chain

ketoacid dehydrogenase (BCKDH) was found to functionally replace mitochondrial

PDH [106]. These studies were done in mature trophozoite and schizont stages of the

asexual life cycle of the parasite. Aliquots equivalent to 108 cells were extracted with

a chloroform:methanol (1:1) solution, yet another extraction solution, different from

above-mentioned publications. Finally a study of the central carbon metabolism

using knock-out (KO) parasites for the main enzymes involved in the Krebs cycle

has been recently published by Llinás group confirming above-mentioned results and

proving that none of the enzymes ablated were essential for asexual development of

the parasite [107]. For this study the authors were not very explicit with the nature

of the samples used (cell suspension vs washed cellular extracts) where they only

reported the use of a methanolic metabolite extraction on 800 µL samples.

Metabolomic studies have unveiled the metabolic network of the asexual

stages of P. falciparum. However the reason behind this metabolic rewiring is un-

clear. During the asexual stages, P. falciparum exhibits a very high glycolytic flux

(with up to 100× higher glucose intake than uninfected RBCs [223]) followed by

a low flux into the Krebs cycle. During sexual stages, the Krebs cycle activity in-

creases and parasites are more susceptible to mitochondrial inhibitors [103]. We

have proposed that this metabolic rewiring, similar to the Warbug effect, which is

well characterised in cancer cells [115], is a strategy to maximise biomass production

by redirecting glycolytic intermediates into pathways that will lead to the construc-

tion of nucleic acids, lipids and other key metabolites to meet the high demand for

biomass production [111]. The limited flux into Krebs cycle might be explained by

a need to keep lactic fermentation ongoing as it might serve as a regulatory mech-

anism [117] (see Chapter 1, Section 1.3.1.3) or to reduce in general the otherwise

high flux into the respiratory chain with the consequent ion leakage followed by the
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production of reactive oxygen species (ROS) that would be harmful for the progeny.

All the above-mentioned studies were performed in conditions far from phys-

iological. Some of these studies used RBC-free parasites. This process would be

greatly stressful for the parasite and it is likely that it would trigger stress responses

atypical from healthy parasites. All the experiments were done in laboratory condi-

tions, with rich media that has in general much higher concentrations of the metabo-

lites compared to typical human blood [178]. As described in Chapter 1, one of the

knowledge gaps to address is whether nutritional availability has an effect upon

parasite development. We aim here to further pursue the validity of the proposed

hypotheses regarding the role played by high glycolytic fluxes followed by high lactic

fermentation.

Because of the limitations of previous methods, in this Chapter we focus on

the development of a robust metabolomics method to identify and quantify metabo-

lites of intra-erythrocytic stages of P. falciparum in a NMR spectroscopy-based

platform. The Chapter will detail the progression of the assay development includ-

ing the following sections:

1. Adequate signal detection on undisturbed parasites.

(a) Assess the signal difference between cell suspension and individual media

and cell extractions for similar samples.

(b) Use of iRBC samples without parasite enrichment methods in order to

keep conditions as natural as possible.

(c) Optimise NMR signal strength in order to identify a relevant number of

metabolites by using 13C isotopic glucose and explore alternative NMR

spectroscopy experiments.

2. Metabolite identification.

3. Metabolite quantification.

4. Validation and pipeline assembly

5. Pilot experiment to test the method.

3.2 Experimental

Specific sample extraction and preparation are described in each section of the Re-

sults and Discussion section below. Unless stated otherwise, all samples were freeze-

dried and resuspended into 300 µL of deuterium oxide, of which 280 µL were pipetted

in a 3 mm diameter NMR tube. All spectra were acquired in a 600.13 MHz Bruker

spectrometer fitted with an inverse probe with z grad, ATM (bt02000) at 298K.

Spectra were acquired with the parameters shown in Table 3.1 and processing steps
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were carried out. All spectra were zero filled to 13 k data points with exponential

line broadening of 0.3 Hz being applied before Fourier transformation. Baseline cor-

rection, phasing and referencing to the internal standard 3-(trimethylsilyl)-2,2’,3,3’-

tetradeuteropropionic acid (TSP) were done manually.

Table 3.1: NMR acquisition parameters (on 600 MHz spectrometer)

Pulse sequence noesygppr1d cpmgpr1d zgpg hsqctgpsi

Type experiment

Nuclear Overhauser
Effect spectroscopy

with gradient pulses,
with presat 1D

Car-Purcell-
Meiboom-Gill
with presat

basic 1D 13C
with pulsed filled

gradients

Heteronuclear single
quantum coherence

echo-antiecho
with gradient pulses

Dimensions-Type 1D 1D 1D 2D

Nuclei H H C H-C

Number of Scans (a) 32 (b) 4 128 (a) 256 (b) 4096 32

Number of
datapoints (TD)

98304 73728 262144 1024

Acquisition time (s) 2.726 3.067 4.404 0.085

Spectral Width (ppm) 30.041 20.028 197.209 10.014

Offset (O1, Hz) 2826.4 2824.5 12072.22 2825

Dwell time (µs) 27.733 41.6 16.8 83.2

Echo time NA 0.6 ms NA NA

Indirect dimension:
number of points

NA NA NA 256

Indirect dimension:
acquisition time

NA NA NA 0.0071

Indirect dimension:
spectral width (ppm)

NA NA NA 120.044

Indirect dimension:
offset (O2, Hz)

NA NA NA 7545.14

3.3 Results and discussion

3.3.1 Adequate signal detection on undisturbed parasites

The process described here involved the adaptation and improvement of a method

used previously by our group [81]. The protocol involved the sampling of a cell

suspension (cells and media) containing free parasites after incubation in Ringer’s

solution supplemented with 1-13C-Glucose. Samples were sonicated and centrifuged

and supernatants were used for metabolomic analysis. This method was further

refined in the group by including a step in which the cell suspension was added to

an extraction solution consisting of a 2:2:1 acetonitrile-methanol-water solution and

vigorously vortexed prior to sonication and centrifugation. The shortcomings that

needed to be overcome from the previous method were:

1. The use of free-parasites to study the complete asexual life cycle was not
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plausible. Firstly, only late trophozoites are susceptible to the methods to

separate parasites from host cells. Secondly, and most importantly, to meet

the aims of this study, it was required to grow the parasites in as close to

physiological conditions as possible, which would never include their separation

from the host. In fact, parasites released from the RBC are only able to survive

for two to three hours [246].

2. Cell suspensions are ambiguous samples because discrimination between extra

and intracellular metabolites cannot be achieved. Thus steps involving their

separation and individual processing had to be implemented.

3. Cultures of P. falciparum are typically in no more than 10% parasitaemia.

Tests to understand the effect of the RBCs background noise were done and

the viability of using iRBC enrichment methods had to be assessed.

3.3.1.1 Replication of previous results using infected RBCs

The first step towards a method that could be used to meet our aims was to try

to reproduce the results obtained by Lian et al. but using infected red blood cells

(iRBCs) instead of free-parasites. This was the only variable changed from the

method described in Lian et al., and in order to achieve high parasitaemia levels

an enrichment step using the VarioMacs magnetic separation [247] was introduced,

prior incubation with Ringer’s solution supplemented with 11 mM 1-13C-Glucose.

This provided trophozoite pellets with 90% parasitaemia that were extracted and

analysed as described in [81].

A qualitative comparison of the spectra of both experiments is shown in

Figure 3.1. Results were similar, indicative of reproducibility between methods

and the suitability of iRBCs for metabolomics analysis. In addition, in spite of

subtle spectral changes, the resultant analysis presented no evidence of alteration

by either choice (iRBC or free parasites). Given that iRBC conditions are more

physiological and that the metabolism of the RBC has been extensively studied [248,

249], experimentation was continued on the malaria parasite inside its erythrocytic

host.

65



(a)

(b)

Figure 3.1: 1D 13C Spectra of Trophozoite suspension after 2h incubation
in Ringers containing 11 mM 1-13C-Glucose. (a) Spectrum from [81], (b)
Spectrum of 90% parasitaemia iRBC cell suspension. The whole spectra shown
above with the green box indicative of the area that is zoomed in the main figure.

3.3.1.2 Extraction step, separation of cells and supernatant and adjust-

ment of parasitaemia

Following this, an extraction step which was in development within the laboratory

by other group members was performed. This is explained in detail in Chapter

2, Section 2.5. The extraction method was based on work described by Olszewski

et al. [239] but with two main modifications. The extraction solution used was
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acetonitrile:methanol:water (at a ratio of 2:2:1 respectively, chosen for its improved

capability to extract nucleotide triphosphates [250]) and the second extraction step

was eliminated. A representation of this extraction can be seen in Chapter 2, Section

a). Reasons for the step modifications were, amongst others, to reduce complex-

ity and consequently increase robustness of sample preparation and reduce sample

variance because when comparing acetonitrile:methanol:water to an only methanol

based extraction solution, the sample variance was significantly smaller (personal

communication with fellow PhD student A. Grauslys (MSc)).

P. falciparum in trophozoite stage were enriched by VarioMacs column [247],

reaching a parasitaemia of around 90%. These parasites were incubated with Ringers

containing 11 mM of 1-13C-Glucose during 2 hours while they were kept under usual

culture conditions. Then 400 µL of cell pellet (equivalent to 7.6×108 cells) were

washed with ice cold 1× Phosphate Buffer Saline (PBS) and extracted as described

in Chapter 2, Section 2.5 and Figure a). A sample of medium was also taken. Both

were freeze dried and kept at -80◦C until analysis, when they were resuspended

in deuterium oxide and 1D 13C zgpg and 1H NOESY spectra were acquired (as

described in Table 3.1). When comparing 1D 1H spectra of samples extracted with

this method and without the extraction solution step, it is noticeable how the yield

of metabolites has improved, as well as significantly reducing the water signal (see

Figure 3.2). Signal to noise ratio was calculated for both samples by dividing the

area under a signal area by the area under a noise area. Note that noise region

was taken between -5 and -4 ppm and a signal region between 1.325 and 1.39 ppm.

The spectrum from the extracted sample had 4 times better signal to noise ratio

compared to samples that were not extracted (37652 and 9302 respectively).
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(a)

(b)

Figure 3.2: 1D 1H NOESY Spectra of Trophozoite suspension after 2h in-
cubation in Ringers containing 11 mM 1-13C-Glucose. Both spectra were
acquired with same parameters (NS=32 and RG=90.5), (a) Sample without extrac-
tion step (b) Sample with extraction step. Note how the water signal (black text) is
almost minimal in (b) and the signal is higher (see for example lactate, green text
box). TSP signal (0 ppm) is not representative of any difference as concentrations
between spectra were different.

13C spectra of both cell and supernatant fractions are shown in Figure 3.3.

Spectrum of the supernatant was acquired with 256 scans while the same amount
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of scans led to only noise in the cellular sample. The number of scans had to

be increased to 4096 in order to detect some signal. Despite the huge increase in

machine power (from approximately 30 min for 256 scans to almost 3 hours for 4k),

the signal improvement was not sufficient. Thus, it must be assumed that the signal

detected from previous experiments was mostly supernatant. It is interesting to

notice that glycerol is then produced and excreted. Glycerol was not reported in

the study of intracellular metabolites by Teng et al. [219], as the authors did not

analyse the extracellular products of the parasite.

(a)

(b)

Figure 3.3: 1D 13C Spectra of enriched mature trophozoite-iRBC sample
after 2h incubation in Ringers containing 11 mM 1-13C-Glucose (a) Cellular
extracts (b) Supernatant.
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Prior to tackling the low intra-cellular signal challenge, an additional test was

performed. In order to do time-course experiments, the use of parasite-enrichment

methods such as the VarioMacs column is not viable. These procedures increase the

experimentation time by up to 6 h to achieve yields of a few hundred microlitres

which are insufficient for multiple sampling. These methods also pose a problem

because they target the mature trophozoite stage but the objectives of this project

include the study of the whole life cycle and to do so in comparable conditions.

Consequently, the next step was to assess the suitability of using a culture of P.

falciparum in mature trophozoite stage at a high parasitaemia (15-17%, which is

achievable in usual culture conditions) to repeat the steps described above. To

compensate for the reduced parasitaemia, 600 µL of sample were used, which is the

equivalent to (1.1×109 cells). By increasing the sample volume with respect to the

previous experiment, in which samples had up to 90% parasitaemia, a number of

parasites of the same order of magnitude was achieved. Results are shown in Figure

3.4. Supernatant signals were consistent with previous experiments. Cell signals

were comparable, although there were some differences. Samples with enriched

parasitaemia showed some higher peaks between 40 and 60 ppm and samples with

normal-high parasiteamia showed some extra peaks between 60 and 80 ppm. The

latter might be due to an increased RBC background signal but with the low cellular

signal from either sample no conclusions could be drawn.
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(a)

(b)

Figure 3.4: 1D 13C Spectra of mature 15%-parasitaemia trophozoite-iRBC
sample after 2h incubation in Ringers containing 11 mM 1-13C-Glucose
(a) Cellular extracts (b) Supernatant.

3.3.1.3 Optimising NMR signal strength by balancing cell numbers and

including 2D 1H-13C HSQC experiments

To improve the cellular signal, three steps were implemented: (a) a second extrac-

tion step including sonication was added, this is explained in detail in Chapter 2,

Section b) and Figure 2.1, (b) cell volume per sample was increased, up to 800
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µL (equivalent to 1.5×109 cells) and (c) use of 2D-HSQC NMR experiments. This

provided correlation between an aliphatic carbon and its attached protons and it

boosts the spectral resolution in multiple ways: (i) 1H is more sensitive than 13C

due to its intrinsic physical magnetisation; (ii) cryoprobes are optimised for 1H and

(iii) decoupling of 1H-13C, 1H-1H and 13C-13C.

A culture of P. falciparum iRBCs in mature trophozoite stage of approx-

imately 15% parasitaemia was incubated for 2 h in Ringers buffer containing 11

mM 1-13C-Glucose. After incubation a supernatant sample was taken and cells

were washed twice with ice-cold 1× PBS. Cells were then extracted and analysed

as described in Sections b) and 2.7 in Chapter 2. Signal of cells in the 1D 13C

experiments was comparable to previous attempts (data not shown), however the

2D HSQC vastly improved the signal obtained from the cells (see Figure 3.5).

Figure 3.5: 2D 1H-13C HSQC Spectra of cellular extract from mature
trophozoite-iRBCs after 2h incubation in Ringers containing 11 mM 1-
13C-Glucose. It can be observed how the signal has been improved vastly when
compared to just 1D spectrum. Thus the number of metabolites that can be iden-
tified has increased.

3.3.1.4 Identification of signal from labelled and unlabelled samples

The use of labelled substrates has proven useful to boost the signal obtained from

the samples [251]. Incubation with U-13C-D-glucose afforded maximum assignment

of metabolites by boosting the signal from 1.1% when using natural abundance

glucose, to 99%. My quantification strategy involved the creation of calibration

curves from data of known concentrations. As it was not possible to purchase U-
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13C metabolites for the calculation of calibration curves calculation, only natural

abundance metabolites were used thus only natural abundance samples were pos-

sibly quantified (see Section 3.3.3). Thus tests to check that signal from natural

abundance samples was sufficient for quantification were also performed.

The experiment described in Section 3.3.1.3 was repeated changing solely

the isotopic nature of glucose used. In one case D-glucose was used and in other

U-13C-D-glucose. Results are shown in Figure 3.6. The signal from cells incubated

without labelled glucose is much lower than that using labelled glucose, but it is still

informative. Samples from cells incubated with U-13C-D-glucose presented very high

and rich signal, superior to the one by 1-13C-D-glucose. For this reason, metabolite

identification was done using the spectra from samples incubated with the fully

labelled sugar.
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(a)

(b)

Figure 3.6: 1H-13C HSQC Spectra of cellular extracts from mature
trophozoite-iRBCs after 2h incubation in Ringers containing 11 mM of
(a) D-glucose and (b) U-13C-D-glucose

3.3.2 Metabolite identification

The most popular software for metabolite identification and quantification from

NMR experiments is Chenomx NMR suite [252]. This platform contains a library
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of 1D 1H metabolite spectra that can be used for profiling by manually overlapping

library spectra with the query spectrum. By using the reference standard TSP it also

has the functionality of putative concentration prediction. Most of the publications

of metabolomics of P. falciparum that used NMR not only for identification but

also quantification have reported to use this software [253, 217, 219]. Others have

identified metabolites and integrated the peaks as a measurement of quantity [254,

255, 256] and one group has used a model to predict quantities [257].

Other published resources for metabolite identification include numerous

databases with spectra for consultation. Some of them can either be accessed online

and also spectra can be downloaded in order to be used for overlapping with the

query spectrum. These databases are the Human Metabolome Database (HMDB)

[184], the Madison-Qindao Metabolomics Consortium Database (MQMCD) [199],

the biological Magnetic Resonance Bank (BMRB) [258] and the Birmingham Metabo-

lite Library (BML-NMR) [259].

Most of the software to analyse NMR metabolomics data rely on integrat-

ing the peaks and using the values for multivariate statistical analyses. Metabolite

identification software are mostly commercial such as the mentioned Chenomx [252]

and KnowItAll [260] or are based on commercial platforms such as the MATLAB

packages Focus [261], MetaboQuant [262], MetaboID [263] and Dolphin [264]. There

are some web-based programs such as MetaboHunter [265], MetaboAnalyst [266],

COLMAR [267] or SpinAssign [268] and more interestingly some freely available op-

tions such as rNMR [269], Metabominer [270], Newton and Collaborative Computer

Program for NMR (CCPN) Metabolomics [242, 243]. Free independent software for

NMR metabolite quantification is limited to Batman [271]. Batman has a library

of metabolites that it uses to fit the peaks from the query spectra which must be

previously specified in the input file. This input file must be very complete and

include metabolite identity, ppm positions, coupling pattern and constants and rel-

ative heights. In general all these cases use spectra that are either collected in

predefined buffers/pH at specific field strengths or using imprecise models.

The aims of this project involved the use and when needed the creation

of open-source software to identify and quantify metabolites in an automatic or

semi-automatic manner to speed up the analysis of numerous samples. The freely

available software CCPN metabolomics was chosen for metabolite identification.

Others such as rNMR and Metabominer were tested but their functionality and

user support was not comparable to that offered by CCPN, in particular for 2D 1H-
13C HSQC. Predictions from MetaboHunter were used to gather candidates when

peaks were difficult to assign to a metabolite. Spectra from the MQMCD and
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HMDB were also downloaded and imported into CCPN to aid in the metabolite

identification. Finally, a battery of standards were also run in the same conditions

as our samples in order to verify our assignments. Buffers and other parasite-

specific metabolites were included in this in-house standard library. Details on the

metabolites identified and which signals were used for further quantification are

shown in Table 3.2. A representation of the metabolites identified in iRBC cellular

and supernatant samples is shown in Figures 3.7 and 3.8 where signal complexity

and both overlapping and clean peaks can be observed. Other metabolites were

identified in the RBC-only samples such as 2-3 diphosphoglycerate but they were

excluded from this study.
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Figure 3.7: 1H-13C HSQC Spectra of cellular extract from mature
trophozoite-iRBCs after 2h incubation in culture media containing 11
mM of U-13C-Glucose.
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Figure 3.8: 1H-13C HSQC Spectra of media containing 11 mM of U-13C-
Glucose after 2h-incubation with mature trophozoite-iRBCs.
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Table 3.2: Identified metabolites, their position in spectrum and signal selected for
quantification.

Metabolite and

KEGG identity
Carbon H-ppm C-ppm

For

Quantification

Acetate (C00033) C2 1.9 26.1 X

Alanine (C00041)
C2 alpha 3.8 53.6 X

C3 beta 1.5 19

Arginine (C00062)

C2 alpha 3.8 57.3

C3 beta 1.9 30.5

C4 gamma I 1.8 30.5

C4 gamma II 1.9 30.5

C5 delta 3.2 43.3 X

Asparagine (C00152)

C2 alpha 4 54.1

C3 beta I 2.9 37.4 X

C3 beta II 2.8 37.4

Aspartate (C00049)

C2 alpha 3.9 55

C3 beta I 2.8 39.5 X

C3 beta II 2.7 39.3

Creatine (C00300)
C2 3.9 56.4 X

C4 3 39.5

Glucose (C00031)

C1 alpha 5.2 94.9 X

C1 beta 4.6 98.7 X

C2 alpha 3.5 74.2

C2 beta 3.2 77

C3 alpha 3.7 75.6

C3 C5 beta 3.5 78.6

C4 alpha beta 3.4 72.3

C5 alpha 3.8 74.1

C6 alpha I 3.8 63.4

C6 alpha II 3.7 63.4

C6 beta I 3.9 63.5

C6 beta II 3.7 63.4

Glutamate (C00025)

C2 alpha 3.7 57.6

C3 beta I 2.1 29.8

C3 beta II 2 29.8

C4 gamma 2.3 36.4 X
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Glutamine (C00064)

C2 alpha 3.8 57.2

C3 beta 2.1 29.3

C4 gamma 2.4 33.9 X

Glycerol (C00116)

C1 3.8 75 X

C2 3.6 65.5

C3 3.6 65.4

Glycine (C00037) C2 alpha 3.5 44.3 X

GSH (C00051)
C10 3 28.3 X

C6 4.6 58.6

HEPES

C10 3.2 59.6

C11 3.8 59

C2 C6 3.3 52.3

C3 C5 3.1 52.8

C7 3.2 48.4

C8 3.2 53 X

Isoleucine (C00407)

C2 alpha 3.7 62.5

C3 beta 2 38.7

C4 gamma 1.5 27 X

C4 gamma II 1.4 27

C5 delta 0.9 13.9

C6 epsilon 1 17.4

Lactate (C00186)
C2 4.1 71.1 X

C3 1.3 22.9

Leucine (C00123)

C2 alpha 3.7 56.2

C3 beta 1.7 42.6

C4 gamma 1.7 26.8

C5 delta 1 24.8 X

C6 epsilon 0.9 23.6

Lysine (C00047)

C2 alpha 3.7 57.5

C3 beta 1.9 32.7

C4 gamma I 1.5 24

C5 delta 1.7 29.2 X

C6 epsilon 3.02 42.1

C4 gamma II 1.4 24
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Methionine (C00073)

C2 alpha 3.8 56.8

C3 beta I 2.2 32.7

C3 beta II 2.1 32.7

C4 gamma 2.6 31.6 X

C5 delta 2.1 16.6

MyoInositol (C00137)

C1 C3 3.5 74

C2 4 75

C4 C6 3.6 75.1 X

C5 3.3 77.1

NAD(P) (C0000(3/6))

C10 4.8 76.7

C11 4.5 89.6

C13 4.5 80.3 X

C8 6.1 102.6

Pyruvate (C00022) C3 2.4 29.2 X

Serine (C00065)
C2 alpha 3.8 59.1

C3 beta 4 63 X

Valine (C00183)

C2 alpha 3.6 63.3

C3 beta 2.3 31.9

C4 gamma I 1.1 20.8

C4 gamma II 1 19.4 X

3.3.3 Creation of calibration curves for metabolite quantification

After metabolite identification, we proceeded to calculate calibration curves for each

signal of each metabolite. First a test was done to identify the concentration limits

for a few metabolites so an adequate range of concentrations was chosen. These

were 0.1, 0.2, 0.5, 1, 2, 5 and 10 mM. Metabolites were separated into groups so

their spectra would not overlap and mixtures of the mentioned concentrations were

prepared in deuterium oxide with 2.5 mM of TSP as standard. 1D 1H NOESY and

2D 1H-13C HSQC spectra for each sample were acquired and processed as described

in Section 3.3.1.

Spectra acquired in proprietary manufacturer format (Bruker, topspin) were

inputted into CCPN after conversion to University of California San Francisco

(UCSF) format. Metabolite signals were assigned to specific spin systems and res-

onances. Then the height and volume of each signal was calculated and text files

were generated. The signal (height and volume individually) of each peak was nor-
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malised by the signal of TSP and for each metabolite and signal the concentrations

were plotted and used to fit a linear model with 0 intercept. The coefficients of each

linear model and their R2 values are reported in Table 3.3 and the ones used for

quantification are shown in Figure 3.9. Height was chosen for quantification before

volume because it is less likely to be affected by peak proximity/overlap. However

all the functions for analysis were also implemented for volume and their outputs

were used for validation. All these steps were implemented in a pipeline in R. Conse-

quently the library of calibration curves can be increased automatically upon data

collection. It is also worth noting that these data can be used for quantification

of any sample of any biological extract, providing the same spectrum acquisition

parameters and buffer conditions are used.
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Figure 3.9: Calibration curves chosen for quantification (I). Concentration
versus height. Best line fitted is represented in blue while grey area corresponds to
the 95% confidence interval of the fit. In the top left corner it is shown the actual
coefficient obtained and the goodness of fit represented by R2.
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Figure 3.9: Calibration curves chosen for quantification (II). Concentration
versus height. Best line fitted is represented in blue while grey area corresponds to
the 95% confidence interval of the fit. In the top left corner it is shown the actual
coefficient obtained and the goodness of fit represented by R2.
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Figure 3.9: Calibration curves chosen for quantification (III). Concentration
versus height. Best line fitted is represented in blue while grey area corresponds to
the 95% confidence interval of the fit. In the top left corner it is shown the actual
coefficient obtained and the goodness of fit represented by R2.
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Table 3.3: Coefficients of the linear model fitted for quantification

Carbons Height H-R2 Volume V-R2

Acetate C2 0.1067 0.999 0.1106 0.9993

Alanine C2 alpha 0.0824 0.9999 0.0987 0.9999

Alanine C3 beta 0.2522 0.9997 0.2843 0.9997

Arginine C2 alpha 0.1875 0.9999 0.2084 0.9999

Arginine C3 beta 0.1987 0.9979 0.2396 0.9987

Arginine C4 gamma I 0.0727 0.9995 0.0914 0.9995

Arginine C4 gamma II 0.068 0.9996 0.0852 0.9996

Arginine C5 delta 0.3156 1 0.3532 0.9999

Asparagine C2 alpha 0.1554 0.9994 0.1723 0.9995

Asparagine C3 beta I 0.1078 0.9998 0.1129 0.9989

Asparagine C3 beta II 0.0987 0.9994 0.1203 0.9998

Aspartate C2 alpha 0.2905 0.9997 0.3254 0.9996

Aspartate C3 beta I 0.2038 0.9995 0.2176 0.9998

Aspartate C3 beta II 0.1767 0.9991 0.2174 0.9992

Creatine C2 0.3872 0.9979 0.3829 0.999

Creatine C4 0.2552 0.9989 0.2544 0.9993

Glucose C1 alpha 0.0833 0.9997 0.0861 0.9997

Glucose C1 beta 0.1029 0.9999 0.1158 0.9999

Glucose C2 alpha 0.0616 0.9997 0.0741 0.9997

Glucose C2 beta I 0.096 0.9998 0.115 0.9998

Glucose C3 alpha 0.0523 0.9995 0.0631 0.9994

Glucose C3 C5 beta 0.1287 0.9997 0.1636 0.9998

Glucose C4 alpha beta 0.1281 0.9998 0.1578 0.9998

Glucose C5 alpha 0.0628 0.9998 0.0751 0.9998

Glucose C6 alpha I 0.0593 0.9998 0.0672 0.9997

Glucose C6 alpha II 0.0538 0.9998 0.0628 0.9997

Glucose C6 beta I 0.0916 0.9998 0.1095 0.9997

Glucose C6 beta II 0.0891 0.9997 0.1132 0.9996

Glutamate C2 alpha 0.1582 0.9994 0.1785 0.9996

Glutamate C3 beta I 0.0805 0.9993 0.102 0.9995

Glutamate C3 beta II 0.0833 0.9996 0.1053 0.9993

Glutamate C4 gamma 0.2037 0.9999 0.2407 0.9999

Glutamine C2 alpha 0.1623 0.9993 0.1787 0.9996

Glutamine C3 beta 0.2068 0.9994 0.2426 0.9995
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Carbons Height H-R2 Volume V-R2

Glutamine C4 gamma 0.1809 0.9996 0.214 0.9995

Glycerol C1 0.1522 0.9998 0.1812 0.9995

Glycerol C2 0.0752 0.9994 0.0861 0.9997

Glycerol C3 0.1445 0.9987 0.1747 0.9991

Glycine C2 alpha 0.2411 0.9832 0.2456 0.9829

GSH C10 0.1507 0.9957 0.187 0.9956

GSH C6 0.2077 0.9973 0.2317 0.9968

HEPES C10 0.3273 0.9987 0.3727 0.999

HEPES C11 0.3307 0.9992 0.3707 0.9992

HEPES C2 C6 0.0473 0.9967 0.0481 0.9969

HEPES C3 C5 0.0421 9994 0.0418 0.9993

HEPES C7 0.283 0.9994 0.3469 0.9994

HEPES C8 0.2467 0.9996 0.3008 0.9996

Isoleucine C2 alpha 0.2262 0.9986 0.2317 0.9987

Isoleucine C3 beta 0.1094 0.9982 0.1349 0.9984

Isoleucine C4 gamma 0.0756 0.9984 0.0963 0.9983

Isoleucine C4 gamma II 0.0662 0.9977 0.0845 0.9978

Isoleucine C5 delta 0.1754 0.9981 0.2043 0.998

Isoleucine C6 epsilon 0.2757 0.9986 0.3011 0.9985

Lactate C2 0.056 0.9998 0.0651 0.9999

Lactate C3 0.2126 0.9995 0.2278 0.999

Leucine C2 alpha 0.1587 0.9997 0.1786 0.9996

Leucine C3 beta 0.0909 0.9954 0.1182 0.9965

Leucine C4 gamma 0.0621 0.9994 0.0773 0.9991

Leucine C5 delta 0.321 0.997 0.3424 0.9981

Leucine C6 epsilon 0.3125 0.9991 0.3296 0.9861

Lysine C2 alpha 0.2097 0.9994 0.231 0.9996

Lysine C3 beta 0.2033 0.9986 0.247 0.9989

Lysine C4 gamma 0.0759 0.9983 0.096 0.9984

Lysine C5 delta 0.1825 0.999 0.2217 0.9992

Lysine C6 epsilon 0.271 0.9996 0.325 0.9992

Methionine C2 alpha 0.1727 0.9996 0.1936 0.9995

Methionine C3 beta I 0.0918 0.9995 0.115 0.9996

Methionine C3 beta II 0.09 0.9992 0.113 0.9991

Methionine C4 gamma 0.2305 0.9987 0.271 0.9988

Methionine C5 delta 0.1688 0.9994 0.1678 0.9994
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Carbons Height H-R2 Volume V-R2

MyoInositol C1 C3 0.3066 0.9991 0.3632 0.9991

MyoInositol C2 0.2655 0.9982 0.2665 0.999

MyoInositol C4 C6 0.2369 0.9993 0.2803 0.9995

MyoInositol C5 0.1379 0.9991 0.1617 0.9993

NAD C10 0.1803 0.9999 0.2029 0.9998

NAD C11 0.1772 0.9997 0.1873 0.9997

NAD C12 0.1954 0.9997 0.215 0.9997

NAD C13 0.1748 0.9997 0.1967 0.9998

NAD C14 0.2003 0.9997 0.2216 0.9998

NAD C15 0.1871 0.9998 0.2019 0.9997

NAD C16 17 0.1188 0.9994 0.1485 0.9995

NAD C18 19 0.1741 0.9998 0.2112 0.9999

NAD C8 0.1034 0.9992 0.1133 0.9995

NAD C9 0.1579 0.9999 0.1711 1

Pyruvate C3 0.0974 0.9995 0.1 0.9994

Serine C2 alpha 0.1518 0.9996 0.1616 0.9996

Serine C3 beta 0.1424 0.9995 0.1756 0.9995

Valine C2 alpha 0.1979 0.9991 0.2039 0.9993

Valine C3 beta 0.0994 0.9994 0.1222 0.9995

Valine C4 gamma I 0.3188 0.9986 0.3465 0.9981

Valine C4 gamma II 0.3135 0.9997 0.3366 0.9996

Errata It should be noted that corrections of this work involved the removal

of several outliers in the above-presented calibration curves, which are currently

updated to their latest version. However all metabolite concentrations presented in

this and other Chapters were calculated prior mentioned corrections and therefore

they have an associated error. These are collated in Table 3.4.

Table 3.4: Coefficient discrepancy and error associated of carbons used for quantifi-
cation

Carbon Old Coefficient New Coefficient Error (%)

Acetate C2 0.1096 0.1106 0.9042

Aspartate C3 beta I 0.1886 0.2038 7.4583

Asparagine C3 beta I 0.1001 0.0887 -12.8523

Glycine C2 alpha 0.2411 0.2536 4.929

GSH C10 0.1506 0.1507 0.0664
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Carbon Old Coefficient New Coefficient Error (%)

Leucine C5 delta 0.3204 0.321 0.1869

HEPES C8 0.2512 0.2467 -1.8241

3.3.4 Validation and pipeline assembly

Identification of key metabolites and calibration curves calculations for their quan-

tification was followed by validation. The aim of this step was to compare the

theoretical concentrations of RPMI (as reported in the Sigma-Aldrich website and

also collated in Chapter 2, Table 2.1) and calculated concentrations from actual

media samples by using the equations presented above. For this purpose, three 1

mL samples of standard culture media (described in Chapter 2, Section 2.2.1), were

taken and spectra were acquired and processed as in Section 3.3.3. Spectra were

then converted into USCF format and imputed in CCPN software where peaks cho-

sen for quantification were assigned an spin system and resonance and their heights

and volumes calculated. These were exported as text files and imputed in R.

A pipeline to analyse these data was implemented in R. It consisted of (1)

normalisation of the peak samples signal by TSP; (2) change labelling in CCPN of

“spin systems” and “resonances” to the adequate carbon nomenclature shown in

Table 3.2; (3) calculation of the concentration of each metabolite from height and

volume values by using the linear regression coefficients calculated from standard

curves in Section 3.3.3, Table 3.3; (4) adjust signal by the different volumes in

original sample and deuterium oxide resuspension after the freeze drying step; (5)

mean and standard error calculation between replicas and (6) plotting and data

output. Steps for calculation of concentration per cell were also implemented.
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Figure 3.10: RPMI measured concentrations. Mean of 3 replicas represented
with the standard deviation of the mean.

Results are shown in Figure 3.10 and a comparison of these with the the-

oretical values is shown in Table 3.5. Errors were calculated as the percentage of

the difference between theoretical and empirical concentration divided by the the-

oretical. NMR can detect metabolites in samples that range from micromolar to

millimolar concentrations. The most sensitive NMR spectra is 1D 1H but it has the

poorest resolution. Thus the sensitivity of experiments such as 2D 1H-13C HSQC is

improved with respect to carbon but reduced with respect to hydrogen. It is easier

to resolve the spectrum but naturally small concentrations present larger error on

quantification than large concentrations. For example glucose and HEPES, which

are in the millimolar range, present less than 5% error, whilst aspartate, in the

micromolar range, presents an almost 30% error. Despite this limitation, with this
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method absolute quantification of metabolites was possible which did not rely on

software predictions nor has to be fold changed to reduce variance such as the data

presented by Olszewski et al. [195].

Table 3.5: Concentration comparison measured vs theoretical

Metabolite Theoretical (mM) Experimental (mM) Error (%)

-alpha-D-glucose 11 10.69 2.82

-beta-D-glucose 11 10.97 0.27

Arginine 1.15 1.21 5.22

Asparagine 0.37 0.38 2.7

Aspartate 0.15 0.11 26.67

Glutamate 0.14 0.18 28.57

Glutamine 2.05 1.81 11.71

Glycine 0.13 0.12 7.69

Isoleucine 0.38 0.42 10.53

Leucine 0.38 0.43 13.16

Lysine 0.22 0.26 18.18

Methionine 0.1 0.09 10

MyoInositol 0.19 0.23 21.05

Serine 0.28 0.19 32.14

Valine 0.17 0.16 5.88

HEPES 25 25.99 3.96

3.3.5 Pilot study: Glycolysis and glutaminolysis are drivers of the

biomass production, a trophozoite study

The shortcomings of the lower limit of detection of the quantification method were

a limitation for future experiments. Even when it was not possible to resolve ac-

tual concentrations in the micromolar range, then at least trend changes should be

detected.
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Figure 3.11: Experimental conditions tested. Note that there were two identical
plates one with U-13C-D-glucose and other with D-glucose.

3.3.5.1 Experimental

To test that this was possible and also gain some insight on the effect of nutrient

deprivation in the parasite metabolic flux I designed an experiment that consisted

of incubating iRBCs in trophozoite stage for 2.5 h in Ringers solution containing

either 5 or 1 mM glucose and glutamine in a range of concentrations: 0, 0.6 and

2 mM (see Figure 3.11). These concentrations of glutamine were chosen because

they are representative as what is found in culture media (2 mM) and blood (0.6

mM). Glucose concentrations were chosen as typical mean value in blood (5 mM)

and severe hypoglycaemia (1 mM). Samples of supernatant and cell fraction were

extracted and processed as described in Chapter 2, Section b). Spectra were acquired

and processed as described in Section 3.3.3. Concentration values for the unlabelled

samples were obtained as described in Section 3.3.4 and are collated in Appendix

A, Tables A.1 and A.2. Results are shown in Figures 3.12.

3.3.5.2 Results and discussion

Independently of glucose and glutamine, the biggest differences across conditions

were observed in lactate, alanine and myoinositol concentrations. Intracellular ex-

tracts (Figure 3.12 (a)) show that myoinositol was consumed to some extent, pro-

portionally to the glutamine available. In cells incubated with more glutamine, we

found lower concentration of myoinositol, independent of the glucose available. In-

tracellular lactate was much higher in cells incubated with more glucose. Lactate

also presented different trends in both conditions. When starting concentrations of
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glucose were just 1 mM, intracellular lactate slightly increased with glutamine avail-

ability. However, when initial glucose levels were higher (5 mM), the intracellular

lactate reached a peak when at lower glutamine concentrations (0.6 mM) in contrast

to when the highest glutamine levels were available (2 mM). Nevertheless, intracel-

lular concentrations of metabolites at a single time point are not that informative

due to periodic oscillations in the metabolism. For example, glycolytic oscillations

(which are well documented in yeast and muscle [272]) implicate the repetitive fluctu-

ation of the metabolite concentrations [273] in periods of approximately 15 minutes

[274]. Thus, small changes in sampling times between treatments might artificially

suggest a difference in concentrations due to a treatment effect while there are just

observations of the natural oscillations of a metabolite. Consequently, when lacking

a time course to confirm if a difference is consistent over time, extracellular metabo-

lite levels from the supernatant extracts can be more informative. These are shown

in Figure 3.12 (b). Glucose consumption was relatively different across conditions.

When more glucose was available, more glucose was consumed (consumption in 1

mM starting concentration was of up to 0.7 mM meanwhile consumption in 5 mM

starting condition was of up to 2.3 mM). Thus the parasite is somewhat responsive

to the nutrient availability. When looking at the effect that glutamine availabil-

ity had on glucose consumption, more glucose was consumed when glutamine was

not available in the media. However, consumption of glucose did not increase nor

decrease proportionally with glutamine availability. When 0.6 mM glutamine was

available, glucose was not consumed as greatly as when 2 mM glutamine was. Signif-

icantly, even though less glucose was consumed in the 0.6 mM glutamine condition,

more lactate and glycerol were produced than in the 2 mM homologous experiment.

This indicates that these typically considered waste products might play a role in

metabolism regulation.
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Figure 3.12: Concentrations of metabolite extracts. (a) Intracellular extracts
(b) Media. Note Glc=Glucose and Gln=Glutamine. It can be appreciated that
the parasites adapted to the environment by reducing or increasing their glucose
consumption. Note that in different starting concentrations of glutamine, the central
carbon metabolism is affected and a change in lactate excretion can be observed.
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In order to further investigate this observation, we calculated the percentage

of artificial 13C labelling incorporated in each signal. To do this, spectra from both

samples that had been incubated with U-13C-D-glucose and D-glucose were used.

First, signals were normalised by TSP, then appropriate nomenclature was assigned

to each signal and common carbons between both spectra were selected. Then, the

signals of the labelled sample were multiplied by 1.1 % which is the natural 13C

abundance and divided by 99 % which is the amount of 13C labelling in the stock

glucose. This should account for 100 % labelling for a carbon that is fully labelled

like those in U-13C-D-glucose. Results of these calculations for cell and supernatant

samples are shown in Figure 3.13. Metabolites with significant labelling in the

cellular fraction are alanine and lactate. However lactate seems much more labelled

in the sample with 5 mM glucose and 0 mM glutamine as the starting condition.

When looking at the supernatant samples it was striking to appreciate that glucose

did not present 100% labelling, moreover there was a difference in carbons labelling

within the same molecule what was not possible if the stock was homogeneously

labelled. Carbons in the exterior of the molecule presented higher signal than the

ones bound to two other carbons. The explanation behind this observation lies

in the different magnetisation transfer between atoms. The magnetisation of a
1H bound to 13C dissipates (known as relaxation) faster than a 1H bound to 12C.

The faster the relaxation of the magnetisation the broader (and in some respects

less intense) the signal, as the window of detection is shorter. This principle is

what is observed when comparing the peaks from 13C uniform labelled and 13C

natural abundance in different atoms of glucose. A 13C at natural abundance can

be assumed to be surrounded by 12C (as 13C isotope at natural abundance is 1.1%)

thus the 13C relaxation is not enhanced by direct binding to other NMR active 13C.

In the case of uniform 13C (99% 13C), it can be assumed that any 13C nucleus is

surrounded by other NMR active 13C nuclei and the relaxation of the magnetisation

is thus enhanced. In the uniform labelled glucose this accounted for the differences

in labelled signal comparing differing atoms in the glucose (see Figure 3.14) as the

intensity was reduced more in the carbons bonded to two 13C (i.e. in the centre of the

chain C2, C3 C4 and C5) than those bonded to one 13C (i.e. those at the ends of the

chain C1 and C6). This phenomenon does not allow a proper comparison of U13C

and natural abundance samples. However it was highlighted that the metabolites

labelled were glucose and its products lactate, glycerol and alanine.
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Figure 3.13: Percentages of artificially introduced 13C after incubation with
U-13C-D-glucose. (a) Cellular extracts. Samples confirm alanine and glycerol as
glucose products (b) Supernatant. Glucose labelling seems to not be uniform what
points towards a problem. 96
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Figure 3.14: Representation of carbon magnetisation pathways of glucose
(purple arrows). (a) Glucose with only one 13C (b) U-13C Glucose. Note that
when more than one 13C isotope is present, they influence each other. Thus carbons
in the outside of the molecule presented a reduced effect on this magnetisation.
When using natural abundance glucose, only 1.1% of the carbon is 13C and this
effect is negligible.

Excreted glucose products were confirmed by tracing 1-13C-D-glucose.

In order to confirm which excreted products are produced at least partially from

glucose, a similar experiment using 1-13C-D-glucose was performed. Parasites were

incubated in culture media containing either 11 mM 1-13C-D-glucose or D-glucose.

Samples of supernatant before and after incubation were taken, processed and anal-

ysed identically to the previous experiment. Labelling percentages were calculated

and they are shown in Figure 3.15. As only one carbon of the glucose was labelled

in these samples the relaxation differences did not affect the signal and it can be

seen how C1 of glucose was labelled prior to incubation and after incubation. The

glucose catabolic end products were also labelled to some extent: alanine, glycerol

and lactate.

Even though molecules with more than one 13C cannot be used for analysis,
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these results confirm the suitability of our method to identify changes in metabolic

responses to the environment which is the crucial point needed to address the fun-

damental question of this project on how the malaria parasite reacts to a changing

nutritional environment.
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Figure 3.15: Percentages of artificially introduced 13C before (a) and after
(b) incubation with 1-13C-D-glucose. Only glucose is labelled at the start of
incubation (a), its consumption results in some of its direct catabolic products being
excreted: alanine, glycerol and lactate.

98



3.4 Conclusions

Upon review of the current published methodologies used to investigate the metabolism

of P. falciparum in a holistic way we identified a lack of studies of parasites in physio-

logical conditions as well as the lack of provision of open source platforms to proceed

with metabolomics analysis. Both of these points are paramount to make research

translatable into the field and accessible to different collectives.

Thus we have designed, developed and tested a pipeline that allowed the identifi-

cation and quantification of 23 metabolites using open source software and in-house

developed code. This is the first time such approach has been used to absolutely

quantify both intra- and extracellular concentrations of the malaria parasite P. falci-

parum using NMR spectroscopy, instead of reporting predicted concentrations based

on a fitting algorithm as presented by Teng et al. [219, 217]. Moreover this pipeline

has the potential to be expanded to an unlimited number of metabolites and ap-

plicable to many other metabolomics studies. Its implementation in 2D spectra

provides high resolution of metabolites and higher confidence on assignment with

respect to the 1D spectra.

Furthermore we have identified the shortcomings of this method i.e. limited num-

ber of metabolites identified and limited limit of detection but we have proven its

suitability to detect subtle differences between parasites growing in challenging con-

ditions, thus proving the method fit for purpose. The use of labelled substrates was

exploited for metabolite identification as well as confirmation of the main metabolic

products from glucose namely lactate, glycerol and alanine. However, technical

experimental limitations such as the differences in relaxation between different car-

bon isotopes, made the identification and quantification of glucose and its catabolic

isotopomers not possible under the current set-up.

Future work should involve further study of the signals detected with the aim

to expand the metabolites identified and consequent expansion of the calibration

curves. Further work should aim to either include more steps on the pipeline in

order to avoid the use of CCPNmr software (currently used to aid in phasing and

metabolite mapping) or the implementation of such pipeline in python as a plug-in

for the mentioned open source CCPNmr software, thus allowing a large number

of users the access to immediate metabolite quantification. An attempt to adapt

the method to be used with 1H spectra must also be considered given that it is

more sensitive and typically requires less acquisition time for reasonable resolution.
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The use of sparse sampling techniques could also improve the current method by

reducing the spectra acquisition time which would also allow an increase in the

number of scans for a better resolution. Finally, the method should be adapted to

use enriched 13C substrates for flux analysis. To do so, experimental acquisition of

the 2D 1H-13C HSQC can be modified increasing acquisition times (to 0.15 s in the

indirect dimension and 40 ms in the direct one as shown in [275]) which together

with improved resolution (increase in number of scans) shows the 13C-13C couplings

from which the presence of label at carbonyl carbons can be elucidated. However,

this experiment provides little information about the level of enrichment. Other

methods have been proposed to tackle this problem [276, 277, 278] but they are not

implemented in an open-source platform making them currently unsuitable for our

purposes.
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Chapter 4

Comparative metabolomics of

early and late developmental

stages of intra-erythrocytic

Plasmodium falciparum

4.1 Introduction: Paucity of metabolic studies involv-

ing early intra-erythrocytic stages of P. falciparum

The intra-erythrocytic stages of Plasmodium falciparum afford the parasite a level of

protection against the host’s immune system, as well as the availability of nutrients

for parasite development and multiplication. As reviewed in Chapter 1, Section 1.3,

upon invasion, major modifications to the host erythrocyte are induced (known as

the New Permeation Pathways, NPP) in order to allow the exchange of metabolites

[279]. The parasite starts the consumption of haemoglobin from the erythrocyte

cytoplasm that serves for osmotic control [280, 140] and provides initial nutritional

value (through amino acid uptake [63]) before fuelling the parasite expansion within

the host [141]. Aerobic glycolysis/fermentation is high and mitochondrial function is

reduced [111]. As described in Chapter 3, Section 1, most of the metabolic studies

of the parasite have been undertaken almost exclusively with mature trophozoite

stages [219, 104, 281, 103, 282, 80, 223, 105] and most of them require a step to

either concentrate the infected RBCs (usually by magnetic separation [235]) or re-

lease parasites from their host (using saponin). Both approaches are not only time

consuming, but also involve removing the parasite from physiological conditions and
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may therefore provoke mechanical or biotic stress responses in the parasite.

Studies involving solely the mature trophozoite stages provide limited infor-

mation as they only represent a small biological window in the 48 h parasite life

cycle. Following invasion, all modifications and changes occur within a specific time

frame, and early invasion stages are very different from late ones. For example,

erythrocyte-binding antigens are only expressed during ring and schizont/merozoite

stages, but not during trophozoite stages [283], which emphasizes the importance of

studies in ring stage parasites. Furthermore, asexual stages are the most vulnerable

to the volatile conditions of the host environment in which fluctuations of tempera-

ture, oxidative damage and nutrient instability trigger stress response mechanisms

[284]. It is the ring stage which can adapt and resist some of these. For example, a

stress response triggered by the exposure to artemisinin, involves the development

of a reversible dormant stage at the ring stage [285, 229]. When ring stages are ex-

posed to nutrient starvation such as isoleucine deprivation, an arrest in development

is also observed without typical dormancy morphology, but with parasites unable

to progress from trophozoite stage [232].

As previously described, metabolic data of early ring asexual stages is very

limited. Up to date, there is only one study in which these were included. In

2009, Olszewski et al. [195] presented a study that measured the accumulation of 92

metabolites in both intra and extra-cellular fractions with respect to uninfected sam-

ples at 7 time-points over the course of the intra-erythrocytic life cycle. A number

of metabolites were observed to display increased levels of accumulation during late

trophozoite development. This study was done by untargeted LC-MS/MS approach

and it was the first to use parasite cultures at only 10% parasitaemia. However, all

the results were semi-quantitative as they were reported as a normalised fold change

with respect to uninfected red blood cells, which did not allow for absolute quantifi-

cation. In addition, sampling intervals of 8 h did not allow for stage-specific rates

of metabolite consumption/accumulation to be accurately determined. By using

the method described in Chapter 3 to identify and absolutely quantify intra- and

extra- cellular metabolites by NMR spectroscopy, we set out to determine whether

ring-stage central energy metabolism could be detected and critically, whether it

could be distinguished from that of late trophozoite stages and uninfected erythro-

cytes. If differences were detectable, we could proceed to study the plasticity of the

malaria parasite’s metabolism to physiologically relevant perturbations with our ex-

perimental method, for which sampling at more frequent intervals will be designed

(see Chapter 6).
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4.2 Experimental

Tightly synchronised RBCs infected with P. falciparum 3D7 (iRBCs) (as described

in Chapter 2, Section 2.3.4.1) were split into six cultures at trophozoite stage and

cultured in usual in vitro conditions (Chapter 2, Section 2.2). In the next life cycle

parasitaemia reached 16%. Three of these cultures were analysed when in ring stage

and the other three when in trophozoite stage(troph). Two hours prior to sampling,

parasites were transferred to fresh medium of which samples were collected pre- and

post- incubation for further analysis. Past the incubation period, 1 mL of cell pellet

from each flask (equivalent to 1.7×109cells) was washed with ice cold PBS to prevent

further metabolic reactions and used for the metabolite extraction as described

in Chapter 2 Section 2.5. In parallel three cultures of uninfected RBCs (RBCs)

were kept in culture conditions for 24 hours prior to the two hour incubation with

fresh medium and following metabolite extraction. Samples were analysed by NMR

spectroscopy, 1D 1H and 2D 13C1H spectra were acquired using a Bruker 600 MHz

spectrometer, as described in Chapter 2, Section 2.7.2. Data were analysed and key

metabolites identified and quantified as described in Chapter 3. Final concentrations

were averaged and standard errors calculated. Where calculations included these

values, errors were recalculated using the correspondent error propagation formula

(see Chapter 2 Section 2.10.3). Statistical significance were tested as described in

Chapter 2 Section 2.10. Data is reported in Appendix A, Tables A.3 and A.4.

4.3 Results and Discussion

4.3.1 Intracellular metabolite fingerprint showed unique and dis-

tinguishable features between RBCs and iRBCs at the dif-

ferent asexual stages ring and trophozoite

Initial data exploration included Principal Component Analysis which allows an

analysis of hidden structure ‘ the data. PCA is a data transformation that produces

new uncorrelated variables called Principal Components (PCs), that capture the

maximum amount of variance in the data in decreasing order (the first principal

component captures the most, last - the least). This effectively “compresses” the

information allowing most of the information to be presented in just a few variables,

which is easily visualised. For this dataset, variables were the metabolites and each

replica a sample. Data was mean-centred and unit variance scaled prior to calcula-

tion. Score plots are shown in Figure 4.1. In Figure 4.1 (a) most of the samples are

in the right hand side of the plot while only one of the RBC samples is located far
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from the others. This is one of the uses of PCA, it allows for quick identification

of outliers. Upon a more detailed analysis of the sample, it was identified as an

outlier and removed from the analysis. PCA of the remaining samples presented a

clear separation between infected (left) and uninfected (right) samples (Figure 4.1

(b)). Separation between early (ring) and late trophozoites (troph) was not very

clear when looking at the first 2 dimensions. However, when a third component was

taken into account (Figure 4.1 (c)), rings and trophs were clearly separated.
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Figure 4.1: PCA score plots of intracellular concentrations. (a) 2D score plot
of all samples where it can be observed that one of the samples is much different
from the rest (RBC sample on left side of the plot) (b) 2D score plot after removal
of the RBC outlier. Separation between infected and non-infected samples is very
clear (right and left) (c) 3D score plot after removal of the RBC outlier. Now
a separation between infected and non-infected cells is not only clear, but also a
separation between infected cells in the ring and trophozoite stages are different.
Note that each dot represents a sample.
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The metabolites that contributed the most to the separation seen in the 2D

plot (between RBC and infected RBC (iRBC)) are shown in the loadings plot (Figure

4.2). Loadings show the variables of the original dataset that contributed the most

to form each of the new variables or principal components. NAD, Lactate, Alanine

and Valine were the highest in iRBC samples and Aspartate, Glycine, Arginine,

Glutamate and Creatine were the highest in RBCs. Differences between ring and

trophozoite were mostly determined by Isoleucine, Acetate, Lysine and Leucine. All

findings are consistent with Figure 4.3.
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Figure 4.2: PCA loading plot of cellular extracts. The metabolites that are
most different in infected cells with respect to non-infected are valine, lactate, NAD,
alanine, lysine, acetate and leucine.

PCA showed differences between samples and highlighted which metabolites

contributed the most to sample separation. In order to explore further the nature of

these differences, pairwise Student’s t-test was calculated for each metabolite and p-

values adjusted by the Benjamini-Hochberg method. Quantifiable metabolites and

results of statistical tests are shown in Figure 4.3. Differences between RBCs and

infected RBCs are evident. Levels of alanine and lactate were significantly higher in

iRBCs, products of the well-known increase in glycolytic flux [77]. Elevated NAD

levels in infected RBCs were also observed and significantly different, which is con-
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sistent with the literature [286]. However, most of the metabolites quantified were

lower in abundance in the cellular extracts of infected RBCs. This was especially

apparent in most of the amino acid concentrations. This might be related to the

higher demand that the parasite has for amino acids, which is widely documented in

the literature: arginine [195], aspartate and asparagine (usually in high demand due

to the high asparagine content of Plasmodium proteins [231]), glycine and serine (in-

volved in anabolic reactions for folate synthesis [287]) and glutamate and glutamine

(in demand for glutaminolysis [111]). Myoinositol and creatine were also found less

concentrated in infected samples, although only creatine showed a significant differ-

ence. Myoinositol is required for fatty acid synthesis for membrane creation [282]

and creatine has also been found to decrease during Plasmodium infection [218] due

to a higher metabolic demand. Although not significant, the main differences be-

tween early (ring) and late trophozoite (troph) stages, were in lower concentrations

of glutamine, asparagine and aspartate in rings than in trophs. These metabolites

are involved in the synthesis of proteins (asparagine) and nucleic acids (glutamine

and aspartate are precursors of Carbamoyl-L-Aspartate which is upstream in the

pyrimidine biosynthesis pathway). Another difference was the lower abundance of

isoleucine in the ring stage and undetectable in the trophozoite stage, both probably

linked to the high demand of the amino acid given that its only source is the extra-

cellular media and it is not found in haemoglobin. Finally, GSH was found lower in

trophozoites. GSH is involved in oxidative damage control which by the time the

parasite reaches its late stages should be much higher than in a young parasite; this

observation has also been made previously [288]. Acetate was found as a contam-

inant in the RPMI media (discussed in Section 4.3.2). Acetate was only found in

cellular extracts of trophozoites, which might be due to the increased permeability

of both host and parasite during the mature stages.
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To further contextualise our findings we decided to compare the trends of

our data with those published by Olszewski et al. [195]. The authors reported the

metabolites as the height of the peak signals from the m/z signal normalised by their

internal standard and then they calculated the fold change with respect to the RBC

sample at time zero. In their experiments cells were incubated for longer periods

of time than in this experiment and their data processing was different. Aware of

these limitations and expecting differences in values, but similarities in trends, we

transformed our data as similarly as possible. Results are shown in Figure 4.4 and

are also collated in Table A.5 in Appendix A. Most of the metabolites followed the

same trend. Exceptions were asparagine and NAD. These differences can perhaps, be

accounted by the time parasites were in culture. Plasmodium proteins are very rich

in asparagine [231], which is used up from extracellular media and from haemoglobin

degradation. These were freshly provided to our trophozoites while Olszewski et al.

reference sample had been in the same culture medium for 32 h. NAD has been

shown to oscillate during the asexual life cycle, thus different sampling times can

result in different trends [289].

It can be concluded that metabolomics studies of cellular extracts by NMR

spectroscopy are useful not only to identify metabolic differences between infected

and uninfected RBC samples, but also differences between parasite stages inside the

cell, that are in agreement with the literature. Some limitations of this approach

are apparent when compared to more sensitive methods that have identified and

relatively quantified a much larger number of metabolites of P. falciparum [103, 195],

however absolute quantification has not been reported and key metabolites such as

glycine, isoleucine or the isomers of glucose that present a challenge to MS studies,

are resolved by NMR.

Analysis of cellular extracts has major limitations. P. falciparum is grown

in batches in the laboratories and as such, the number of flasks that can be grown

at a time limits the scope of the studies performed. Metabolite extractions are time

consuming and the acquisition of samples in a timely manner is also limiting. Thus

the use of solely culture media as a method for inferring parasite metabolism was

also explored. NMR spectroscopy is ideal to analyse biofluids and similarly culture

media has high enough concentrations that allow us to reduce the sample volume

compared to cellular extracts. Consequently, extracellular products were analysed

and the results are presented in Section 4.3.2.
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Figure 4.4: Fold change with respect to RBCs. Heatmap of the concentrations
with respect to RBC from rings and trophozoite infected samples. Comparison
between the common metabolites between the in-house data and those published
by Olszewski et al.. The trends of increase/decrease of metabolites between life
stages is mostly conserved (black arrows), despite experimental conditions and data
acquisition being vastly different.

110



4.3.2 Extracellular metabolite fingerprint showed unique and dis-

tinguishable features between RBCs and iRBCs at the dif-

ferent ring and trophozoite asexual stages

PCA was used to discover hidden structure in the data. Media pre- and post- in-

cubation showed an excellent sample classification upon calculation of PCA. Both

iRBC and RBC as well as Ring-iRBC and Troph-iRBC samples could be discrimi-

nated by looking at the first two PCs (see Figure 4.5 (a)). The loading plot (Figure

4.5 (b)) shows that the metabolites that contributed the most to the separation of

infected versus non-infected and t0 samples were myoinositol, lactate, alanine, glu-

tamate and glycerol (higher in infected samples) and glucose and arginine (higher

in non-infected samples). Glycerol is one of the exclusive metabolites that the para-

site produces [81] and excretes, which makes it an excellent variable to discriminate

between infected and non-infected samples.
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Figure 4.5: PCA media samples. (a) Scores. Three clusters are distinguishable,
one containing media pre-incubation and media post RBC incubation; the other two
containing ring and trophozoite infected RBCs. (b) Loading plot points to glycerol,
glutamate, alanine, lactate and myoinositol as the metabolites highest in infected
cells with myoinositol and lactate contributing the most to separation between rings
and trophozoites.
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A detailed analysis of the concentrations found in the samples and statis-

tical analysis results are shown in Figure 4.6. Although not significant, samples

containing parasites had lower concentration of glucose, which is consistent with

the increased demand of the metabolite during infection. For this incubation time,

there were no differences in glucose uptake between rings and mature trophozoites

(troph). Given that lactate is a direct product of the consumption of glucose, similar

proportions were expected between rings and trophs. However, lactate concentra-

tions were significant for all comparisons. Similarly, alanine and glycerol were also

excreted in higher proportion in the troph stage. The other driver of central car-

bon metabolism, glutamine (via glutaminolysis, see Chapter 1 Section 1.3), was

taken up slightly more in the ring stage but no significant differences were found.

Myoinositol was significantly more consumed in trophs, which is consistent with

the high demand for fatty acid synthesis for membrane creation for the daughter

cells [282]. Other metabolite changes were not significant and more experiments

are required to verify their changes; nevertheless, some of the trends observed are

discussed next. Acetate concentration was slightly reduced in iRBCs, probably due

to the increased permeability of the infected cells, especially late trophozoite stages,

that might intake some of the metabolite resulting in a reduction of its concentra-

tion in media. Arginine and glutamine were depleted by iRBCs being consumed

slightly more in the ring stage. It is interesting to report that valine and glutamate

were excreted in iRBC, especially in the late trophozoite stages. This is an apparent

signature of haemoglobin degradation that can be linked with parasite commitment

to schizogony and it is discussed in Chapter 6.

In order to assess the differences in carbon circulation between the asexual

life stages, we calculated the moles of glucose and glutamine consumed and predicted

a maximum number of 3-carbon molecules that could be formed provided that they

were all consumed with the sole purpose of its conversion into lactate, glycerol or

alanine and subsequent excretion. Then we calculated the actual moles of excreted

products (alanine, glycerol and lactate) and the percentage of these with respect to

the possible predicted ones (values shown in table 4.1). This estimation shows that

71.63% of glucose and glutamine consumed were transformed into these excreted,

“wasteful” products meanwhile only 43.35% in the early stages.
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Further analysis steps included the calculation of consumption and excretion

of metabolites per parasite at each of the life stages. These calculations take into

account small differences in parasitaemia. For example flasks used for ring stage

analysis had slightly higher parasitaemia (17%) than flasks used for trophozoite

stage analysis (16%). Equations 4.1 and 4.2 were used to calculate consumption

and excretion of metabolites per parasite when a specific metabolite was present in

medium pre-incubation or not respectively. Non-infected samples were used to esti-

mate the contribution of just infected cells to the metabolite pool similarly to that

in Teng et al. [219]. Then these values were divided by the incubation time to esti-

mate the consumption and excretion per hour. In order to calculate concentrations

in this way several assumptions were made:

1. Same volumes of cell pellet contain the same number of cells.

2. Steps in the extraction and sample preparation did not affect preferentially

one kind of sample.

3. Non-infected RBCs are not affected by other RBCs being infected in the same

culture.

4. Incubation time does not affect metabolism.

The results of these calculations are shown in Figure 4.7. Negative values

represent metabolites that were consumed and positive - excreted. Pairwise t-test

significant outcomes are represented with line segments. Although glucose was mod-

erately more consumed by trophozoites (but still not significant), the proportions of

glucose and glutamine consumed and ‘wasteful” products produced (lactate, glycerol

and alanine) per parasite were comparable to the medium pool (Table 4.2). Given

that this estimation of consumption and excretion per cell did not add insight into

the mechanistic metabolic processes observed during the incubation time, it was

more realistic to use solely concentration measurements of the samples. Especially

as there was evidence that not only do Plasmodium-infected erythrocytes inhibit

glucose utilisation in uninfected erythrocytes [80], but they also modulate host en-

zymes in their favour [223]. Thus we cannot assume that non infected RBCs are not

affected by iRBCs and consequently, for further experiments shown in Chapters 5

and 6 moles per cell were not calculated.

Conc pp =
Conc t0 − (Conc iRBC + ((1− parasit)(Conc t0 − Conc RBC)))

Nparasites
(4.1)

Conc pp =
Conc iRBC + ((1− parasit)× Conc RBC))

Nparasites
(4.2)
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The relative increase of wasteful products with the development of the para-

site, fits the hypothesis presented by Newsholme et al. [117] where they proposed a

role for high rates of glucose and glutamine utilisation in rapidly dividing cells (see

Chapter 1 Section 1.3.1.3). Assuming a bifurcated pathway in which one branch

works towards biomass production (for example through glucose into pentoses phos-

phate and consequent pathways for nucleic acid synthesis) and the other towards a

wasteful product (lactate); a huge flux to waste could serve as a way to keep tight

control on the biomass production and when an adequate signal of proliferation is

received, the cell could redirect part of that flux to biomass production without

having to have a feedback mechanism in the production of the precursor. Changes

in flux to lactate or to biomass would allow rapid response to stimuli and conse-

quent successful environmental adaptation. Thus, when the parasite is young and in

need to create large amounts of biomass, the flux redirected towards its production

should be larger than when the parasite has expanded and already built most of its

biomass. This idea is further discussed in Chapter 6.
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4.4 Conclusions

In this Chapter I have presented the first study by NMR metabolomics show-

ing qualitative and quantitative discrimination between not only infected and non-

infected samples but also between different life stages of the intra-erythrocytic life

cycle of P. falciparum using cultures that did not undergo any artificial enrichment

of parasites. Differences in cellular extracts were found and were consistent with

the literature. These can be summarise in:

(a) An increase in the lactic acid abundance in infected cells, likely product of

the increase glycolysis with respect to the erythrocyte [290]. This finding is

even more interesting in cultures with only 10% parasitaemia given that the

malaria parasite inhibits glucose utilisation of other uninfected erythrocytes

in co-culture [223]

(b) An increase in alanine in infected cells, likely product of both glycolysis (with

alanine being produced from pyruvate as shown in Chapter 3, Figure 3.15)

and possible haemoglobin degradation as alanine is one of the most abundant

amino acids in the globin part (NCBI Protein database [291]).

(c) An increase of NAD in infected red blood cells, which has been suggested to be

linked to the increased glycolysis where NAD is a needed cofactor [286].

(d) A decrease in most of the amino acids with significance in arginine, aspartate

and glutamate which demand increases in infected red blood cells [111, 195,

231].

(e) A decrease in creatine which has been found to severely decrease in mice expose

to P. berghei infections [218].

Currently, the parasite is grown in batches what results in large numbers of flasks

required for adequate sampling when doing time course studies. This increases

the variance due to batch effect and might severely bias the observed results. By

using just extracellular products, experiment variability can be further controlled,

providing more robust outcomes. The information that can be derived from the

study of the metabolic uptake of the parasite is far more informative than those

obtained from cellular extracts unless metabolites are traced using 13C. Thus, we also

analysed media pre- and post- incubation with both infected and non infected red

blood cells. Interestingly, metabolic differences were also found by looking solely at

those extracellular products. These were enough to discriminate samples of infected
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and non-infected cells as well as different life stages of the parasite. Analysis of media

extracts are less time consuming and require less resources than cellular extractions

and so these experiments set the basis for further experimentation presented in

this Thesis. Key metabolites involved in such discrimination were glucose and its

glycolytic products lactate, alanine and glycerol and myoinositol which is a key

precursor for lipid biosynthesis and in high demand in developing parasites [282].

The shortcomings of this work rely mainly on the low sensitivity of the technique of

choice, NMR metabolomics, that does not allow for identification and quantification

of large number of metabolites. In this sense the use of Mass Spectrometry could

improve the information acquired with respect to the cellular extracts. However

and for the study of biofluids, NMR is a much sensible choice, given its robustness

and easy and consistent sample preparation and analysis. Other limitation of this

particular study is the limited time points analysed. This particular issue will be

address in Chapter 6, where the monitoring of a whole life cycle would enable stage

specific flux analysis.

Here we have shown that by using NMR metabolomics, we can discriminate be-

tween RBCs and iRBCs at different stages analysing both intra- and extracellular

products by NMR spectroscopy. Differences in metabolic make up between rings and

trophozoites point to stage-specific differences in carbon flux. These are investigated

in the following chapters.

120



Chapter 5

Morphological and initial

metabolic characterisation of

Plasmodium falciparum in

physiological (blood-like)

medium

5.1 Introduction: Plasmodium in vitro culturing con-

ditions

In vitro conditions used for P. falciparum axenic culture are substantially different

to in vivo conditions in the human host. Continuous culture of Plasmodium spp.

has proved challenging since its first attempts. It took over half a century to advance

from the first culturing attempts, in which parasites growing for only a few life cycles

could be obtained [292], until a robust continuous culture method was published

[177]. This method was based on the use of RPMI 1640 based media, which was

developed by Moore et al. [293]. Formulated for use at a 5% CO2 atmosphere, its

primary goal was the growth of human lymphoid cells. The richness of this medium

makes it suitable for the growth of many other kind of cells upon supplementation.

RPMI 1640 medium provides a suitable environment for the continuous

growth of the malaria parasite, however it contains levels of nutrients that notably

differ from those seen in physiological conditions in the human host. For exam-

ple, in RPMI 1640, glucose and glutamine, the main drivers of the central carbon
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metabolism of P. falciparum during the intra-erythrocytic stages, are over twice the

concentration commonly measured in human plasma [178]. Most of the vitamins

present in RPMI 1640 are more concentrated than in human plasma and so are most

of the metabolites. Some exceptions include valine and glycine which are slightly

more abundant in human blood. A detailed comparison of RPMI 1640 components

with respect to human blood has been reported by LeRoux et al. [178].

Many factors are involved in the differences between in vivo and in vitro con-

ditions. The in vitro culturing method intrinsically limits the factors that can be

improved, for example the lack of a well-established chemostat for growing Plasmod-

ium spp. constrains a stable and constant nutrient availability and waste disposal.

The actual nutrient availability presents a conundrum to the established studies.

On the one hand the parasites readily grow in the current conditions such as the

ones described in the General Materials and Methods, which is good to keep robust

cultures that are consistently available for experimentation and which are easily

reproducible between laboratories and therefore comparable. On the other hand

growing parasites in conditions far from physiological selects parasites and alters

metabolic flux dynamics and potentially responses to treatments. Moreover, the

well documented differences between lab-cultured and field strains of Plasmodium

in for example switching patterns of var genes [294], might be related to this adap-

tation to a very favourable but unrealistic culture media.

Despite its efficiency, the suitability of RPMI 1640 based media to grow the

malaria parasite can be argued. When the aim of culturing the malarial parasite is

to test chemical compounds that would alter its development or its interaction with

the environment (i.e. drugs and vaccine candidates), the need for a research model as

close as possible to the human host, is vital. The minimum nutritional requirements

of P. falciparum in culture have been reported decades ago [233, 234, 128], however

there are not studies available on the differences between malaria parasites growing

in a more physiological media with respect to the current established method.

Main aims. The aims of the work presented in this Chapter were (a) to develop an

in-house media with concentrations similar to the ones of human blood; (b) to test

the viability of parasites growing in it and assess whether we could observe pheno-

typic differences in a quantitative manner; (c) to perform preliminary metabolomics

analyses (as described in Chapter 3) to test the effect of these media on metabolic

uptake between infected and non-infected cells.
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5.2 Experimental

5.2.1 Media preparation

In-house produced RPMI and blood-like RPMI preparations are described in detail

in Section 2.4 in Chapter 2. In brief, each component was prepared in a concentrated

solution, filtered sterilised and aliquoted prior freezing. For each media batch one

aliquot of each component was defrosted and used to prepare the corresponding

media by mixing them at the adequate proportion, followed by pH adjustment and

sterilisation. With this method, multiple combinations of media can be prepared.

5.2.1.1 Media viability test

A synchronised culture of P. falciparum 3D7 infected red blood cells was split in two,

one was kept in commercial RPMI 1640 based medium and the other in in-house

produced RPMI 1640, both supplemented with standard amounts of HEPES, Albu-

max, gentamycin and hypoxanthine (see Section 2.2 of Chapter 2). Parasite viability

and growth were monitored during three life cycles by bright field microscopy.

5.2.1.2 Media effect test

A synchronised culture of P. falciparum 3D7 infected red blood cells was split in

three, one was kept in commercial RPMI 1640 based medium (CM) and the other

two in in-house produced blood-like medium, one supplemented with 0.04 mM hy-

poxanthine (BL+H) and another with 0.004 mM (BL). All of the cultures were

supplemented with the usual values of HEPES, Albumax and gentamycin. Parasite

viability and growth were monitored by bright field microscopy for 2 weeks. Fur-

thermore, slides were prepared for further analysis at 24 hours and then every 48

hours for the first three cycles.

5.2.2 Image analysis

Giemsa stained parasite smears were digitalised using a Nikon camera attached to

a Olympus bX-60 microscope and saved in tiff format. These images were then

imported in the open source software Fiji (Image J) [295] and analysed as described

in Chapter 2, Section 2.8.2.

5.2.3 Metabolomics experiment

Three tightly synchronised cultures of P. falciparum 3D7 at 12% parasitaemia

were incubated for 24 h in blood-like medium as well as a culture of uninfected
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RBCs. When at the trophozoite stage, parasites were changed into fresh media and

incubated for three hours prior sampling. Media samples of 1 mL were collected in

a tube containing 2.5 mM TSP (Trimethylsilyl)-propionic-2,2,3,3-d4 acid) and snap

frozen. They were lyophilised and then resuspended in 300 µL of deuteriumoxide

and transferred to an NMR tube (3 mm diameter), where 1D 1H and 2D 1H-13C

were acquired in 600 MHz Bruker spectrometer as detailed in Section 2.7 of Chapter

2. Spectra were normalised by TSP, metabolites were identified and quantified as

previously described (Section 2.7). Data are provided in Appendix A, Table A.6

and were analysed followed procedures described in Chapter 2, Section 2.10.

5.3 Results and discussion

5.3.1 A qualitative and quantitative analysis on the effects of phys-

iological media on P. falciparum trophozoites

A “blood-like” media that would consist on the same components of RPMI 1640

but at the levels reported in human blood was designed based in the publication by

LeRoux et al. [178] in which a comparison of the concentrations of factors present

in RPMI 1640 and human blood was reviewed. Concentrations of these factors in

human blood vary within different individuals. The values for our study, taken from

LeRoux et al., are mean values from the ones recorded in the Human Metabolome

Database (HMDB) [184]. Exceptions were choline, myoinositol, niacinamide and

glutathione, which were not reviewed in the publication and therefore we chose

the upper value reported in HMDB (final concentrations and preparation method

reported in Section 2.4 in Chapter 2).

For P. falciparum serum free cultivation, RPMI 1640 is supplemented with

HEPES, Albumax, gentamycin and most importantly hypoxantine (see Section 2.2

in Chapter 2). Plasmodium spp. are not able to synthesize purine rings de novo

[296] and therefore rely on salvage of purines from the host. They can metabolise

a variety of exogenous purines although with a preference for hypoxanthine [297].

Optimal hypoxanthine levels for parasite growth have been reported between 0.015

and 0.12 mM [297]. Current accepted and spread supplementation is 0.04 mM

whilst the hypoxanthine available in human serum is just 0.004 mM. Such low levels

of hypoxanthine are known to affect the growth rate of Plasmodium [184]. In the

context of this study, aiming at the development of a tailor made RPMI-like media

mimicking blood nutritional levels, hypoxanthine supplementation was kept at a 0.04

mM concentration as this metabolite is already known to affect parasite growth rate.

In this framework, experiments were designed to assess: (a) whether the in-
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house produced medium was comparable to the commercially available, (b) whether

there were phenotypic differences between parasites growing in complete media and

blood-like media and (c) whether parasites growing in blood-like media supple-

mented with either 0.04 mM or 0.004 mM hypoxanthine were different.

5.3.1.1 In-house RPMI-like medium is comparable to commercially avail-

able RPMI

The output of the experiment described in Section 5.2.1.1, showed that parasite vi-

ability and growth was not significantly different between parasites growing in com-

mercial RPMI and our in-house RPMI. Parasites were monitored for three life cycles.

Representative images of Giemsa-stained parasite smears (example shown in Fig-

ure 5.1) were analysed as described in Section 5.2.2 and a Mann-Whitney-Wilcoxon

statistical test was performed resulting in non significant differences between both

groups (p value of 0.9182 with a 95% confidence interval of (-2.226-1.667)), proving

that this method to prepare media was up to experimentation standards.
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Figure 5.1: Bright field imaging of parasites growing in different media.
(a) In-house produced RPMI 1640, (b) Commercial RPMI 1640; (c) Box plots of
area measurements of a subset of parasites grown in either in house RPMI (HM)
or commercial RPMI. Box plots represent median of the data (black line) contained
into the first and third quantiles (box). Segments reach the maximum and minimum
value.
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5.3.1.2 Parasites growing in blood-like medium have different pheno-

type compared to those growing in complete medium

To test whether I could observe phenotypic differences between parasites grown

in RPMI-1640 based media (CM) and blood-like media (BL, BL+H) the experi-

ment described in Section 5.2.1.2 was performed. A representative image of the

appearance of the parasites after 124 h of incubation is shown in Figure 5.2. Size

differences between CM and BLs parasites were evident. Further confirmation was

attained after image analysis as described in Section 5.2.2.

Pictures of at least 30 parasites per treatment were taken and images were

analysed with Fiji (Image J) [295]. Different parameters were quantified, including

area, intensity, circularity and intensity. These are shown in Figure 5.3. At each

time point, the sizes of the parasites growing in a more challenging nutritional

environments (BL or BL+H) were smaller with respect to the parasites growing in

CM. However, the areas between parasites growing in BL or BL+H did not show

an evident difference. The differences between the latter two, not surprisingly lie on

the progeny numbers. As expected, parasites with lower than optimal hypoxanthine

levels, showed a severe drop in progeny generated (measured as parasitaemia change

between life-cycles), but amongst the viable parasites, there were no significant

differences with the parasites growing in media supplemented with hypoxanthine.

To determine whether the observed phenotype differences between treatments were

significant, statistical tests were performed.

The normality of the data was tested using a Shapiro-Wilk test and upon

significance a Mann-Whitney-Wilcoxon test was used to test the hypothesis. The p

values were adjusted by the Benjamini and Hochberg method [298]. The results are

reported in Table 5.1. Overall, parasites growing in CM were significantly bigger

than those growing in BL or BL+H media. However, there were not significant

size differences between parasites growing in BL supplemented or not with more

hypoxanthine. Parallel to size, intensity and solidity were also significantly different

between CM and BLs. Solidity differences 0might be the product of lower cellular

density due to a decrease in the biomass produced. Finally circularity was similar

between all the treatments.

Interestingly, at the last time point analysed, the difference of both BL grow-

ing parasites with respect to complete media growing parasites seems to be larger

than in previous time points. This might suggest that there might be not only a

difference in size but also a delay in the life cycle. This hypothesis will be further

investigated in the next Chapter.

127



(a
)

(b
)

(c
)

F
ig

u
re

5.
2:

B
ri

g
h
t

fi
e
ld

im
a
g
in

g
o
f

p
a
ra

si
te

s
g
ro

w
in

g
in

d
iff

e
re

n
t

m
e
d

ia
1
2
4

h
a
ft

e
r

e
x
p

o
su

re
.

(a
)

C
om

p
le

te
m

ed
ia

(C
M

,
b

a
se

d
on

R
P

M
I

16
4
0)

(b
)

B
lo

o
d

-l
ik

e
(B

L
)

an
d

(c
)

B
lo

o
d

-l
ik

e
su

p
p

le
m

en
te

d
w

it
h

h
y
p

ox
an

th
in

e
m

ed
ia

(B
L

+
H

).
T

h
e

si
ze

of
C

M
p

a
ra

si
te

s
is

n
o
ta

b
ly

la
rg

er
th

an
ei

th
er

B
L

an
d

B
L

+
H

.
N

ot
e

th
at

a
5
µ
m

sc
al

e
is

in
th

e
ri

gh
t

b
ot

to
m

co
rn

er
of

ea
ch

p
ic

tu
re

.

128



●● ●

●

●

● ●

●●

● ●

24
h

72
h

12
4h

0102030

B
L

B
L+

H
C

M
B

L
B

L+
H

C
M

B
L

B
L+

H
C

M

Area (µm
2
)

(a
)

●●

●

●● ●

24
h

72
h

12
4h

0.
00

0.
25

0.
50

0.
75

1.
00

B
L

B
L+

H
C

M
B

L
B

L+
H

C
M

B
L

B
L+

H
C

M

Solidity

(b
)

●

● ●

24
h

72
h

12
4h

0.
00

0.
25

0.
50

0.
75

1.
00

B
L

B
L+

H
C

M
B

L
B

L+
H

C
M

B
L

B
L+

H
C

M

Circularity (compactness) 

(c
)

●● ●

●

●

● ●

●●

● ●

24
h

72
h

12
4h

20
00

40
00

60
00

B
L

B
L+

H
C

M
B

L
B

L+
H

C
M

B
L

B
L+

H
C

M

Intensity 

(d
)

F
ig

u
re

5
.3

:
B

ri
g
h
t

fi
e
ld

im
a
g
in

g
q
u

a
n
ti

ta
ti

v
e

a
n

a
ly

si
s

o
f

p
a
ra

si
te

s
g
ro

w
in

g
in

d
iff

e
re

n
t

m
e
d

ia
.

P
ar

as
it

es
m

ea
su

re
d

g
ro

w
in

g
in

d
iff

er
en

t
m

ed
ia

:
co

m
p

le
te

m
ed

ia
(C

M
),

b
lo

o
d

-l
ik

e
m

ed
ia

(B
L

)
an

d
b
lo

o
d

-l
ik

e
m

ed
ia

su
p

p
le

m
en

te
d

w
it

h
h
y
p

ox
an

th
in

e
(B

L
+

H
).

T
ro

p
h

oz
o
it

e
st

ag
es

fr
o
m

sl
id

es
ta

ke
n

at
th

re
e

d
iff

er
en

t
li

fe
cy

cl
es

24
h
,

72
h

an
d

12
4h

af
te

r
ex

p
os

u
re

to
th

e
m

ed
ia

.
(a

)
A

re
a

of
th

e
p

a
ra

si
te

s,
(b

)
S

ol
id

it
y,

(c
)

C
ir

cu
la

ri
ty

,
(d

)
In

te
n

si
ty

.
B

ox
p

lo
ts

re
p

re
se

n
t

m
ed

ia
n

of
th

e
d

at
a

(b
la

ck
li

n
e)

co
n
ta

in
ed

in
to

th
e

fi
rs

t
a
n

d
th

ir
d

q
u

a
n
ti

le
s

(b
ox

).
S

eg
m

en
ts

re
ac

h
th

e
m

ax
im

u
m

an
d

m
in

im
u

m
va

lu
e

ex
cl

u
d

in
g

ou
tl

ie
rs

an
d

d
ot

s
re

p
re

se
n
t

o
u

tl
ie

rs
.

129



Table 5.1: Mann-Whitney-Wilcoxon test results

Group Time [h] Variable Adjusted p-value Confidence Interval Significance

CM vs BL

24 Area 0.0016 (−6.376,−1.800) **

72 Area 0.0005 (−5.481,−1.791) ***

124 Area p<0.0001 (−10.954,−6.972) ***

24 Solidity 0.0003 (−0.104,−0.034) ***

72 Solidity 0.0026 (−0.081,−0.021) **

124 Solidity 0.0350 (−0.059,−0.005) *

24 Circularity 0.0018 (−0.200,−0.054) **

72 Circularity 0.0186 (−0.179,−0.025) *

124 Circularity 0.8456 (−0.078,−0.060)

24 Intensity 0.0016 (−1625.912,−456.589) *

72 Intensity 0.0005 (−1397.633,−456.589) ***

124 Intensity p<0.0001 (−2793.244,−1777.779) ***

CM vs BL+H

24 Area 0.0065 (−5.842,−1.223) **

72 Area 0.0010 (−5.710,−1.711) **

124 Area p<0.0001 (−9.189,−5.212) ***

24 Solidity p<0.0001 (−0.145, 0.076) ***

72 Solidity 0.0016 (−0.060, 0.017) **

124 Solidity 0.0155 (−0.055, 0.008) *

24 Circularity 0.0001 (−0.254,−0.101) ***

72 Circularity 0.2097 (−0.100, 0.0135)

124 Circularity 0.7847 (−0.074, 0.046)

24 Intensity 0.0065 (−1489.69,−313.202) **

72 Intensity 0.0010 (−1456.199,−436.290) **

124 Intensity p<0.0001 (−2343.085,−1329.038) ***

BL vs BL+H

24 Area 0.7847 (−3.063, 1.961)

72 Area 0.9476 (−1.678, 1.828)

124 Area 0.0551 (−3.373,−0.152)

24 Solidity 0.0701 (0.001, 0.078)

72 Solidity 0.5671 (−0.045, 0.019)

124 Solidity 0.9710 (−0.03, 0.029)

24 Circularity 0.2749 (−0.027, 0.133)

72 Circularity 0.2148 (−0.138, 0.02)

124 Circularity 0.9242 (−0.058, 0.068)

24 Intensity 0.7847 (−781.045, 500.121)

72 Intensity 0.9476 (−427.861, 466.126)

124 Intensity 0.0551 (−860.163,−38.736)

*Statistically significant at p<0.05; **Statistically significant at p<0.01; ***Statis-

tically significant at p<0.001;
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5.3.2 Uninfected RBCs and iRBCs present distinguishable metabolic

profiles when in blood-like medium

In order to probe the use of metabolomics for identification of differential nutri-

ent acquisition and excretion by parasites in different nutrient environments, it is

essential to identify whether relevant metabolites can be identified using NMR spec-

troscopy when the concentration of the metabolites are lower than those found in

complete media. We designed an experiment in which samples of media pre- and

post- 3 h incubation in blood-like media of RBC and iRBCs were taken. We wanted

to confirm whether: (a) we can identify and quantify some of the key metabolites

feeding the central carbon metabolism, (b) we see differences pre- and post- incu-

bation with either RBC and trophozoite-iRBCs and (c) we see differences between

RBCs and trophozoite-iRBCs samples. The experiment described in Section 5.2.3

was designed for this purpose.

Preliminary data exploration was performed using principal component anal-

ysis (PCA), within the dataset each variable was an identified metabolite. The data

was scaled and PCA was calculated by singular value decomposition in R [299].

Results are shown in Figure 5.4. Figure 5.4 (a) shows a scatterplot of the first two

components. The analysis highlighted that there is a large difference between RBC

samples (when compared to the distance between either trophozoite or pre-exposure

media (time zero,t0)), thus indicating a high variance between RBC replicates. This

could be explained by the loss of material in the drying process, resulting in slightly

different concentrations measured. Secondly it can be appreciated how all sam-

ples pre-incubation are grouped at the right of the plot, followed by the RBCs and

finally the trophozoite-infected RBC. There are noticeable differences between sam-

ples from media that had been cultured with cells and media that had not. There

are also prominent differences between media incubated with infected red blood cells

versus non-infected red blood cells. Because PCA is a transformation of a previous

coordinate system (metabolites) into a new coordinate system (Principal Compo-

nents), it can be estimated how much of each of the old variables (metabolites)

contributes to each of the new ones (PCs). These are the loading plots (Figure

5.4 b, loadings of the principal components 1 and 2). Glucose and its glycolytic

products: lactate, alanine and glycerol are the main contributors in the separation

across the x-axis, which indicates biological relevance. Metabolites scattered across

the y-axis contribute mainly to the separation of replicates. These are metabolites

at much lower concentrations and therefore the variance between samples that have

suffered some loss in the drying process can affect them severely.
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Figure 5.4: PCA scatterplot of metabolite concentrations in Blood-like
media. (a) Scores of first two principal components. Percentages show the amount
of variance accounted for in each principal component, each point correspond to
one sample (set of metabolites quantified) coloured according to the group it corre-
sponds. (b) Loadings from first two principal components. Note that troph stands
for trophozoite.
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Next, we calculated pairwise Student’s t-test for each metabolite and p-values

were adjusted by the Benjamini and Hochberg method. The means and standard

errors together with the significant statistics results are shown in Figure 5.5. As

expected, both populations of cells (RBCs and Troph-iRBCs) rely on glucose as

their main source of energy, as shown by the higher and significant glucose depletion

in iRBC-exposed medium. Proportionally more lactate and alanine were generated

although only lactate presented a significant increase with respect to RBCs for the

given incubation time. Glycerol is a metabolite characteristic of the malaria parasite

that is only found in human blood when adipocytes release it towards the liver to

serve as substrate for gluconeogenesis [300], usually under disease conditions. Thus,

it was only present in the iRBCs sample (Troph).

Low concentration metabolites did not present any significant difference.

This is the likely product of the sensitivity limitation of the technique: at low con-

centrations, signals show a higher noise, thus increasing sampling variance. However

trends can be observed such as the well-known consumption of isoleucine, by iRBC

as compared to RBC. A time-course experiment could provide insight in this mat-

ter as it would allow us to measure the tendency of consumption or excretion for

each metabolite detected. Consequently a time course experiment was designed,

performed and analysed and it is discussed in Chapter 6.
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5.4 Conclusions

In the last century, many challenges have been overcome in order to achieve con-

tinuous cultures of the malaria parasite. However current techniques are all based

on the method developed in 1976 by Trager and Jensen [177]. It is a fine method

that gives good yields of Plasmodium replication, which is valued for experimenta-

tion. However, RPMI 1640 based media for Plasmodium culture provides unrealistic

conditions for the parasite growth [178].

We have developed in-house media at various concentrations of nutrients and

shown that parasites growing in more physiological conditions presented different

phenotypes and metabolic profiles than parasites growing in typical RPMI 1640.

These included a parasite size reduction and proportional decrease of metabolite

consumption and excretion, evidence for parasite adaptation to its environment.

Some of the key shortcomings of this work are intrinsic to the in vitro culturing

limitations. The physiological-like medium used still lacks many of the in vivo ele-

ments such as the presence of other sources of carbon such as fructose or mannose

or molecular signals such as interleukins or interferon. Moreover, this medium still

contains buffers such as HEPES and the antibiotic gentamycin to avoid contamina-

tion. Future work should be aimed at assessment of the effects these components

have on parasite development and reproductive success.

Moreover the results presented in this Chapter suggest that nutritional con-

ditions might have an effect not only on parasite size but also on life cycle duration

and progeny numbers. These will be further explored in Chapter 6.

Despite limitations, this work has shown that nutritional conditions play an im-

portant role in parasite development and reproduction what emphasizes the need

to move towards more physiological culturing techniques in which the human host

conditions are mimicked in order to achieve more realistic in vitro results that could

be easily translated into the field.
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Chapter 6

Developmental and metabolic

consequences of nutrient

availability in intra-erythrocytic

stages of Plasmodium

falciparum

6.1 Introduction: The role of metabolites beyond path-

ways intermediates

Millions of pounds are invested every year in nutritional studies seeking the perfect

diet for Homo sapiens. Studying harmful or beneficial diet types with respect to

disease [301], development [302], ageing [303] and offspring bearing [304] has con-

sistently been a crucial research goal in the scientific community. Translatable to

the mammalian research models Mus musculus and Rattus norvegicus, there are

numerous studies on the effects on lipid-content diets and feeding frequency on the

growth of rats [305], weight gaining in relation to tumorogenesis [306] or maternal

malnutrition on organ development [307] amongst others.

However, diet or usual nutritional availability is a non-genetic factor that

together with others such as environmental toxins or body weight modulate gene

expression through epigenetic signalling [308]. These factors are not isolated com-

partments that can regulate the body response to health and disease, they are both

influenced and can influence the gut microbiome through the production of metabo-
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lites such as folate, butyrate, biotin and acetate [309]. For instance butyrate can

activate epigenetically silenced genes in cancer cells [310] and has also been shown

to repress angiogenesis [311].

The importance of metabolites as regulatory molecules either as precursors of

other molecules, or as triggers of signalling processes is present across the Kingdoms.

For example the female seahorse, Hippocampus kuda, fed a diet enriched in fatty

acids produces larger eggs with a higher content of polyunsaturated fatty acids [312],

which results in higher survival and growth rates of the offspring. Another example is

the response to nutrient deprivation of yeast by inducing authophagy. This response

can be inhibited by the metabolites methionine and S-adenosylmethionine [313].

Metabolites have then a major role to play in regulation. As discussed above,

their importance is highlighted in species such as M. musculus or Saccharomyces

cereviciae, both of which have also very strong responses to the environment at

the transcriptional level. However, evidence based on nuclear architecture and tran-

scriptomic stage specificity suggest that Plasmodium might have low transcriptional

response to stimuli and providing that the key to evolutionary success relies on the

ability to rapidly adapt to a changing environment, metabolites are likely to play a

crucial role in the malaria parasite regulation. In Plasmodium, chromatin loosens

after erythrocyte invasion and stays unpacked (genome-wide) until moments prior

the next cycle [314, 315, 316]. Transcription is tightly regulated in order to suc-

cessfully result in parasite development into the next generation. The parasite has

evolved an extremely specialised transcriptional regulation process that expresses

genes in order, first cellular processes and then Plasmodium-specific functionalities.

The asexual development of P. falciparum is directed by a cascade of gene regulation

similar to a “just-in-time” factory, where a specific gene is induced only once per

cycle and only when it is required [317]. Eukaryotic growth control is regulated by

various mechanisms. Most eukaryotes express the signalling protein TOR (Target of

Rapamycin) that functions as a regulator promoting growth when in favourable con-

ditions [318]. TOR is also negatively regulated by unfavourable environmental stim-

uli, such as starvation [319]. However, genome sequence data indicates that TOR is

absent in Plasmodium [320]. Another growth regulatory mechanism in eukaryotes

is through the initiation factor 2-α (eIF2α) which mediates an adaptive transcrip-

tional response to nutrient deprivation by inhibiting translation, which results in

growth inhibition [321]. Orthologs of eIF2α have been found in the asexual stages

of Plasmodium, with a role in amino acid starvation sensing (GCN2 [322, 323]).

However, orthologues of the downstream effectors from GCN2 have not yet been

found. [232]. Thus, Plasmodium which is already deficient in regulatory transcrip-
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tions factors [324] and does not present either TOR or the eIF2α, likely relies on

other mechanisms to respond to the changing environment. This transcriptional

rigidity is manifested in cases in which the parasite does not show a significant tran-

scriptional difference during relevant exposure times to drugs, such as antifolates or

T4 [325, 326]. In this instance, the parasite failed to mount protective transcrip-

tional responses in time but was able to adapt to longer exposure times to the drugs

[325]. A further example includes the temporary arrest of the growth of ring stage P.

falciparum (dormancy) after artemisinin exposure [285]. Parasite control of growth

has also been explored in studies of amino acid starvation, particularly of isoleucine

(Ile), for which the parasite is auxotrophic. When isoleucine cannot be scavenged

from the culture medium during the ring asexual stage, P. falciparum growth is

arrested in trophozoite stage with no noticeable phenotypic changes for up to 72 h

and is later resumed if the amino acid is supplemented [232]. Even though phos-

phorylation of eIF2α was observed under Ile deprivation, knock-out clones showed

the same phenotype, further confirming the lack of involvement of this pathway in

Plasmodium growth adaptation to the environment.

Mechanisms of environmental response might then involve post-transcriptional

modifications [327] or epigenetic mechanisms (which would be dependent on nutri-

ents and thus metabolic response). Post-translational modifications play an impor-

tant role in regulation, but the relatively unexplored metabolic driven epigenetic

modifications might be the key to environmentally triggered responses. It has been

recently shown that epigenetic modifications play a major role in gene expression

regulation [328]. Moreover, epigenetic regulation is believed to be involved in the

nutrient uptake regulation and response to stress through the control of the genes

clag3 [176, 174, 171]. The effect that nutrient availability has in metabolic rewiring

has not yet been explored in P. falciparum.

Metabolomic studies have proved useful in unravelling the metabolic make-

up of the malaria parasite, which has been object of research, discussion and debate

in the last decade. Briefly, summarising from Chapter 3, Section 1, P. falciparum

metabolism during its asexual stages presents a high glycolytic flux, increasing the

glucose uptake 50-100× with respect to the uninfected red blood cell [290]. However

the glycolytic product pyruvate does not follow canonical metabolism into acetyl

coenzyme A (acetyl-CoA) into the mitochondria to enter the Krebs cycle. Pyruvate

is mostly fermented into lactic acid that is excreted [102]. There is a small flux

of pyruvate that is converted into acetyl-CoA and that follows metabolism in the

Krebs cycle [103]. This is a recent finding after controversy against the nature of

the Krebs cycle in Plasmodium resulted in the retraction of a publication in Nature
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which described the Plasmodium Krebs cycle as being bifurcated [104]. The Krebs

cycle has always been a questionable element in the biochemistry of the parasite.

During the asexual stages there is almost no flux into it; however, this is oppo-

site during the asexual stages where a programmed remodeling of central carbon

metabolism is observed [103] and which might be related to parasite survival in the

mosquito vector. The pyruvate dehydrogenase (PDH) is localised in the apicoplast

and as such cannot contribute to the mitochondrial acetyl-CoA and its consequent

incorporation in the Krebs cycle. However a branch chain ketoacid dehydrogenase

(BCKDH), with PDH activity, contributes to acetyl-CoA entering the Krebs cycle

[105]. Other peculiarities of the central carbon metabolism of the malaria parasite

include the production and excretion of glycerol [81] and alanine. We have reviewed

extensively the central carbon metabolism of the asexual stages of P.falciparum

[111] and hypothesised that a high glycolytic flux supports the rapid proliferation

that occurs in each life cycle in which one merozoite can infect an erythrocyte and

grow to produce up to 36 daughter cells. Deregulated glycolytic activity coupled

with impaired mitochondrial metabolism is a metabolic strategy to generate gly-

colytic intermediates essential for rapid biomass generation for schizogony. We also

hypothesised that metabolism may be causal and can trigger events that lead to

changes in development. Thus we wanted to change the in vitro conditions of P.

falciparum to assess how the parasite adapts to the environment and whether there

is a metabolic rewiring to do so.

Aims To further study our hypotheses and contextualise them with the findings

presented in Chapters 4 and 5, we designed an experiment to test: (a) whether par-

asites growing in different nutritional conditions present phenotypic and metabolic

differences during all the asexual life cycle (ring stages included); (b) whether par-

asites growing in physiological media (blood-like media, BL) present not only mor-

phological differences but also a reduced number of daughter cells; (c) whether P.

falciparum adapts and grows in low glucose conditions in vitro; (d) the impact on

glucose availability by comparing parasites growing in a low-glucose blood-like me-

dia (LG) with BL; (e) assess the rates of consumption and excretion of the main

metabolites in culture media and (f) potentially identify metabolites that might play

a role as signals for adaptation to stimuli.
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6.2 Experimental

The experiment consisted of exposure of highly synchronous cultures of P. falci-

parum 3D7 to different nutritional conditions namely: complete medium (CM, pic-

tured in red in future graphical representations), blood-like medium (BL, pictured in

green in future graphical representations) and low-glucose blood-like medium (LG,

pictured in yellow in future graphical representations) prepared according to Section

2.4 in Chapter 2. Parasites were synchronised in consecutive life-cycles (as in Sec-

tion 2.3 of Chapter 2) and 45 h after the second synchronisation step parasites were

pooled together and split into 9 flasks, triplicates of the above-mentioned media.

Parasites were incubated for a life cycle prior to sampling. This took a total of 45 h,

which is the estimated 3D7 life cycle length with entry into schizogony at approxi-

mately 32 h [227]. At time 0 (equivalent to 45h post incubation) samples were taken

every 3 hours. At each time point, flasks were mixed and a 1.2 mL aliquot was taken

in an Eppendorf. The tube was centrifuged at 13000g for 2 minutes and supernatant

was used for NMR metabolomics, while cell pellets were used for imaging.

6.2.1 NMR metabolomics

1.2 mL of supernatant were transferred to a tube containing 2.5 mM 3-(trimethylsilyl)-

2,2’,3,3’-tetradeuteropropionic acid (TSP) which was immediately frozen. Samples

were freeze-dried and kept at -80 ◦C until NMR spectroscopy analysis when samples

were resuspended in 300 µL of deuteriumoxide and 280 µL of solution was trans-

ferred to a 3 mm NMR tube. 1D 1H and 2D 13C1H spectra were acquired in a

Bruker 600 MHz spectrometer, as described in Chapter 2, Section 2.7.2.

1D spectra 1D spectra were uniformly bucketed, this process consists of dividing

the spectra into equally size intervals (in this case, intervals of 0.05 ppm) and cal-

culating the area under the curve. Each bucket was scaled by the TSP, and water

signal (between 3.6 and 4.8 ppm) were ignored.

2D spectra 2D spectra were inputted in the Collaborative Computing Project for

NMR (CcpNmr Analysis) software where peaks of previously identified metabolites

were selected and their height and volume were calculated. These data were exported

and imputed in R, where each peak of each metabolite was normalised by the TSP

signal and adequate nomenclature was assigned to it. Then by using the calibration

curves described in Chapter 3, concentrations were calculated and means for each

treatment and time point calculated as well as the standard errors. Results of
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these and further analysis are presented in Section 6.3.3. Datasets are provided in

Appendix A, Table A.7 and theirs statistical analyses are detailed in Chapter 2,

Section 2.10 and in the Results and Discussion section below.

6.2.2 Imaging

Cell pellets were used for microscopy: (a) 5 µL were used to prepare a smear on a

slide which was fixed with methanol and stained in Giemsa (Section 2.2.3.1, Chapter

2) and analysed as previously described in Section 5.2.2 of Chapter 5 (b) 2 µL were

used to prepare a sample for the Operetta analysis described in Chapter 2 Section

2.8.1. High Content Imaging (HCI) was used to identify the overall growth pattern

and to select a few interesting time points that were also analysed quantitatively by

bright field microscopy to confirm phenotypes and further assess size.

Metabolite analyses were used to shed light into the biological adaptation to

the conditions. Results, data analyses and interpretation are discussed below.

6.3 Results and discussion

6.3.1 Characterisation of parasite growth phenotypes in response

to nutrient availability using HCI

HCI is the application of automated microscopy and image analysis to cell biology

(and/or drug discovery). HCI is widely used to screen antimalarial drugs [329, 330,

331] and there are sophisticated methods for identification of parasite viability and

quantification by HCI [332]. In this particular case, HCI was used with the aim

to identify the dominant population size of parasites at each sampling point and

compare these findings between treatments in a robust way. It was also used with

the aim to identify key time points to also be analysed by bright field microscopy.

Details on the methods are described in section 2.8.1 of Chapter 2.

6.3.1.1 Nature of the dyes and limitations of their binding

The chosen dyes for this study were Hoechst 33342 and tetramethyl-rhodamine-

ethyl-ester (TMRE). Hoechst is a cell-permeant nucleic acid stain that emits blue

fluorescence when it binds double stranded deoxyribonucleic acid (dsDNA). The

rhodamine derivative TMRE is a cell-permeant, cationic, red-orange fluorescent dye

that accumulates inside energised membranes, typically mitochondria. However in

P. falciparum, a strong fluorescence signal can also be observed from the parasite
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cytosol due to the high membrane potential of the parasite [246]. Mitochondrion-

only signals can be obtained by depolarisation of the plasma membrane potential

by addition of V-type H+ ATPase inhibitors [333]. For this experiment TMRE

was used to assess overall parasite size with some limitations. TMRE is excluded

from the parasite’s food vacuole where the haem crystal produced upon digestion

of haemoglobin (hemozoin) is stored (shown in Figure 6.1). This affects the size

measurement and therefore it is expected to find some discrepancies with absolute

size measured by bright field microscopy.

(a) (b)

Figure 6.1: TMRE stained P. falciparum trophozoite infected erythro-
cytes. (a) Area bound by TMRE; (b) Selected Area for analysis. Note that the
area correspondent to the hemozoin is not stained (a) and therefore is not taken
into account in the selection process (b).

6.3.1.2 Data filtering and analysis

At each time point a set of 9 samples were stained and plated in a Cell Carrier-

384 black plate (with optically clear bottom). To avoid position bias, samples were

plated alternatively: CM, BL, LG, CM, BL, LG, CM, BL and LG. Images were

acquired per channel and converted into quantitative data as described in Chapter

2 Section 2.8.1 in the Perkin Elmer software Harmony v3.5. Briefly, we used an

algorithm that identifies regions that have a greater fluorescent intensity than the

background and constraints those regions found to be within size and shape bound-

aries typical of red blood cells. Intensity cut-offs were used to discard signals that

were significantly higher than the average maximum of any parasite.

Data from each channel (TMRE and Hoechst) were extracted as a text file

and another phase of filtering was implemented in R (version 3.2.1). In this second

phase, the data for both channels for all the time points was joined, and each time

point was labelled with its treatment (CM, BL or LG). Then further size constraints
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were implemented by establishing cut off ranges between 3.2-30 µm and 1.2 and 10

µm for TMRE and Hoechst data respectively. These cut off ranges were estimated

by the minimum calculated from the area of 50 parasites known to be in early stages

and maximum of 50 known to be in late stages of development, thus reducing the

window to the possible biggest and smallest parasites. Then, erroneous fields were

identified and removed from the analysis. In some cases the parameter constraint

implemented in Harmony is insufficient to correctly filter all the fields due to the

presence of artefacts and therefore those fields have to either be manually corrected

or removed from the analysis. In this case I opted for the latter and implemented a

program to find fields with a number of particles over the 97 percentile per time point

and treatment and remove them from the study. Some examples of rejected fields

are shown in Figure 6.2. Finally, for each time point, outliers were removed. For

each variable, any points that fell outside the 10 and 90th percentiles were discarded

to produce the final dataset. Then plots and statistical analyses were implemented,

which are discussed in the next section.

(a) (b)

Figure 6.2: Examples of rejected fields. Both subfigures show regions selected
by Harmony. Regions in green are selected to be retained in the analysis. Regions
in red are particles discarded by the parameter implementation. Note the artefacts
that are still selected in green in the middle of the picture (pointed by the blue
arrow). These were not possible to eliminate using the parameters available in
Harmony, thus they were eliminated from further analyses.

6.3.1.3 HCI showed that nutrient availability affects the duration of the

parasite asexual cycle

After implementation of the data filtering process, for each time point and condition,

the mean and standard errors of the area were calculated and plotted and are shown
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in Figure 6.3. Area in the Hoechst channel, increases with DNA content. Parasite

sizes remained relatively constant until they dramatically increased at the time when

the schizonts were formed and in the same manner dramatically decreased when new

invasions began. Parasites growing in CM started augmenting their nuclei size at

24 h, initially very slightly until at time 39-42 h the maximum nuclei area was

observed. Replication occurs in asynchronous rounds of mitosis [64], usually leading

to uneven number of merozoites [334]. In times 24-36 h most of the population was in

trophozoite stage but some of the parasites started showing schizogony, contributing

to the increase in size. By the time most of the population reached schizogony the

maximum nuclei area was observed (39-42 h) and once schizonts started to burst the

nuclei area dropped drastically. When comparing this to the other two conditions

there seems to be a lag in the process. Parasites growing in BL presented a constant

nuclei size until time 39 h when they started to replicate. Similar to CM there is a

notable increase at a specific time of the life cycle. In this case this time is 12 h later.

Meanwhile CM parasites took 15 hours (24-39 h) to start replicating and reach their

maximum nuclei size, BL parasites also took 15 h (39-51 h) but they started the

process 12 h later. This delay is very similar for LG parasites, that also seem to

start replicating at 39 h, however it seems that the glucose availability massively

affects the replication and by the time the experiment was ended at time 54 h, LG

parasites were just starting to reach maturity. The availability of glucose impacts

the production of nucleic acids by reducing the possible flux towards the pentose-

phosphate pathway from glucose-6P and consequent reduction on the amount of

nucleic acid produced via phosphoribosyl pyrophosphate (PRPP).

When looking at the parasite area (Figure 6.3 b), the same lag in the life

cycle can be observed. Meanwhile CM parasites grew to a maximum in the first

39-42 h, BL parasites show a maximum at times 51 and 54 hours and LG parasites

start reaching the maximum by the end of the time course experiment. Given that

the only difference between BL and LG is glucose, it and its direct products must

be a definitive factor in the progression into the life cycle. However in this case it

seems there are no significant size differences in the maximum sizes (between CM

and BL parasites, t-test performed with no significant p-values, data not shown).

Thus TMRE labelled regions do not differ between CM and BL parasites. However,

nuclei areas are of different sizes between treatments and this must influence the

overall size of the parasite. BL parasites might be growing larger organelles, such

as apicoplast or food vacuole. Another possibility is that the limitations of TMRE

binding properties to the parasite (such as lack of hemozoin binding) mask an actual

size different between treatments. Further analysis of the bright field microscopy
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slides addressed this question (Section 6.3.2).
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Figure 6.3: P. falciparum 3D7 area stained by Hoechst (a) and TMRE
(b). Points represent mean values per time point and treatment, bars represent the
standard errors and lines join the points to ease interpretation. Parasites growing
in CM reach the maximum size at least 9 hours prior to parasites growing in BL
or LG. Note that the remarkable decrease in size corresponds to parasites bursting
into merozoites. This process is observed in the final two time points for BL but
occurs after the time scale shown for LG.
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Despite the delay of the life cycle, the transitions between the minimum

sizes and the maximum sizes seem to be very similar. In order to test whether the

growth rates were comparable an analysis of covariance (ANCOVA) was performed.

ANCOVA combines features of ANOVA (analysis of variance) and regression. It

augments the ANOVA model with more additional quantitative variables (covari-

ates), which are related to the response variable, in this case size measured by area.

ANCOVA can be used to compare two or more regression lines by testing the effect

of a factor (in this case the three media CM, BL and LG) on a dependent variable

(in this case the size of the parasite measured as the area) while controlling for the

effect of a continuous co-variable (in this case time). ANCOVA allows us to find

out if intercepts and slopes are different between factors. The time points selected

for this test were 12 to 42 h for CM, 21 to 51 h for BL and 24 to 54 h for LG.

The parameters of the linear model fitted to each treatment are shown in Table

6.1. ANCOVA comparisons of CM-BL, CM-LG and BL-LG were performed and all

resulted in not significant p-values (data not shown), indicating that the slope of

the regression between time and area is similar for all nutritional conditions. This

suggests that there might be a checkpoint in which it is decided whether to progress

to schizogony; once the parasite however is committed, the progression will be done

in a standard manner.

6.3.2 Bright field microscopy reveals the effect of nutrient avail-

ability in cycle length and progeny numbers

At each sampling time, a slide of each flask was made in standard manner (see

Section 2.2.3.1 of Chapter 2). All slides were observed under the microscope (100X

lens, oil immersion) and photographs were taken at times 0, 12, 24, 36, 48, 51 and

54 h. The maximum growth time points, as revealed by the HCI analysis (42, 48,

51 and 54 h) were used for quantification. Photographs of at least 30 parasites per

time point and treatment were taken and areas were measured in Fiji (Image J) as

described in Section 2 of Chapter 4. Data was then cleaned by removing outliers

Table 6.1: TMRE area linear model parameters

Treatment Times Slope Intercept

CM 12-42 h 0.270 1.986
BL 21-51 h 0.238 0.342
LG 24-54 h 0.206 0.604
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(defined as parasites bigger or smaller than 3 standard deviations from the mean)

and statistical analyses were performed. Schizonts at the relevant time points were

also selected and the merozoites inside were counted. Results are presented below.

6.3.2.1 Nutrient availability determines the duration of the parasite life

cycle.

P. falciparum intra-erythrocytic life cycle typically lasts 48 h. However different

strains differ on their complete life-cycle times, for example laboratory adapted

strain 3D7, has a shorter life cycle of around 45 h [227]. Thus the initial experimental

design consisted of 48 h life-cycle monitoring. As expected, CM parasites were

already showing early stages of the next generation by 48 h. However BL and LG

parasites presented a much delayed life-cycle. At 48 h none of the other treatments

presented schizonts, thus the experiment was continued for a further 6 hours. A

comparative visualisation of the different life stages at key sampling points is shown

in Figure 6.4. Parasites were incubated for 45 h prior to sampling. At sampling time

0 h (equivalent to 45 h incubation), there was already a slight delay in the life cycle

of parasites growing in LG. Meanwhile the other treatments showed a vast majority

of early trophozoites (rings), LG parasites presented a mixed population of schizonts

and rings. At sampling time 12 h all the parasites growing in BL and LG were in

ring stage and CM parasites started presenting late trophozoite stage. Parasitaemia,

however, was not noticeably different. At 24 h, CM parasites were fully developed

trophozoites with clearly defined hemozoin pigments. BL parasites were starting to

be trophozoites and hemozoin was just noticeable. LG parasites were in late ring

stages, starting to become trophozoites. At 36 h, CM parasites started presenting

some schizonts, with the vast majority of parasites in very late trophozoite stage. BL

and LG parasites were in late trophozoite stage. It is noteworthy that these parasites

presented a very well defined and larger food vacuole. The food vacuole accumulates

undigested haemoglobin. When it is processed, the heme component is converted

into hemozoin pigment and the globin is hydrolysed to its constituent amino acids,

which are used for protein synthesis [335, 63], to maintain osmotic stability [280, 140]

or to provide space for the growing parasite [141]. Phenotypes of swelled food

vacuoles are typically observed on parasites subjected to protease inhibitors such as

the compound E64 [336]. In this particular case this morphology might suggest an

increase in the haemoglobin uptake by parasites growing in lower nutrient availability

or a decrease in its degradation, causing accumulation of unprocessed haemoglobin in

the food vacuole. This hypothesis is further discussed in Section 6.3.3. As mentioned

above at sampling time 48 h, CM parasites presented early rings and schizonts
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while BL and LG parasites did not. Three hours later, most of the CM schizonts

had ruptured, whilst BL parasites started presenting schizonts and LG did not show

signs of schizogony. In the final sampling point (54 h), BL schizonts started bursting

while LG parasites started presenting some schizonts.
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After the experiment was finished, a subset of BL and LG parasites were kept

for a further 20 h to ensure the next generation was viable (Figure 6.5). Overall,

compared to CM parasites, BL presented at least 10 h delay in their life cycle

while LG parasites were at least 18 h delayed. This emphasises the possible control

mechanism that glucose availability has in P. falciparum. What is more, after 74 h

most of the parasites in the BL and LG cultures were in the ring stage. However, the

few schizonts that had not burst yet, presented under 10 merozoites. It is possible

that as nutrients were consumed, parasites that were reaching the final stages of

development slightly later within the same population would decrease the progeny

generated as an adaptation mechanism to the less favourable nutrient conditions.

(a)

(b)

Figure 6.5: P. falciparum 3D7 parasites after 119 h incubation (74 h post
sampling). (a) BL (b) LG. Most of the parasites were in the ring stage. However
some schizonts could still be detected. Overall these schizonts contained under 10
merozoites. Note the 5 µm scale in the bottom right corner.
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6.3.2.2 Parasites growing in nutrient-limited conditions are smaller and

produce fewer daughter cells

As presented above, HCI and bright field microscopy parasite measurements (Figure

6.4), demonstrated that the parasite life-cycle was delayed in nutrient-limited con-

ditions. However, this is not the only effect observed. HCI measurements further

suggested that parasite nuclear area in BL- and LG-grown parasites was smaller than

CM-grown. Thus it is reasonable to assume that the resulting number of merozoites

produced per schizont may be fewer in BL and LG parasites than in CM. To test

this hypothesis, merozoites inside schizonts were counted for the three treatments,

sample sizes were 52 for CM, 49 for BL and 22 for LG (due to not many parasites

being in this stage by the end of the experiment). Results are shown in Figure 6.6,

it is evident that CM parasites were able to produce a bigger progeny than BL and

LG parasites. However the latter did not show a major difference with respect to its

higher glucose counterpart, suggesting that even though solely glucose has an effect

on the life-cycle length, it does not have an effect on progeny numbers. This was

further confirmed by Mann-Whitney-Wilcoxon test as shown in Table 6.2.
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Figure 6.6: Number of merozoites in schizonts in second generation par-
asites. Box plots represent median of the data (black line) contained into the
first and third quantiles (box). Segments reach the maximum and minimum value
excluding outliers and dots represent outliers.

Bright field imaging was also used to address whether parasites show a dif-

ference in overall size. TMRE results from HCI suggested that the maximum size of

the parasites across treatments is not that different. However, as discussed above,
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Table 6.2: Number of merozoites per schizont. Mann-Whitney-Wilcoxon test results.

Group Adjusted p-value Confidence Interval Significance

CM vs BL <0.000001 (5,7) ***
CM vs LG <0.000001 (4,7) ***
BL vs LG 0.6722 (-1,1)

***Statistically significant at p<0.001

TMRE has some limitations such as the inability to stain hemozoin. Areas of at

least 30 parasites per treatment and time point selected were measured (see Figure

6.7) and statistical analyses are shown in Table 6.3. CM parasites are bigger than

either BL or LG parasites and BL parasites are slightly bigger than LG parasites.

Based on the size differences with respect to HCI, TMRE channel (from 12.5 to

up to 23 µm2), this size difference must be somehow linked to the consumption of

haemoglobin, which based on the size difference revealed by this study and com-

pared with the HCI results, seems to be more avid in CM parasites than in BL or

LG and also slightly up in BL than LG parasites. The metabolomics part of this

experiment should shed light upon these observations.
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Figure 6.7: Area of second generation parasites. Times 42, 48, 51 and 54 h.
Note there is no data from second generation CM parasites at time 54 h because
the overall population was early rings on the third generation. Box plots repre-
sent median of the data (black line) contained into the first and third quantiles
(box). Segments reach the maximum and minimum value excluding outliers and
dots represent outliers.

6.3.3 NMR metabolomics shows how nutrient availability alters

consumption and excretion of metabolites

6.3.3.1 Initial data exploration: Principal Component Analysis

The first step in the data analysis was to use the bucketed data from 1D spectra and

perform Principal Component Analysis (PCA) as described in Section 4.3.1 Chap-

ter 4. PCA is a data transformation that produces new variables called Principal

Components (PCs), which capture the maximum amount of variance in the data in

decreasing order. This effectively “compresses” the information showing most of the

information of the data in just a few variables, which is easily visualised. In this case,

each bucket was treated as a variable. Prior to PCA, each time point of each con-

dition was normalised by subtracting the signal of media pre-incubation (t0). Thus,

any differences observed must be the product of varying consumption and excretion
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Table 6.3: Area comparison. Mann-Whitney-Wilcoxon test results.

Group Time [h] Adjusted p-value Confidence Interval Significance

CM vs BL
42 <0.000001 (5.953, 9.491) ***
48 0.0032 (1.262, 5.748) **
51 <0.000001 (4.409, 8.719) ***

CM vs LG
42 <0.000001 (7.946, 11.668) ***
48 <0.000001 (4.542, 7.868) ***
51 <0.000001 (5.621, 10.282) ***

BL vs LG

42 0.0205 (0.314, 3.979) *
48 0.0018 (1.379, 4.794) **
51 0.0806 (−0.242, 2.916)
54 0.0020 (1.181, 4.438) **

*Statistically significant at p<0.05; **Statistically significant at p<0.01; ***Statis-
tically significant at p<0.001

patterns of metabolites, instead of the known different initial conditions. Graphical

analysis of the two first PCs scores resulted in very closely related groups (Figure

6.8 a) and when exploring a third PC (Figure 6.8 b) two outliers were identified.

These samples were identified and spectra analysed. These samples had very low

signal, probably due to losses of material during the drying procedure. Thus, they

were removed from the analysis and PCA was performed again. The score results

of the two first PCs showed a dramatic difference between CM media and BL and

LG (Figure 6.8 c). When adding a third PC into the plot, the three groups separate

without overlap (Figure 6.8 d). These results indicate that the consumption and

excretion rates of parasites growing in the different media are different.

In order to assess which metabolites have a major role in the separation

of the groups, the mean metabolite concentrations calculated from the 2D spectra

were used to do PCA again (after subtraction of the metabolite concentrations at t0).

Results are shown in Figure 6.9 where (a) presents the score plots of the first two PCs

and (b) their loadings. Loadings show the variables that contributed the most to

the formation of the PCs, hence the variables that contribute the most to the group

separation observed. The amino acids lysine, glycine and valine contribute the most

to the separation between CM and both BL and LG. Glucose, lactate, glycerol and

alanine contribute somewhat to that separation but they are mostly influencing the

separation between samples/time points. Glucose and its products (lactate, alanine

and glycerol) were expected to be major contributors to the differences observed due

to the important role of glycolysis. However, the main contributors to the separation

between conditions were found to be Lysine, Glycine and Valine (Figure 6.9 b).
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Figure 6.8: Principal Component Analysis Score plots from spectra bucket
tables. For each spectra and time point the spectra of media prior experimentation
was removed as well as the signal from a sample containing only RBCs in the
same conditions. (a) PCA score plot of the first two principal components of the
data. Outliers can be identified in the right bottom corner of the plot. These can
be further identified in a 3D plot (b, arrow). When outliers are removed, PCA
results in a more identifiable separation of the samples between treatments: (c)
Two dimensional score plot and (d) Three dimensional score plot.
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Figure 6.9: Principal Component Analysis results from means of metabo-
lite concentration in media. (a) PCA score plot of the first two principal compo-
nents of the data. Each point represents a spectra. (b) Loading plot from PC1 and
PC2. The distance of the metabolites from the main cloud represents how much each
influenced in the creation of the new coordinate system of PCs. The metabolites
more involved in the separation between treatments are as expected, glycolysis-
involved metabolites such as lactate, glucose, glycerol and alanine. However the
metabolites glycine, lysine and valine seem to determine most of the separation in
the first principal component.
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Lysine (K), glycine (G), valine (V) and alanine (A) are, together with leucine

(L) and histidine (H), the most abundant amino acids in H. sapiens haemoglobin

(see Figure 6.10). HCI and bright field imaging data had already suggested an

effect on haemoglobin digestion by the different nutritional environments the para-

sites are growing. PCA results of metabolic readouts further emphasises a role of

haemoglobin digestion in the differential phenotype and reduced progeny observed

across the treatments BL and LG. In depth study on the changes of concentrations

over time is discussed in Section 6.3.3.2.
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Figure 6.10: Percentage of amino acid abundance in H. sapiens
haemoglobin. Data extracted from the National Centre for Biotechnology Infor-
mation (NCBI), database protein [337]. Sequences of the four chains of haemoglobin
were extracted (T state, oxygen bound at all four haems), collated and the propor-
tion of each amino acid calculated and plotted. Note that the dashed line represents
the median of the amino acid abundance percentage and amino acids are represented
by their International Union of Pure and Applied Chemistry (IUPAC) symbols.

6.3.3.2 Concentration changes over time under the three nutritional

conditions

Intra-erythrocytic asexual stages of P. falciparum rely on glucose as fuel for their

central carbon metabolism that flows into lactate as final product of fermentation

[111]. This, together with other products of glycolysis such as glycerol and alanine
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are excreted and their function, if any, is unknown. P. falciparum has limited de

novo synthesis of amino acids and most of them are taken from the haemoglobin.

However, not all the amino acids are used up for protein synthesis and fuel [131],

they also serve as osmotic regulators [280, 140] and at a specific time they are

excreted to leave space to the growing parasite [338, 141]. Here the usual nutrient

trafficking of nutrients present in RPMI 1640 is reported and compared with more

physiological conditions.

Usual laboratory conditions: CM

Figure 6.11 shows the concentrations over time of the metabolites that were identi-

fied and quantified in CM. Every 12 h there was a discontinuity due to media change.

The experiment was started when the parasites were early rings and finished when

parasites were rings again after a whole life cycle. Of note, we found that RPMI

1640 had a contamination of acetate, which was avidly consumed by the parasites.

During the first 24 h, consumption of glucose was markedly more moderated than

during the next 24 h. Consequently, the glycolytic excreted end products lactate,

glycerol and alanine had a similar behaviour.

Isoleucine, methionine, glutamine, glutamate, cystine and tyrosine are essen-

tial amino acids and they must be supplemented in the media for adequate parasite

growth (Table I in [128]). Isoleucine is not present in the haemoglobin chain and

therefore it is the most essential of the amino acids. Our data shows that consump-

tion started from the early stages but it was much higher in the mature stages of

the parasites. Methionine consumption from the media was not required until the

mature stages. It is possible that its demand during the early stages might be met

by the haemoglobin degradation. Glutamine feeds the glutaminolysis pathway, an

important anaplerotic pathway in the central carbon metabolism of the parasite

and as such, its consumption remained relatively constant in the early stages but

it increased during the mature stages. On the contrary, glutamate remained fairly

constant, with a slight tendency for excretion towards the end of the time course.

The most abundant amino acids (refer to Figure 6.10) in haemoglobin; leucine,

valine, and glycine and the reasonably abundant serine, were excreted from time 15

h, when the parasites were reaching the mature trophozoite stage and at a time

when the New Permeation Pathway (NPP) is known to operate [339]. Alanine is

the most abundant amino acid in haemoglobin and its excretion as a glycolytic prod-

uct might be also joined by excess from haemoglobin degradation. However lysine,

which is also very abundant in haemoglobin was consumed even during the mature

trophozoite stages. Lysine might play a role in infection regulation. For example,
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an increase of pipecolic acid, which is a product from lysine degradation, was found

in mice infected with Plasmodium berghei [218].

Arginine, as expected, was depleted rapidly as it is known to be taken up

and converted into ornithine [195], a phenomenon that causes hypoargininemia in

patients and which has been associated with cerebral malaria. Aspartate was also

taken up consistently over the parasite life cycle. Aspartate is one of the precur-

sors of pyrimidine biosynthesis via carbamoyl-L-aspartate and therefore essential for

parasite replication. Finally, also noteworthy was the dramatic increased intake of

myoinositol in the mature stages of the life-cycle. This metabolite is essential for

synthesis of phosphatidylinositol (PI), which occurs by either savaging exogenous

myoinositol or de novo production. De novo myoinositol is made from glucose, via

glucose-6P and inositol-3P and it is used to create a pool of PI that is the precur-

sor for free and protein-linked glycosylphosphatidylinositol (GPI) glycolipids [282],

which have important roles in host-parasite interactions [340]. Scavenged myoinosi-

tol is not used to create PI for glycolypids. It is primarily used for synthesis of bulk

PI to serve in membrane architecture.
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Physiological conditions (BL) and low-glucose physiological conditions

(LG)

Analysis of the media from a more physiological nutritional environment (BL) and

a low glucose counterpart (LG) provides insight into the importance of glucose

as a driver of biomass production. These two conditions only differ in the initial

concentration of glucose: 5 mM for BL and 2 mM for LG. After incubation of the

parasites in these media, analysis of metabolites was performed, results are shown in

Figure 6.12. The amino acids aspartate, asparagine, arginine and serine were found

to be under the limit of detection of these media conditions.

Glucose is rapidly consumed over the time course in a similar pattern as

for CM parasites; moderately during the young trophozoite stages and more avidly

during the mature stages. During the initial life stages, roughly the same amounts

of glucose were consumed by BL and LG parasites. It was only in the 36 to 48 h

time frame when LG parasites seem to struggle and they almost completely depleted

the available glucose. Parallel glycolytic products lactate, glycerol and alanine were

excreted following the same patterns. Less during the early stages, more during

the late stages of development and proportional to the glucose consumed, being

excreted more in BL cultures than in LGs. Another of the main contributors to

central carbon metabolism, glutamine is also consumed.

Valine and leucine, some of the most abundant amino acids in haemoglobin,

are excreted from time 24 h in the case of BL and time 30 h in the case of LG.

Glycine is only excreted in BL and methionine is not excreted. Lysine is used up in

both cases and a bit more intensely in BL cultures, however the measurement error

is high and and no absolute conclusions can be drawn.

Interestingly, myoinositol, although consumed in both BL and LG cultures, is

salvaged more in LG cultures. As mentioned in Section 6.3.3.2 , de novo myoinositol

is synthesised from glucose-6P via inositol-3P. If the glucose availability decreases

then more myoinositol needs to be scavenged to fulfil the needs of PI for membrane

formation and thus the number of daughter cells created might be influenced by the

possible amount of membrane the parasites can build from the resources they have.

162



● ●

● ●

● ●

● ●

● ●● ●

● ●

● ●

● ●

● ●● ●

● ●

● ●

● ●

● ●● ●

● ●

● ●

● ●

● ●● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●● ●

● ●

● ●

● ●

● ●● ●

● ●

● ●

● ●

● ●● ●

● ●

● ●

● ●

● ●● ●

● ●

● ●
● ●

●●

● ●
●●

● ●

● ●

● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●●

● ●

● ●● ●

●●

●●

● ●

● ●● ●

●●
●●

● ●
●● ● ●

● ●

● ●

● ●

●● ● ●

●●

● ●

●●

●●

●●

● ●

● ●●●

●●

●●

●●

● ●●●

●●

● ●

● ●
● ●●●

●●

● ●

● ●

● ●●●

●●

● ●
● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●●

●●
● ●

● ●● ●
● ●

●●

● ●

● ●● ●

●●
● ●

● ●

● ●● ●
● ●

● ●

● ●

● ●● ●

●●

● ●

● ●

● ●

● ●

● ●

● ●● ●
●●

● ●

● ●
●● ● ●

● ●

●●

●●

●●● ●
● ●

●●

●●

● ●● ●
●●

●●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

●●

●●

● ●

● ●
● ●●●

●●
●●

●●
● ●●●

●●

● ●

● ●

● ● ●●

● ●

● ●

● ●

● ● ●●

●●

● ●

●●

●●

●●

●●

●●●●

●●

●●

● ●
●●●●

●●

●●

● ●
●●●●

●●

● ●

●●

●●●●

●●

●●
●●

●●
● ●

●●

●●●●

● ●

● ●

● ●

● ●●●

●●

●●

●●

● ●●●

●●
●●

● ●

● ●●●

●●

● ●

● ●

● ●

● ●

●●

● ●● ●
● ●

● ●

● ●

● ●● ●

● ●

● ●

● ●

● ●● ●

● ●

● ●

● ●

● ●● ●

● ●

● ●

●●

●●
●●

● ●
● ●●●

●●

●●
● ●

● ●●●
●●

● ●

● ●

● ● ●●

● ●

● ●

● ●

● ● ●●

●●

● ●

−a
lp

ha
−D

−g
lu

co
se

−b
et

a−
D

−g
lu

co
se

A
la

ni
ne

G
lu

ta
m

at
e

G
lu

ta
m

in
e

G
ly

ce
ro

l
G

ly
ci

ne
Is

ol
eu

ci
ne

La
ct

at
e

Le
uc

in
e

Ly
si

ne
M

et
hi

on
in

e

M
yo

In
os

ito
l

V
al

in
e

012345

12345

0.
05

0.
10

0.
15

0.
07

0.
08

0.
09

0.
10

0.
11

0.
52

0.
56

0.
60

0.
1

0.
2

0.
3

0.
20

0.
24

0.
28

0.
05

0

0.
07

5

0.
10

0

0.
12

5

0.
15

0

2468

0.
20

0.
25

0.
30

0.
35

0.
26

0.
28

0.
30

0.
02

0.
03

0.
04

0.
05

0.
03

0.
04

0.
05

0.
06

0.
20

0.
25

0.
30

0
3

6
9

12
15

18
21

24
27

30
33

36
39

42
45

48
51

54
0

3
6

9
12

15
18

21
24

27
30

33
36

39
42

45
48

51
54

3
6

9
12

15
18

21
24

27
30

33
36

39
42

45
48

51
54

0
3

6
9

12
15

18
21

24
27

30
33

36
39

42
45

48
51

54

0
3

6
9

12
15

18
21

24
27

30
33

36
39

42
45

48
51

54
3

6
9

12
15

18
21

24
27

30
33

36
39

42
45

48
51

54
0

3
6

9
12

15
18

21
24

27
30

33
36

39
42

45
48

51
54

0
3

6
9

12
15

18
21

24
27

30
33

36
39

42
45

48
51

54

3
6

9
12

15
18

21
24

27
30

33
36

39
42

45
48

51
54

0
3

6
9

12
15

18
21

24
27

30
33

36
39

42
45

48
51

54
0

3
6

9
12

15
18

21
24

27
30

33
36

39
42

45
48

51
54

0
3

6
9

12
15

18
21

24
27

30
33

36
39

42
45

48
51

54

0
3

6
9

12
15

18
21

24
27

30
33

36
39

42
45

48
51

54
0

3
6

9
12

15
18

21
24

27
30

33
36

39
42

45
48

51
54

T
im

e 
(h

)

Concentration (mM)

Tr
ea

tm
en

t
●

●
B

L
LG

F
ig

u
re

6
.1

2:
C

o
n

c
e
n
tr

a
ti

o
n

ch
a
n

g
e
s

in
b

lo
o
d

-l
ik

e
a
n

d
lo

w
g
lu

c
o
se

b
lo

o
d

-l
ik

e
m

e
d

ia
c
o
n
ta

in
in

g
P
.
fa
lc
ip
a
ru

m
in

fe
c
te

d
R

B
C

s
o
v
e
r

ti
m

e
.

P
oi

n
ts

re
p

re
se

n
t

th
e

m
ea

n
va

lu
e

of
th

re
e

re
p

li
ca

s
an

d
b

ar
s

th
e

st
an

d
ar

d
er

ro
r

of
th

e
m

ea
n

.

163



An overview of consumption and excretion over all conditions.

The absolute change with respect to the initial conditions was calculated for each

time point and treatment in order to compare CM parasites ‘in’ and ‘out’ flux

of nutrients with BL and LG parasites (see Figure 6.13). Noticeable is the much

vaster glucose amount that they consume. Whilst BL and LG consume similar

amounts of glucose in the first 24 hours of development, CM consumes at least 1.5×
more. This is dramatically higher during the late trophozoite and schizont stages

in all conditions but especially in CM parasites with over 2 times higher glucose

consumption than the other conditions. Meanwhile BL parasites consumed only ∼3

mM (of the 5 available), CM parasites consumed 8 mM within the same interval.

Despite more glucose being available, BL parasites did not take more than a certain

limit. This can be explained by the kinetics of the transporters, GLUT1 transports

glucose into the RBC and has a Km of 26.2 mM [341], while PfHT has a Km of 5

mM [83]. In the case of CM parasites the glucose availability was over double the

PfHT Km, thus Vmax could be reached. The differences of consumption in the early

stages between BL and LG parasites were minimal despite the over double glucose

availablity for BL parasites. The demand of glucose in the late trophozoite stages is

larger and it was reflected on the consumption of glucose, far larger in BL conditions

(∼3 mM) and limited in LG parasites (∼2 mM) which resulted in a further delay

in their life cycle. These observations point towards a more complex regulation in

which environmental signals on nutrient availability might regulate the influx on

glucose into the cell as a mechanism to preserve resources for the next generation.

Life cycle delays observed between CM and both BL and LG but also between BL

and LG (with no impact in the latter in progeny numbers) suggest the existence of

at least one control point that, similarly to the well known check points in mitosis,

would serve for the cell to assess integrity and resources in order to proceed to the

next generation. This control point seems to be early in the life cycle before the

parasite is committed to schizogony.

Glycolytic products alanine, glycerol and lactate were all excreted at propor-

tional rates across treatments. It is worth mentioning that despite the differences in

initial conditions, during the ring stages, alanine excretion was similar across treat-

ments. Finally, the amino acids excreted due to haemoglobin degradation showed

a big difference between treatments. CM parasites excreted these from time 15

h, meanwhile BL parasites did not start excretion until 24 h and LG until 30 h.

These provide reasonable biomarkers for parasite development and commitment to

the next generation.
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6.3.3.3 Rates of metabolite consumption and production.

To assess the rate of metabolite consumption and production for the various growth

conditions, linear models were fitted to each 12 h interval (see Figure 6.14) and

the slopes of each model were used to assess the differences in consumption and

excretion of the different metabolites per time interval. These are shown in Figure

6.15. ANCOVA was used to determine whether the slopes (rates) were different

between treatments at specific time intervals and results are shown in Table 6.4.

Metabolically, not many changes occurred during the first 12 h of the experiment,

which coincided with the ring stage. Common to all treatment comparisons was the

differential rate of consumption of both α and β-D-glucose with consequential dif-

ferences in the excretion of lactate, alanine and glycerol. Other expected differences

are in valine, leucine and glycine. Valine is also different between BL and LG.
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6.3.3.4 Excreted products per glucose consumed vary with respect to

life-stage and treatment.

Despite the adverse nutritional conditions in some of the media, all parasites still

produced “wasteful” products (i.e. alanine, glycerol and lactate). Overall, BL and

LG parasites had less nutrients available than CM and in comparison less nutrients

were consumed and less nutrients were excreted. However, we wanted to explore

the proportions of the so named “wasteful” products in relation to the nutrient

consumption.

As described in Section 4.3.2 of Chapter 4, calculations were implemented to

determine the level of waste produced with respect to the key drivers of the central

carbon metabolism (glucose and glutamine) during early and late trophozoites in the

differing nutritional environments. The uptake of glucose and glutamine was com-

pared to the level of excretion of lactate, glycerol and alanine in order to determine

a percentage of waste production (Figure 6.16). The overall percentage of waste

produced increased from early life stages to later ones as in agreement with results

shown in Chapter 4. This also fits with the hypothesis presented by Newsholme et

al. [117] in which they give purpose to the existence of a bifurcated pathway where

one branch leads to a product excreted as “waste” and the other results in biomass

production. Using this bifurcated pathway, a signal at any time point can shift the

pathway from waste production to biomass generation.

Upon comparison of the “waste” to biomass ratios it was observed that

“waste” production trend was higher in both BL and LG parasites in the ring stage

when compared to CM. This was an unexpected observation as it could be expected

that in a limited glucose environment resources would be mostly invested in biomass

production as opposed to the production of waste. This might be a consequence of

the decrease production of biomass. If less glucose finishes as biomass, then more

“waste” is produced. However, it is possible that the “waste” products, specifically

lactate, play a crucial extracellular role. Indeed the excretion of these products is

dramatically reduced as the parasites enter the sexual stages [342] thus indicating a

potential role in human colonisation that should be further investigated.

One of the important extracellular roles undertaken by waste products, is

their action as osmolytes. For example, glycerol inhibits water permeation through

the aquaglycerolporin (PfAQP) [343] and alanine is a solute commonly used for

synchronisation or parasites due to its osmotic selectivity in the early trophozoite

stages [344]].

As previously highlighted, the metabolism of P. falciparum parasites during

the asexual intraerythrocytic stages is similar to that observed in cancer cells or
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yeast [115]. There is an increased uptake of glucose and an accumulation of lactate,

known as the Warbug Effect. In cancer, this occurs even in normoxic conditions

thus indicating that the build up is not due to lactate fermentation caused by low

oxygen availability [345]. Moreover, lactate has been found to play a crucial role

in tumorigenesis, and there is a a high degree of malignancy in high-lactate tumors

where lactate is responsible for migration of tumor cells and cell clusters, it has an-

tioxidative properties [346] and it contributes to immune escape [347, 348]. Lactate

also promotes angiogenesis by inducing secretion of Vascular Endothelial Growth

Factor (VEGF) [349, 345, 350].

Furthermore, in tumours containing fermentative and aerobic cells, when

glucose is insufficient for both populations, the aerobic cells can uptake lactate

through a special transporter and utilise it for oxidative phosphorylation [125, 126].

In samples of patients infected with P. falciparum different transcriptional stages

have been found, two of them corresponding to either glycolytic metabolism or

starvation response accompanied by metabolism of alternative carbon sources [351].

These variations are similar to the ones found in tumours and may affect disease

manifestations and treatment.

As P. falciparum produces large amounts of lactate even in poor nutritional

environments and given not only the success of the malaria parasite but the beneficial

effects of high lactate in other disease states, it can be argued that lactate has a

function that enhances the generation success of the parasite. Whether it helps the

parasite to evade the immune system, reduced oxidative damage and/or increases

the parasites ability to spread to uninfected RBCs is unknown but this is an area

worth pursuing.
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6.4 Conclusion

In this work we have presented the first study to completely characterise P. falci-

parum life cycle nuclei size, parasite size, merozoite numbers and metabolic uptake

and excretion. Moreover, we have followed the effects of nutrient excess and depri-

vation in all those factors gaining insight into the parasite’s ability to adapt to new

environments.

By adjusting in vitro nutrient availability of P. falciparum to a more physiological

range, we have altered the life cycle length, the progeny numbers and the rates of

consumption and excretion of metabolites. We have found differential rates for

metabolite markers of processes such as haemoglobin degradation (leucine, glycine

and valine), nucleic acid production (glucose, glutamine and aspartate) and waste

excretion (lactate, glycerol, alanine). We have linked these findings with phenotypic

traits using image analysis. For example the parasites growing in BL conditions

showed more defined vacuole. By further decreasing the glucose availability, the P.

falciparum life-cycle was further elongated, unveiling the importance of metabolite

signalling in growth adaptation.

Furthermore, we have found a modulation of metabolism triggered by nutrient

availability that involved the overproduction of daughter cells and shortening of life

cycle in parasites growing in usual in vitro conditions. This unveils a shortcoming

in current experimentation in which pre-clinical tests are done, using parasites that

behave and adapt to life conditions far from physiological and where responses to

treatment might be compromised. Methodologies that allow for precise determi-

nation of the killing rate of antimalarial compounds in vitro [352] base results on

scrutiny of parasites during periods of several life cycles. Some of the limitations

of drug dose predictions may be explained by the different replication rates and life

cycle lengths between in vitro and in vivo conditions. Furthermore the diet differ-

ences in animals and humans might also compromise the experimental results used

for pharmacokinetic/pharmacodynamic modelling. These models are fitted with

data that is mainly acquired using animal models. By further adaptation of experi-

mental in vitro methods to physiological conditions, higher translatability between

animal and cellular cultures behaviours might allow the reduction of the number of

animals used for experimentation.

Future work should focus on the complete characterisation of the effects that

each nutrient might have in parasite reproduction. This will shed light not only
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on parasite biology and reproduction rates in different conditions but also might

highlight essential metabolic processes and signalling pathways that might serve as

new drug targets.
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Chapter 7

General conclusions

Phenotype equals the effects of genotype and the environment, and for any given

parasite its environment is directly determined by its host/s. In order to improve

how to diagnose, treat and ultimately eradicate a parasitic disease, the effect that

the host (environment) might have upon such organisms has to be studied. The

deadliest malaria parasite Plasmodium falciparum has been extensively studied in

vitro. However the conditions used provide the parasite with an environment far

from physiological, with nutrients present at concentrations up to an order of mag-

nitude higher than in the human host [178]. The aims of this study were to move a

step forward towards complete understanding of P. falciparum phenotype by com-

paring its growth, development and metabolism in more physiological conditions as

well as in hypoglycaemic conditions.

Phenotype is perhaps best studied at the metabolome level given that any

changes or fluctuations in gene expression, protein modification or environmental

signal response have an impact at this level of organisation. Nuclear Magnetic Reso-

nance (NMR) spectroscopy was used to study the metabolic make-up of the parasite.

As described in Chapter 3, a method to monitor metabolites in samples contain-

ing 10-16% parasitaemia was developed. Some of the shortcomings of this technique

involve the lack of freely available and curated tools to identify and quantify metabo-

lites. With help of the open source software CCPNmr [243], the metabolite specific

databases HMDB [184] and MQMCD [199] 23 metabolites were identified in P. fal-

ciparum infected red blood cells (iRBCs). This number is rather low in comparison

with other publications in which the software Chenomx [219, 217] or Mass Spec-

trometry [195, 103] have been used. The limited number of identified metabolites

has presented one of the shortcomings of this work, although the current platform

allows for expansion. One of the advantages of NMR metabolomics is that standards
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do not need to be run with the experiments to be informative. The robustness of

the technique allows for spectra to be acquired even in another machine and still

be comparable. Spectra acquired for these experiments included both 2D C-H and

1D H spectra. Thus, provided time and resources, further identification of metabo-

lites and confirmation with standards can be achieved. Another shortcoming of the

current methodology was that 13C break down could not be tracked. The current

NMR parameters used did not allow for discrimination between the proportions of

13C from either natural abundance or artificial labelling. To overcome this problem

new experiments can be designed with modified NMR acquisition parameters that

would avoid the relaxation interaction between 13C with its consequent masking of

signal (see Chapter 3 Section 3.6). Finally, absolute quantification was achieved

by using calibration curves. Pipelines to calculate the equations and use them to

calculate concentrations from query spectra as well as normalisation, scaling and ad-

equate nomenclature of metabolites were implemented in the software environment

R [299]. These can be easily expanded to include more metabolites and can also be

customized to suit needs of other experiments thus highlighting the potential of this

method.

In Chapter 4 we proved that we could distinguish between infected and non-

infected samples using NMR metabolomics and also between parasite life stages.

Furthermore we showed we could use the extracellular media to do so. By monitor-

ing culture media samples we studied parasite metabolism with minimal disruption

of optimal growing conditions. The establishment of in vitro cultures of Plasmodium

took over half a century [292, 177]. The method is based on the use of RPMI 1640 -

a very rich medium with nutrient concentrations far from physiological [178]. To try

and investigate the possible response to a more physiological media we developed an

in-house version of RPMI that presented nutrient concentrations typically found in

humans referred to as ”blood-like” medium (BL). In Chapter 5 we showed that the

viability of the parasites was not compromised by the new medium but phenotype

was different, presenting smaller cell size and different intake of nutrients. Some

of the shortcomings of this attempt to mimic host conditions rely on the still vast

differences with respect to humans as for example the use of pH buffers. The main

reason for these concessions is the lack of a suitable chemostat that would allow

the growth of P. falciparum in continuous culture. Instead parasites are grown in

batches which does not allow the dynamic exchange of substrates and waste prod-

ucts, complicating optimisation of some conditions. Future directions should involve

the complete optimisation of P. falciparum growth in physiological conditions and

an attempt to use dynamic culture conditions such as the use of chemostats and
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hollow fibre models.

The role of nutrient availability not only in growth but also in regulation was

explored in Chapter 6 in which a novel combination of high content imaging, bright

field microscopy and NMR metabolomics were used to monitor parasites growing in

three types of media: usual RPMI (CM), BL and low glucose BL (LG). P. falciparum

iRBCs were followed for the duration of the life cycle to assess the rates of nutrient

uptake and their role in life cycle control. We observed the metabolic uptake of

nutrients and excretion of products by the parasite that was in agreement with the

literature with high rates of glucose consumed and large amounts of lactate excreted

together with glycerol and alanine. In addition, excretion of some of the most

abundant amino acids found in haemoglobin was observed. It has been documented

that at a certain developmental stage, the need for space is larger than the demand

of certain amino acids and haemoglobin degradation becomes a way to make space

for the growing parasite resulting in an excretion of the amino acids that constitute

its globular part [140]. Interestingly, despite lysine being one of the most abundant

metabolites of haemoglobin, it was not excreted as otherwise leucine, valine and

glycine were.

We found that when the laboratory strain 3D7, which has slightly shorter

life cycle than field strains (42 to 45 hours), was grown in BL conditions the life

cycle was elongated towards more in vivo conditions (48 to 51 hours) and the life

cycle was further elongated when mimicking hypoglycaemic conditions, emphasising

the importance of glucose in parasite development. This was accompanied with a

40% reduction of parasite size and a consequent significant reduction in daughter

cell production (up to 50%). Haemoglobin derived amino acids were not excreted

until parasite maturity was reached, with a difference of 9 and 15 hours between CM

and BL or LG parasites respectively. These metabolites could be used as markers

for life cycle progression. Rates of consumption and excretion of most metabolites

monitored were different. Including myoinositol, demand for which was much higher

in CM parasites, probably due to its role as precursor of phosphatidylinositol, in-

volved in membrane architecture, whose demand must be higher in CM parasites

producing a mean of double the amount of daughter cells.

Notably glucose consumption was altered and adapted to the new conditions.

Parasites growing in BL did not exhaust the available glucose, which indicated a role

for metabolite signalling in parasite adaptation. These have already been posed in

the literature with the identification of clag3 genes whose expression is modulated

by nutrient availability through epigenetic modifications [174, 171]. These results

further confirmed the effect of nutritional environment in parasite adaptation, re-
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production and response, opening a new window of research for future projects.

Furthermore, both BL and LG parasites presented a moderate higher proportion

of excreted products being produced per molecule of glucose consumed (lactate,

glycerol and alanine) during the early developmental stages. This might point to a

more important role associated with these, initially considered wasteful, products.

For example a beneficial role for lactic acid has already been described in cancer

[123] where it has also been shown to inhibit TNF (Tumor Necrosis Factor) secretion

of monocytes [353]. It has been recently published that TNF reduces P. falciparum

parasitaemia in in vitro experiments [354], thus indicating a possible role for lactate

excretion. Future experimentation should aim to assess the possible protective role

that excreted products have to P. falciparum development.

This work presents a first, albeit decisive step towards breaching the gap be-

tween in vitro and in vivo experimentation. We have not only shown that parasites

growing in different conditions present different phenotype and metabolic fluxes

but also that their adaptation to the environment results in different life-cycle’s

length and multiplication rates. The latter might point towards an important con-

sequence in drug killing rates estimations, which emphasises the need to adapt

experimentation of the malaria parasite to more physiological conditions in order

to improve the robustness of scientific results and make them more extrapolative

to clinical settings. Furthermore, by adapting experimental methods to more nu-

tritional challenging conditions other properties of the infection can be discovered.

For example the bacteria Pseudomonas aeruginosa, when grown in limited nutrient

conditions, is shown to become highly tolerant to antibiotics [355]. Plasmodium-

infected mosquitoes present lower starvation resistance than uninfected ones, which

has implications for disease transmission in the field [356].

Humans are different across the world and so is P. falciparum. In different

parts of the world there are different environments and humans have access to more

or less food, health care and are exposed to multitude of diseases. Here we have

shown that the nutritional environment of the parasite plays a significant role in

its development, which may have further effects on parasite virulence. However,

currently implemented malaria treatments do not take into account the geographical

nutritional peculiarities. From vitamin deficiencies to genetic disposition, human

hosts will have a range of environmental conditions in which the parasites reside and

adapt through generations. Thus, these selective pressures might aid the parasite

to adapt to and circumvent the action of certain drugs. Consequently, it will be

beneficial to attempt mimicking such conditions in vitro to assess whether current

drug doses and screening procedures are suitable for each sub-population.
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Appendix A

NMR metabolomics datasets

Note that Height stands for concentration calculated using peak heights and Volume

stands for concentration calculated using peak volumes.

Table A.1: Chapter 3- Cellular extracts concentrations (mM)

Metabolite Height Volume Glucose Glutamine Cell

Alanine 0.362760491 0.356800261 Glc 1 mM No Gln iRBC

Asparagine 0.418537228 0.414242617 Glc 1 mM No Gln iRBC

Aspartate 0.168498509 0.158040594 Glc 1 mM No Gln iRBC

Creatine 0.360107285 0.349899691 Glc 1 mM No Gln iRBC

Glutamate 0.543795012 0.52725382 Glc 1 mM No Gln iRBC

Glutamine 0.95403179 0.94088702 Glc 1 mM No Gln iRBC

Glycine 0.390639454 0.371889963 Glc 1 mM No Gln iRBC

GSH 1.303729028 1.237572361 Glc 1 mM No Gln iRBC

Lactate 1.488635168 1.471178347 Glc 1 mM No Gln iRBC

MyoInositol 0.155713886 0.165666985 Glc 1 mM No Gln iRBC

NAD 0.836609186 0.802803717 Glc 1 mM No Gln iRBC

Serine 0.460602308 0.438412854 Glc 1 mM No Gln iRBC

Alanine 0.345293278 0.339307439 Glc 1 mM Gln 0.6 mM iRBC

Asparagine 0.262470845 0.267276789 Glc 1 mM Gln 0.6 mM iRBC

Aspartate 0.152371677 0.152594794 Glc 1 mM Gln 0.6 mM iRBC

Creatine 0.263540513 0.282003427 Glc 1 mM Gln 0.6 mM iRBC

Glutamate 0.403335613 0.408537869 Glc 1 mM Gln 0.6 mM iRBC

Glutamine 0.856568915 0.887536789 Glc 1 mM Gln 0.6 mM iRBC

Glycine 0.261853939 0.267064183 Glc 1 mM Gln 0.6 mM iRBC

GSH 0.40041367 0.389887548 Glc 1 mM Gln 0.6 mM iRBC
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Metabolite Height Volume Glucose Glutamine Cell

Lactate 1.507339805 1.60100166 Glc 1 mM Gln 0.6 mM iRBC

MyoInositol 0.113259378 0.120260364 Glc 1 mM Gln 0.6 mM iRBC

NAD 0.655086473 0.668501559 Glc 1 mM Gln 0.6 mM iRBC

Serine 0.372482052 0.359715946 Glc 1 mM Gln 0.6 mM iRBC

Alanine 0.370863263 0.370521123 Glc 1 mM Gln 2 mM iRBC

Asparagine 0.375199626 0.383294963 Glc 1 mM Gln 2 mM iRBC

Aspartate 0.22691703 0.227561943 Glc 1 mM Gln 2 mM iRBC

Creatine 0.350264263 0.357740338 Glc 1 mM Gln 2 mM iRBC

Glutamate 0.627823939 0.619564523 Glc 1 mM Gln 2 mM iRBC

Glutamine 1.360598184 1.403889416 Glc 1 mM Gln 2 mM iRBC

Glycine 0.416278826 0.426367496 Glc 1 mM Gln 2 mM iRBC

GSH 0.601043587 0.609991542 Glc 1 mM Gln 2 mM iRBC

Lactate 1.751908956 1.784825801 Glc 1 mM Gln 2 mM iRBC

NAD 0.84797229 0.832534681 Glc 1 mM Gln 2 mM iRBC

Serine 0.534204501 0.495717476 Glc 1 mM Gln 2 mM iRBC

Alanine 0.371585827 0.355371299 Glc 5 mM No Gln iRBC

Asparagine 0.344963488 0.32292266 Glc 5 mM No Gln iRBC

Aspartate 0.16921249 0.166687207 Glc 5 mM No Gln iRBC

Creatine 0.363658391 0.340721871 Glc 5 mM No Gln iRBC

Glutamate 0.492983859 0.464685168 Glc 5 mM No Gln iRBC

Glutamine 0.945089428 0.926226684 Glc 5 mM No Gln iRBC

Glycine 0.296019846 0.26191575 Glc 5 mM No Gln iRBC

GSH 0.933093987 0.869374115 Glc 5 mM No Gln iRBC

Lactate 2.79110126 2.736291105 Glc 5 mM No Gln iRBC

MyoInositol 0.120835571 0.113309949 Glc 5 mM No Gln iRBC

NAD 0.841644897 0.797906833 Glc 5 mM No Gln iRBC

Serine 0.508469111 0.480250723 Glc 5 mM No Gln iRBC

Alanine 0.335227011 0.328622013 Glc 5 mM Gln 0.6 mM iRBC

Asparagine 0.296747334 0.319117359 Glc 5 mM Gln 0.6 mM iRBC

Aspartate 0.1608343 0.161728239 Glc 5 mM Gln 0.6 mM iRBC

Creatine 0.275774851 0.28833586 Glc 5 mM Gln 0.6 mM iRBC

Glutamate 0.459519788 0.465623039 Glc 5 mM Gln 0.6 mM iRBC

Glutamine 0.807896547 0.84347187 Glc 5 mM Gln 0.6 mM iRBC

Glycine 0.324242892 0.333543712 Glc 5 mM Gln 0.6 mM iRBC

GSH 0.787080307 0.76789308 Glc 5 mM Gln 0.6 mM iRBC

Lactate 3.610922534 3.732468356 Glc 5 mM Gln 0.6 mM iRBC
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Metabolite Height Volume Glucose Glutamine Cell

MyoInositol 0.104641555 0.103473487 Glc 5 mM Gln 0.6 mM iRBC

NAD 0.66137638 0.664204994 Glc 5 mM Gln 0.6 mM iRBC

Serine 0.435923473 0.434687576 Glc 5 mM Gln 0.6 mM iRBC

Alanine 0.331027072 0.318498125 Glc 5 mM Gln 2 mM iRBC

Asparagine 0.194019437 0.2084317 Glc 5 mM Gln 2 mM iRBC

Aspartate 0.133652741 0.125967053 Glc 5 mM Gln 2 mM iRBC

Creatine 0.269872129 0.281007754 Glc 5 mM Gln 2 mM iRBC

Glutamate 0.64227702 0.658388267 Glc 5 mM Gln 2 mM iRBC

Glutamine 0.98655018 1.035804243 Glc 5 mM Gln 2 mM iRBC

Glycine 0.319464986 0.324909418 Glc 5 mM Gln 2 mM iRBC

GSH 1.024742314 1.037397791 Glc 5 mM Gln 2 mM iRBC

Lactate 2.274415059 2.351798084 Glc 5 mM Gln 2 mM iRBC

MyoInositol 0.08961371 0.091492493 Glc 5 mM Gln 2 mM iRBC

NAD 0.745236671 0.731335364 Glc 5 mM Gln 2 mM iRBC

Serine 0.443046885 0.42877019 Glc 5 mM Gln 2 mM iRBC

Alanine 0.330662234 0.303459313 Glc 1 mM No Gln RBC

Asparagine 0.895216134 0.795130264 Glc 1 mM No Gln RBC

Aspartate 0.384989918 0.364850501 Glc 1 mM No Gln RBC

Creatine 1.426743475 1.377074294 Glc 1 mM No Gln RBC

Glutamate 6.164863346 5.85312934 Glc 1 mM No Gln RBC

Glutamine 1.776433897 1.757538501 Glc 1 mM No Gln RBC

Glycine 0.683601163 0.628985475 Glc 1 mM No Gln RBC

GSH 2.233752691 2.136266792 Glc 1 mM No Gln RBC

Lactate 1.204409137 1.130160213 Glc 1 mM No Gln RBC

Alanine 0.150195469 0.157763807 Glc 1 mM Gln 0.6 mM RBC

Asparagine 0.331194997 0.348209849 Glc 1 mM Gln 0.6 mM RBC

Aspartate 0.159255734 0.166793206 Glc 1 mM Gln 0.6 mM RBC

Creatine 0.490525433 0.514535279 Glc 1 mM Gln 0.6 mM RBC

Glutamate 2.251474726 2.262497483 Glc 1 mM Gln 0.6 mM RBC

Glutamine 0.791568765 0.831641884 Glc 1 mM Gln 0.6 mM RBC

Glycine 0.269052373 0.276693689 Glc 1 mM Gln 0.6 mM RBC

GSH 0.802561234 0.802595362 Glc 1 mM Gln 0.6 mM RBC

Lactate 0.498441331 0.516320543 Glc 1 mM Gln 0.6 mM RBC

NAD 0.12048569 0.118225363 Glc 1 mM Gln 0.6 mM RBC

Alanine 0.120302474 0.130986269 Glc 1 mM Gln 2 mM RBC

Asparagine 0.389174642 0.397086603 Glc 1 mM Gln 2 mM RBC
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Metabolite Height Volume Glucose Glutamine Cell

Aspartate 0.199315343 0.198101313 Glc 1 mM Gln 2 mM RBC

Creatine 0.489866701 0.511264577 Glc 1 mM Gln 2 mM RBC

Glutamate 2.267321938 2.27319623 Glc 1 mM Gln 2 mM RBC

Glutamine 0.918605141 0.964131114 Glc 1 mM Gln 2 mM RBC

Glycine 0.295363217 0.31079257 Glc 1 mM Gln 2 mM RBC

GSH 0.615808858 0.62406204 Glc 1 mM Gln 2 mM RBC

Lactate 0.450898297 0.444403413 Glc 1 mM Gln 2 mM RBC

NAD 0.178170003 0.177538997 Glc 1 mM Gln 2 mM RBC

Alanine 0.37516297 0.389845252 Glc 5 mM No Gln RBC

Asparagine 0.482855462 0.48579948 Glc 5 mM No Gln RBC

Aspartate 0.20192549 0.220476547 Glc 5 mM No Gln RBC

Creatine 0.761821012 0.792533625 Glc 5 mM No Gln RBC

Glutamate 3.381822068 3.364694784 Glc 5 mM No Gln RBC

Glutamine 1.166912926 1.217797335 Glc 5 mM No Gln RBC

Glycine 0.427948262 0.422942032 Glc 5 mM No Gln RBC

GSH 1.122973067 1.132485124 Glc 5 mM No Gln RBC

NAD 0.235423625 0.217996204 Glc 5 mM No Gln RBC

Alanine 0.723976088 0.682585502 Glc 5 mM Gln 0.6 mM RBC

Asparagine 1.304599989 1.298615424 Glc 5 mM Gln 0.6 mM RBC

Aspartate 0.514499296 0.496183542 Glc 5 mM Gln 0.6 mM RBC

Creatine 1.484735508 1.585578642 Glc 5 mM Gln 0.6 mM RBC

Glutamate 7.359251159 7.408578212 Glc 5 mM Gln 0.6 mM RBC

Glutamine 2.755583504 2.885137459 Glc 5 mM Gln 0.6 mM RBC

Glycine 0.993049888 1.004453664 Glc 5 mM Gln 0.6 mM RBC

GSH 2.002649854 2.047070053 Glc 5 mM Gln 0.6 mM RBC

NAD 0.440061929 0.460951706 Glc 5 mM Gln 0.6 mM RBC

Alanine 0.242860176 0.235693516 Glc 5 mM Gln 2 mM RBC

Asparagine 0.478487753 0.488039569 Glc 5 mM Gln 2 mM RBC

Aspartate 0.218641527 0.216963915 Glc 5 mM Gln 2 mM RBC

Creatine 0.738077518 0.762933331 Glc 5 mM Gln 2 mM RBC

Glutamate 3.37184712 3.362528387 Glc 5 mM Gln 2 mM RBC

Glutamine 1.482080035 1.530364796 Glc 5 mM Gln 2 mM RBC

Glycine 0.428303439 0.428108245 Glc 5 mM Gln 2 mM RBC

GSH 0.928207274 0.928847525 Glc 5 mM Gln 2 mM RBC

NAD 0.225196887 0.226539261 Glc 5 mM Gln 2 mM RBC
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Table A.2: Chapter 3- Supernatant concentrations (mM)

Metabolite Height Volume Glucose Glutamine Cell

α-D-glucose 0.213726023 0.212159829 Glc 1 mM No Gln iRBC

β-D-glucose 0.220535676 0.218689984 Glc 1 mM No Gln iRBC

Glycerol 0.132001543 0.133487396 Glc 1 mM No Gln iRBC

Lactate 3.369962155 3.491848417 Glc 1 mM No Gln iRBC

Alanine 0 0 Glc 1 mM No Gln iRBC

Glutamate 0 0 Glc 1 mM No Gln iRBC

Glutamine 0 0 Glc 1 mM No Gln iRBC

Alanine 0 0 Glc 1 mM Gln 0.6 mM iRBC

α-D-glucose 0.323098867 0.330924679 Glc 1 mM Gln 0.6 mM iRBC

β-D-glucose 0.336707181 0.34043376 Glc 1 mM Gln 0.6 mM iRBC

Glutamate 0.270153685 0.266425812 Glc 1 mM Gln 0.6 mM iRBC

Glutamine 0.238512826 0.241025615 Glc 1 mM Gln 0.6 mM iRBC

Glycerol 0.160250226 0.157906561 Glc 1 mM Gln 0.6 mM iRBC

Lactate 3.997018137 4.135116229 Glc 1 mM Gln 0.6 mM iRBC

Alanine 0.048345917 0.053430932 Glc 1 mM Gln 2 mM iRBC

α-D-glucose 0.274817288 0.277218772 Glc 1 mM Gln 2 mM iRBC

β-D-glucose 0.283642716 0.280584906 Glc 1 mM Gln 2 mM iRBC

Glutamate 0.621384808 0.612595926 Glc 1 mM Gln 2 mM iRBC

Glutamine 1.096245856 1.111078329 Glc 1 mM Gln 2 mM iRBC

Glycerol 0.155891923 0.15086894 Glc 1 mM Gln 2 mM iRBC

Lactate 3.343365039 3.411158241 Glc 1 mM Gln 2 mM iRBC

α-D-glucose 2.734634521 2.721705491 Glc 5 mM No Gln iRBC

β-D-glucose 2.852300952 2.794635706 Glc 5 mM No Gln iRBC

Glycerol 0.22032348 0.215723294 Glc 5 mM No Gln iRBC

Lactate 5.723345095 5.776401508 Glc 5 mM No Gln iRBC

Alanine 0 0 Glc 5 mM No Gln iRBC

Glutamate 0 0 Glc 5 mM No Gln iRBC

Glutamine 0 0 Glc 5 mM No Gln iRBC

Alanine 0.055264902 0.0517223 Glc 5 mM Gln 0.6 mM iRBC

α-D-glucose 3.426810962 3.441545393 Glc 5 mM Gln 0.6 mM iRBC

β-D-glucose 3.419015079 3.413330857 Glc 5 mM Gln 0.6 mM iRBC

Glutamate 0.141768406 0.140462742 Glc 5 mM Gln 0.6 mM iRBC

Glutamine 0.441618634 0.450532461 Glc 5 mM Gln 0.6 mM iRBC

Glycerol 0.274144041 0.268438929 Glc 5 mM Gln 0.6 mM iRBC
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Metabolite Height Volume Glucose Glutamine Cell

Lactate 7.224674214 7.349521796 Glc 5 mM Gln 0.6 mM iRBC

Alanine 0.070909652 0.068054297 Glc 5 mM Gln 2 mM iRBC

α-D-glucose 3.156485836 3.119169687 Glc 5 mM Gln 2 mM iRBC

β-D-glucose 2.968978684 2.950823792 Glc 5 mM Gln 2 mM iRBC

Glutamate 0.307012201 0.299583375 Glc 5 mM Gln 2 mM iRBC

Glutamine 1.113986692 1.117849714 Glc 5 mM Gln 2 mM iRBC

Glycerol 0.222083773 0.225881559 Glc 5 mM Gln 2 mM iRBC

Lactate 5.462534849 5.512739964 Glc 5 mM Gln 2 mM iRBC

α-D-glucose 1.132508497 1.153144034 Glc 1 mM No Gln RBC

β-D-glucose 1.158848672 1.150573044 Glc 1 mM No Gln RBC

Lactate 0.426616002 0.438985596 Glc 1 mM No Gln RBC

α-D-glucose 1.320003436 1.332137423 Glc 1 mM Gln 0.6 mM RBC

β-D-glucose 1.376772747 1.348216831 Glc 1 mM Gln 0.6 mM RBC

Glutamine 0.429235951 0.43764722 Glc 1 mM Gln 0.6 mM RBC

α-D-glucose 1.450753478 1.478840503 Glc 1 mM Gln 2 mM RBC

β-D-glucose 1.506528158 1.483588781 Glc 1 mM Gln 2 mM RBC

Glutamine 1.842789595 1.858971325 Glc 1 mM Gln 2 mM RBC

Lactate 0.543577761 0.551545557 Glc 1 mM Gln 2 mM RBC

α-D-glucose 5.086010803 5.136992897 Glc 5 mM No Gln RBC

β-D-glucose 5.315772214 5.280710161 Glc 5 mM No Gln RBC

α-D-glucose 4.974259885 4.937539409 Glc 5 mM Gln 0.6 mM RBC

β-D-glucose 4.916035218 4.895726623 Glc 5 mM Gln 0.6 mM RBC

Glutamine 0.420512675 0.434211008 Glc 5 mM Gln 0.6 mM RBC

Lactate 0.499295252 0.504645647 Glc 5 mM Gln 0.6 mM RBC

α-D-glucose 4.866802868 4.865687 Glc 5 mM Gln 2 mM RBC

β-D-glucose 4.908559479 4.891009623 Glc 5 mM Gln 2 mM RBC

Glutamine 1.76468287 1.819080441 Glc 5 mM Gln 2 mM RBC

Lactate 0.557750726 0.563050819 Glc 5 mM Gln 2 mM RBC

Table A.3: Chapter 4- Cellular extracts concentrations (mM)

Metabolite Height Volume SEM-Height SEM-Volume Sample

Alanine 0.217806108 0.214715321 0.107223089 0.104396294 RBC

Arginine 0.681208931 0.706907344 0.210334112 0.218630653 RBC

Asparagine 0.780721886 0.814920077 0.252495459 0.255597245 RBC

Aspartate 0.373632192 0.453466209 0.104998107 0.141201101 RBC
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Metabolite Height Volume SEM-Height SEM-Volume Sample

Creatine 1.393723359 1.482044116 0.491990144 0.525318048 RBC

Glutamate 2.781976307 2.836996792 0.849552823 0.88259953 RBC

Glutamine 1.816662325 1.928521662 0.566507712 0.612300021 RBC

Glycine 0.778188672 0.803423827 0.260584752 0.27106188 RBC

GSH 2.32497469 2.390414708 0.829029138 0.869851808 RBC

Isoleucine 0.574040474 0.559352258 0.235430652 0.227233973 RBC

Lactate 1.280133067 1.353346925 0.401342482 0.428848208 RBC

Leucine 0.260180164 0.275160852 0.058350872 0.058540179 RBC

Lysine 0.28206065 0.291672097 0.090939659 0.091699027 RBC

MyoInositol 0.236835933 0.255410763 0.090811319 0.102638132 RBC

NAD 0.155398462 0.14788263 0.033508686 0.028821223 RBC

Serine 0.687489739 0.688728989 0.230699406 0.234080034 RBC

Valine 0.197026621 0.225350765 0.073867741 0.086575633 RBC

Alanine 0.270711891 0.267117083 0.035460579 0.034876751 Ring

Arginine 0.189098824 0.19876824 0.012589465 0.012755544 Ring

Asparagine 0.291517893 0.308884761 0.04031915 0.047340132 Ring

Aspartate 0.117052026 0.127858216 0.017991513 0.019781695 Ring

Creatine 0.320934552 0.332549529 0.041924342 0.051785271 Ring

Glutamate 0.514069376 0.513640572 0.064979838 0.068371536 Ring

Glutamine 0.681204585 0.71327255 0.076077474 0.084139222 Ring

Glycine 0.292342869 0.291212558 0.031787897 0.033093515 Ring

GSH 1.693258711 1.707625522 0.228795548 0.236948225 Ring

Isoleucine 0.212241145 0.207287053 NA NA Ring

Lactate 2.358852525 2.415823053 0.337211094 0.375399174 Ring

Leucine 0.250373748 0.255150631 0.022224267 0.025876914 Ring

Lysine 0.156661744 0.165228007 0.004886553 0.010530466 Ring

MyoInositol 0.13023594 0.129593051 0.011406138 0.012276928 Ring

NAD 0.58585508 0.577626303 0.077090533 0.084106181 Ring

Serine 0.376988503 0.383563309 0.022360289 0.02477281 Ring

Valine 0.133345487 0.138957385 0.017584119 0.019488422 Ring

Acetate 0.15193662 0.155429205 0.008930168 0.012744083 Troph

Alanine 0.282166299 0.278426677 0.032575105 0.029443753 Troph

Arginine 0.276294887 0.285637831 0.030442989 0.032262431 Troph

Asparagine 0.389640963 0.405563375 0.039291248 0.0368004 Troph

Aspartate 0.152071547 0.175115552 0.017412838 0.02022783 Troph

Creatine 0.364392483 0.376899517 0.03840798 0.041175477 Troph
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Metabolite Height Volume SEM-Height SEM-Volume Sample

Glutamate 0.549646799 0.553855304 0.042898938 0.052982357 Troph

Glutamine 1.061143671 1.112284025 0.065197054 0.075391264 Troph

Glycine 0.329689061 0.330824548 0.027431926 0.035777755 Troph

GSH 1.382900149 1.39518288 0.300300898 0.306887764 Troph

Lactate 2.576181125 2.630981816 0.26788472 0.264267747 Troph

Leucine 0.194870913 0.201250568 0.008232339 0.01165858 Troph

Lysine 0.191401636 0.199603766 0.012456839 0.011244983 Troph

MyoInositol 0.130648033 0.133811036 0.013694701 0.016757128 Troph

NAD 0.573069627 0.567638644 0.053742587 0.061323327 Troph

Serine 0.407900664 0.40752387 0.022655192 0.021619263 Troph

Valine 0.139523382 0.149965132 0.012321836 0.015228305 Troph

Table A.4: Chapter 4- Supernatant concentrations (mM)

Metabolite Height Volume SEM-Height SEM-Volume Sample

α-D-glucose 10.9498105 9.847271074 0.988973174 0.885090717 RBC

β-D-glucose 10.75202496 9.740038483 0.826320989 0.772358721 RBC

Acetate 0.230980205 0.223171258 NA NA RBC

Arginine 1.205860823 1.104451806 0.114599271 0.103289168 RBC

Asparagine 0.392908798 0.380098671 0.04714155 0.04094719 RBC

Aspartate 0.080612799 0.081213534 0.005875523 0.005371953 RBC

Glutamate 0.191829581 0.177742691 0.016180558 0.014569793 RBC

Glutamine 1.881421526 1.736061739 0.164658733 0.155963965 RBC

Glycine 0.119796155 0.104072476 0.015011836 0.014300658 RBC

Isoleucine 0.450655203 0.404002143 0.052391273 0.048978658 RBC

Lactate 0.938600009 0.87341147 0.08369477 0.076817926 RBC

Leucine 0.43357291 0.387923249 0.033377382 0.027275982 RBC

Lysine 0.264511926 0.245691617 0.024298472 0.022901862 RBC

Valine 0.184552785 0.167821028 0.021651974 0.019475284 RBC

α-D-glucose 8.8189787 7.985064193 0.260554882 0.167560336 Ring

β-D-glucose 9.147431621 8.232425985 0.208449787 0.202281905 Ring

Acetate 0.204649722 0.198107416 0.014092364 0.014737669 Ring

Alanine 0.049409684 0.046454607 0.00462479 0.004799625 Ring

Arginine 0.948699754 0.874555963 0.039786394 0.036550397 Ring

Asparagine 0.353778277 0.350505958 0.040934669 0.034221425 Ring

Aspartate 0.080754246 0.083752355 0.000426604 0.000780979 Ring
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Metabolite Height Volume SEM-Height SEM-Volume Sample

Glutamate 0.240924375 0.222656488 0.016286334 0.013336933 Ring

Glutamine 1.681040735 1.558238109 0.03259349 0.037211339 Ring

Glycerol 0.108068169 0.101979661 0.028095414 0.025695131 Ring

Isoleucine 0.404406438 0.366354795 0.021615266 0.02206039 Ring

Lactate 3.741540786 3.433104134 0.110465901 0.102271855 Ring

Leucine 0.439893052 0.392428108 0.020955303 0.017091047 Ring

Lysine 0.262207247 0.244662569 0.012398669 0.011950206 Ring

MyoInositol 0.214638702 0.200313005 0.006300111 0.007445042 Ring

Valine 0.179027722 0.164434606 0.008052054 0.006068729 Ring

α-D-glucose 10.97036569 10.01755045 0.425710438 0.458582211 t0

β-D-glucose 11.3901946 10.26272079 0.705413202 0.662990553 t0

Acetate 0.253328592 0.240477006 0.023781205 0.025071357 t0

Arginine 1.263139474 1.170321116 0.056162207 0.06264338 t0

Asparagine 0.374074008 0.374612002 0.043975257 0.046124547 t0

Aspartate 0.087211046 0.092671831 0.011085811 0.011627238 t0

Glutamate 0.193689733 0.181364573 0.01083472 0.010542634 t0

Glutamine 1.908585849 1.774684852 0.123124725 0.121398241 t0

Glycine 0.11964601 0.10721265 0.004372903 0.003389012 t0

Isoleucine 0.423294489 0.376940574 0.031614511 0.033964434 t0

Leucine 0.459009468 0.410892541 0.032542936 0.028320952 t0

Lysine 0.26550078 0.248546456 0.011518378 0.011533232 t0

Serine 0.353346307 0.322785266 NA NA t0

Valine 0.169059417 0.157312982 0.008681246 0.010029254 t0

α-D-glucose 8.981098232 8.215606249 0.466642575 0.505396284 Troph

β-D-glucose 9.026944756 8.181030435 0.687747077 0.603182909 Troph

Acetate 0.207311417 0.20289156 0.004462608 0.004635105 Troph

Alanine 0.083307176 0.076074269 0.006232922 0.006774985 Troph

Arginine 0.999545054 0.92175137 0.033583545 0.038133232 Troph

Asparagine 0.467727048 0.454081884 0.060079548 0.058883849 Troph

Aspartate 0.099534187 0.101162125 0.005529051 0.008362271 Troph

Glutamate 0.25589465 0.23807648 0.024895202 0.020774242 Troph

Glutamine 1.844136376 1.712076853 0.055096997 0.054618644 Troph

Glycerol 0.222254806 0.208691354 0.026675037 0.023799799 Troph

Glycine 0.141692067 0.125590905 0.009371381 0.009939386 Troph

Isoleucine 0.425943964 0.380581231 0.007624201 0.011397166 Troph

Lactate 5.406729505 4.992643797 NA NA Troph
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Metabolite Height Volume SEM-Height SEM-Volume Sample

Leucine 0.503709378 0.451960859 0.014260332 0.011228155 Troph

Valine 0.211912441 0.193445117 0.00517975 0.006719324 Troph

Table A.6: Chapter 5- Media concentrations (mM)

Metabolite Height Volume SEM-Height SEM-Volume Sample

α-D-glucose 4.839006613 4.216799923 0.343596385 0.191051995 RBC

β-D-glucose 4.712497033 4.127481177 0.259270362 0.108586752 RBC

Alanine 0.028324037 0.026754538 0.001070763 0.001042546 RBC

Arginine 0.065168709 0.059423661 0.034881363 0.03087332 RBC

Glutamate 0.108273252 0.099464668 0.014562227 0.013808206 RBC

Glutamine 0.602557674 0.542388705 0.070133312 0.050189076 RBC

Glycine 0.214532976 0.18641189 0.032512084 0.02243112 RBC

Isoleucine 0.105654978 0.089038824 0.016037485 0.016373621 RBC

Lactate 0.782585985 0.711106881 0.054345318 0.032734118 RBC

Leucine 0.200038226 0.17348806 0.026689685 0.016880897 RBC

Lysine 0.283336598 0.257359562 0.024777191 0.016584833 RBC

Methionine 0.038825169 0.030180784 NA NA RBC

Valine 0.229158158 0.208998196 0.02034056 0.012082311 RBC

α-D-glucose 5.002640971 4.431776032 0.009741448 0.032403554 t0

β-D-glucose 4.905788734 4.391064477 0.054764854 0.076080228 t0

Arginine 0.028568506 0.026500789 0.0010746 0.001469483 t0

Glutamate 0.09082238 0.085952267 0.013808807 0.011990235 t0

Glutamine 0.571219221 0.520034985 0.022575212 0.016169223 t0

Glycine 0.229259273 0.121014406 0.009194582 0.090238839 t0

Isoleucine 0.11556468 0.09199758 0.016760238 0.017969131 t0

Leucine 0.182970076 0.162711751 0.010507973 0.006596187 t0

Lysine 0.282903322 0.261940459 0.02497148 0.022395458 t0

Methionine 0.025736738 0.021978006 NA NA t0

MyoInositol 0.062762141 0.056585008 0.004123463 0.003320934 t0

Serine 0.080993945 0.068472488 0.026836364 0.024845727 t0

Valine 0.209374395 0.189037837 0.013621953 0.011061903 t0

α-D-glucose 4.118880479 3.665845941 0.100678999 0.068486405 Troph

β-D-glucose 4.095153395 3.637638532 0.285590695 0.206962828 Troph

Alanine 0.037822212 0.036065597 0.004849814 0.005207695 Troph

Arginine 0.065186292 0.066058062 0.002012602 0.003254224 Troph
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Metabolite Height Volume SEM-Height SEM-Volume Sample

Glutamate 0.095776465 0.089605989 0.003402221 0.003777364 Troph

Glutamine 0.549721175 0.498296706 0.015894421 0.011166868 Troph

Glycerol 0.065966237 0.061642038 0.009733616 0.007627296 Troph

Glycine 0.185602009 0.170248869 NA NA Troph

Isoleucine 0.104423742 0.084827222 0.007942632 0.004418335 Troph

Lactate 1.289946922 1.169479505 0.033888669 0.025378404 Troph

Leucine 0.202432182 0.17826606 0.007568328 0.004749621 Troph

Lysine 0.274605188 0.249050811 0.00120117 0.002450533 Troph

Methionine 0.023186832 0.018258256 0.000537405 0.001286107 Troph

MyoInositol 0.046290938 0.043910461 0.00273047 0.003824501 Troph

Valine 0.220956293 0.199937605 0.004045939 0.00234794 Troph

Table A.7: Chapter 6- Media concentrations (mM)

Metabolite Height Volume SEM-Height SEM-Volume Media Time[h]

α-D-glucose 4.87112 4.31009 0.12178 0.09075 BL 0

β-D-glucose 4.69374 4.16627 0.15975 0.14925 BL 0

Glutamate 0.09653 0.08950 0.00996 0.00984 BL 0

Glutamine 0.59322 0.53418 0.00260 0.00218 BL 0

Glycine 0.22988 0.14978 0.00534 0.05951 BL 0

Isoleucine 0.11065 0.08793 0.01085 0.01114 BL 0

Leucine 0.19147 0.16805 0.00344 0.00298 BL 0

Lysine 0.29711 0.27149 0.01756 0.01721 BL 0

Methionine 0.02769 0.02366 0.00195 0.00168 BL 0

MyoInositol 0.05597 0.05054 0.00720 0.00634 BL 0

Valine 0.21844 0.19500 0.00744 0.00727 BL 0

α-D-glucose 3.61097 3.23725 0.04133 0.03204 BL 12

β-D-glucose 3.48114 3.13445 0.03626 0.04020 BL 12

Alanine 0.03903 0.03649 0.00164 0.00287 BL 12

Glutamate 0.09228 0.08684 0.00391 0.00419 BL 12

Glutamine 0.56268 0.51623 0.00841 0.00876 BL 12

Glycerol 0.09194 0.08671 0.00891 0.00809 BL 12

Glycine 0.20003 0.17866 0.01432 0.01414 BL 12

Isoleucine 0.10031 0.08433 0.00185 0.00231 BL 12

Lactate 2.98816 2.74105 0.04579 0.03963 BL 12

Leucine 0.19221 0.17364 0.00829 0.00722 BL 12

228



Metabolite Height Volume SEM-Height SEM-Volume Media Time[h]

Lysine 0.25963 0.24252 0.00089 0.00099 BL 12

Methionine 0.02220 0.01889 0.00149 0.00244 BL 12

MyoInositol 0.03678 0.03200 0.00277 0.00170 BL 12

Valine 0.20786 0.19190 0.01473 0.01286 BL 12

α-D-glucose 4.23669 3.83384 0.10817 0.07917 BL 15

β-D-glucose 4.29758 3.87060 0.04231 0.05068 BL 15

Alanine 0.02651 0.02569 0.00104 0.00085 BL 15

Glutamate 0.08409 0.08011 0.00793 0.00634 BL 15

Glutamine 0.53820 0.49805 0.00548 0.00344 BL 15

Glycerol 0.04687 0.04364 0.00001 0.00200 BL 15

Glycine 0.21087 0.18747 0.00257 0.00351 BL 15

Isoleucine 0.09999 0.08383 0.00815 0.00684 BL 15

Lactate 0.86612 0.79359 0.00306 0.00594 BL 15

Leucine 0.18504 0.16738 0.00354 0.00260 BL 15

Lysine 0.26766 0.24710 0.01500 0.01274 BL 15

Methionine 0.03108 0.02791 0.00188 0.00209 BL 15

MyoInositol 0.05351 0.05150 0.01278 0.01234 BL 15

Valine 0.20748 0.19025 0.00465 0.00220 BL 15

α-D-glucose 4.09123 3.65252 0.16446 0.09940 BL 18

β-D-glucose 4.12210 3.67368 0.15887 0.11770 BL 18

Alanine 0.03639 0.03437 0.00071 0.00004 BL 18

Glutamate 0.09103 0.08465 0.00961 0.00706 BL 18

Glutamine 0.53626 0.48912 0.01300 0.00945 BL 18

Glycerol 0.06537 0.06091 0.00615 0.00585 BL 18

Glycine 0.20121 0.17961 0.00373 0.00728 BL 18

Isoleucine 0.12881 0.11374 0.00698 0.00022 BL 18

Lactate 1.39877 1.27947 0.05386 0.03756 BL 18

Leucine 0.18639 0.16563 0.00844 0.00752 BL 18

Lysine 0.25413 0.23562 0.00230 0.00338 BL 18

Methionine 0.04233 0.03794 0.00300 0.00279 BL 18

MyoInositol 0.04578 0.04072 0.00351 0.00321 BL 18

Valine 0.20809 0.18962 0.01292 0.01070 BL 18

α-D-glucose 3.77888 3.43730 0.14192 0.10282 BL 21

β-D-glucose 3.74776 3.39996 0.07696 0.06286 BL 21

Alanine 0.04406 0.03992 0.00295 0.00307 BL 21

Glutamate 0.08949 0.08707 0.00378 0.00404 BL 21
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Metabolite Height Volume SEM-Height SEM-Volume Media Time[h]

Glutamine 0.52271 0.48618 0.00797 0.00853 BL 21

Glycerol 0.08894 0.08334 0.00572 0.00644 BL 21

Glycine 0.20068 0.17902 0.00424 0.00609 BL 21

Isoleucine 0.11313 0.09714 0.00733 0.00322 BL 21

Lactate 2.05316 1.89877 0.01358 0.02187 BL 21

Leucine 0.19399 0.17379 0.00569 0.00661 BL 21

Lysine 0.27206 0.25263 0.00840 0.00868 BL 21

Methionine 0.02238 0.01743 0.00365 0.00388 BL 21

MyoInositol 0.04467 0.04195 0.00858 0.00803 BL 21

Valine 0.21473 0.19549 0.00867 0.00850 BL 21

α-D-glucose 3.56816 3.20479 0.06486 0.04144 BL 24

β-D-glucose 3.53570 3.18285 0.11345 0.09777 BL 24

Alanine 0.05290 0.04873 0.00538 0.00508 BL 24

Glutamate 0.09704 0.09042 0.00701 0.00678 BL 24

Glutamine 0.52568 0.48361 0.00254 0.00271 BL 24

Glycerol 0.10165 0.09279 0.00874 0.00741 BL 24

Glycine 0.20737 0.18415 0.00805 0.00668 BL 24

Isoleucine 0.09544 0.08044 0.01644 0.01073 BL 24

Lactate 2.79866 2.57195 0.05197 0.03486 BL 24

Leucine 0.19788 0.18130 0.00403 0.00157 BL 24

Lysine 0.26946 0.24847 0.00714 0.00777 BL 24

Methionine 0.02732 0.02299 0.00197 0.00318 BL 24

MyoInositol 0.05043 0.04659 0.00954 0.00808 BL 24

Valine 0.22088 0.20480 0.00214 0.00088 BL 24

α-D-glucose 4.11888 3.66585 0.10068 0.06849 BL 27

β-D-glucose 4.09515 3.63764 0.28559 0.20696 BL 27

Alanine 0.03782 0.03607 0.00485 0.00521 BL 27

Glutamate 0.09578 0.08961 0.00340 0.00378 BL 27

Glutamine 0.54972 0.49830 0.01589 0.01117 BL 27

Glycerol 0.06597 0.06164 0.00973 0.00763 BL 27

Glycine 0.18560 0.17025 NA NA BL 27

Isoleucine 0.10442 0.08483 0.00794 0.00442 BL 27

Lactate 1.48021 1.33602 0.07004 0.05617 BL 27

Leucine 0.20243 0.17827 0.00757 0.00475 BL 27

Lysine 0.27461 0.24905 0.00120 0.00245 BL 27

Methionine 0.02319 0.01826 0.00054 0.00129 BL 27
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MyoInositol 0.04629 0.04391 0.00273 0.00382 BL 27

Valine 0.22096 0.19994 0.00405 0.00235 BL 27

α-D-glucose 4.31100 3.83404 0.19040 0.12985 BL 3

β-D-glucose 4.32817 3.82105 0.26590 0.18394 BL 3

Alanine 0.03560 0.03451 0.00230 0.00201 BL 3

Glutamate 0.08950 0.08266 0.01367 0.00998 BL 3

Glutamine 0.57005 0.51988 0.01438 0.00819 BL 3

Glycerol 0.07315 0.06775 0.01062 0.00677 BL 3

Glycine 0.20072 0.17642 0.00916 0.00565 BL 3

Isoleucine 0.12131 0.09935 0.00310 0.00977 BL 3

Lactate 0.95707 0.85944 0.00754 0.00835 BL 3

Leucine 0.17984 0.15900 0.01232 0.00769 BL 3

Lysine 0.26440 0.24247 0.01491 0.01024 BL 3

Methionine 0.02042 0.01755 0.00384 0.00421 BL 3

MyoInositol 0.05174 0.04732 0.00952 0.00725 BL 3

Valine 0.20937 0.18786 0.01250 0.00762 BL 3

α-D-glucose 3.74775 3.38621 0.12133 0.10008 BL 30

β-D-glucose 3.86987 3.41431 0.06951 0.05853 BL 30

Alanine 0.06842 0.06167 0.00526 0.00426 BL 30

Glutamate 0.09794 0.09115 0.00537 0.00404 BL 30

Glutamine 0.57729 0.52100 0.00654 0.00401 BL 30

Glycerol 0.11393 0.10234 0.00489 0.00353 BL 30

Glycine 0.21606 0.19027 NA NA BL 30

Isoleucine 0.07457 0.06433 0.01209 0.01129 BL 30

Lactate 2.82705 2.54894 0.07666 0.05707 BL 30

Leucine 0.23833 0.20929 0.00175 0.00107 BL 30

Lysine 0.27071 0.24891 0.00273 0.00225 BL 30

Methionine 0.02747 0.02128 0.00318 0.00387 BL 30

MyoInositol 0.06009 0.05405 0.00232 0.00360 BL 30

Valine 0.24919 0.22306 0.00845 0.00774 BL 30

α-D-glucose 3.26423 2.93016 0.11534 0.07781 BL 33

β-D-glucose 3.34289 2.95205 0.12346 0.08224 BL 33

Alanine 0.09587 0.08654 0.00356 0.00226 BL 33

Glutamate 0.10399 0.09645 0.00400 0.00209 BL 33

Glutamine 0.56669 0.51317 0.01347 0.00724 BL 33

Glycerol 0.18309 0.16029 0.01963 0.01550 BL 33
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Glycine 0.24789 0.21632 0.01201 0.00543 BL 33

Isoleucine 0.09559 0.07785 0.00328 0.00103 BL 33

Lactate 4.22406 3.80604 0.20061 0.14379 BL 33

Leucine 0.26544 0.23272 0.01256 0.00877 BL 33

Lysine 0.28254 0.25967 0.00618 0.00623 BL 33

Methionine 0.02437 0.01875 0.00433 0.00280 BL 33

MyoInositol 0.04877 0.04565 0.00341 0.00631 BL 33

Valine 0.26936 0.24213 0.01308 0.00873 BL 33

α-D-glucose 2.77777 2.49199 0.08555 0.07013 BL 36

β-D-glucose 2.70652 2.44071 0.10983 0.10177 BL 36

Alanine 0.12668 0.11572 0.00584 0.00544 BL 36

Glutamate 0.10205 0.09650 0.00732 0.00577 BL 36

Glutamine 0.55846 0.51138 0.00105 0.00355 BL 36

Glycerol 0.22870 0.21060 0.00711 0.00559 BL 36

Glycine 0.23991 0.21169 0.00686 0.00381 BL 36

Isoleucine 0.08526 0.07517 0.00376 0.00380 BL 36

Lactate 5.73525 5.24541 0.25862 0.24034 BL 36

Leucine 0.28202 0.25213 0.00833 0.00868 BL 36

Lysine 0.28002 0.25994 0.00697 0.00492 BL 36

Methionine 0.03193 0.02544 0.00522 0.00507 BL 36

MyoInositol 0.04873 0.04562 0.00776 0.00711 BL 36

Valine 0.28683 0.26276 0.00320 0.00131 BL 36

α-D-glucose 3.86186 3.48176 0.15817 0.16155 BL 39

β-D-glucose 3.91895 3.46246 0.07704 0.07453 BL 39

Alanine 0.06322 0.05737 0.00495 0.00481 BL 39

Glutamate 0.09733 0.09220 0.00756 0.00624 BL 39

Glutamine 0.56406 0.50846 0.01035 0.01048 BL 39

Glycerol 0.10754 0.09741 0.00700 0.00839 BL 39

Glycine 0.21188 0.18452 0.00626 0.00507 BL 39

Isoleucine 0.09909 0.07774 0.02236 0.01640 BL 39

Lactate 2.32727 2.09938 0.06507 0.07145 BL 39

Leucine 0.23027 0.20323 0.00508 0.00661 BL 39

Lysine 0.26784 0.24762 0.00569 0.00780 BL 39

Methionine 0.01776 0.01404 0.00551 0.00402 BL 39

MyoInositol 0.05085 0.04674 0.00477 0.00314 BL 39

Valine 0.24463 0.21923 0.00700 0.00653 BL 39
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α-D-glucose 3.60066 3.20775 0.11754 0.09402 BL 42

β-D-glucose 3.52881 3.14892 0.14494 0.12548 BL 42

Alanine 0.10351 0.09531 NA NA BL 42

Glutamate 0.10436 0.09779 0.00715 0.00522 BL 42

Glutamine 0.60178 0.54671 0.02284 0.02312 BL 42

Glycerol 0.17452 0.15698 0.01076 0.00906 BL 42

Glycine 0.24994 0.22136 0.01337 0.01464 BL 42

Isoleucine 0.07345 0.05971 0.00450 0.00702 BL 42

Lactate 4.26931 3.88001 0.23918 0.21469 BL 42

Leucine 0.27158 0.24182 0.01270 0.01226 BL 42

Lysine 0.30378 0.28092 0.00946 0.01089 BL 42

Methionine 0.02485 0.02063 0.00481 0.00484 BL 42

MyoInositol 0.04607 0.04108 0.00406 0.00368 BL 42

Valine 0.27819 0.25031 0.00796 0.00881 BL 42

α-D-glucose 2.73866 2.47809 0.11379 0.08263 BL 45

β-D-glucose 2.68834 2.41605 0.09792 0.08965 BL 45

Alanine 0.12150 0.10660 0.01452 0.01453 BL 45

Glutamate 0.09586 0.09234 0.00358 0.00457 BL 45

Glutamine 0.57644 0.52076 0.00660 0.00628 BL 45

Glycerol 0.22273 0.20035 0.01461 0.01216 BL 45

Glycine 0.24837 0.22147 0.01008 0.00614 BL 45

Isoleucine 0.08844 0.07659 0.03640 0.03169 BL 45

Lactate 5.63240 5.14068 0.18881 0.16334 BL 45

Leucine 0.28654 0.25294 0.00206 0.00208 BL 45

Lysine 0.27661 0.25250 0.01338 0.01283 BL 45

Methionine 0.02162 0.01887 0.00510 0.00469 BL 45

MyoInositol 0.04676 0.04370 0.00564 0.00603 BL 45

Valine 0.28679 0.25846 0.00432 0.00352 BL 45

α-D-glucose 2.18749 1.98445 0.06779 0.06631 BL 48

β-D-glucose 2.19784 1.94112 0.12710 0.09297 BL 48

Alanine 0.16399 0.14237 0.00979 0.00644 BL 48

Glutamate 0.10659 0.09857 0.01048 0.00953 BL 48

Glutamine 0.57805 0.52386 0.01240 0.01156 BL 48

Glycerol 0.30260 0.27038 0.02056 0.01602 BL 48

Glycine 0.27930 0.24420 0.02085 0.01525 BL 48

Isoleucine 0.10043 0.08275 0.02278 0.01897 BL 48
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Lactate 7.83007 7.05082 0.48460 0.37079 BL 48

Leucine 0.33659 0.29306 0.00761 0.00264 BL 48

Lysine 0.28326 0.25705 0.01214 0.00956 BL 48

Methionine 0.02840 0.02458 0.00079 0.00140 BL 48

MyoInositol 0.05195 0.04757 0.00194 0.00271 BL 48

Valine 0.31842 0.28364 0.01008 0.00548 BL 48

α-D-glucose 3.82773 3.46406 0.23047 0.15529 BL 51

β-D-glucose 3.70734 3.34280 0.30080 0.22662 BL 51

Alanine 0.05236 0.04685 0.01185 0.01004 BL 51

Glutamate 0.08761 0.08309 0.00503 0.00580 BL 51

Glutamine 0.54757 0.50252 0.03872 0.03062 BL 51

Glycerol 0.10603 0.09927 0.01135 0.01111 BL 51

Glycine 0.20621 0.18497 0.01093 0.00806 BL 51

Isoleucine 0.09882 0.07937 0.02054 0.01933 BL 51

Lactate 2.57884 2.36710 0.24377 0.19891 BL 51

Leucine 0.22295 0.19848 0.01115 0.00907 BL 51

Lysine 0.27423 0.25738 0.00730 0.00378 BL 51

Methionine 0.02656 0.02180 0.00373 0.00290 BL 51

MyoInositol 0.04335 0.03924 0.00278 0.00388 BL 51

Valine 0.23759 0.21989 0.00716 0.00583 BL 51

α-D-glucose 3.27118 2.91044 0.04616 0.04073 BL 54

β-D-glucose 3.25429 2.88651 0.15184 0.11234 BL 54

Alanine 0.08261 0.07390 0.00853 0.00602 BL 54

Glutamate 0.10351 0.09582 0.00243 0.00012 BL 54

Glutamine 0.54500 0.49644 0.01512 0.01116 BL 54

Glycerol 0.16878 0.15314 0.00157 0.00164 BL 54

Glycine 0.22913 0.20345 0.00789 0.00309 BL 54

Isoleucine 0.09549 0.08159 0.01019 0.00831 BL 54

Lactate 4.18486 3.78705 0.15060 0.10625 BL 54

Leucine 0.23773 0.21210 0.01215 0.00708 BL 54

Lysine 0.27387 0.25151 0.00989 0.00660 BL 54

Methionine 0.02718 0.02326 0.00219 0.00169 BL 54

MyoInositol 0.04270 0.03814 0.00350 0.00319 BL 54

Valine 0.25428 0.23399 0.00978 0.00521 BL 54

α-D-glucose 3.89263 3.53101 0.09893 0.05628 BL 6

β-D-glucose 3.79816 3.42924 0.12162 0.10500 BL 6
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Alanine 0.02943 0.02873 0.00286 0.00329 BL 6

Glutamate 0.08836 0.08300 0.00398 0.00397 BL 6

Glutamine 0.53926 0.49708 0.01349 0.01165 BL 6

Glycerol 0.06976 0.06476 0.00191 0.00260 BL 6

Glycine 0.18412 0.16368 0.01009 0.00691 BL 6

Isoleucine 0.13162 0.11223 0.01770 0.01493 BL 6

Lactate 1.58786 1.45596 0.04463 0.04535 BL 6

Leucine 0.18521 0.16637 0.00550 0.00674 BL 6

Lysine 0.25696 0.23889 0.00601 0.00500 BL 6

Methionine 0.02894 0.02566 0.00357 0.00285 BL 6

MyoInositol 0.04491 0.04152 0.00362 0.00350 BL 6

Valine 0.20884 0.19173 0.00123 0.00297 BL 6

α-D-glucose 3.78051 3.40356 0.08727 0.06106 BL 9

β-D-glucose 3.82024 3.40702 0.06356 0.02657 BL 9

Alanine 0.04263 0.03920 0.00401 0.00499 BL 9

Glutamate 0.10484 0.09917 0.00481 0.00330 BL 9

Glutamine 0.55436 0.50863 0.01281 0.00821 BL 9

Glycerol 0.08176 0.07786 0.00998 0.01123 BL 9

Glycine 0.20703 0.18522 0.00623 0.00437 BL 9

Isoleucine 0.11814 0.09801 0.00963 0.00550 BL 9

Lactate 2.40106 2.17966 0.06711 0.04039 BL 9

Leucine 0.19860 0.17665 0.00743 0.00635 BL 9

Lysine 0.26180 0.24175 0.01040 0.00921 BL 9

Methionine 0.01888 0.01434 0.00218 0.00130 BL 9

MyoInositol 0.03802 0.03604 0.00592 0.00637 BL 9

Valine 0.21091 0.19189 0.01084 0.00876 BL 9

α-D-glucose 11.24389 10.06315 0.15828 0.06105 CM 0

β-D-glucose 11.73191 10.33157 0.32214 0.20654 CM 0

Acetate 0.22269 0.19993 0.00837 0.00896 CM 0

Arginine 1.25314 1.13949 0.01982 0.01657 CM 0

Asparagine 0.39614 0.35979 0.01974 0.01781 CM 0

Aspartate 0.08191 0.08561 0.00391 0.00287 CM 0

Glutamate 0.20449 0.18440 0.00436 0.00265 CM 0

Glutamine 1.88365 1.70664 0.03580 0.02844 CM 0

Glycine 0.12762 0.11376 0.00750 0.00609 CM 0

Isoleucine 0.44668 0.39686 0.00639 0.00571 CM 0
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Leucine 0.46827 0.40765 0.01238 0.00804 CM 0

Lysine 0.26765 0.24440 0.00670 0.00324 CM 0

Methionine 0.09579 0.08390 0.00346 0.00337 CM 0

MyoInositol 0.23912 0.21987 0.00775 0.00707 CM 0

Serine 0.21184 0.18018 0.01338 0.00367 CM 0

Valine 0.17345 0.15470 0.00410 0.00314 CM 0

α-D-glucose 8.74969 7.91501 0.63354 0.53033 CM 12

β-D-glucose 8.96950 7.98069 0.49845 0.41970 CM 12

Acetate 0.18040 0.17129 0.01635 0.01703 CM 12

Alanine 0.05504 0.05078 0.00480 0.00364 CM 12

Arginine 0.95443 0.86813 0.09173 0.07647 CM 12

Asparagine 0.38259 0.35529 0.01484 0.01605 CM 12

Aspartate 0.06990 0.07036 0.00564 0.00673 CM 12

Glutamate 0.20154 0.18600 0.00905 0.00664 CM 12

Glutamine 1.70466 1.55775 0.08758 0.07413 CM 12

Glycerol 0.17370 0.16181 0.00839 0.00734 CM 12

Glycine 0.11368 0.09936 0.01079 0.01000 CM 12

Isoleucine 0.42104 0.37427 0.01260 0.00998 CM 12

Lactate 4.83175 4.40053 0.21765 0.21322 CM 12

Leucine 0.46147 0.40634 0.02166 0.01788 CM 12

Lysine 0.25247 0.23267 0.00703 0.00651 CM 12

Methionine 0.09744 0.08702 0.00958 0.00879 CM 12

MyoInositol 0.23459 0.21849 0.00860 0.00688 CM 12

Serine 0.17073 0.14234 0.01367 0.01615 CM 12

Valine 0.18099 0.16279 0.00811 0.00644 CM 12

α-D-glucose 10.00262 8.95902 0.11380 0.08980 CM 15

β-D-glucose 9.92671 8.91804 0.03453 0.01632 CM 15

Acetate 0.18974 0.18236 0.00863 0.00814 CM 15

Alanine 0.03681 0.03368 0.00126 0.00056 CM 15

Arginine 1.08974 0.99522 0.03276 0.02437 CM 15

Asparagine 0.35924 0.33394 0.01501 0.01276 CM 15

Aspartate 0.08153 0.08493 0.00529 0.00519 CM 15

Glutamate 0.18456 0.16991 0.00400 0.00366 CM 15

Glutamine 1.65586 1.52028 0.02578 0.01259 CM 15

Glycerol 0.09091 0.08638 0.00566 0.00527 CM 15

Glycine 0.11359 0.09908 0.00204 0.00229 CM 15
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Isoleucine 0.41615 0.36868 0.01188 0.00574 CM 15

Lactate 1.80072 1.63894 0.04279 0.03298 CM 15

Leucine 0.44016 0.39287 0.02091 0.01255 CM 15

Lysine 0.24289 0.22423 0.00463 0.00420 CM 15

Methionine 0.09078 0.07900 0.00576 0.00407 CM 15

MyoInositol 0.22416 0.20828 0.01190 0.00932 CM 15

Serine 0.20713 0.15902 0.03309 0.03634 CM 15

Valine 0.16825 0.15507 0.00476 0.00157 CM 15

α-D-glucose 9.10627 8.30106 0.16308 0.11569 CM 18

β-D-glucose 9.15186 8.24328 0.33882 0.24820 CM 18

Acetate 0.17792 0.17122 0.00540 0.00429 CM 18

Alanine 0.06074 0.05553 0.00445 0.00442 CM 18

Arginine 1.02733 0.94201 0.03069 0.02904 CM 18

Asparagine 0.37139 0.35847 0.01492 0.01447 CM 18

Aspartate 0.08014 0.08403 0.01292 0.01245 CM 18

Glutamate 0.19984 0.18359 0.00742 0.00539 CM 18

Glutamine 1.64820 1.50877 0.02572 0.02306 CM 18

Glycerol 0.13478 0.12658 0.00607 0.00449 CM 18

Glycine 0.12860 0.11774 0.00890 0.00836 CM 18

Isoleucine 0.39940 0.35346 0.00960 0.00621 CM 18

Lactate 3.34609 3.06370 0.05384 0.05708 CM 18

Leucine 0.46143 0.40561 0.00547 0.00382 CM 18

Lysine 0.22903 0.21439 0.00707 0.00496 CM 18

Methionine 0.10051 0.08896 0.00242 0.00233 CM 18

MyoInositol 0.22883 0.21047 0.00423 0.00507 CM 18

Serine 0.22508 0.18809 0.03203 0.02704 CM 18

Valine 0.19190 0.17522 0.00447 0.00452 CM 18

α-D-glucose 8.63309 7.63151 0.46750 0.32805 CM 21

β-D-glucose 8.78785 7.73064 0.67131 0.45534 CM 21

Acetate 0.17785 0.16270 0.02513 0.02153 CM 21

Alanine 0.08569 0.07765 0.00140 0.00121 CM 21

Arginine 0.94701 0.86242 0.07757 0.06337 CM 21

Asparagine 0.36295 0.34301 0.05006 0.05241 CM 21

Aspartate 0.08230 0.08139 0.00484 0.00003 CM 21

Glutamate 0.20422 0.18866 0.02065 0.01322 CM 21

Glutamine 1.64621 1.49839 0.13589 0.09614 CM 21
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Glycerol 0.24138 0.21892 0.00437 0.00427 CM 21

Glycine 0.14524 0.12564 0.00706 0.00583 CM 21

Isoleucine 0.37691 0.33275 0.01271 0.00060 CM 21

Lactate 6.12528 5.52311 0.24162 0.13184 CM 21

Leucine 0.49012 0.43672 0.05207 0.03235 CM 21

Lysine 0.25124 0.23228 0.02402 0.01862 CM 21

Methionine 0.08532 0.07188 0.01109 0.00486 CM 21

MyoInositol 0.22983 0.21111 0.01550 0.01069 CM 21

Serine 0.21223 0.15802 0.01555 0.01486 CM 21

Valine 0.20686 0.18608 0.01293 0.00643 CM 21

α-D-glucose 7.45732 6.71146 0.10062 0.00128 CM 24

β-D-glucose 7.59100 6.72482 0.11905 0.08017 CM 24

Acetate 0.16350 0.15623 0.01063 0.01093 CM 24

Alanine 0.13952 0.12521 0.00353 0.00178 CM 24

Arginine 0.88536 0.80577 0.05299 0.04471 CM 24

Asparagine 0.38208 0.36498 0.00306 0.01547 CM 24

Aspartate 0.07365 0.07260 0.00818 0.00866 CM 24

Glutamate 0.20242 0.18508 0.00019 0.00184 CM 24

Glutamine 1.66148 1.51996 0.02743 0.01935 CM 24

Glycerol 0.38660 0.34452 0.02098 0.01753 CM 24

Glycine 0.16405 0.14302 0.00597 0.00405 CM 24

Isoleucine 0.40708 0.35793 0.01397 0.01552 CM 24

Lactate 9.09581 8.24538 0.55429 0.48020 CM 24

Leucine 0.54238 0.47644 0.00831 0.00890 CM 24

Lysine 0.25303 0.23300 0.00420 0.00075 CM 24

Methionine 0.09840 0.08523 0.00418 0.00314 CM 24

MyoInositol 0.21590 0.19924 0.00061 0.00084 CM 24

Serine 0.25741 0.22911 0.02312 0.01034 CM 24

Valine 0.23293 0.21337 0.00302 0.00581 CM 24

α-D-glucose 9.39042 8.35553 0.55813 0.36827 CM 27

β-D-glucose 9.25456 8.21020 0.70573 0.49552 CM 27

Acetate 0.20095 0.18544 0.00579 0.00460 CM 27

Alanine 0.09535 0.08600 0.00602 0.00559 CM 27

Arginine 1.14701 1.03438 0.05399 0.04464 CM 27

Asparagine 0.39112 0.36356 0.03324 0.03707 CM 27

Aspartate 0.08215 0.08116 0.01081 0.01142 CM 27
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Glutamate 0.21426 0.19502 0.01064 0.00762 CM 27

Glutamine 1.75267 1.58970 0.10386 0.08190 CM 27

Glycerol 0.28758 0.25930 0.02138 0.01519 CM 27

Glycine 0.15897 0.14076 0.01063 0.00993 CM 27

Isoleucine 0.47415 0.41397 0.01770 0.01453 CM 27

Lactate 6.03623 5.43407 0.41359 0.31760 CM 27

Leucine 0.52991 0.46192 0.03517 0.02577 CM 27

Lysine 0.26139 0.24006 0.02377 0.01874 CM 27

Methionine 0.09625 0.08525 0.00705 0.00663 CM 27

MyoInositol 0.24996 0.23015 0.00823 0.00749 CM 27

Serine 0.18189 0.14696 0.03916 0.03148 CM 27

Valine 0.22762 0.20324 0.00678 0.00521 CM 27

α-D-glucose 9.64718 8.66491 0.30007 0.25086 CM 3

β-D-glucose 10.13889 8.92258 0.28797 0.24749 CM 3

Acetate 0.17712 0.16680 0.01892 0.01594 CM 3

Alanine 0.03338 0.03273 0.00163 0.00188 CM 3

Arginine 1.08089 0.97828 0.04591 0.04180 CM 3

Asparagine 0.34833 0.33339 0.01125 0.00760 CM 3

Aspartate 0.07089 0.07010 0.00678 0.00726 CM 3

Glutamate 0.18583 0.16816 0.00164 0.00186 CM 3

Glutamine 1.64469 1.49556 0.07867 0.06974 CM 3

Glycerol 0.07761 0.07236 0.00714 0.00745 CM 3

Glycine 0.11446 0.09833 0.00462 0.00479 CM 3

Isoleucine 0.44530 0.38913 0.01085 0.01073 CM 3

Lactate 1.32716 1.19281 0.02868 0.02818 CM 3

Leucine 0.44073 0.38309 0.00894 0.00881 CM 3

Lysine 0.23774 0.21379 0.01479 0.01324 CM 3

Methionine 0.09522 0.08017 0.00786 0.00692 CM 3

MyoInositol 0.22843 0.21043 0.00436 0.00321 CM 3

Serine 0.17517 0.10999 0.03669 0.04779 CM 3

Valine 0.17211 0.15328 0.00213 0.00293 CM 3

α-D-glucose 7.04408 6.36244 0.15457 0.08639 CM 30

β-D-glucose 6.97437 6.24914 0.13145 0.10714 CM 30

Acetate 0.18066 0.16854 0.00583 0.00375 CM 30

Alanine 0.17405 0.15173 0.00732 0.00672 CM 30

Arginine 1.00227 0.91281 0.02432 0.01712 CM 30
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Asparagine 0.40967 0.38906 0.01235 0.00836 CM 30

Aspartate 0.07608 0.07422 0.00503 0.00424 CM 30

Glutamate 0.21821 0.19854 0.00871 0.00785 CM 30

Glutamine 1.66311 1.52235 0.03304 0.03402 CM 30

Glycerol 0.47227 0.42744 0.03330 0.02909 CM 30

Glycine 0.17019 0.15096 0.01666 0.01504 CM 30

Isoleucine 0.42504 0.37728 0.01384 0.01281 CM 30

Lactate 10.88257 9.90727 0.45237 0.43872 CM 30

Leucine 0.56408 0.49781 0.02141 0.01819 CM 30

Lysine 0.26713 0.24452 0.01120 0.01226 CM 30

Methionine 0.09947 0.08682 0.00271 0.00259 CM 30

MyoInositol 0.23281 0.21373 0.01000 0.00899 CM 30

Serine 0.23152 0.21403 0.02790 0.02717 CM 30

Valine 0.26174 0.23679 0.00345 0.00419 CM 30

α-D-glucose 4.57977 4.20535 0.31086 0.21235 CM 33

β-D-glucose 4.62638 4.18973 0.23812 0.17147 CM 33

Acetate 0.16477 0.15692 0.01122 0.01070 CM 33

Alanine 0.22729 0.20467 0.00812 0.00557 CM 33

Arginine 0.82094 0.76209 0.06111 0.04958 CM 33

Asparagine 0.38407 0.38077 0.00895 0.00449 CM 33

Aspartate 0.06745 0.06883 0.00655 0.00927 CM 33

Glutamate 0.22032 0.20407 0.00797 0.00357 CM 33

Glutamine 1.48271 1.38681 0.03973 0.01410 CM 33

Glycerol 0.65542 0.59533 0.01780 0.02000 CM 33

Glycine 0.17918 0.16156 0.00650 0.00561 CM 33

Isoleucine 0.37056 0.33656 0.01619 0.00674 CM 33

Lactate 15.43335 14.24994 0.48505 0.27627 CM 33

Leucine 0.56917 0.51332 0.00685 0.00544 CM 33

Lysine 0.24928 0.23340 0.00514 0.00315 CM 33

Methionine 0.08246 0.07444 0.00407 0.00348 CM 33

MyoInositol 0.20275 0.19126 0.00324 0.00491 CM 33

Serine 0.27123 0.24690 0.01664 0.01785 CM 33

Valine 0.28555 0.26255 0.00686 0.00417 CM 33

α-D-glucose 2.65735 2.43643 0.20389 0.19647 CM 36

β-D-glucose 2.58172 2.37797 0.21948 0.21661 CM 36

Acetate 0.15375 0.15196 0.00472 0.00546 CM 36
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Alanine 0.27549 0.24937 0.00931 0.00797 CM 36

Arginine 0.67602 0.63239 0.04660 0.04824 CM 36

Asparagine 0.35173 0.35634 0.02292 0.02037 CM 36

Aspartate 0.06061 0.06312 0.00485 0.00387 CM 36

Glutamate 0.19924 0.18613 0.00548 0.00360 CM 36

Glutamine 1.35604 1.28467 0.02734 0.01385 CM 36

Glycerol 0.83501 0.76404 0.05518 0.04884 CM 36

Glycine 0.18360 0.16543 0.01137 0.00871 CM 36

Isoleucine 0.34844 0.32079 0.01085 0.00888 CM 36

Lactate 18.91782 17.68511 0.56125 0.42728 CM 36

Leucine 0.56891 0.51511 0.02256 0.01298 CM 36

Lysine 0.23868 0.22634 0.00756 0.00783 CM 36

Methionine 0.06975 0.06169 0.00059 0.00129 CM 36

MyoInositol 0.18829 0.17835 0.00773 0.00533 CM 36

Serine 0.29648 0.27351 0.01498 0.01248 CM 36

Valine 0.29747 0.27654 0.01268 0.01062 CM 36

α-D-glucose 7.79951 7.03557 0.31243 0.16162 CM 39

β-D-glucose 7.77320 6.98277 0.14289 0.08758 CM 39

Acetate 0.19838 0.18325 0.01069 0.00734 CM 39

Alanine 0.11704 0.10553 0.00427 0.00385 CM 39

Arginine 1.05618 0.96456 0.02275 0.01225 CM 39

Asparagine 0.35186 0.35386 0.00950 0.01306 CM 39

Aspartate 0.07974 0.08064 0.00913 0.00966 CM 39

Glutamate 0.21060 0.19579 0.00596 0.00618 CM 39

Glutamine 1.70930 1.57208 0.04702 0.03495 CM 39

Glycerol 0.34390 0.32005 0.00946 0.00810 CM 39

Glycine 0.13507 0.12141 0.00684 0.00753 CM 39

Isoleucine 0.40058 0.35869 0.02616 0.01993 CM 39

Lactate 8.17617 7.47640 0.51294 0.42213 CM 39

Leucine 0.49751 0.44514 0.00250 0.00028 CM 39

Lysine 0.25061 0.23029 0.00065 0.00311 CM 39

Methionine 0.09073 0.07857 0.00255 0.00207 CM 39

MyoInositol 0.22171 0.20835 0.00353 0.00234 CM 39

Serine 0.20937 0.19200 0.02605 0.02293 CM 39

Valine 0.21516 0.19534 0.00445 0.00387 CM 39

α-D-glucose 5.54476 5.05521 0.37221 0.30176 CM 42
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β-D-glucose 5.48432 5.02130 0.46731 0.38475 CM 42

Acetate 0.18458 0.17849 0.00981 0.01429 CM 42

Alanine 0.15125 0.13781 0.01089 0.00836 CM 42

Arginine 0.88134 0.82230 0.06032 0.05148 CM 42

Asparagine 0.37043 0.36605 0.01655 0.01630 CM 42

Aspartate 0.07501 0.07767 0.00924 0.00901 CM 42

Glutamate 0.21466 0.20026 0.00537 0.00488 CM 42

Glutamine 1.50500 1.41735 0.08133 0.06822 CM 42

Glycerol 0.50378 0.46630 0.01732 0.01458 CM 42

Glycine 0.15385 0.13984 0.01109 0.01015 CM 42

Isoleucine 0.38457 0.34932 0.03007 0.02682 CM 42

Lactate 12.59340 11.73159 0.52420 0.40850 CM 42

Leucine 0.50161 0.45488 0.01830 0.01587 CM 42

Lysine 0.23362 0.22126 0.01666 0.01604 CM 42

Methionine 0.07466 0.06667 0.00317 0.00298 CM 42

MyoInositol 0.20954 0.20019 0.01147 0.00921 CM 42

Serine 0.23277 0.20800 0.01462 0.01081 CM 42

Valine 0.22870 0.21376 0.00888 0.00825 CM 42

α-D-glucose 3.78817 3.45726 0.21951 0.14137 CM 45

β-D-glucose 3.89997 3.52084 0.26351 0.19923 CM 45

Acetate 0.16225 0.15029 0.00152 0.00094 CM 45

Alanine 0.18541 0.16743 0.00987 0.00961 CM 45

Arginine 0.76970 0.71688 0.04575 0.03634 CM 45

Asparagine 0.35290 0.36294 0.00748 0.01095 CM 45

Aspartate 0.07227 0.07391 0.00415 0.00241 CM 45

Glutamate 0.21268 0.19698 0.00827 0.00557 CM 45

Glutamine 1.52817 1.42834 0.04478 0.03696 CM 45

Glycerol 0.74463 0.67441 0.04328 0.04010 CM 45

Glycine 0.16844 0.15130 0.00283 0.00112 CM 45

Isoleucine 0.37319 0.33873 0.00511 0.00553 CM 45

Lactate 18.02106 16.64666 0.77234 0.68926 CM 45

Leucine 0.54396 0.48660 0.01709 0.01365 CM 45

Lysine 0.25546 0.23781 0.00495 0.00186 CM 45

Methionine 0.07224 0.06321 0.00324 0.00255 CM 45

MyoInositol 0.20403 0.19405 0.00780 0.00702 CM 45

Serine 0.29057 0.26429 0.01389 0.01252 CM 45
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Valine 0.24611 0.23303 0.00906 0.00794 CM 45

α-D-glucose 2.25221 2.06652 0.25376 0.23796 CM 48

β-D-glucose 2.20516 2.03390 0.29941 0.28048 CM 48

Acetate 0.12897 0.12188 0.01853 0.01611 CM 48

Alanine 0.20798 0.18953 0.00801 0.00590 CM 48

Arginine 0.64011 0.60138 0.05566 0.05486 CM 48

Asparagine 0.38626 0.38966 0.00815 0.00987 CM 48

Aspartate 0.07289 0.07772 0.00173 0.00142 CM 48

Glutamate 0.22055 0.20930 0.01032 0.01193 CM 48

Glutamine 1.44848 1.37179 0.03649 0.04346 CM 48

Glycerol 0.89867 0.83372 0.00912 0.01092 CM 48

Glycine 0.16650 0.15029 0.00558 0.00188 CM 48

Isoleucine 0.35576 0.33309 0.00801 0.00851 CM 48

Lactate 21.64304 20.27124 0.35231 0.40604 CM 48

Leucine 0.53173 0.48487 0.01532 0.01663 CM 48

Lysine 0.24950 0.23671 0.00612 0.00707 CM 48

Methionine 0.06126 0.05468 0.00543 0.00451 CM 48

MyoInositol 0.19333 0.18244 0.00144 0.00307 CM 48

Serine 0.30903 0.28842 0.00405 0.00479 CM 48

Valine 0.25059 0.23482 0.00709 0.00712 CM 48

α-D-glucose 7.29914 6.63518 0.49969 0.34154 CM 51

β-D-glucose 7.06350 6.28017 0.45409 0.28490 CM 51

Acetate 0.19339 0.17212 0.01810 0.01160 CM 51

Alanine 0.05412 0.04828 0.00639 0.00680 CM 51

Arginine 0.95745 0.87287 0.04576 0.02518 CM 51

Asparagine 0.33422 0.31341 0.00621 0.00469 CM 51

Aspartate 0.08669 0.08977 0.00794 0.00490 CM 51

Glutamate 0.19669 0.18220 0.00615 0.00172 CM 51

Glutamine 1.56120 1.42938 0.05060 0.01927 CM 51

Glycerol 0.22311 0.20506 0.02704 0.03008 CM 51

Glycine 0.12158 0.10682 0.00196 0.00204 CM 51

Isoleucine 0.40033 0.35710 0.00674 0.00984 CM 51

Lactate 5.36452 4.90108 0.77037 0.77394 CM 51

Leucine 0.44222 0.39257 0.02246 0.01216 CM 51

Lysine 0.23272 0.21644 0.00854 0.01066 CM 51

Methionine 0.08740 0.07383 0.00307 0.00025 CM 51

243



Metabolite Height Volume SEM-Height SEM-Volume Media Time[h]

MyoInositol 0.22418 0.20478 0.02351 0.01411 CM 51

Serine 0.10049 0.07999 0.01086 0.01088 CM 51

Valine 0.18204 0.16567 0.00149 0.00441 CM 51

α-D-glucose 6.41549 5.74084 0.24195 0.25193 CM 54

β-D-glucose 6.22139 5.56693 0.29161 0.28358 CM 54

Acetate 0.17578 0.16597 0.01025 0.00874 CM 54

Alanine 0.07198 0.06584 0.00466 0.00403 CM 54

Arginine 0.84320 0.77415 0.02199 0.01563 CM 54

Asparagine 0.37599 0.36260 0.00630 0.00048 CM 54

Aspartate 0.07212 0.07436 0.00511 0.00511 CM 54

Glutamate 0.19479 0.18127 0.00228 0.00373 CM 54

Glutamine 1.52197 1.40428 0.02084 0.01317 CM 54

Glycerol 0.31511 0.28415 0.04145 0.03564 CM 54

Glycine 0.13066 0.11817 0.00512 0.00606 CM 54

Isoleucine 0.38615 0.34772 0.01598 0.01220 CM 54

Lactate 7.93296 7.23213 0.86583 0.75947 CM 54

Leucine 0.43139 0.38866 0.00550 0.00249 CM 54

Lysine 0.23863 0.22239 0.00473 0.00306 CM 54

Methionine 0.07488 0.06486 0.00412 0.00355 CM 54

MyoInositol 0.20778 0.19500 0.00485 0.00397 CM 54

Serine 0.12838 0.11435 0.01845 0.01415 CM 54

Valine 0.18093 0.16656 0.00845 0.00441 CM 54

α-D-glucose 9.56683 8.50652 0.38881 0.33892 CM 6

β-D-glucose 9.86094 8.68894 0.26840 0.27751 CM 6

Acetate 0.19701 0.18889 0.01764 0.01834 CM 6

Alanine 0.03052 0.02733 0.00044 0.00070 CM 6

Arginine 1.03103 0.93653 0.06482 0.05833 CM 6

Asparagine 0.32640 0.32005 0.01161 0.00784 CM 6

Aspartate 0.07383 0.07533 0.00527 0.00562 CM 6

Glutamate 0.19857 0.18126 0.00366 0.00283 CM 6

Glutamine 1.65228 1.50282 0.05187 0.05568 CM 6

Glycerol 0.08891 0.08140 0.00853 0.00732 CM 6

Glycine 0.11362 0.09863 0.00969 0.00772 CM 6

Isoleucine 0.42220 0.36869 0.00700 0.00407 CM 6

Lactate 2.46362 2.22567 0.11932 0.09517 CM 6

Leucine 0.43410 0.38186 0.00897 0.01179 CM 6
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Lysine 0.23829 0.21810 0.02073 0.01959 CM 6

Methionine 0.08764 0.07567 0.00653 0.00592 CM 6

MyoInositol 0.23864 0.21837 0.00292 0.00222 CM 6

Serine 0.14926 0.10825 0.02446 0.01348 CM 6

Valine 0.17159 0.15585 0.00479 0.00438 CM 6

α-D-glucose 9.04964 8.24361 0.45604 0.37494 CM 9

β-D-glucose 9.16366 8.18619 0.38076 0.35964 CM 9

Acetate 0.16424 0.16060 0.01208 0.01189 CM 9

Alanine 0.03974 0.03572 0.00549 0.00575 CM 9

Arginine 0.99185 0.90163 0.06969 0.06387 CM 9

Asparagine 0.35917 0.33409 0.03347 0.03455 CM 9

Aspartate 0.07532 0.07574 0.00335 0.00079 CM 9

Glutamate 0.18489 0.17157 0.01132 0.01021 CM 9

Glutamine 1.62405 1.48686 0.05701 0.05688 CM 9

Glycerol 0.11755 0.11182 0.00878 0.00820 CM 9

Glycine 0.12264 0.10882 0.00605 0.00450 CM 9

Isoleucine 0.44683 0.39323 0.03066 0.02476 CM 9

Lactate 3.49833 3.18605 0.10655 0.09414 CM 9

Leucine 0.43378 0.38100 0.01710 0.01545 CM 9

Lysine 0.24244 0.22249 0.00937 0.00799 CM 9

Methionine 0.08904 0.07686 0.00585 0.00676 CM 9

MyoInositol 0.22588 0.21209 0.00420 0.00295 CM 9

Serine 0.16977 0.13893 0.00492 0.01177 CM 9

Valine 0.17116 0.15412 0.00134 0.00079 CM 9

α-D-glucose 1.92083 1.72751 0.06642 0.05811 LG 0

β-D-glucose 1.85165 1.64118 0.05766 0.05041 LG 0

Glutamate 0.09272 0.08793 0.00548 0.00492 LG 0

Glutamine 0.59699 0.54786 0.01200 0.01119 LG 0

Glycine 0.21677 0.19129 0.00978 0.00870 LG 0

Isoleucine 0.09558 0.07815 0.00354 0.00265 LG 0

Leucine 0.20345 0.17980 0.00968 0.00924 LG 0

Lysine 0.30061 0.27907 0.00683 0.00663 LG 0

Methionine 0.03314 0.02883 0.00401 0.00445 LG 0

MyoInositol 0.05400 0.04829 0.00045 0.00109 LG 0

Valine 0.22567 0.20590 0.00866 0.00646 LG 0

α-D-glucose 0.71618 0.64927 0.02688 0.02040 LG 12
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β-D-glucose 0.70858 0.64422 0.01922 0.01758 LG 12

Alanine 0.04297 0.03931 0.00476 0.00301 LG 12

Glutamate 0.08107 0.07654 0.00645 0.00605 LG 12

Glutamine 0.51232 0.47590 0.00626 0.00410 LG 12

Glycerol 0.08982 0.08086 0.00979 0.00493 LG 12

Glycine 0.19131 0.16761 0.00679 0.00644 LG 12

Isoleucine 0.09633 0.08275 0.01178 0.01017 LG 12

Lactate 2.71346 2.50494 0.09880 0.08468 LG 12

Leucine 0.18961 0.17361 0.00780 0.00840 LG 12

Lysine 0.26401 0.24699 0.00898 0.00708 LG 12

Methionine 0.02257 0.02092 0.00042 0.00076 LG 12

MyoInositol 0.03385 0.02928 0.00113 0.00138 LG 12

Valine 0.20218 0.18680 0.00466 0.00432 LG 12

α-D-glucose 1.52835 1.34498 0.05670 0.03296 LG 15

β-D-glucose 1.51780 1.32984 0.05365 0.02958 LG 15

Alanine 0.02411 0.02202 0.00275 0.00271 LG 15

Glutamate 0.10326 0.09542 0.00406 0.00240 LG 15

Glutamine 0.56992 0.51728 0.01456 0.00735 LG 15

Glycerol 0.03907 0.03335 0.00385 0.00551 LG 15

Glycine 0.20478 0.17627 0.01281 0.00867 LG 15

Isoleucine 0.13286 0.11323 0.01933 0.01867 LG 15

Lactate 0.80204 0.72076 0.03496 0.02329 LG 15

Leucine 0.19363 0.17006 0.00862 0.00479 LG 15

Lysine 0.29203 0.26542 0.01554 0.01027 LG 15

Methionine 0.02619 0.01882 0.00460 0.00592 LG 15

MyoInositol 0.03999 0.03573 0.00465 0.00318 LG 15

Valine 0.22581 0.20309 0.00439 0.00360 LG 15

α-D-glucose 1.31129 1.17018 0.06159 0.04107 LG 18

β-D-glucose 1.31764 1.15666 0.05592 0.03119 LG 18

Alanine 0.03158 0.02964 0.00042 0.00141 LG 18

Glutamate 0.09853 0.08979 0.00428 0.00465 LG 18

Glutamine 0.55488 0.49632 0.00850 0.01133 LG 18

Glycerol 0.04679 0.04364 0.00105 0.00173 LG 18

Glycine 0.21168 0.18858 0.00741 0.00633 LG 18

Isoleucine 0.09790 0.08081 0.01476 0.01516 LG 18

Lactate 1.25546 1.13679 0.04003 0.02557 LG 18
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Leucine 0.19209 0.16857 0.01008 0.00670 LG 18

Lysine 0.28745 0.26172 0.01001 0.00615 LG 18

Methionine 0.02876 0.02388 0.00158 0.00146 LG 18

MyoInositol 0.03788 0.03540 0.00462 0.00386 LG 18

Valine 0.21443 0.19436 0.00266 0.00068 LG 18

α-D-glucose 1.08183 0.98159 0.03579 0.01884 LG 21

β-D-glucose 1.11294 0.97912 0.03559 0.02111 LG 21

Alanine 0.02893 0.02675 0.00085 0.00164 LG 21

Glutamate 0.08715 0.08518 0.00379 0.00290 LG 21

Glutamine 0.53437 0.48311 0.02055 0.01329 LG 21

Glycerol 0.05908 0.05177 0.00254 0.00280 LG 21

Glycine 0.20039 0.17540 0.00318 0.00199 LG 21

Isoleucine 0.09863 0.08068 NA NA LG 21

Lactate 1.71577 1.55491 0.07770 0.05393 LG 21

Leucine 0.19519 0.17066 0.00826 0.00741 LG 21

Lysine 0.26669 0.24340 0.00601 0.00462 LG 21

Methionine 0.02236 0.01835 0.00046 0.00118 LG 21

MyoInositol 0.03185 0.02772 0.00445 0.00361 LG 21

Valine 0.21207 0.19155 0.01619 0.01138 LG 21

α-D-glucose 0.97333 0.88432 0.01425 0.02189 LG 24

β-D-glucose 0.91733 0.81616 0.05226 0.04263 LG 24

Alanine 0.04071 0.03866 0.00372 0.00316 LG 24

Glutamate 0.08100 0.07711 0.00958 0.00660 LG 24

Glutamine 0.51756 0.47414 0.01697 0.01339 LG 24

Glycerol 0.05785 0.05432 0.00682 0.00609 LG 24

Glycine 0.19891 0.17759 0.01187 0.00777 LG 24

Isoleucine 0.11214 0.09380 0.00461 0.00496 LG 24

Lactate 2.25111 2.05641 0.03570 0.01841 LG 24

Leucine 0.19115 0.16891 0.00944 0.00648 LG 24

Lysine 0.28745 0.26399 0.00824 0.00720 LG 24

Methionine 0.01693 0.01444 0.00055 0.00137 LG 24

MyoInositol 0.03596 0.03236 0.00472 0.00451 LG 24

Valine 0.20700 0.18856 0.00261 0.00150 LG 24

α-D-glucose 1.50975 1.33295 0.04556 0.03463 LG 27

β-D-glucose 1.45338 1.28230 0.04825 0.04311 LG 27

Alanine 0.03326 0.03002 0.00297 0.00254 LG 27
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Glutamate 0.09709 0.08865 0.01517 0.01287 LG 27

Glutamine 0.58820 0.53297 0.01816 0.01772 LG 27

Glycerol 0.04337 0.03816 0.01028 0.01070 LG 27

Glycine 0.22010 0.19261 0.00772 0.00279 LG 27

Isoleucine 0.08181 0.06711 0.01974 0.01525 LG 27

Lactate 1.17064 1.05301 0.04359 0.04028 LG 27

Leucine 0.21080 0.18369 0.00662 0.00741 LG 27

Lysine 0.30095 0.27500 0.01247 0.01089 LG 27

Methionine 0.03050 0.02693 0.00371 0.00276 LG 27

MyoInositol 0.03590 0.03157 0.00433 0.00369 LG 27

Valine 0.23211 0.20917 0.00530 0.00490 LG 27

α-D-glucose 1.40157 1.24139 0.10063 0.08200 LG 3

β-D-glucose 1.42083 1.25237 0.06444 0.06077 LG 3

Alanine 0.02326 0.02288 0.00614 0.00704 LG 3

Glutamate 0.08448 0.07811 0.00717 0.00603 LG 3

Glutamine 0.57087 0.51699 0.04693 0.04184 LG 3

Glycerol 0.04721 0.04260 0.00578 0.00573 LG 3

Glycine 0.20510 0.18015 0.01422 0.01425 LG 3

Isoleucine 0.09404 0.07991 0.00968 0.00699 LG 3

Lactate 0.93848 0.84946 0.05972 0.05606 LG 3

Leucine 0.19477 0.17109 0.01120 0.01015 LG 3

Lysine 0.26929 0.24710 0.01079 0.01069 LG 3

Methionine 0.02759 0.02274 0.00524 0.00440 LG 3

MyoInositol 0.03954 0.03533 0.00170 0.00138 LG 3

Valine 0.21380 0.19393 0.01747 0.01500 LG 3

α-D-glucose 1.16353 1.01269 0.02769 0.01906 LG 30

β-D-glucose 1.12348 0.98839 0.03227 0.01589 LG 30

Alanine 0.04446 0.04136 0.00356 0.00482 LG 30

Glutamate 0.10527 0.09807 0.00255 0.00216 LG 30

Glutamine 0.54702 0.49468 0.01959 0.01550 LG 30

Glycerol 0.08120 0.07226 0.00998 0.00363 LG 30

Glycine 0.20526 0.17853 0.00631 0.00654 LG 30

Isoleucine 0.08970 0.07335 0.00291 0.00036 LG 30

Lactate 1.83489 1.64887 0.06250 0.03873 LG 30

Leucine 0.20987 0.18543 0.00959 0.00516 LG 30

Lysine 0.29195 0.26735 0.00381 0.00181 LG 30
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Methionine 0.03890 0.03238 0.01027 0.00887 LG 30

MyoInositol 0.03010 0.02637 0.00318 0.00218 LG 30

Valine 0.23703 0.21222 0.00602 0.00230 LG 30

α-D-glucose 0.84319 0.74946 0.07950 0.07501 LG 33

β-D-glucose 0.82991 0.74983 0.04923 0.04202 LG 33

Alanine 0.07165 0.06487 0.00314 0.00292 LG 33

Glutamate 0.10222 0.09622 0.00354 0.00247 LG 33

Glutamine 0.55346 0.51141 0.03981 0.02935 LG 33

Glycerol 0.09897 0.08815 0.01542 0.01303 LG 33

Glycine 0.21189 0.19677 0.02224 0.01771 LG 33

Isoleucine 0.12471 0.10727 0.01597 0.01514 LG 33

Lactate 2.85317 2.63325 0.18327 0.13436 LG 33

Leucine 0.22452 0.20015 0.01884 0.01675 LG 33

Lysine 0.28034 0.26355 0.01506 0.01177 LG 33

Methionine 0.02692 0.02140 0.00094 0.00146 LG 33

MyoInositol 0.04032 0.03697 0.00362 0.00441 LG 33

Valine 0.23793 0.21965 0.01654 0.01209 LG 33

α-D-glucose 0.55686 0.49371 0.00929 0.01502 LG 36

β-D-glucose 0.52596 0.46763 0.01434 0.01552 LG 36

Alanine 0.09112 0.08196 0.00570 0.00360 LG 36

Glutamate 0.10505 0.09855 0.00946 0.01036 LG 36

Glutamine 0.55110 0.49895 0.01417 0.01424 LG 36

Glycerol 0.14683 0.13017 0.00515 0.00670 LG 36

Glycine 0.22165 0.19440 0.01863 0.01641 LG 36

Isoleucine 0.10895 0.09018 0.00828 0.00923 LG 36

Lactate 3.76809 3.41769 0.17727 0.14264 LG 36

Leucine 0.25489 0.22420 0.00351 0.00050 LG 36

Lysine 0.28402 0.25921 0.00636 0.00799 LG 36

Methionine 0.02631 0.02229 0.00678 0.00500 LG 36

MyoInositol 0.03723 0.03358 0.00478 0.00563 LG 36

Valine 0.26212 0.23539 0.01105 0.01035 LG 36

α-D-glucose 1.24162 1.09740 0.02416 0.00773 LG 39

β-D-glucose 1.20482 1.07565 0.04992 0.02776 LG 39

Alanine 0.04122 0.03926 0.00133 0.00125 LG 39

Glutamate 0.08058 0.07740 0.00631 0.00432 LG 39

Glutamine 0.57967 0.52685 0.01149 0.00300 LG 39
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Glycerol 0.06420 0.05774 0.00784 0.00572 LG 39

Glycine 0.19797 0.17661 0.00885 0.00356 LG 39

Isoleucine 0.09304 0.07776 0.01551 0.01436 LG 39

Lactate 1.54579 1.40096 0.06210 0.03511 LG 39

Leucine 0.21152 0.18862 0.00709 0.00275 LG 39

Lysine 0.27417 0.25343 0.01829 0.01332 LG 39

Methionine 0.02653 0.02412 0.00134 0.00123 LG 39

MyoInositol 0.04037 0.03692 0.00090 0.00013 LG 39

Valine 0.23241 0.21008 0.00975 0.00563 LG 39

α-D-glucose 0.89448 0.80583 0.00436 0.01014 LG 42

β-D-glucose 0.82821 0.74605 0.02207 0.01528 LG 42

Alanine 0.06230 0.05931 0.00662 0.00655 LG 42

Glutamate 0.09847 0.09305 0.01132 0.00913 LG 42

Glutamine 0.56443 0.52109 0.00735 0.00572 LG 42

Glycerol 0.09968 0.09182 0.00412 0.00287 LG 42

Glycine 0.22780 0.20616 0.00684 0.00266 LG 42

Isoleucine 0.11916 0.10355 NA NA LG 42

Lactate 2.56041 2.35341 0.02715 0.02574 LG 42

Leucine 0.21479 0.19540 0.00188 0.00303 LG 42

Lysine 0.27176 0.25227 0.00282 0.00327 LG 42

Methionine 0.02897 0.02513 0.00231 0.00363 LG 42

MyoInositol 0.03581 0.03320 0.00457 0.00510 LG 42

Valine 0.24359 0.22566 0.00281 0.00180 LG 42

α-D-glucose 0.52841 0.47240 0.03296 0.02566 LG 45

β-D-glucose 0.49255 0.44234 0.01870 0.01470 LG 45

Alanine 0.09000 0.08095 0.00318 0.00340 LG 45

Glutamate 0.09221 0.08763 0.00230 0.00085 LG 45

Glutamine 0.55574 0.50588 0.02560 0.02144 LG 45

Glycerol 0.14669 0.13192 0.02132 0.01680 LG 45

Glycine 0.20640 0.18475 0.00995 0.00768 LG 45

Isoleucine 0.09248 0.07276 0.00589 0.00422 LG 45

Lactate 3.64068 3.31835 0.24625 0.20557 LG 45

Leucine 0.24837 0.21992 0.01290 0.00977 LG 45

Lysine 0.27855 0.25490 0.01292 0.01004 LG 45

Methionine 0.01910 0.01427 0.00014 0.00085 LG 45

MyoInositol 0.03507 0.03176 0.00687 0.00636 LG 45
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Valine 0.25300 0.22904 0.01694 0.01540 LG 45

α-D-glucose 0.24306 0.21734 0.02374 0.02461 LG 48

β-D-glucose 0.26281 0.23844 0.00891 0.00787 LG 48

Alanine 0.10844 0.09801 0.00291 0.00455 LG 48

Glutamate 0.10928 0.10183 0.00390 0.00356 LG 48

Glutamine 0.54051 0.49893 0.01486 0.01117 LG 48

Glycerol 0.17619 0.15905 0.01346 0.01050 LG 48

Glycine 0.22175 0.20104 0.01220 0.00976 LG 48

Isoleucine 0.08482 0.07306 0.00168 0.00236 LG 48

Lactate 4.39557 4.05320 0.03217 0.02223 LG 48

Leucine 0.26509 0.24015 0.00456 0.00568 LG 48

Lysine 0.28629 0.26679 0.00533 0.00388 LG 48

Methionine 0.02622 0.02290 0.00326 0.00312 LG 48

MyoInositol 0.03210 0.02886 0.00307 0.00277 LG 48

Valine 0.27075 0.24969 0.00441 0.00385 LG 48

α-D-glucose 1.25109 1.10715 0.05809 0.04922 LG 51

β-D-glucose 1.23221 1.07829 0.03473 0.03659 LG 51

Alanine 0.05089 0.04571 0.00145 0.00145 LG 51

Glutamate 0.10693 0.10027 0.00116 0.00061 LG 51

Glutamine 0.58556 0.52483 0.01224 0.01339 LG 51

Glycerol 0.07897 0.06934 0.00159 0.00124 LG 51

Glycine 0.22205 0.19328 0.00932 0.00693 LG 51

Isoleucine 0.12265 0.10257 0.01654 0.01351 LG 51

Lactate 1.72586 1.54587 0.01792 0.02266 LG 51

Leucine 0.22447 0.19485 0.00783 0.00756 LG 51

Lysine 0.28347 0.25885 0.00117 0.00067 LG 51

Methionine 0.03170 0.02856 0.00568 0.00590 LG 51

MyoInositol 0.02916 0.02657 0.00687 0.00571 LG 51

Valine 0.24173 0.21605 0.00300 0.00307 LG 51

α-D-glucose 0.85418 0.76476 0.00468 0.00249 LG 54

β-D-glucose 0.81848 0.74396 0.02233 0.01973 LG 54

Alanine 0.06136 0.05779 0.00279 0.00281 LG 54

Glutamate 0.09781 0.09386 0.01205 0.01073 LG 54

Glutamine 0.51367 0.47686 0.00931 0.00701 LG 54

Glycerol 0.09579 0.08742 0.00249 0.00293 LG 54

Glycine 0.20871 0.18943 0.00720 0.00881 LG 54
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Metabolite Height Volume SEM-Height SEM-Volume Media Time[h]

Isoleucine 0.13011 0.11070 0.00088 0.00212 LG 54

Lactate 2.53311 2.33564 0.02317 0.02221 LG 54

Leucine 0.20698 0.19282 0.00089 0.00062 LG 54

Lysine 0.27736 0.25940 0.00428 0.00473 LG 54

Methionine 0.02055 0.01746 0.00082 0.00061 LG 54

MyoInositol 0.04114 0.03738 0.00255 0.00189 LG 54

Valine 0.22136 0.20735 0.00505 0.00386 LG 54

α-D-glucose 1.18283 1.05392 0.05352 0.04175 LG 6

β-D-glucose 1.12233 1.01141 0.07300 0.06242 LG 6

Alanine 0.02967 0.02912 0.00543 0.00557 LG 6

Glutamate 0.09062 0.08559 0.00570 0.00571 LG 6

Glutamine 0.54267 0.50309 0.02516 0.02193 LG 6

Glycerol 0.06968 0.06214 0.01742 0.01503 LG 6

Glycine 0.20203 0.17855 0.00958 0.00847 LG 6

Isoleucine 0.08598 0.07823 0.01719 0.01413 LG 6

Lactate 1.57890 1.45214 0.08695 0.07686 LG 6

Leucine 0.18496 0.16822 0.01206 0.00823 LG 6

Lysine 0.27076 0.25040 0.00967 0.00910 LG 6

Methionine 0.02074 0.01724 0.00474 0.00277 LG 6

MyoInositol 0.03302 0.03088 0.00603 0.00628 LG 6

Valine 0.21258 0.19777 0.00823 0.00555 LG 6

α-D-glucose 0.93120 0.84107 0.05323 0.04813 LG 9

β-D-glucose 0.91124 0.82362 0.02795 0.02500 LG 9

Alanine 0.03829 0.03562 0.00209 0.00194 LG 9

Glutamate 0.07824 0.07595 0.01006 0.00978 LG 9

Glutamine 0.51796 0.47958 0.02610 0.02222 LG 9

Glycerol 0.05940 0.05223 0.00861 0.00701 LG 9

Glycine 0.18977 0.16987 0.00841 0.00792 LG 9

Isoleucine 0.10852 0.09231 0.01178 0.01155 LG 9

Lactate 2.17804 2.00386 0.12705 0.11208 LG 9

Leucine 0.18374 0.16680 0.00605 0.00566 LG 9

Lysine 0.26682 0.24946 0.01469 0.01371 LG 9

Methionine 0.02533 0.02427 NA NA LG 9

MyoInositol 0.03936 0.03576 0.00196 0.00262 LG 9

Valine 0.21015 0.19288 0.00584 0.00593 LG 9
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The proliferating cell hypothesis: a
metabolic framework for Plasmodium
growth and development§

J. Enrique Salcedo-Sora1*, Eva Caamano-Gutierrez1,2, Stephen A. Ward1, and
Giancarlo A. Biagini1
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We hypothesise that intraerythrocytic malaria parasite
metabolism is not merely fulfilling the need for ATP
generation, but is evolved to support rapid proliferation,
similar to that seen in other rapidly proliferating cells such
as cancer cells. Deregulated glycolytic activity coupled
with impaired mitochondrial metabolism is a metabolic
strategy to generate glycolytic intermediates essential for
rapid biomass generation for schizogony. Further, we
discuss the possibility that Plasmodium metabolism is
not only a functional consequence of the ‘hard-wired’
genome and argue that metabolism may also have a
causal role in triggering the cascade of events that leads
to developmental stage transitions. This hypothesis
offers a framework to rationalise the observations of
aerobic glycolysis, atypical mitochondrial metabolism,
and metabolic switching in nonproliferating stages.

Aerobic glycolysis drives proliferation in single-minded
eukaryotes
Rapidly proliferating eukaryotes have perfected metabolic
modes that efficiently convert glucose and specific amino
acids into biomass (see Glossary) and energy at the re-
quired pace. The past decade has brought a change in the
accepted paradigm on accelerated cell multiplication.
Streamlined metabolic networks and the capacity to sup-
port anabolic reactions in a rapidly responsive manner via
aerobic fermentative glycolysis and glutaminolysis, in-
stead of pursuing thorough oxidation of the glycolytic
carbons via cellular respiration, seems to be a precondition
for rather than a consequence of effective proliferative
signalling [1]. The corollary of this paradigm points to
respiration in nonproliferating cells as the prevalent met-
abolic mode to generate the energy needed to perform their
roles as differentiated cells.

Current concept of the Warburg effect
Although originally ascribed to anaerobic metabolism, the
preference for fermentative glycolysis even under aerobic
conditions was accepted long ago as a feature in cancer
cells and is known as the Warburg effect [2]. Similarly,
Saccharomyces cerevisiae favour fermentation over respi-
ration when glucose is available even under oxygen abun-

Opinion

Glossary

Aerobic glycolysis: predominant fermentation of glucose even under oxygen

pressures considered to be aerobic. Fractions of glycolytic intermediates that

are not fermented are redirected and are seemingly sufficient to sustain

biosynthetic pathways such as the pentose phosphate pathway, shikimate

pathway, and lipid biosynthesis.

Agouti viable yellow mouse model: heterozygous mice for the Agouti yellow

allele have yellow coats and have a predisposition towards obesity. Mice that

are homozygous for the Agouti yellow allele have the lethal gene. Mice that are

homozygous for the non-agouti allele and non-agouti yellow allele have non-

agouti coat colour such as black. In this model, coat colour variation is

correlated to epigenetic marks established early in development, and is used

extensively to investigate the impacts of nutritional and environmental

influences on the (foetal) epigenome.

Anabolic reactions: relating to the synthesis of complex molecules in living

organisms.

Anaerobic metabolism: relating to metabolism that occurs in the absence of

free oxygen, often via substrate level phosphorylation and/or alternative

terminal acceptors.

Anaplerosis: the process of replenishment of depleted metabolic cycle or

pathway intermediates. Most commonly referring to the TCA cycle, this

concept is also used to describe glycolysis and glutaminolysis generated

substrates for macromolecular biosynthesis or anabolism.

Biomass: the total quantity or weight of organisms in a given area or volume.

The measurement of biomass production is important when studying

metabolic reactions that are required for growth.

Dormancy and reversible cell cycle arrest: cell quiescence, hibernation,

dormancy, or reversible cell cycle arrest are denominations of a common

and important physiological response in free-living microorganisms to control

cell size and growth that grants protection against environmental insults

including poor nutrient and micronutrient levels.

Fermentative glycolysis: breaking of glucose into different possible final

products from the reduction of pyruvate as common intermediate. The better-

known products are lactate in mammalian cells and ethanol in yeast.

Replenishment of NAD+ is a crucial consequence of fermentation.

Glutaminolysis: alternative source of biomass and electrons due to the relative

abundance of glutamine in human plasma. After deamination of this amino

acid, glutamate feeds part of the TCA cycle. Intermediates such as malate and

oxaloacetate can transit to the cytoplasm from mitochondria and be

decarboxylated to replenish glycolytic pyruvate with the production of NADPH.

One-carbon mitochondrial metabolism: exchange of one carbon molecules at

different levels of oxidation between folate intermediates catalysed by enzyme

complexes loosely attached to the inner mitochondrial membrane. The glycine

cleavage system (GCV), serine hydroxymethyltransferase (SHMT), and 5,10-

methenyltetrahydrofolate dehydrogenase multienzyme complex (MTHFD) are

their main components.
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dance (Crabtree effect) [3]. In its original form, the War-
burg effect also stated that the oxidation of glucose in
mitochondria was ablated. However, more recent evidence
points to functional mitochondrial oxidative phosphoryla-
tion in some cancer cell lines [3,4]. Under this modern
version of the Warburg effect, rapidly proliferating, non-
cancerous cells have also been found to undergo aerobic
glycolysis/fermentation [5–7].

The advantage provided to rapidly proliferating cells by
increased glycolysis is attributed to the capacity of glucose
to support biomass generation by redirection of glycolytic
intermediates into anabolic reactions while at the same
time sustaining a predominant (over 90%) fermentation
flux to lactate [3,5,7,8] (Figure 1, Boxes 1 and 2). The latter
is necessary for the regeneration of NAD+, an essential
cofactor of glycolysis itself, but more importantly and less
intuitively, to allow the cells to gauge their metabolic
status. Thus, only when high levels of fermentative glycol-
ysis are possible does the cell enter high rates of prolifera-
tion assisted by the anabolic capacity of glycolysis.

Aerobic glycolysis during the in vitro cell cycle of
Plasmodium falciparum

The intraerythrocytic cycle of human falciparum malaria
takes the parasites through successive rounds of mitosis
every 48 h. Following erythrocyte invasion by a merozoite,
but sometimes following multiple invasions, the parasite
develops into a ring-shaped form in the first 24 h, and by
approximately 30 h, the parasite very rapidly expands to
occupy most of the space available within the erythrocyte
plasma membrane, resulting in a major increase in biomass.
From approximately 40 h, the vastly enlarged nucleus goes
through several asynchronous and multiple segmentations
that in vitro produce a number (small double figures) of

next-generation merozoites [9]. Cytokinesis occurs near the
end of the cycle before the new daughter cells (merozoites)
emerge as free-living forms for seconds to minutes in the
search for a new erythrocyte [9]. A fraction, usually less than
1% but dependent on the prevailing environment, of the
newly generated intraerythrocytic parasites are pro-
grammed to differentiate as gametocytes, the sexual nondi-
viding forms that in the natural environment continue the
malaria cycle in the mosquito vector [10].

Malaria parasites committed to proliferation in the
intraerythrocytic cycle are fermentative organisms [11–
13] (Figure 1, Boxes 1 and 2) with an anabolic central
carbon metabolism that can feed all major biomass gener-
ating pathways [14]. When directed to differentiation into
gametocytes, however, these nonproliferative cells seem to
follow the respiration of glucose in a manner more in line
with the biology of eukaryotes in stationary phase via the
canonical glucose-driven, mitochondrial tricarboxylic acid
(TCA) cycle. Current evidence appears to substantiate this
dichotomy of fermentation when in proliferation mode
versus respiration when committed to sexual differentia-
tion [15].

In proliferating asexual parasites, glutaminolysis feeds
part of the TCA cycle through the five-carbon a-ketoglu-
tarate. The four-carbon malate and oxaloacetate are

Box 1. Metabolic rewiring for rapid parasite proliferation:

glycolysis

Glucose entry into the parasite occurs via the hexose transporter

PfHT1, which has a Km of �0.5 mM. Compared with the �5 mM blood

glucose concentration, this allows for a constant rate of transport [36].

Commitment to glycolysis is then controlled via the highly regulated

phosphofructokinase (PFK) that is allosterically inhibited by high

levels of ATP. In cancer cells, PFK is overexpressed, and the

predominant isoforms of this enzyme possess allosteric alterations

that reduce the degree of product inhibition by ATP and citrate whilst

being more highly activated by lower concentrations of fructose 2,6-

bisphosphate (F26bP) [37–39]. In P. falciparum PFK, deregulation is

also observed with the enzyme being insensitive to PEP, citrate, and

F26bP and only exhibiting allosteric behaviour for ATP and ADP,

although at elevated concentrations (>1.0 mM for ATP and >0.1 mM

for ADP) [40]. The final irreversible step in glycolysis involves

pyruvate kinase (PK), generating pyruvate and ATP. This is a critical

step in the control of biosynthetic intermediates for proliferation, and

the enzyme is activated by fructose 1,6-bisphosphate and inhibited by

both ATP and alanine. There are two isoforms in mammals, M1 and

M2. M1 is found in adult tissue and is largely unregulated by fructose

1,6-bisphosphate and ATP, whereas the M2 isoform predominates in

proliferating cells including cancer cells and is less active and more

tightly regulated [41]. Tight regulation of PK is hypothesised to aid the

control of flow of carbons between biosynthesis and lactate produc-

tion in proliferating cells. Indeed, cancer cells engineered to express

the M1 isoform produce more lactate [42,43]. P. falciparum PK is not

activated by fructose 1,6-bisphosphate but is markedly inhibited by

both ATP and citrate, akin to M2 mammalian isoforms [44].

Box 2. Metabolic rewiring for rapid parasite proliferation:

TCA and respiration

Pyruvate is a critical metabolic mode for entry into fermentation or

the TCA cycle. For fermentation, pyruvate must remain in the

cytosol, whereas for entry into the TCA cycle, pyruvate must enter

mitochondria in order to be converted to acetyl-CoA. In proliferating

cells, where described aerobic glycolysis is required for the

generation of biosynthetic intermediates, cells have evolved

mechanisms which either: (i) restrict the transport of pyruvate into

mitochondria [45]; (ii) inhibit pyruvate dehydrogenase (PDH) activity

[46]; or (iii) increase the activity of lactate dehydrogenase [47]. There

is no information concerning pyruvate transport into the mitochon-

drion of P. falciparum; however, the parasite does contain PDH, but

this is localised to the apicoplast and does not appear to contribute

to the acetyl-CoA pool [48]. A mitochondrially localised complex,

termed branch chain ketoacid dehydrogenase (BCKDH), with PDH-

like activity, has been hypothesised to contribute acetyl-CoA to the

TCA, this notwithstanding; however, labelling experiments indicate

that the rate of acetyl-CoA production is significantly slower

compared with the labelling of glycolytic intermediates [48]. Lactate

production in P. falciparum is extensive and in line with other key

parasite glycolytic enzymes, and lactate dehydrogenase activity is

deregulated, exhibiting only weak inhibition by pyruvate or by the

pyruvate/NAD+ complex [49,50].

Defects of electron transport chain components also appear to be

a feature in cancer cells. These include defects at the level of

succinate dehydrogenase (SDH), inhibition of ATP synthase, and

downregulation of complex I (NADH:dehydrogenase), III (bc1

complex), and IV (cytochrome c oxidase) [51–53]. P. falciparum also

possess atypical mitochondrial function, whereby mitochondria

have low O2 consumption and are not actively synthesizing ATP

(respiratory state 4) [54]. Several adaptive features, including the

absence of a transmembrane proton pumping complex I, enable

proton-uncoupled oxidation of NADH, thereby reducing proton

‘back-pressure’ in the absence of extensive ATP synthesis. This in

turn reduces mitochondrial superoxide generation and potential

DNA damage and, importantly for glycolysis, still allows deregu-

lated oxidation of cytosolic NADH [54]. The reported essentiality of

complex V (ATP synthase [55]) is consistent with the need of a small

H+ leak in order to maintain transmembrane H+ pumping by

complexes III and IV [54].
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Rapidly prolifera�ng cells: Plasmodium
intraerythrocy�c stages
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Figure 1. Proliferating cell hypothesis: similarities between cancer cells and Plasmodium falciparum. Principle end products of glucose consumption (lactate, alanine,

pyruvate, glycerol-3-phosphate, and glycerol, shown in red boxes) are similar in both cancer cells [3] and asexual intraerythrocytic malaria parasites [12]. A high glycolytic

flux maintains rate-limiting glycolytic intermediates to support nucleotide (via glucose-6-phosphate to 5-phosphoribosyl-a-pyrophosphate) and lipid biosynthesis (via

dihydroxyacetone phosphate to glycerol-3-phosphate). Metabolic modifications (Boxes 1 and 2) allow aerobic glycolysis/fermentation to proceed rapidly whilst keeping

tricarboxylic acid (TCA) flux low. Anapleorotic glutaminolysis follows past part of the TCA cycle through the five-carbon a-ketoglutarate [15]. Subsequent conversion of

oxaloacetate to phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxykinase (PEPCK, EC 4.1.1.49) allows for further synthesis of biosynthetic intermediates (e.g., via

shikimate pathway [16] and isoprenoid biosynthesis [17]). Abbreviations: GLUT-1, glucose transporter 1; PfHT1, Plasmodium falciparum hexose transporter 1; HK,

hexokinase (EC 2.7.1.1); PGI, phosphoglucose isomerase (EC 5.3.1.9); PFK, phosphofructokinase (EC 2.7.1.11); G3PDH, glyceraldehyde 3 phosphate dehydrogenase (EC
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transported to the cytoplasm. Here phosphoenolpyruvate
(PEP) can be synthesised from oxaloacetate by the activity
of phosphoenolpyruvate carboxykinase (PEPCK) for on-
ward biosynthetic reactions (e.g., shikimate pathway
[16] and isoprenoid biosynthesis [17]) (Figure 1). In non-
proliferating gametocytes whereby a more canonical glu-
cose TCA cycle is present, less glucose is catabolised by
fermentation to lactate, and minimal glutamine is catabo-
lised by glutaminolysis [15].

The paradigm of the rapidly proliferating eukaryote can
then be applied to profile the dividing intraerythrocytic P.
falciparum as an organism that in the presence of abun-
dant glucose and glutamine, such as the levels available in
human plasma, generates the required biomass by aerobic
glycolysis/fermentation and glutaminolysis (Figure 1, Box-
es 1–3). The rest of the macromolecular biomass is sal-
vaged from the purine precursors, amino acids, and lipids
or fatty acids of the human host. Under these conditions, a
low flux glycolytic TCA cycle and a modified electron
transport chain provides a further selective advantage
(Boxes 1 and 2).

Are there metabolic regulatory switches controlling life
cycle commitment in Plasmodium?
The established dogma states that Plasmodium metabo-
lism is simply a functional consequence of the ‘hard-wired’
genome-wide, just-in-time regulation of expression [18,19].
However, there is increasing evidence in biology to support
the notion that metabolism, in response to the environ-
ment/diet, can be causal, promoting the switch of cellular
phenotypes. Examples in nature range from post-transla-
tional modifications (PTMs) of histones by constituents of
royal jelly (fatty acids) causing larvae to become queens
instead of worker bees [20], to PTMs of histones in the
Agouti viable yellow mouse model, whereby different ma-
ternal methyl-donor supplementation (e.g., with folic acid,
vitamin B12, or betaine) results in different offspring
ranging from obese hyperinsulinaemic yellow to leaner
nonhyperinsulinaemic pseudoagouti phenotypes [21].

The malaria parasite controls vital virulence processes
such as host cell invasion and cytoadherence, at least in
part, by epigenetic mechanisms [22]. With this in mind,
and given that in vitro and in vivo nutrient/stress condi-
tions have been linked with life cycle commitment in
Plasmodium [23–25], it is not inconceivable that parasite
metabolism may promote changes in phenotype via one or
more of the many metabolites that are known to influence
epigenetic gene regulation in other cell types.

In cancer cells and yeast, for example, nutrient avail-
ability and metabolic status, including the yeast metabolic
cycle (YMC) fluctuating from oxidative phosphorylation
and fermentation, is coupled to the control of gene expres-
sion via key metabolites such as NAD+, acetyl Co-A, FAD,
and folates [26–28].

The influence of metabolism on parasite epigenetics is
certainly an exciting area for future research, and some

evidence, although circumstantial, exists to link nutrient
levels to parasite development. Environmental stress has
been consistently correlated with enhanced gametocyte
production both in vitro and in vivo. The methodology
applied to enrich in vitro cultures of P. falciparum with
sexual forms has the common denominator of nutrient
deprivation: low haematocrit, haemoglobin depletion, lysed
erythrocytes, and recycling of spent media, among others
[23,29]. Antimalarials that act as antimetabolites such as
antifolates have long been known to increase gametocyte
production in vivo [24]. In vivo transcriptional profiles of P.
falciparum blood stages show that a proportion of the para-
site population appears to be in states similar to what is
known as either a starvation response or environmental
stress in yeast [25]. Therefore, natural variability of sub-
strate levels in the human host, perhaps not surprisingly,
seems to be a selective force for life cycle commitment
pathways in field populations of Plasmodium. Unfortunate-
ly, cellular metabolism of malaria parasites under variable
nutrient availability has been poorly investigated, a situa-
tion not helped by the routine use of highly enriched media
normally used for the in vitro culture of P. falciparum [30].

The decision of a parasite to commit to a sexual lineage
is believed to take place in the first 20 h (the ‘ring’ stage) of
the preceding erythrocytic cycle [29]. Interestingly, the

Box 3. Growing fast while fermenting furiously: crunching

the numbers

Aerobic glycolysis is able to provide the required biosynthetic

intermediates for building biomass, explaining why Plasmodium

and other proliferating organisms and cell types adopt increased

glucose metabolism during rapid growth and multiplication. By way

of illustration, the capacity of Plasmodium to synthesise some of the

required DNA precursors relates to the de novo synthesis of the

pyrimidine deoxythymidine triphosphate (dTTP). The de novo synth-

esis of dTTP requires folate 5,10-methylene tetrahydrofolate (5,10-

myTHF). In its final polyglutamated form, with five glutamic residues

as found in an average eukaryote, 5,10-myTHF is a structure of 40

carbons and 11 nitrogens that requires two NADPHs and ten ATPs for

its biosynthesis from GTP, D-erythrose-4-phosphate (E4P) and PEP

(shikimate pathway [16]). Only two molecules of glucose are needed

to contribute seven carbons and the two NADPHs (pentose phosphate

pathway). The rest of the carbon count originates from five

glutamates and a serine or glycine. The nitrogen sources are GTP

(six nitrogens) and glutamate (five nitrogens) from glutaminolysis.

Thus, the synthesis of 5,10-myTHF from glucose and GTP can be

abbreviated as: 2 glucose (carbon) + 1 GTP + 5 glutamate + 5 glucose

(ATP) + 1 serine/glycine ! 1 (5,10-myTHF) + 5 ADP + glycine/(CO2 +

NH3). Malaria parasites salvage precursors for the synthesis of

purines such as GTP from the host as well as amino acids from

plasma and the digestion of the haemoglobin of the host. Then, for

every 100 molecules of glucose, if 90% are used to sustain a high

fermentative glycolytic flux, where the needed ATP originates in

abundance, ten molecules of glucose can be used to build up to five

molecules of 5,10-myTHF. Human plasma contains a strictly regulated

level of glucose to �5 mM, the equivalent of 3 � 1015 molecules of

glucose per microlitre. That would be enough to build up to 7.5 � 1014

molecules of 5,10-myTHF per microlitre, the equivalent to 625 to 62.5

times what is needed to support an expected intracellular folate

concentration in P. falciparum of approximately 2–20 mM.

1.2.1.12); PGK, phosphoglycerate kinase (EC 2.7.2.3); PK, pyruvate kinase (EC 2.7.1.40); LDH, lactate dehydrogenase (EC 1.1.1.27); PEPCase, phosphoenolpyruvate

carboxylase (EC 4.1.1.31); PC, pyruvate carboxylase (EC 6.4.1.1); PDH, pyruvate dehydrogenase (EC 1.2.4.1); BCKDH, branched chain ketoacid dehydrogenase (EC 1.2.4.4);

Suc-CoA, succinyl-CoA.
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early ring stages of P. falciparum have less compact his-
tone cores (nucleosomes) than in later stages [9], and
usually this ‘open’ conformation is reflective of, and condu-
cive to, transcriptional regulation. As in other organisms
and cell types it is therefore possible that in Plasmodium
there exists a metabolic component that controls, via an
epigenetic mechanism, the commitment to replicate or to
differentiate.

A further, metabolically controlled, decision-making
option open to the parasite in the early hours of intracel-
lular parasite life is the possibility of reversible cell cycle
arrest. As part of their parasitic lifestyle, P. falciparum
become dependent on the extracellular supply of isoleucine
due to an absence of this amino acid in human haemoglo-
bin. Media that lacks isoleucine induce reversible cell cycle
arrest with parasites not progressing beyond the first half,
the ring stage, of their asexual intraerythrocytic life cycle
unless the missing nutrient is provided [31]. In malaria,
the phenomenon of reversible cell cycle arrest is poorly
understood. Nonetheless, there is a new interest in study-
ing malaria dormancy in the intraerythrocytic stages of the
parasite life cycle due to the potential role of reversible cell
cycle arrest in the slow clearance and/or ring stage survival
(RSA0–3h) phenotypes seen in clinical failures with arte-
misinins [32–35].

Concluding remarks
Glucose and glutamine contribute to malaria parasite
biomass for the biosynthesis of nucleotides and lipids via
aerobic glycolysis/fermentation and glutaminolysis. To-
gether with salvaged amino acids, fatty acids, and purines,
these are the main biochemical resources used to assemble
the macromolecular structure of the plasmodial cell. How-
ever, there are two further options available: (i) differenti-
ation into a sexual lineage as gametocytes and (ii) cell cycle
arrest. The first half of the intraerythrocytic cycle of P.
falciparum, particularly within the initial 10 h, seems to be
the stage at which quorum sensing and decision making is
most relevant. As seen with other organisms and cell types,
we have discussed the possibility that this occurs via
nutrient/metabolite-dependent epigenetic mechanisms.
Deconvolution of these regulatory processes offers a new
and exciting chapter in our understanding of Plasmodium
biology (Box 4).

Acknowledgements
This work was supported by grants from the Medical Research Council
(MRC) and the Wellcome Trust. E.C-G. is supported by a Warwick
University–Liverpool School of Tropical Medicine PhD studentship.

References
1 Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of cancer: the next

generation. Cell 144, 646–674
2 Warburg, O. (1956) On the origin of cancer cells. Science 123, 309–314
3 Lunt, S.Y. and Vander Heiden, M.G. (2011) Aerobic glycolysis: meeting

the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev.
Biol. 27, 441–464

4 Chang, C.H. et al. (2013) Post-transcriptional control of T cell effector
function by aerobic glycolysis. Cell 153, 1239–1251

5 Gerriets, V.A. and Rathmell, J.C. (2012) Metabolic pathways in T cell
fate and function. Trends Immunol. 33, 168–173

6 De Bock, K. et al. (2013) Role of PFKFB3-driven glycolysis in vessel
sprouting. Cell 154, 651–663

7 Vander Heiden, M.G. et al. (2009) Understanding the Warburg effect:
the metabolic requirements of cell proliferation. Science 324, 1029–
1033

8 Schulze, A. and Harris, A.L. (2012) How cancer metabolism is tuned for
proliferation and vulnerable to disruption. Nature 491, 364–373

9 Hoeijmakers, W.A. et al. (2012) Plasmodium falciparum centromeres
display a unique epigenetic makeup and cluster prior to and during
schizogony. Cell. Microbiol. 14, 1391–1401

10 Alano, P. (2007) Plasmodium falciparum gametocytes: still many
secrets of a hidden life. Mol. Microbiol. 66, 291–302

11 Sherman, I.W. (1979) Biochemistry of Plasmodium (malarial
parasites). Microbiol. Rev. 43, 453–495

12 Lian, L.Y. et al. (2009) Glycerol: an unexpected major metabolite of
energy metabolism by the human malaria parasite. Malar. J. 8, 38

13 Bryant, C. et al. (1964) The incorporation of radioactivity from
(14c)glucose into the soluble metabolic intermediates of malaria
parasites. Am. J. Trop. Med. Hyg. 13, 515–519

14 Sana, T.R. et al. (2013) Global mass spectrometry based metabolomics
profiling of erythrocytes infected with Plasmodium falciparum. PLoS
ONE 8, e60840

15 Macrae, J.I. et al. (2013) Mitochondrial metabolism of sexual and
asexual blood stages of the malaria parasite Plasmodium
falciparum. BMC Biol. 11, 67

16 Salcedo-Sora, J.E. and Ward, S.A. (2013) The folate metabolic network
of Falciparum malaria. Mol. Biochem. Parasitol. 188, 51–62

17 Yeh, E. and DeRisi, J.L. (2011) Chemical rescue of malaria parasites
lacking an apicoplast defines organelle function in blood-stage
Plasmodium falciparum. PLoS Biol. 9, e1001138

18 Bozdech, Z. et al. (2003) The transcriptome of the intraerythrocytic
developmental cycle of Plasmodium falciparum. PLoS Biol. 1, E5

19 Le Roch, K.G. et al. (2003) Discovery of gene function by expression
profiling of the malaria parasite life cycle. Science 301, 1503–1508

20 Dickman, M.J. et al. (2013) Extensive histone post-translational
modification in honey bees. Insect Biochem. Mol. Biol. 43, 125–137

21 Wolff, G.L. et al. (1998) Maternal epigenetics and methyl supplements
affect agouti gene expression in Avy/a mice. FASEB J. 12, 949–957

22 Merrick, C.J. and Duraisingh, M.T. (2010) Epigenetics in Plasmodium:
what do we really know? Eukaryot. Cell 9, 1150–1158

23 Lucantoni, L. and Avery, V. (2012) Whole-cell in vitro screening for
gametocytocidal compounds. Future Med. Chem. 4, 2337–2360

24 Sowunmi, A. et al. (2005) Effects of antifolates – co-trimoxazole and
pyrimethamine-sulfadoxine – on gametocytes in children with acute,
symptomatic, uncomplicated, Plasmodium falciparum malaria. Mem.
Inst. Oswaldo Cruz 100, 451–455

25 Daily, J.P. et al. (2007) Distinct physiological states of Plasmodium
falciparum in malaria-infected patients. Nature 450, 1091–1095

26 Lu, C. and Thompson, C.B. (2012) Metabolic regulation of epigenetics.
Cell Metab. 16, 9–17

27 Teperino, R. et al. (2010) Histone methyl transferases and
demethylases; can they link metabolism and transcription? Cell
Metab. 12, 321–327

28 Tu, B.P. et al. (2005) Logic of the yeast metabolic cycle: temporal
compartmentalization of cellular processes. Science 310, 1152–1158

29 Baker, D.A. (2010) Malaria gametocytogenesis. Mol. Biochem.
Parasitol. 172, 57–65

30 LeRoux, M. et al. (2009) Plasmodium falciparum biology: analysis of in
vitro versus in vivo growth conditions. Trends Parasitol. 25, 474–481

31 Babbitt, S.E. et al. (2012) Plasmodium falciparum responds to amino
acid starvation by entering into a hibernatory state. Proc. Natl. Acad.
Sci. U.S.A. 109, E3278–E3287

Box 4. Outstanding questions

� As described here, our hypothesis is that metabolism in the

malaria parasite is highly evolved to promote rapid proliferation,

in a similar manner to that seen in other rapidly proliferating cells,

for example, cancer cells, activated lymphocytes, and yeast.

� The major ‘step change’ for future research questions will be to

determine if metabolism can be causal. This will necessitate a

deeper understanding of the metabolic nodes and checkpoints

used by the parasite during growth and in response to its

environment in its various hosts.

Opinion Trends in Parasitology April 2014, Vol. 30, No. 4

174



32 Cheeseman, I.H. et al. (2012) A major genome region underlying
artemisinin resistance in malaria. Science 336, 79–82

33 Takala-Harrison, S. et al. (2013) Genetic loci associated with
delayed clearance of Plasmodium falciparum following artemisinin
treatment in Southeast Asia. Proc. Natl. Acad. Sci. U.S.A. 110,
240–245

34 Witkowski, B. et al. (2013) Novel phenotypic assays for the detection of
artemisinin-resistant Plasmodium falciparum malaria in Cambodia:
in-vitro and ex-vivo drug-response studies. Lancet Infect. Dis. 13,
1043–1049

35 Witkowski, B. et al. (2013) Reduced artemisinin susceptibility of
Plasmodium falciparum ring stages in western Cambodia.
Antimicrob. Agents Chemother. 57, 914–923

36 Woodrow, C.J. et al. (1999) Intraerythrocytic Plasmodium falciparum
expresses a high affinity facilitative hexose transporter. J. Biol. Chem.
274, 7272–7277

37 Vora, S. et al. (1985) Characterization of the enzymatic lesion in
inherited phosphofructokinase deficiency in the dog: an animal
analogue of human glycogen storage disease type VII. Proc. Natl.
Acad. Sci. U.S.A. 82, 8109–8113

38 Vora, S. et al. (1985) Alterations in the activity and isozymic profile of
human phosphofructokinase during malignant transformation in vivo
and in vitro: transformation- and progression-linked discriminants of
malignancy. Cancer Res. 45, 2993–3001

39 Staal, G.E. et al. (1987) Subunit composition, regulatory properties,
and phosphorylation of phosphofructokinase from human gliomas.
Cancer Res. 47, 5047–5051

40 Mony, B.M. et al. (2009) Plant-like phosphofructokinase from
Plasmodium falciparum belongs to a novel class of ATP-dependent
enzymes. Int. J. Parasitol. 39, 1441–1453

41 Mazurek, S. (2011) Pyruvate kinase type M2: a key regulator of
the metabolic budget system in tumor cells. Int. J. Biochem. Cell
Biol. 43, 969–980

42 Atsumi, T. et al. (2002) High expression of inducible 6-phosphofructo-2-
kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human
cancers. Cancer Res. 62, 5881–5887

43 Christofk, H.R. et al. (2008) The M2 splice isoform of pyruvate kinase
is important for cancer metabolism and tumour growth. Nature 452,
230–233

44 Chan, M. and Sim, T.S. (2005) Functional analysis, overexpression,
and kinetic characterization of pyruvate kinase from Plasmodium
falciparum. Biochem. Biophys. Res. Commun. 326, 188–196

45 Paradies, G. et al. (1983) Transport of pyruvate in mitochondria from
different tumor cells. Cancer Res. 43, 5068–5071

46 Kim, J.W. et al. (2006) HIF-1-mediated expression of pyruvate
dehydrogenase kinase: a metabolic switch required for cellular
adaptation to hypoxia. Cell Metab. 3, 177–185

47 Goldman, R.D. et al. (1964) Lactic dehydrogenase in human neoplastic
tissues. Cancer Res. 24, 389–399

48 Cobbold, S.A. et al. (2013) Kinetic flux profiling elucidates two
independent acetyl-CoA biosynthetic pathways in Plasmodium
falciparum. J. Biol. Chem. 288, 36338–36350

49 Bzik, D.J. et al. (1993) Expression of Plasmodium falciparum lactate
dehydrogenase in Escherichia coli. Mol. Biochem. Parasitol. 59, 155–166

50 Dunn, C.R. et al. (1996) The structure of lactate dehydrogenase from
Plasmodium falciparum reveals a new target for anti-malarial design
[letter]. Nat. Struct. Biol. 3, 912–915

51 Gottlieb, E. and Tomlinson, I.P. (2005) Mitochondrial tumour
suppressors: a genetic and biochemical update. Nat. Rev. Cancer 5,
857–866

52 Cuezva, J.M. et al. (2007) A message emerging from development: the
repression of mitochondrial b-F1-ATPase expression in cancer. J.
Bioenerg. Biomembr. 39, 259–265

53 Sun, A.S. and Cederbaum, A.I. (1980) Oxidoreductase activities in
normal rat liver, tumor-bearing rat liver, and hepatoma HC-252.
Cancer Res. 40, 4677–4681

54 Fisher, N. et al. (2007) The malaria parasite type II NADH:quinone
oxidoreductase: an alternative enzyme for an alternative lifestyle.
Trends Parasitol. 23, 305–310

55 Balabaskaran Nina, P. et al. (2011) ATP synthase complex of Plasmodium
falciparum: dimeric assembly in mitochondrial membranes and
resistance to genetic disruption. J. Biol. Chem. 286, 41312–41322

Opinion Trends in Parasitology April 2014, Vol. 30, No. 4

175



Appendix C

Curriculum Vitae

261



Eva Caamaño-Gutiérrez
e.caamano@warwick.ac.uk tel:+44(0)7572306788

Work Experience
Feb 2016 - Present Early Career Fellow, Warwick Antimicrobial Interdisciplinary Centre, UK.

Core skills: Cell cultures in Biosafety Level 2. Carbohydrate microarrays. Gold nanoparticle func-
tionalisation. Development of pathogen detection methods in biofluids. Data analysis.

Jul 2010 - Aug 2011 Research Assistant, Life Sciences Department, The University of Warwick, UK.
Core skills: DNA and RNA extraction. PCR genotyping. Cloning. Genetic transformation. Confocal
microscopy. Plant crops: glasshouse and control environment chambers. Student mentoring.

Jul-Sep 2009 Summer Internship, Genetics Unit, Molecular Biology Department, University of Leon, Spain.
Working on analysis of SSR markers in Lens culinaria.
Core skills: DNA extraction. PCR and electrophoresis.

Jul 2007-Sep 2008 Volunteer Researcher, Genomics and Proteomics Institute, University of Leon, Spain. Working on
genotyping of an apple tree collection through self-incompatibility alleles.

Publications
Salcedo-Sora, J. E.,Caamano-Gutierrez E., Ward, S. A., Biagini, G. A. The proliferating cell hypothesis: a metabolic framework
for Plasmodium growth and development. Trends Parasitol. 30, 170–175 (2014).

(In preparation:) Gant, M.S., Phelan, M.M, Caamano-Gutierrez, E., Grosman, R., Madine, J. Using an NMR metabolomics
approach to investiate the pathogenity of amyloid-beta and alpha-synuclein.

(In preparation:) Caamano-Gutierrez, E., Otten, L., Panchana, M., Saif, A. Biagini, B., Gibson, M. The sweet tooth of Plas-
modium falciparum: a key for artemisinin resistance classification.
Acknowledgements: (1) Costa, L. M. et al. Central Cell–Derived Peptides Regulate Early Embryo Patterning in Flowering Plants. Science 344,
168–172 (2014). (2) Costa, L. M. et al. Maternal control of nutrient allocation in plant seeds by genomic imprinting. Curr. Biol. 22, 160–165
(2012).

Education
2012-2016 PhD in Systems Biology. The University of Warwick & Liverpool School of Tropical Medicine (LSTM), UK.

Thesis: “Investigating metabolic control in Plasmodium falciparum.”
Core skills: R programming. Metabolomics method development, sample preparation and data analysis. NMR
spectroscopy. Microscopy: bright field and confocal, including Operetta. IC50s. Cell cultures in Biosafety Level
2. Student mentoring. Teaching.

2012-2016 Certificate in Transferable skills. The University of Warwick, UK. Core modules: (1) Team Working in a
Research environment, (2) Science Communication to different audiences. Follow up project: “Analytics day
(A-level)”. NMR Centre. University of Liverpool (UoL). (3) Decision Making and Leadership, (4) Doctoral
Skills 1-3 including teaching and paper writing.

Sep 2011- Sep 2012 MSc in Systems Biology. (Merit) The University of Warwick, UK
Theoretical project (71%): “The role of iron and zinc in retinal physiology and disease. Development of a
metabolic model.”
Core skills: Deterministic modeling. Parameter value systematic review. Matlab.
Experimental project (72%): “Analysing the role of pathogen effector targets in the plant immune system.”
Core skills: In vitro and ex vitro culturing. Pathogen infection analysis. Primer design. PCR analysis.

2005-2010 BSc in Biotechnology (72%) University of Leon, Spain



Conferences and Presentations
30 Oct 2015 Metabolomics workshop. NMR Centre University of Liverpool. Oral communication: An introduc-

tion to univariate and multivariate analysis in metabolomics.
28 Jun-2 Jul 2015 11th International Conference of the Metabolomics Society. San Francisco. USA. Poster presentation.

Blogger for the Biochemical Society.
19 Mar-4 Jun 2015 An introduction to R. Volunteer co-organiser and lecturer. LSTM.

24 Apr 2015 PGR meeting. Liverpool. Oral communication.
16-18 Apr 2015 British Society for Parasitology spring meeting. Liverpool. Poster presentation and organisation

volunteer.
23 Oct 2014 Science communication project Analytics day (A-level). NMR Centre. UoL. Co-organiser.
1-3 Sep 2014 Collaborative Computer Project for NMR national conference, Scarborough, UK. Poster presentation.

19-21 Mar 2014 Systems Biology DTC Annual Conference, Stratford Upon Avon, UK. Poster presentation.
14 Apr 2014 PGR meeting. Liverpool. Poster presentation

12-14 Jun 2013 Systems Biology DTC Annual Conference, Stratford Upon Avon, UK. Poster presentation.
16-17 May 2013 ID2 conference, UCL, London, UK. Poster presentation.
11-14 Jun 2012 Systems Biology DTC Annual Conference, York, UK. Poster presentation.
9-12 Jul 2008 Member of the organising committee of the III university conference of biotechnology. Head of the

committee on tourism and activities.

Awards
Feb 2016 Early Career Fellowship, The University of Warwick.
July 2015 Spanish Researchers in the United Kingdom Travel Grant.
May 2015 Biochemical Society Travel Grant.

2011 Fully funded MSc and PhD. University of Warwick Scholarship.
Jun-Sep 2010 Erasmus Practice Scholarship Award. University of Leon.

3-7 August 2009 Course: The transgenics in our life, diet and agriculture. UIMP. Funded.

Courses
26 November 2014 Good Clinical Practice. LSTM.
7 November 2013 A beginners guide to qPCR. Primer Design. Organiser and attendee.

2013 Computing for data analysis. John Hopkins University. Online.
2013 Statistics One. Princeton University. Online.

12 March 2013 Delivering effective presentations. UoW.

Computer Skills
Statistics, calculus: R, SPSS, basics of Matlab and Mathematica.

Image analysis: ImageJ, Harmony, GIMP.
Metabolomics: CCPN project, Topspin, AMIX, Chenomx, MetaboAnalyst, rNMR.

Databases: KEGG, HMDB, MMCD, PlasmoDB, BMRB, BioCyc.
Other: LATEX, Microsoft Office, NCBI tools, Origin.

Operating Systems: Mac OS X, Windows, Linux.

Management and organisation skills
Mar 15-Apr 15 Co-organiser and instructor of the course “An introduction to R” at LSTM.
Mar 13-Apr 14 Student representative at LSTM. Member of the Board of Studies.
Jul 09-Sep 10 Treasurer of the Spanish Federation of Biotechnologists (FEBiotec).
Nov 06-Oct 08 Founding member and part of the Directive of the Association of Biotechnologists of Leon (ABLE).
Oct 08-Sep 10 Student representative and member of the Biology Faculty Board.
Memberships Metabolomics society; Biochemical society; British Society For Parasitology; Society of Spanish re-

searchers in the United Kingdom.


