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Abstract

This paper shows how the theory of Dirichlet forms can be used to deliver proofs of optimal scaling
results for Markov chain Monte Carlo algorithms (specifically, Metropolis–Hastings random walk samplers)
under regularity conditions which are substantially weaker than those required by the original approach
(based on the use of infinitesimal generators). The Dirichlet form methods have the added advantage of
providing an explicit construction of the underlying infinite-dimensional context. In particular, this enables
us directly to establish weak convergence to the relevant infinite-dimensional distributions.
c⃝ 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Markov Chain Monte Carlo (MCMC) algorithms form a general and widespread
computational methodology addressing the problem of drawing samples from complex and
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intractable probability distributions [21,7]. Because of their simplicity and their scalability to
high-dimensional settings, MCMC algorithms are now routinely used in many fields to obtain
approximations of integrals that could not be tackled by common numerical methods. One of the
simplest and most popular MCMC schemes, the ‘Metropolis–Hastings Random Walk’ (MHRW)
Algorithm generates a Markov chain as follows. Let Ω and π denote the state space and the
density of the distribution of interest. Given a current state x , the chain samples a proposed value
y from some symmetric transition kernel Q(x, ·) and moves to the proposal y with probability
a(x, y) = 1∧

π(y)
π(x)

(otherwise staying at x). The resulting Markov chain is reversible with respect
to π . It can be used to obtain approximate samples and to perform Monte Carlo integration
using ergodic averages. Note that there are many variant algorithms, for example the Metropolis-
Adjusted Langevin Algorithm (MALA: [23]).

1.1. MCMC optimal scaling

Because of the popularity of MCMC algorithms, quantitative and mathematically rigorous
understanding of their behaviour is of considerable interest. The framework of Optimal
Scaling [22] provides an effective and powerful approach. The idea is to consider a sequence
of target distributions π (n) defined on state spaces Ω (1),Ω (2), . . . , of increasing dimensionality
(typically Ω (n)

= Rn), and to study the behaviour of the resulting sequence of MCMC
algorithms as n → ∞. One obtains a sequence of Markov chains X(1), X(2), . . . , where each
X(n)

=

X(n)(t) : t = 0, 1, 2, . . .


is obtained from the chosen MCMC algorithm with target

π (n). Appropriate sequences of algorithms lead to non-trivial limiting behaviour of X(n), namely
that a time-rescaled version of X(n) converges to a tractable and informative limiting process X∞.

The resulting asymptotic analysis provides valuable insight in two practically relevant ways.
Firstly, inspection of the time-rescaled version of X(n) leads to rigorous proofs of useful results
about the computational complexity of the sequence of MCMC algorithms, viewed as depend-
ing on the dimensionality of the integration space Ω (n). The now-classical example is that of
Roberts et al. [22] (see also [23]). Their results show that, for simple targets on Ω (n)

= Rn ,
MHRW needs O(n) steps to explore the state space entirely. By way of contrast, the more so-
phisticated MALA will take O(n1/3) steps to explore the state space entirely [24]. Secondly,
optimal scaling results facilitate optimization of MCMC performance by providing clear and
mathematically-based guidance on how to tune the parameters defining the proposal distribution
Q(n). In fact optimizing such parameters for fixed dimensional chains X(n) is a difficult problem,
typically not admitting analytic solution, whereas the limiting object X∞ is often simple enough
to allow a neat analytical optimization. This yields guidance (e.g. optimal values for average
acceptance rates) which is widely used by practitioners, especially via self-tuning or Adaptive
MCMC methodologies [2,26].

Originally Roberts et al. [22] dealt with MHRW and independent, identically distributed
(i.i.d.) targets, namely Ω (n)

= Rn and πn(x (n)) =
n

i=1 π(x (n)
i ) where π is a suitably smooth

univariate density function. The i.i.d. assumption is restrictive; however there are many exten-
sions showing that the relevant results (order of complexity and optimal average acceptance
rate) hold with significantly greater generality. These extensions include: independent targets
with different scales [3], Gibbs random fields [6], exchangeable normals [18], elliptical densi-
ties [28], densities with bounded support [19] and infinite-dimensional distributions with inter-
action terms [16].

The Optimal Scaling framework is one of the most successful and practically useful ways of
performing asymptotic analysis of MCMC methods in high-dimensions. Indeed, optimal scaling



G. Zanella et al. / Stochastic Processes and their Applications 127 (2017) 4053–4082 4055

results are not limited to the analysis of MHRW and MALA, but have been used to analyse and
compare a wide variety of MCMC schemes: Hamiltonian Monte Carlo [5], Pseudo-Marginal
MCMC [29], multiple-try MCMC [4] and many others.

1.2. Contribution of this paper

The key mathematical result underpinning optimal scaling results, regardless of the classes of
targets and algorithms considered, concerns the convergence of time-rescalings of the sequence
of resulting Markov chains X(n). Such convergence is usually expressed in the form of weak
convergence of the first coordinate X (n)

1 of the vector process X(n), with the weak limit
being a one-dimensional limiting diffusion process X∞

1 (typically a Langevin diffusion). The
main interest of Optimal Scaling results lies exactly in the high-dimensionality of the target
distribution. So it is arguable that focusing on the first component only is somewhat restrictive
and undesirable, insofar as it deflects attention from the genuine multivariate problem of interest.
Rather than focusing on one-dimensional marginals, it would be more satisfying to study the
full joint distribution of X(n). To do so one has to embed the process X(n), originally living in
Ω (n)

= Rn , into the limiting space Ω∞
= R∞ (for example by allowing moves of only the

first n coordinates, while viewing the remaining coordinates as being static and drawn from
equilibrium). One then needs to prove the convergence of the whole stochastic process X(n) to
the infinite-dimensional limiting stochastic process X∞.

Roberts et al. [22] observe that it is not hard to extend classic optimal scaling results to the
study of convergence of a finite and fixed number of components (i.e. X(n)

1:k converging to X∞

1:k
for fixed k and n going to infinity), but this confines attention to the joint distribution of X(n) for
fixed n. The approach using [12] results, based on uniform convergence of generators, does not
easily apply to the study of processes living on infinite-dimensional state spaces (e.g. it can be
necessary to assume that the state space is locally compact). Moreover such techniques typically
require rather substantial regularity conditions (in terms of target density derivatives and their
moments).

In this paper we propose a different probabilistic approach to MCMC Optimal Scaling,
relying on infinite-dimensional Dirichlet Form theory [15] to prove the crucial convergence
result. The abstract and powerful theory of Dirichlet forms, and specifically the notion of
Mosco [17] convergence, allows us to work directly and naturally on the infinite dimensional
space R∞ while requiring only modest regularity assumptions. In the following we will focus
on the classic MHRW framework of Roberts et al. [22], proving convergence for the whole
infinite-dimensional stochastic process under mild regularity assumptions (finite Fisher infor-
mation and local Hölder and controlled growth of first derivative of log-density). In MCMC
scenarios the smoothness and tail-behaviour of the target can impact massively on the perfor-
mance of the algorithm [19,25]; therefore it is important to establish general conditions under
which the Optimal Scaling asymptotic analysis is still valid. The following results are rele-
vant to the Computational Statistics community interested in a theoretical understanding of
MCMC methods, and also to the Stochastic Processes community interested in convergence
of stochastic processes and applications of Dirichlet Form theory. To the best of our knowl-
edge, this is the first application of Mosco convergence to the analysis of MCMC methods,
and we expect that the proof strategies developed in this paper will be useful to people seeking
to prove convergence of infinite-dimensional stochastic processes arising in MCMC and other
applications.



4056 G. Zanella et al. / Stochastic Processes and their Applications 127 (2017) 4053–4082

1.3. Organization of the paper

Section 2 defines the class of MCMC algorithms being considered, and briefly reviews
relevant theoretical notions, including the notion of Mosco convergence of forms [17] and
weak convergence through Dirichlet forms [30]. It also presents the main results of the paper,
namely Mosco and weak convergence of the relevant infinite-dimensional processes. Section 3
establishes Mosco convergence, while Section 4 deals with weak convergence (under somewhat
stronger regularity conditions): the existence of the limiting process is established in the
Appendix. Finally Section 5 discusses possibilities for future work and compares our work to
some recent results involving Optimal Scaling for infinite-dimensional distributions [16] and
Optimal Scaling under weak regularity of the target [10].

2. Overview and main results

This paper focuses on Metropolis–Hastings random walk samplers based on a simple target,
namely the joint distribution of a large independent sample taken from a fixed distribution
satisfying modest regularity conditions. Suppose the fixed distribution is given by π( d x) =

f (x) d x , a probability measure on R. Assume f (x) = eφ(x) (so that f is everywhere positive),
satisfying a finite Fisher information condition

I =


∞

−∞

|φ′(x)|2 f (x) d x < ∞, (1)

and assume that the potential φ is continuous and everywhere differentiable, with derivative
φ′

= (log f )′ satisfying the following combination of a local Hölder condition and a growth
condition: for some k > 0, 0 < γ < 1 and α > 1,

|φ′(x + v) − φ′(x)| < k max{|v|
γ , |v|

α
}, x, v ∈ R. (2)

This combined growth/local Hölder condition is much less restrictive than a global Hölder
regularity with exponent γ . We do not believe that condition (2) is necessary for our results
to hold: however it combines the merit of reasonable generality with the advantage of simplicity
of expression. Note that condition (2) suffices for establishing optimal scaling in an L2 sense;
however the Dirichlet form approach presently needs to use a stronger Lipschitz condition in
order to establish weak convergence (for more details see Section 2.5).

The following notational conventions are used. Upper case letters denote random variables and
corresponding lower case letters denote possible realizations, e.g. X1 and x1. By L(X1) we mean
the distribution (or law) of the random variable X1, for example L(W1) = N(0, 1). Subscripts
denote vector components, e.g. X1:N = (X1, . . . , X N ) or w(N+1):n = (wN+1, . . . , wn). Finally,
we interpret the evaluation of probability density functions on vectors multiplicatively: if f
is a one-dimensional probability density then its evaluation at a vector X1:N is interpreted
as the product of the density evaluated at each component. Thus for example f (X1:N ) =

f (X1) · · · f (X N ), while f (w(N+1):n) = f (wN+1) · · · f (wn).

2.1. Metropolis–Hastings random walk sampler

For each n = 1, 2, . . . , let

X(n)(t) : t = 0, 1, 2, . . .


be a Metropolis–Hastings Random Walk

(MHRW) sampler on Rn , with target measure π⊗n( d x1, . . . , d xn) and with proposal measure
defined by using independent and identically distributed Gaussian proposals on each component.
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The component proposals are taken to be N(0, τ 2

n ), for fixed τ > 0. We seek to understand the
limiting behaviour of a time-rescaled version of X(n) as n → ∞.

For the sake of convenience we interpret

X(n)(t) : t = 0, 1, 2, . . .


as an infinite-dimensional

stochastic process on R∞ updating only the first n components, with the remaining components
drawn independently from the target distribution π and held fixed in time. The state space R∞

is equipped with the product topology and corresponding Borel σ -algebra, and we choose the
infinite product measure π⊗∞ as invariant measure. It will be useful to note that R∞ is a
Polish space (i.e. separable and completely metrizable topological space). For example it can
be equipped with the metric d(x, y) =


∞

j=1 2− j |x j −y j |

1+|x j −y j |
, which induces the product topology.

However R∞ is not a Banach space, because its topology cannot be derived from any norm
(for discussion of the broader context here see [9, Chapter IV]; details about (R∞, π⊗∞) are
discussed in [11, Section 3]).

Our attention is focused on the following explicit construction of the first step of the
MHRW, hence defining


X(n)(t) : t = 0, 1


(extension of this explicit construction to all

of the time-homogeneous Markov process

X(n)(t) : t = 0, 1, 2 . . .


follows immediately

from the Markov property of X(n), but will not be the focus of attention in the sequel). Let
X = (X1, X2, . . .) be a sequence of independent and identically distributed random variables
on R with PX1( d x) = π( d x), let W = (W1, W2, W3 . . .) be a sequence of independent and
identically distributed standard normal random variables on R with standard Gaussian density
g, and let U be a Uniform(0, 1) random variable. We require X, W and U to be independent of
each other. The first step of the nth MHRW


X(n)(t) : t = 0, 1


is defined on (R∞, π⊗∞) by

X(n)(0) = (X1, . . . , Xn, Xn+1, Xn+2, . . .),

X(n)(1) =


X1 + An

τ
√

n
W1, . . . , Xn + An

τ
√

n
Wn, Xn+1, Xn+2 . . .


,

where An equals 1 if U < a(X1:n, W1:n) and 0 otherwise, with

a(X1:n, W1:n) = 1 ∧

f


X1:n +
τ

√
n

W1:n


f (X1:n)

= 1 ∧

f


X1 +
τ

√
n

W1


· · · f


Xn +

τ
√

n
Wn


f (X1) · · · f (Xn)

(3)

being the Metropolis–Hastings acceptance function designed to induce reversibility. Thus, as
n increases, X (n) proposes smaller jumps extending over a larger number of dimensions. In
due course we will re-scale time so that the smaller jumps are proposed more frequently in
compensation for their reduced size. The key result of Roberts et al. [22] then runs as follows.

Theorem 1 ([22], Theorem 1.1). Suppose that the probability density f of π is positive and C2,
that f ′/ f is Lipschitz continuous and that

∞

−∞


f ′(x)

f (x)

8

f (x) d x = M < ∞, (4)
∞

−∞


f ′′(x)

f (x)

4

f (x) d x < ∞. (5)
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Let U n
t = X (n)

1 (⌊nt⌋), the first component of X(n) at the re-scaled time ⌊nt⌋. Then U (n)
⇒ U as

n → ∞, where U0 is distributed as π , and U solves the stochastic differential equation

d U = τ


c(τ ) d B +
1
2τ 2c(τ )

f ′(U )

f (U )
d t (6)

for c(τ ) = 2F(−τ
√

I/2), I =


∞

−∞


f ′/ f

2 f d x, where F is the standard normal distribution
function.

We shall show that the Dirichlet form approach allows us to replace the restrictive regularity
and moment conditions of Theorem 1 by (1) and (2), thus avoiding second-order conditions on
f and concerns only weak growth and local Hölder conditions on φ′

= f ′/ f , as well as being
an approach naturally adapted to the underlying infinite-dimensional framework.

2.2. Dirichlet forms

Consider a Polish space F furnished with a probability measure µ. In the following we will
be interested in F = R∞ and µ = π⊗∞ (for π as given at the beginning of Section 2).

We now recall some notions from the literature of Dirichlet forms (for more details see [15]).
Note that the general theory of Dirichlet forms applies even if µ is merely a σ -additive measure,
rather than a probability measure. However we will describe results only in the case of a
probability measure, which reduces the complexity required in the following definitions.

Let H be the Hilbert space H = L2(F, µ). For any h and v in H, denote the usual L2 inner
product by ⟨h, v⟩H =


F h(x)v(x) µ( d x) and the related norm ∥h∥H by ∥h∥

2
H = ⟨h, h⟩H =

F h(x)2 µ( d x).
A form Φ on H is a non-negative definite and symmetric bilinear form Φ(h1, h2), defined

for h1, h2 belonging to a dense linear subspace D(Φ) of H, the domain of Φ [17, Section 1].
We will commit a mild abuse of notation by using Φ(h) = Φ(h, h) to denote the associated
quadratic functional, and we will also refer to Φ(h) as a form (the polarization identity yields
a 1:1 correspondence between forms and quadratic functionals). A form Φ can be extended
to the whole space H by setting Φ(h) = ∞ for any h ∈ H \ D(Φ). A Dirichlet form is a
closed, Markovian form [17, Section 1]: its domain D(Φ) is complete under the inner product
Φ(h1, h2) + ⟨h1, h2⟩H and moreover Φ(h̃) 6 Φ(h) when h̃ = (h ∨ 0) ∧ 1 ∈ D(Φ) for
h ∈ D(Φ).

Given a Markov process on F, a Dirichlet form can be associated with it as follows. In the
discrete-time case, let {X(t) : t = 0, 1, . . .} be a discrete-time Markov chain on the Polish space
F, assumed reversible with respect to the probability measure µ. The corresponding Dirichlet
form (Φ, D(Φ)) is given for h ∈ D(Φ) = H by

Φ(h) = E


h

X(0)


− h


X(1)


h

X(0)


=

1
2

E


h

X(0)


− h


X(1)

2


, (7)

with starting state X(0) distributed according to µ. Note that the second equality in (7) holds
because of the reversibility assumption.

Now consider the continuous-time case. Let {Xx (t) : 0 6 t < ∞} be a continuous-time
Markov process on F, also reversible with respect to the measure µ. Here time is denoted by t ,
while x is the starting point of the process. Let {Tt : t > 0} denote the Markov semigroup of
operators Tt : H → H given by (Tt h)(x) = E


h

Xx (t)


for h ∈ H and x ∈ F. The Dirichlet
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form (Φ, D(Φ)) associated with {Xx (t) : t > 0} (for x ∈ F) is given by

Φ(h) = lim
t↓0

⟨(I − Tt )h, h⟩H

t
= lim

t↓0

1
2

⟨(I − Tt )h, (I − Tt )h⟩H

t
, (8)

with D(Φ) being the subset of H for which the limit in (8) is finite. Note that (7) can be obtained
as a special case of (8), by reformulating the discrete-time Markov chain as a continuous-time
process with jumps happening according to an exponential clock of unit rate.

Ma & Röckner [15] show that, under some mild regularity conditions (for example regularity
or quasi-regularity of the Dirichlet form in question; see Definition 8 in Section 2.4), for each
Dirichlet form Φ there exists a Markov process {Xx (t) : t > 0} (x ∈ F) such that Φ is its
associated Dirichlet form.

2.3. Mosco convergence of forms

Mosco [17, Definition 2.1.1] introduced the following notion of convergence of forms. In the
case of Dirichlet forms, this entails uniform convergence of the semigroups of the associated
processes: see Theorem 4.

Definition 2. A sequence of forms {Φn : n = 1, 2, . . .} in H converges to a form Φ in H (using

the notation Φn
M
→ Φ) if the following conditions hold:

(M1) For any h, h1, h2, . . . ∈ H with hn
w
→ h weakly in H, it is the case that

lim inf
n→∞

Φn(hn) > Φ(h);

(M2) For any h ∈ H there exists a sequence h1, h2, . . . , such that hn → h (strongly) in H and

lim sup
n→∞

Φn(hn) 6 Φ(h).

Remark 3. There is a potential terminological confusion between weak convergence of elements
of a Hilbert space (hn

w
→ h if ⟨hn, g⟩ → ⟨h, g⟩ for all g ∈ H) and weak convergence of

distributions of random variables (Zn ⇒ Z if E [ f (Zn)] → E [ f (Z)] for all bounded continuous
f ). In the language of functional analysis, the second kind of convergence is more properly
thought of as weak∗ convergence of (probability) measures. In this second case we will refer to
(probabilistic) weak convergence.

The following result plays a key enabling rôle in the application of Dirichlet forms to MCMC
theory.

Theorem 4 ([17, Corollary 2.6.1]). Let Φ and Φn (for n = 1, 2, . . .) be Dirichlet forms on

H with associated semigroups {Tt : t > 0} and {T(n)
t : t > 0}. Then Φn

M
→ Φ if and only

if the associated semigroups converge uniformly in the strong operator topology, meaning that
sup0<t6t0

T (n)
t h − Tt h


H

→ 0 as n → ∞, for any t0 > 0 and h ∈ H.

2.4. Nests, capacity and quasi-regularity

We first introduce the notion of capacity (see [1, (2.2)] and [15, Def.III.2.1 and Ex.III.2.10]).
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Definition 5 (Dirichlet Form Capacity). Given an open set U ⊆ F, we define the capacity of
U as

Cap(U ) = inf{∥h∥
2
H + Φ(h) : h > 1 on U µ-almost everywhere }, (9)

and, for general subsets A ⊆ F,

Cap(A) = inf{Cap(U ) : A ⊆ U ⊆ F, U open}. (10)

Let Φ, Φ1, Φ2 . . . be Dirichlet forms on H = L2(F, µ). The notion of Φ-nests
([15, Def.III.2.1 and Thm.III.2.11]) is crucial when articulating the extent to which the Dirichlet
forms are confined to suitable regions of F.

Remark 6. In the following we denote by C0(F) the space of continuous functions of compact
support on F, which is typically too small to be much use if F is infinite-dimensional.

Definition 7 (Φ-Nest of Closed Sets). An increasing sequence of closed sets F1 ⊆ F2 ⊆ . . .

contained in F is a Φ-nest if

lim
k→∞

CapΦ(F \ Fk) = 0.

Definition 8 (Regular and Quasi-Regular Dirichlet Forms, After [27]). The Dirichlet form Φ is
regular if D(Φ)∩C0(F) is dense in D(Φ) with respect to the inner product ⟨h1, h2⟩H+Φ(h1, h2)

and is dense in C0(F) with respect to the uniform norm. It is quasi-regular if

1. there is a Φ-nest of compact sets;
2. there is a subset of D(Φ), dense with respect to the inner product ⟨h1, h2⟩H + Φ(h1, h2) and

individually Φ-quasi-continuous, in the sense that (an µ-version of) any h in this subset is
continuous in each closed set in a Φ-nest (perhaps depending on h);

3. there is a countable subset of members of D(Φ) with Φ-quasi-continuous µ-versions ũ1,
ũ2, . . . , such that F \ N is separated by ũ1, ũ2, . . . , for a set N which can be expressed as a
subset of


i Fc

i for some Φ-nest F1 ⊆ F2 ⊆ . . . .

Remark 9. We assume that 1 ∈ D(Φ) and 1 ∈ D(Φn) for every n. Such an assumption implies
that the notions of quasi-regularity and nests are equivalent to their strict versions, namely strictly
quasi-regular and strict nests [15, Thm.V.2.15]. This simplifies the exposition as it is then possible
to ignore the strict versions of the above definitions.

This brief summary concludes by introducing the notion of an increasing family of closed sets
which is uniformly a Φn-nest for a sequence of Dirichlet forms Φ1,Φ2, . . . .

Definition 10 (Uniform {Φn}-Nest of Closed Sets). An increasing sequence of closed sets
{Fk}

∞

k=1 contained in F is a uniform {Φn}-nest if

lim
k→∞

sup
n∈N

CapΦn
(F \ Fk) = 0. (11)

Note that Sun [30] refers to sequences satisfying (11) as {Φn}-nest (or strict {Φn}-nest), while
we prefer the more explicit expression uniform {Φn}-nest.
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2.5. Results of the paper

This paper applies the above notions of Dirichlet forms in the context of the MHRW
framework described in Section 2.1, based on F = R∞ and µ = π⊗∞. For each n = 1, 2, . . . ,
consider the MHRW


X(n)(t) : t = 1, 2, . . .


subject to a time-rescaling by a factor of n. Via

(7), this motivates consideration of the following Dirichlet form:

Φn(h) =
n

2
E


h(X(n)(1)) − h(X(n)(0))
2


for h ∈ H. (12)

(This is the Dirichlet form corresponding to the continuous-time Markov process resulting from
the MHRW reformulated as a discrete-time Markov chain jumping at instants of an exponential
clock of rate n.) The natural candidate for a limiting Dirichlet form (as n → ∞) is given by

Φ(h) =

1
2
τ 2c(τ ) E[|∇h(X)|2] for h ∈ S,

∞ for h ∉ S,
(13)

where. Here the domain S of Φ is precisely the region where the first expression in (13) can be
viewed as finite. Accordingly, set S = W 1,2(R∞, π⊗∞) to be the Sobolev space defined as the
closure of


N>0 C∞

0,N (R∞) ⊂ H according to the norm

∥h∥
2
S =


RN


|h(x1:N )|2 +

N
i=1

 ∂

∂xi
h(x1:N )

2


π⊗N ( d x1:N ),

when h ∈ C∞

0,N (R∞), so h(x) = h(x1:N ). (14)

Here C∞

0,N (R∞) is the set of infinitely differentiable functions with compact support depending
only on the first N components.

The gradient ∇h in (13) is then defined as the continuous extension to S of the natural
definition of ∇ on


N>0 C∞

0,N (R∞). So if h ∈ S then the gradient ∇h is a measurable function

from R∞ to the Hilbert sequence space ℓ2
= {x ∈ R∞

:


∞

i=1 x2
i < ∞}, satisfying the following

properties:

1. E

⟨∇h(X), ∇h(X)⟩ℓ2


< ∞ and

2. for any i = 1, 2, . . . , it is the case that ⟨∇h(x), e(i)
⟩ℓ2 =

∂
∂xi

h(x) for π⊗∞-almost every x ,

where e(i)
∈ R∞ with e(i)

j = δi, j the Kronecker delta.

Albeverio & Röckner [1, Equation (1.12) and Remark 1.12] show that such a function exists and
is π⊗∞-almost everywhere unique.

The Dirichlet form in (13) corresponds to an infinite-dimensional continuous-time Markov
process {X∞(t) : t > 0} with state-space (R∞, π⊗∞), for which each component evolves
according to an independent copy of a specific diffusion on R with invariant measure π and
speed given by a specified function of τ . Some care is needed to establish a rigorous proof
that such a process has associated Dirichlet form given in the form of (13). Albeverio & Röckner
[1, Equations (2.8)–(2.11)] give sufficient conditions on Φ for the corresponding Markov process
to be well defined. In the Appendix we prove that these conditions hold for Φ as specified in (13).
A simple computation with Gaussian densities shows that

c(τ ) = E

1 ∧ exp


N

−

τ 2

2 I, τ 2 I


= 2F

−

1
2τ

√

I


,



4062 G. Zanella et al. / Stochastic Processes and their Applications 127 (2017) 4053–4082

where F is the standard normal distribution function: the limiting Dirichlet form (13) therefore
agrees with the Dirichlet form for the limiting diffusion given by Roberts et al. [22] as described
in Theorem 1.

The key result of this paper is that Mosco convergence of Φn to Φ holds under the relatively
weak conditions on the potential φ given at and above (2) (finite Fisher information, and
combined local Hölder and growth condition for the derivative of the potential φ).

Theorem 11. For Φn and Φ defined by (12) and (13), using a potential φ satisfying (2) together
with finite Fisher information I =


∞

−∞
|φ′(x)|2 f (x) d x < ∞, it is the case that Mosco

convergence Φn
M
→ Φ holds.

Proof. It suffices to establish both (M1) and (M2) of Definition 2. Dealing with these in reverse
order (so as to dispose of the easiest case first), Property (M1) is established in Section 3.3, and
Property (M2) is established in Section 3.2. �

Mosco convergence of forms immediately implies the uniform convergence of the associated
semigroups such as {Tt : t > 0}, and hence (probabilistic) vague convergence of the finite-
dimensional distributions of the corresponding process {X(n)

t : t > 0} (finite dimensional, in the
sense of joint distribution of evaluations of the processes at a finite collection of time points).

Corollary 12. Under the assumptions of Theorem 11, let {X∞(t) : t > 0} and {X(n)(t) : t > 0}

be the Markov processes associated with Φ and Φn and let {Tt : t > 0} and {T (n)
t : t > 0} be

their associated semigroups. Then Φn
M
→ Φ implies the uniform convergence of semigroups in

the strong operator topology: for any t0 > 0 and h ∈ H

sup
0<t6t0

T (n)
t h − Tt h


H

−→ 0 as n → ∞.

Remark 13. Kolesnikov [14] notes that vague convergence holds for finite-dimensional
distributions of the corresponding Markov processes. Note however that the above corollary
establishes L2 convergence of marginal distributions, which in some respects is much stronger
(e.g. it controls some unbounded test functions).

Proof. Follows from Theorems 4 and 11. �

These results lead to optimal scaling arguments for finite-dimensional distributions of the
Metropolis–Hastings random walk sampler, directly following the final argument of Roberts
et al. [22]. Fastest asymptotic exploration of the state space is obtained exactly by optimizing
the limiting process (governed by the Dirichlet form given in (13)). This limiting Dirichlet
form depends on τ only through a multiplicative factor τ 2c(τ ) which measures the speed at
which the limiting process evolves; therefore exploration occurs as fast as possible exactly when

τ 2c(τ ) = E

1 ∧ exp


N(− τ 2

2 I, τ 2 I)


is maximized, and at this maximum the acceptance

probability for jumps is given by the famous “Goldilocks constant” 0.234 obtained by Roberts
et al. [22]. See Roberts & Rosenthal [24] for more details on the connection between asymptotic
analysis through scaling limits and the algorithmic complexity of MCMC algorithms.

Good practice in Markov-chain Monte Carlo involves estimators which make use of
entire sample paths (deleting the initial “burn-in” periods), and so it is relevant to consider
(probabilistic) weak convergence of the distribution of the entire sample path of {X(n)(t) : t > 0}
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to that of {X∞(t) : t > 0}. Sun [30] provides sufficient conditions to prove this using Dirichlet
form theory.

Theorem 14 ([30, Theorem 1]). Let Φ and Φn (for n = 1, 2, . . .) be quasi-regular Dirichlet
forms on H = L2(F, µ), and let {X∞(t) : t > 0} and {X(n)(t) : t > 0} be their associated
Markov processes, with random starting points X∞(0) and X(n)(0) all distributed as µ. Suppose
that

(S1) Φn
M
→ Φ (Definition 2), and moreover a stronger form of condition (M2) of Definition 2

applies; lim supn→∞ Φn(u) 6 Φ(u) (i.e. the sequence of un in (M2) may all be chosen
equal to u).

(S2) Any Φ-nest of compact sets is also a uniform {Φn}-nest (Definition 10).

Then X(n) converges to X∞ in the sense of (probabilistic) weak convergence.

Note that the topology of F only plays a role in formulating closedness and compactness of
the sets F1, F2, . . . . The previous result, together with results from Section 3, can then be used
to prove weak convergence of the process of interest, so long as we strengthen the regularity
required of the density f (and thence of the potential φ).

Theorem 15. Let {X(n)(t) : t > 0} and {X∞(t) : t > 0} be the Markov processes associated
with Φn and Φ defined by (12) and (13) (see Sections 2.1 and 2.5). Suppose that the potential φ

has Lipschitz-continuous first derivative, meaning that |φ′(x+v)−φ′(x)| < k|v| for a fixed k and
for all x, v ∈ R, and finite Fisher information, meaning that I =


∞

−∞
|φ′(x)|2 f (x) d x < ∞.

Then X(n) converges to X∞ in the sense of (probabilistic) weak convergence.

Remark 16. Lipschitz continuity of φ′ is required in order to allow use of Lemma 20 from
Section 4.

Proof. The result follows by proving conditions (S1) and (S2) of Theorem 14. Both conditions
can be deduced from Theorem 11 and Lemma 20 from Section 3, as follows.

First consider (S1). Theorem 11 guarantees Φn
M
→ Φ and therefore it suffices to prove

lim sup
n→∞

Φn(u) 6 Φ(u) for every u ∈ H.

This holds trivially if Φ(u) = ∞, so suppose Φ(u) < ∞. Since Φn
M
→ Φ, there exists a sequence

{un} ⊂ H such that un → u in H and lim supn→∞ Φn(un) 6 Φ(u). Moreover, using the
construction described in Section 3.2, such a sequence can be chosen such that Φ(u − un) → 0.
Then Lemma 20 of Section 4 implies that Φn(u − un) → 0, because

Φn(u − un) 6 c(∥u − un∥H + Φ(u − un)) → 0. (15)

Bilinearity of

Φn(u, v) =
n

2
E


u


X(n)(0)


− u


X(n)(1)
 

v


X(n)(0)


− v


X(n)(1)


for any u, v ∈ H permits the deduction that

Φn(u) = Φn(un + (u − un), un + (u − un))

= Φn(un, un) + Φn(u − un, u − un) + 2Φn(un, u − un).
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Therefore

lim sup Φn(u) 6 lim sup Φn(un) + lim sup Φn(u − un) + 2 lim sup Φn(un, u − un). (16)

As a consequence of (15), it follows that lim sup Φn(u − un) = 0. Moreover an application of
the Cauchy–Schwarz inequality and the fact that lim sup Φn(un) 6 Φ(u) shows

lim sup Φn(un, u − un) 6 lim sup


Φn(un)Φn(u − un)

6


Φ(u) lim sup


Φn(u − un) = 0.

When combined with (16) and (M2) of Mosco convergence, the latter results in the deduction
that lim sup Φn(u) 6 Φ(u), as desired.

Now consider condition (S2). Suppose F1 ⊆ F2 ⊆ . . . is a Φ-nest of compact sets. Therefore
there exist uk ∈ D(Φ) with uk > 1 on F \ Fk such that ∥uk∥H + Φ(uk) → 0. By definition of
CapΦn

and by Lemma 20, it is the case that

sup
n

CapΦn
(F \ Fk) 6 sup

n
∥uk∥H + Φn(uk) 6 ∥uk∥H + C(∥uk∥

2
H + Φ(uk)) → 0.

Therefore {Fk}k∈N is a uniform {Φn}-nest and so (S2) holds. �

3. Mosco convergence for Metropolis–Hastings random walks

In this section we establish Mosco convergence in three steps. We begin with a lemma
and a corollary which describe central limit behaviour for a conditioned instance of the
Metropolis–Hastings ratio, making heavy use of the regularity conditions at and above (2). This is
then applied to establish the two conditions for Mosco convergence (Definition 2) in Sections 3.2
and 3.3.

3.1. Convergence of the acceptance function

Consider the Metropolis–Hastings ratio for the Metropolis–Hasting random walk algorithm,
conditioned on the chain state. Under mild conditions (finite Fisher information, local Hölder
and controlled growth of derivative of log-density), we now show that the conditioned ratio

a(X1:n, W1:n)|X1:n = x1:n converges in distribution to 1 ∧ exp

N(− τ 2

2 I, τ 2 I)


as n → ∞,

for almost every sequence (x1, x2, . . .).

Lemma 17. Let φ : R → R and W = (W1, W2, . . .) be as described above in Section 2. Given
finite Fisher information, and local Hölder and controlled growth for the derivative of the log-
density φ, for π⊗∞-almost every sequence (x1, x2, . . .),

log

 f


x1:n +
τ

√
n

W1:n


f (x1:n)

 =

n
i=1


φ


xi +

τ
√

n
Wi


− φ(xi )


D
→ N


−

τ 2

2
I, τ 2 I


.

(17)

Proof. Throughout the proof we condition implicitly on X1 = x1, X2 = x2, . . . . We begin by
separating the left-hand side of (17) into two summands, the first of which is of mean zero and
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carries all the asymptotic random variation.
n

i=1


φ


xi +

τ
√

n
Wi


− φ(xi )


=

τ
√

n

n
i=1

φ′(xi )Wi

+
τ

√
n

n
i=1

Wi

 1

0


φ′


xi +

τu
√

n
Wi


− φ′(xi )


d u. (18)

Analysis of the first summand of the right-hand side of (18) can be achieved rapidly using the
strong law of large numbers: 1

n

n
i=1 φ′(xi )

2 converges to I for π⊗∞-almost every x1, x2, . . . .

Since σn → σ implies N (0, σn)
D
→ N (0, σ ), it follows that for π⊗∞-almost every x1, x2, . . .

L


τ

√
n

n
i=1

φ′(xi )Wi


= N


0, τ 2

×
1
n

n
i=1

φ′(xi )
2


D
→ N


0, τ 2 I


.

The second summand of the right-hand side of (18) requires more detailed attention, and its
treatment requires some regularity of φ′, for example as expressed in (2). We seek to show that
this summand converges in distribution to −

τ 2

2 I. The strategy is to show that its expectation

converges to −
τ 2

2 I, while its variance vanishes asymptotically. Recall that variances are bounded
by second moments. Applying this to each of the n conditionally independent terms involved in
the finite sum (conditioning implicitly on X1 = x1, X2 = x2, . . . as noted above), we find:

Var


τ

√
n

n
i=1

Wi

 1

0


φ′


xi +

τu
√

n
Wi


− φ′(xi )


d u



=
τ 2

n

n
i=1

Var


Wi

 1

0


φ′


xi +

τu
√

n
Wi


− φ′(xi )


d u



6
τ 2

n

n
i=1

E

Wi

 1

0


φ′


xi +

τu
√

n
Wi


− φ′(xi )


d u


2
 . (19)

Employing the regularity of φ′ as given in the combined growth/local Hölder condition (2), and
noting that uα 6 uγ for u ∈ (0, 1) and nγ 6 nα for n > 1 (with α and γ as given in (2)),Wi

 1

0


φ′


xi +

τu
√

n
Wi


− φ′(xi )


d u

 6 k |Wi |
max{|τWi |

γ , |τWi |
α
}

n
γ
2

 1

0
uγ d u

= k
|Wi | max{|τWi |

γ , |τWi |
α
}

n
γ
2 (1 + γ )

, (20)

where k is the constant appearing in (2). Combining (19) and (20), we deduce that the second
summand has variance bounded above by

τ 2

n

n
i=1

E


k2 |Wi |
2 max{|τWi |

2γ , |τWi |
2α

}

nγ (1 + γ )2


6

τ 2k2(τ 2γ
+ τ 2α)

nγ (1 + γ )2 E

|Wi |

2(1+γ )
+ |Wi |

2(1+α)


→ 0, as n → ∞.

So the variance of the second summand vanishes asymptotically.
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We turn to the expectation of the second summand. Once again we condition implicitly on
X1 = x1, X2 = x2, . . . . We obtain

E


τ

√
n

n
i=1

Wi

 1

0


φ′


xi +

τu
√

n
Wi


− φ′(xi )


d u


=

n
i=1

Z (n)(xi )

n
,

where Z (n)(xi ) = τ
√

nE

Wi
 1

0


φ′


xi +

τu
√

n
Wi


− φ′(xi )


d u

. It follows from (20) that

|Z (n)(xi )| 6 c̃ n
1−γ

2 , where c̃ = τ k
1+γ

E [|Wi | max{|τWi |
γ , |τWi |

α
}]. We now integrate out the

implicit conditioning. The random variables Z (n)(X1), . . . , Z (n)(Xn) are i.i.d., with values lying

in the range [−c̃ n
1−γ

2 , c̃ n
1−γ

2 ]. Hence Hoeffding’s inequality applies: for any positive ε,

P




n
i=1

Z (n)(X i )

n
− E


Z (n)(X1)

 > ε

 6 2 exp

−
2n2ε2

n


2c̃n
1−γ

2

2


= 2 exp


−

ε2

2c̃2 nγ


. (21)

The right-hand side of (21) is summable over n, since γ > 0, and therefore the first Borel–
Cantelli lemma applies: 1

n

n
i=1 Z (n)(X i ) converges almost surely to limn→∞ E


Z (n)(X1)


, if

such a limit exists.
To complete the proof it suffices to show that limn→∞ E


Z (n)(X1)


= −

τ 2

2 I. Shifting an
x-variable of integration, we achieve the following,

E


Z (n)(X1)


= τ
√

n


R
E


W1

 1

0


φ′


x +

τu
√

n
W1


− φ′(x)


d u


eφ(x) d x

= τ
√

n
 1

0
E

W1


R

e
φ


x−

τu
√

n
W1


− eφ(x)

 φ′(x) d x

 d u

= −τ 2
 1

0
E

W 2
1

 1

0


R

φ′


x −

τuv
√

n
W1


e
φ


x−

τuv
√

n
W1

 φ′(x) d x d v

 u d u.

(The exchange of integrals and expectations is justified by a Fubini argument involving the
finiteness of I =


∞

−∞
|φ′(x)|2 f (x) d x .) But now we undo the shift of the x-variable of

integration and use the regularity condition (2) for φ′. For n > 1, this leads to:E Z (n)(X1)


+
τ 2

2
I


=

E Z (n)(X1)


+ τ 2
 1

0
E


W 2

1

 1

0


R

φ′(x)2eφ(x) d x d v


u d u


= τ 2


 1

0
E

W 2
1

 1

0


R

φ′(x)φ′


x −

τuv
√

n
W1


e
φ


x−

τuv
√

n
W1


− φ′(x)2eφ(x)

 d x d v

 u d u


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= τ 2


 1

0
E


W 2

1

 1

0


R


φ′


x +

τuv
√

n
W1


− φ′(x)


φ′(x)eφ(x) d x d v


u d u


6 k × τ 2

 1

0

 1

0
E


W 2
1


R

max


τuv
√

n
|W1|

γ

,


τuv
√

n
|W1|

α φ′(x)
 eφ(x) d x


d v u d u

6 k × τ 2(τ γ
+ τα)E


|W1|

2+γ
+ |W1|

2+α
  

R

φ′(x)
 eφ(x) d x

1

nγ /2 → 0 as n → ∞.

Here the finiteness of


R
φ′(x)

 eφ(x) d x = E
φ′(X1)

 follows from E
φ′(X1)

2 = I

< ∞. �

The above result will actually be used in the following form.

Corollary 18. Let φ : R → R, X = (X1, X2, . . .), W = (W1, W2, . . .), and a(X1:n, W1:n)

be as described above in Section 2.1. For any N > 1, almost surely as n → ∞ we have

E [a(X1:n, W1:n)|X1:n, W1:N ] → c(τ ) = E

1 ∧ exp


N(− τ 2

2 I, τ 2I)


.

Proof. Given a, b > 0, we have |(1 ∧ ab) − (1 ∧ b)| 6 |1 − a|. This follows because if b < 1
then x → 1 ∧ bx is 1-Lipschitz, while if b > 1 and a > 1

b the left-hand side is 0, and finally if
b > 1 and a < 1

b then a 6 ab < 1 and |ab − 1| 6 |1 − a|. ThereforeE
1 ∧

f


X1:n +
τ

√
n

W1:n


f (X1:n)

− 1 ∧

f


X(N+1):n +
τ

√
n

W(N+1):n


f (X(N+1):n)

 X1:n, W1:N


6


f


X1:N +
τ

√
n

W1:N


f (X1:N )

− 1

 ,
which converges to 0 almost surely for n → ∞. Moreover, by Lemma 17 and the dominated
convergence theorem, as n → ∞ so

E

1 ∧

f


X(N+1):n +
τ

√
n

W(N+1):n


f (X(N+1):n)

 X1:n, W1:N


−→ E


1 ∧ exp


N


−

τ 2

2
I, τ 2I


. �

3.2. Proving the second Mosco condition (M2)

Suppose that the conditions of Section 2.1 are satisfied. We establish the validity of
Definition 2 (M2) before that of (M1), because (M2) follows by a more straightforward argument.
If h ∈ H \ S then Φ(h) = ∞ and thus (M2) holds trivially, for example choosing a sequence
{hn}

∞

n=1 identically equal to h.
Consequently we need only consider the case h ∈ S. Since


N>1 C∞

0,N (R∞) is dense in S,
there exists a sequence {hk}

∞

k=1 ⊂


N>1 C∞

0,N (R∞) such that ∥hk − h∥S → 0 as k → ∞, hence
Φ(hk) −→ Φ(h). Choosing a subsequence and re-labelling, we may suppose that

|Φ(hk) − Φ(h)| 6
1
k

for k = 1, 2, . . . .
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For fixed k, noting that hk ∈ C∞

0,N (R∞) for some N and that by virtue of this hk is induced by
a smooth function of compact support on RN , we see that Φn(hk) −→ Φ(hk) as n → ∞. Indeed,

Φn(hk) = E

τ 2

2

hk


X1:N +

τ
√

n
W1:N


− hk(X1:N )

τ/
√

n

2

× E

1 ∧

f


X1:n +
τ

√
n

W1:n


f (X1:n)

 X1:N , W1:N

 .

The expression inside the outer expectation is bounded by τ 2

2


|W1:N | ∥h′

k∥∞

2, which is an
integrable random variable. Because of the regularity of hk and Corollary 18, this expression
converges pointwise to τ 2

2 (∇hk(X1:N )T W1:N )2 c(τ ) as n → ∞. Therefore it follows from

the dominated convergence theorem that as n → ∞ so Φn(hk) −→
τ 2c(τ )

2 E

(∇hk(X1:N )T

W1:N )2


= Φ(hk). Thus |Φn(hk) − Φ(hk)| < 1
k for sufficiently large n depending on k, and so

we can choose an increasing sequence j1 = 1 < j2 < . . . such that for any k = 1, 2, . . .

|Φn(hk) − Φ(hk)| 6
1
k

for all n > jk .

Note that we can in addition stipulate that jk > k. For n > j1 we define σn = sup{k : jk 6 n}.
Note that 1 6 σn 6 n and moreover σn → ∞ as n → ∞, because σn > k for n > jk . Finally,
by definition of σn it is the case that jσn 6 n. Therefore, as n → ∞,

|Φn(hσn ) − Φ(h)| 6 |Φn(hσn ) − Φ(hσn )| + |Φ(hσn ) − Φ(h)| 6
1
σn

+
1
σn

−→ 0.

It follows that as n → ∞ so Φn(hσn ) → Φ(h), hence a fortiori lim supn Φn(hσn ) 6 Φ(h).
Moreover hσn → h in H, since hn → h in H and σn → ∞. Relabelling hσn as hn produces the
sequence required to establish the validity of the second Mosco condition.

3.3. Proving the first Mosco condition (M1)

We now turn to the more substantial question of the validity of Definition 2 (M1) under the
conditions described in Section 2.1. Consider hn, h ∈ H such that hn

w
→ h weakly in H as

n → ∞. It is convenient to write Φn(hn) = ∥Ψn(hn)∥2
L2

(X,W,U )

, where

Ψn(hn) =


n

2


hn(X(n)(1)) − hn(X(n)(0))


. (22)

Fixing N > 0 and taking a non-zero test function ξ in C∞

0 (R2N ) (so ξ is infinitely differentiable
with compact support, and in particular is bounded), the function ξ(X1:N , W1:N )I(U <

a(X1:n, W1:n)) belongs to L2
(X,W,U ) and is also non-zero. We can therefore apply the

Cauchy–Schwarz inequality and obtain:
Φn(hn) = ∥Ψn(hn)∥L2

(X,W,U )

>
⟨Ψn(hn), ξ(X1:N , W1:N )I(U < a(X1:n, W1:n))⟩L2

(X,W,U )

∥ξ(X1:N , W1:N )I(U < a(X1:n, W1:n))∥L2
(X,W,U )

. (23)
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Here U is the Uniform (0, 1) random variable introduced in Section 2.1, which is independent of
X and W.

Consider the denominator of (23). Integrating out first U and then (X(N+1):n, W(N+1):n)

leads to

∥ξ(X1:N , W1:N )I(U < a(X1:n, W1:n))∥L2
(X,W,U )

=


E

ξ(X1:N , W1:N )2a(X1:n, W1:n)


=


E

ξ(X1:N , W1:N )2E [a(X1:n, W1:n)|X1:N , W1:N ]


→


c(τ ) ∥ξ(X1:N , W1:N )∥L2

(X,W)
. (24)

Convergence as n → ∞ follows from Corollary 18 (hence E [a(X1:n, W1:n)|X1:N , W1:N ] con-

verges almost surely to c(τ ) = E

1 ∧ exp


N(− τ 2

2 I, τ 2I)


) and the fact that ξ(X1:N , W1:N )2

E [a(X1:n, W1:n)|X1:N , W1:N ] is bounded by ∥ξ∥
2
∞ < ∞ (note that the acceptance probability

a(X1:n, W1:n) lies in [0, 1]).
In order to deal with the numerator of (23), it is necessary to argue in more detail, as described

by the following lemma.

Lemma 19. Suppose as above that hn → h weakly in H. Define a twisted gradient
∇

( f )
x1:N ξ(X1:N , W1:N ) (twisted by the density f ) by requiring that it satisfy

f (X1:N )∇
( f )
x1:N ξ(X1:N , W1:N ) = ∇x1:N (ξ(X1:N , W1:N ) f (X1:N )) .

Then, as n → ∞,

⟨Ψn(hn), ξ(X1:N , W1:N )I(U < a(X1:n, W1:n))⟩L2
(X,W,U )

→ −
τ c(τ )
√

2
E

h(X)(∇

( f )
x1:N ξ(X1:N , W1:N )T W1:N )


. (25)

Proof. We use the following concise notation

x = x1:n, x A = x1:N , x B = x(N+1):n, w = w1:n,

wA = w1:N , wB = w(N+1):n .

Fix a compact set K ⊂ R2N such that


n∈N{(x A, wA) : ξ(x A −
τwA√

n
, wA) > 0} ⊆ K . For

example, given supp(ξ) ⊆ [−M, M]
2N (remember that ξ has compact support), we can take

K = [−(1 + τ)M, (1 + τ)M]
N

× [−M, M]
N . Integrating out U and (Xn+1, Xn+2, . . .) the

left-hand side of (25) equals
n

2


R2n


h̃n


x +

τ
√

n
w


− h̃n(x)


a(x, w) ξ(x A, wA) f (x)g(w) d x d w, (26)

where h̃n(x) = E

hn(X)|X1:n = x


.

Weak convergence of hn to h in H implies that ∥hn∥N 6 M1 for some M1 < ∞ by
the Banach–Steinhaus theorem (the “uniform boundedness principle”). On the other hand, for
b ∈ H, if b̃n(x) = E


b(X)|X1:n = x


then ∥b − b̃n∥H → 0 as a consequence of the L2

martingale convergence theorem. Accordingly

|⟨h̃n, b⟩ − ⟨hn, b⟩| = |⟨h̃n, b̃n⟩ − ⟨hn, b⟩| = |⟨hn, b̃n⟩ − ⟨hn, b⟩| 6 M1∥b − b̃n∥H → 0.
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Thus h̃n
w
→ h weakly in H. These arguments show that effectively we may suppose that hn

depends only on the first n components, leading to hn(x) = h̃n(x) for every n and x ∈ Rn .
The following equality is obtained by translating x to x −

τ
√

n
w, then multiplying and dividing

through by f (x B −
τ

√
n
wB)/ f (x B), finally using reflection to replace wB by −wB (noting that

g is symmetric).
R2n

hn


x +

τ
√

n
w

1 ∧

f


x +
τ

√
n
w


f (x)

 ξ(x A, wA) f (x)g(w) d x d w

=


R2n

hn(x)

 f (x A)

f


x A −
τ

√
n
wA

 ∧

f


x B +
τ

√
n
wB


f (x B)


× ξ


x A −

τ
√

n
wA, wA


f


x A −
τ

√
n
wA


f (x B)g(w) d x d w. (27)

From (27) it follows that (26) equals
n

2


R2n

hn(x)

 f (x A)

f


x A −
τ

√
n
wA

 ∧

f


x B +
τ

√
n
wB


f (x B)

 ξ


x A −
τ

√
n
wA, wA



×

f


x A −
τ

√
n
wA


f (x A)

− a(x, w) ξ(x A, wA)


f (x)g(w) d x d w. (28)

Adding and subtracting appropriate terms to (28), and multiplying and dividing the resulting
second summand by −

τ
√

n
, we obtain


n

2


R2n

hn(x)

 f (x A)

f (x A −
τ

√
n
wA)

∧

f


x B +
τ

√
n
wB


f (x B)

− a(x, w)


× ξ


x A −

τ
√

n
wA, wA

 f


x A −
τ

√
n
wA


f (x A)

f (x)g(w) d x d w −
τ

√
2


R2n

hn(x)a(x, w)

×

ξ


x A −
τ

√
n
wA, wA


f


x A −
τ

√
n
wA


− ξ(x A, wA) f (x A)

−
τ

√
n

f (x A)

 f (x)g(w) d x d w.

(29)

Note that the density f is positive and C1 everywhere, and hence is strictly positive and bounded
with bounded first derivative on the compact projection of the support of ξ . Using Corollary 18
and smoothness and compact support of the test function ξ , the expression

ξ


x A −
τ

√
n
wA, wA


f


x A −
τ

√
n
wA


− ξ(x A, wA) f (x A)

−
τ

√
n

f (x A)


Rn−N

a(x, w)g(wB) d wB


converges pointwise to (∇

( f )
x A

ξ(x A, wA)T wA)c(τ ). Therefore this expression is bounded by

sup
∇x A


ξ(x A, wA) f (x A)

× sup
(x A,wA)∈K


|wA|

f (x A)


× lim sup

n→∞


Rn−N

a(x, w)g(wB) d wB,



G. Zanella et al. / Stochastic Processes and their Applications 127 (2017) 4053–4082 4071

and therefore converges also in L2
(X,W1:N ). Consequently, since hn converges weakly to h in

L2
(X,W1:N ) and the inner product of a strongly and a weakly converging sequence is a convergent

sequence of real numbers (using again the uniform boundedness principle), the second term of
(29) converges to the limit

−
τ c(τ )
√

2
E

h(X)


∇

( f )
x A

ξ(X1:N , W1:N )T W1:N


.

The proof of the lemma will be completed by showing that the first term of (29) converges to
0 as n → ∞. This term can be rewritten as

Rn+N
bn(x, wA) cn(x, wA) f (x)g(wA) d x d wA, (30)

with bn(x, wA) =
τ

√
2

hn(x)ξ(x A −
τ

√
n
wA, wA)

f (x A−
τ

√
n

wA)

f (x A)
and

cn(x, wA) = I


ξ


x A −

τ
√

n
wA, wA


> 0



×

√
n

τ


Rn−N

e

N
i=1


φ(xi )−φ


xi −

τ
√

n
wi


∧ e

n
i=N+1


φ


xi +

τ
√

n
wi


−φ(xi )


− a(x, w)


× g(wB) d wB .

We shall show that ∥bn(x, wA)∥L2
(X,W1:N )

is bounded and ∥cn(x, wA)∥L2
(X,W1:N )

→ 0, which

implies that (30) converges to 0.
Boundedness of ∥bn(x, wA)∥L2

(X,W1:N )
is almost immediate. Since ∥hn∥L2

X
6 M1 (using the

uniform boundedness principle) and

ξ(x A −
τ

√
n
wA, wA)

f (x A−
τ

√
n
wA)

f (x A)

 6 M2 (since both ξ and

f are continuous and the set {(x A, wA) : ξ(x A −
τ

√
n
wA, wA) > 0} is contained in the compact

set K defined at the start of this proof), it follows that ∥bn(x, wA)∥L2
(X,W1:N )

6 τ
√

2
M1 M2 for

some positive M1 and M2 not depending on n.
Using f (x) = eφ(x), we bound the integral factor of cn(x, wA) as a sum of two integrals:

√
n

τ


Rn−N

e∆A ∧ e∆B − 1 ∧ e∆A+∆B

 g(wB) d wB

6

√
n

τ


Rn−N

e∆A ∧ e∆B − e∆A ∧ e∆B

 g(wB) d wB

+

√
n

τ


Rn−N

e∆A ∧ e∆B − 1 ∧ e∆A+∆B

 g(wB) d wB, (31)

where ∆A =
N

i=1(φ(xi +
τ

√
n
wi ) − φ(xi )), ∆B =

n
i=N+1(φ(xi +

τ
√

n
wi ) − φ(xi )) and∆A =

N
i=1(φ(xi ) − φ(xi −

τ
√

n
wi )). We deal with these two integrals separately. Since

|(a ∧ c) − (b ∧ c)| 6 |a − b| for any a, b, c > 0, the modulus in the first integral on the

right-hand side of (31) is smaller than
e∆A − e∆A

. Since ex is locally Lipschitz, there exist a



4072 G. Zanella et al. / Stochastic Processes and their Applications 127 (2017) 4053–4082

constant c > 0 such that, for (x A, wA) ∈ K , we can use (2) to deduce that
√

n

τ

e∆A − e∆A

 6 c

√
n

τ

∆A − ∆A


6 c
N

i=1

|wi |

 1

0

φ′


xi + u

τ
√

n
wi


− φ′


xi − u

τ
√

n
wi

 d u

6 c k

2α(τ γ
+ τα)

N
i=1

(|wi |
1+γ

+ |wi |
1+α)

nγ /2 , (32)

which converges to 0 uniformly over (x A, wA) ∈ K .
The second integral of the right-hand side of (31) can be dealt with as follows. Suppose

∆A > 0 for simplicity (if ∆A < 0 the argument needs only trivial modification). Then
√

n

τ


Rn−1


e∆A ∧ e∆B − 1 ∧ e∆A+∆B


g(wB) d wB

=

√
n

τ


e∆A


∆B>∆A

g(wB) d wB −


∆B<−∆A

e∆B g(wB) d wB


−


∆B>−∆A

g(wB) d wB −


∆B<∆A

e∆B g(wB) d wB


=

√
n

τ


e∆A − 1


∆B>∆A

g(wB) d wB −


∆B<−∆A

e∆B g(wB) d wB


−


−∆A<∆B<∆A


1 − e∆B


g(wB) d wB


. (33)

Note that −|∆A| < ∆B < |∆A| implies
1 − e∆B

 <
e|∆A|

− 1
 and therefore (33) is smaller

in absolute value than
√

n

τ

e|∆A|
− 1

 
∆B>∆A

g(wB) d wB −


∆B<−∆A

e∆B g(wB) d wB


+


−|∆A|<∆B<|∆A|

g(wB) d wB


. (34)

To complete the proof of the lemma, we show that (34) is bounded for (x A, wA) ∈ K and
converges almost surely to 0 as n → ∞. The integral terms of (34) are bounded either by 1 or
by the (finite) supremum of e−∆A over (x A, wA) ∈ K . Moreover, since the function x → ex is
locally Lipschitz, there exist c > 0 such that for (x A, wA) ∈ K

√
n

τ

e|∆A|
− 1

 6

√
n

τ
c |∆A| 6 c

N
i=1

 1

0
|wi |

φ′


xi + u

τwi
√

n

 d u,

which is bounded over (x A, wA) ∈ K . Therefore (34) is bounded. Finally, for almost every wA

and x1, x2, . . . it is the case that ∆A converges to 0 and ∆B
D
→ N(− τ 2

2 I, τ 2I) (see Lemma 17).
Therefore the integral


−∆A<∆B<∆A

g(wB) d wB converges almost surely to 0 and
∆B>∆A

g(wB) d wB −


∆B<−∆A

e∆B g(wB) d wB
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converges almost surely to


z>0

exp

−


z +

τ 2

2 I
2

2τ 2I

 d z −


z<0

ez exp

−


z +

τ 2

2 I
2

2τ 2I

 d z = 0.

Thus the second integral of the right-hand side of (31) converges to 0 as n → ∞. Accordingly
we have shown that the first term of (29) converges to 0 as n → ∞, and so this completes the
proof of the lemma. �

From (23), (24) and Lemma 19 it follows that for any ξ ∈ C∞

0 (R2N ) with ξ ≠ 0

lim inf
n→∞


Φn(hn) > −

τ
√

c(τ )
√

2

E

h(X)


∇

( f )
x1:N ξ(X1:N , W1:N )T W1:N


∥ξ(X1:N , W1:N )∥L2

(X,W )

. (35)

Given (35), we can prove (M1) of Definition 2 using Hilbert space duality. We consider h ∈ S
and then h ∈ H \ S. If h ∈ S, then an integration-by-parts argument using the compact support
of ξ shows that

−E

h(X)


∇

( f )
x1:N ξ(X1:N , W1:N )T W1:N


= E


ξ(X1:N , W1:N )


∇x1:N h(X)T W1:N


.

Since ξ depends on (X1:N , W1:N ) only and E [∂i h(X)Wi ] = E [∂i h(X)] E [Wi ] = 0, we find

E

ξ(X1:N , W1:N )


∇x1:N h(X)T W1:N


= E


ξ(X1:N , W1:N )


∇h(X)T W


.

Using Hilbert space duality and taking the supremum over N and ξ we obtain the desired
inequality

lim inf
n→∞


Φn(hn) > sup

N>1
sup

ξ∈C∞
0 (R2N )

ξ≠0

τ
√

c(τ )
√

2

E

ξ(X1:N , W1:N )


∇h(X)T W


∥ξ(X1:N , W1:N )∥L2

(X,W)

=
τ

√
c(τ )

√
2

∇h(X)T W


L2
(X,W)

=
τ

√
c(τ )

√
2


E

|∇h(X)|2


=


Φ(h).

This establishes (M1) of Definition 2 for the case of h ∈ S.
On the other hand, (M1) follows for the case of h ∈ H \ S if it can then be shown that the

supremum over ξ of the right-hand side of (35) is equal to infinity. Since h ∉ S, we can use
Hilbert space duality, together with the definition of S, and also the definition of the twisted
gradient in Lemma 19, to show that

sup
N>1

sup
ξ1∈C∞

0 (RN )

ξ1≠0

⟨ h, ξ1 ⟩H +


h, −

N
i=1

∇
( f )
i ∇iξ1


H

∥ξ1∥S
= ∞. (36)

(For otherwise the numerator, viewed as a function of ξ , extends to a continuous linear function
on S, and the Riesz representation theorem for Hilbert space would then imply that h ∈ S.) Since



4074 G. Zanella et al. / Stochastic Processes and their Applications 127 (2017) 4053–4082

h ∈ H and therefore ⟨ h, ξ1 ⟩H
∥ξ1∥S

6 ∥h∥H ∥ξ1∥H
∥ξ1∥S

6 ∥h∥H < ∞, it follows from (36) that

sup
N>1

sup
ξ1∈C∞

0 (RN )

ξ≠0


h, −

N
i=1

∇
( f )
i ∇iξ1


H

∥ξ1∥S
= ∞. (37)

To apply (37) to (35), we consider test functions ξ of the form ξ(X1:N , W1:N ) =
N

i=1
ξ2(Wi )∇iξ1(X), with ξ1 in C∞

0 (RN ) and ξ2 in C∞

0 (R), choosing ξ2 so that (for all indices i)
E [ξ2(Wi )] = E [ξ2(W1)] = 0. For such a test function

∥ξ(X1:N , W1:N )∥2
L2

(X,W )

= E


N

i=1

ξ2(Wi )
2
∇iξ1(X)2


= ∥ξ2∥

2
L2

W1

N
i=1

∥∇iξ1∥
2
H. (38)

Moreover, since E [ξ2(Wi )] = 0 for all indices i , we have

E


h(X)

N
j=1

N
i=1

ξ2(Wi )W j∇
( f )
j ∇iξ1(X)


= E


h(X)

N
j=1

ξ2(W j )W j∇
( f )
j ∇ jξ1(X)



= E


h(X)

N
j=1

∇
( f )
j ∇ jξ1(X)


E [ξ2(W1)W1] . (39)

Combining (38) and (39), and using the specific form of the test function ξ , the supremum of the
right-hand side of (35) is controlled by a fixed positive finite multiple of

 sup
ξ2∈C∞

0 (R)

ξ2≠0, E[ξ2(W1)]=0

E [ξ2(W1)W1]
∥ξ2∥L2

W1

×

sup
N>1

sup
ξ1∈C∞

0 (RN ),

ξ1≠0

E


−h(X)

N
j=1

∇
( f )
j ∇ jξ1(X)




N
i=1

∥∇iξ1∥
2
H

 .

(40)

Now W1 can be arbitrarily approximated in L2
W1

by mollifications ξ2(W1) such that ξ2 ∈ C∞

0 (R)

and E [ξ2(W1)] = 0. Consequently the supremum over ξ2 in (40) is equal to E

W 2

1


= 1.

Therefore (40) equals

sup
ξ1∈C∞

0 (RN ),

ξ1≠0

E


−h(X)

N
j=1

∇
( f )
j ∇ jξ1(X)




N
i=1

∥∇iξ1∥
2
H

> sup
ξ1∈C∞

0 (RN ),

ξ1≠0

E


−h(X)

N
j=1

∇
( f )
j ∇ jξ1(X)


∥ξ1∥S

= ∞,

where the infinite value of the second supremum follows from (37).
This establishes (M1) of Definition 2 for the case of h ∈ H \ S, and thus (M1) holds for all

h ∈ S.
The results of this section and of Section 3.2 therefore together establish Mosco convergence

of Φn to Φ.
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4. Weak convergence

In this section we show that a strengthening of (2) to deliver a global Lipschitz property for
φ′ permits control of the Φn by the Sobolev norm associated with Φ. This suffices to allow the
application of the results of Sun [30] to establish (probabilistic) weak convergence.

Lemma 20. Suppose that φ′ is Lipschitz-continuous, meaning that |φ′(x + v) − φ′(x)| < k|v|

for a fixed k and for all x, v ∈ R. Then there exists C depending on τ but not depending on n
such that, for any h ∈ H,

Φn(h) 6 C

∥h∥

2
H + Φ(h)


. (41)

Proof. If Φ(h) = ∞, then (41) holds trivially (note that Φn(h) < ∞ whenever h ∈ H). We may
therefore suppose that Φ(h) < ∞.

Viewing Φn(h) as an expectation as in Eq. (12), we divide the expectation according to
whether or not

n
i=1 |Wi |

2 is greater than cn for a suitable constant cn .

Φn(h) =
n

2
E


h(X(n)(1)) − h(X(n)(0))
2


=
n

2
E


h


X1:n +
τ

√
n

W1:n, X(n+1):∞


− h(X1:n, X(n+1):∞)

2
a(X1:n, W1:n);

×

n
i=1

|Wi |
2 6 cn



+
n

2
E


h


X1:n +
τ

√
n

W1:n, X(n+1):∞


− h(X1:n, X(n+1):∞)

2
a(X1:n, W1:n);

×

n
i=1

|Wi |
2 > cn


.

We focus first on the component for which
n

i=1 |Wi |
2 > cn . Observe that

h


x1:n +
τ

√
n

w1:n, x(n+1):∞


− h(x1:n, x(n+1):∞)

2 
f (x1:n) ∧ f


x1:n +

τ
√

n
w1:n


6 2


h


x1:n +
τ

√
n

w1:n, x(n+1):∞

2
+ h(x1:n, x(n+1):∞)2


×


f (x1:n) ∧ f


x1:n +

τ
√

n
w1:n


6 2


h


x1:n +
τ

√
n

w1:n, x(n+1):∞

2
f


x1:n +
τ

√
n

w1:n


+ h(x1:n, x(n+1):∞)2 f (x1:n)


.

Changing variables x1:n → x1:n −
τw1:n√

n
in the integral expression of the above, we may deduce

that

n

2
E


h


X1:n +
τ

√
n

W1:n, X(n+1):∞


− h(X1:n, X(n+1):∞)

2
a(X1:n, W1:n);

n
i=1

|Wi |
2 > cn


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6 2n E


h(X1:n, X(n+1):∞)2

;

n
i=1

|Wi |
2 > cn



= 2E

h(X)2


n P


n

i=1

|Wi |
2 > cn


. (42)

Now consider the Chernoff bound for the χ2 distribution. When cn > n we have

P


n

i=1

|Wi |
2 > cn


6


cn
n e

−

 cn
n −1

n/2

,

and so the upper bound in (42) converges to zero if (for example) cn = (1 + ε)n for some ε > 0.
Now consider the component for which

n
i=1 |Wi |

2 6 cn . Employing Jensen’s inequality,
and changing measure by translation,

n

2
E


h


X1:n +
τ

√
n

W1:n, X(n+1):∞


− h(X1:n, X(n+1):∞)

2
a(X1:n, W1:n);

n
i=1

|Wi |
2 6 cn



=
n

2
E

 τ
√

n

 1

0


∇1:nh


X1:n +

τ
√

n
uW1:n, X(n+1):∞

T
W1:n


d u

2

×

f (X1:n) ∧ f


X1:n +
τ

√
n

W1:n


f (X1:n)

;

n
i=1

|Wi |
2 6 cn


6

τ 2

2
E

 1

0


∇1:nh


X1:n +

τ
√

n
uW1:n, X(n+1):∞

T
W1:n

2

×

f (X1:n) ∧ f


X1:n +
τ

√
n

W1:n


f (X1:n)

d u;

n
i=1

|Wi |
2 6 cn


=

τ 2

2
E


∇1:nh(X1:n, X(n+1):∞)T W1:n

2  1

0
Λn(u; X1:n, W1:n) d u;

n
i=1

|Wi |
2 6 cn


, (43)

using Λn(u; X1:n, W1:n) = exp((
n

i=1 φ(X i −
τ

√
n

uWi )) ∧ (
n

i=1 φ(X i +
τ

√
n
(1 − u)Wi )) −n

i=1 φ(X i )). Now observe that if 0 6 u 6 1 then

log(Λn(u; X1:n, W1:n))

=


n

i=1


φ


X i −
τ

√
n

uWi


− φ(X i )


∧


n

i=1


φ


X i +
τ

√
n
(1 − u)Wi


− φ(X i )



=


−u τ

√
n

n
i=1

Wiφ
′(X i ) −

τ
√

n
u

n
i=1

Wi

 1

0
φ′


X i − (1 − s) τ

√
n

uWi


− φ′(X i )ds



∧


(1 − u) τ

√
n

n
i=1

Wiφ
′(X i ) +

τ
√

n
(1 − u)

n
i=1

Wi

 1

0
φ′


X i + s τ

√
n
(1 − u)Wi


− φ′(X i )ds


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6


−

τ
√

n
u

n
i=1

Wi

 1

0
φ′


X i − (1 − s) τ

√
n

uWi


− φ′(X i )ds



∨


τ

√
n
(1 − u)

n
i=1

Wi

 1

0
φ′


X i + s τ

√
n
(1 − u)Wi


− φ′(X i )ds



6 τ
√

n

n
i=1

k τ
√

n
|Wi |

2
= k τ 2

n

n
i=1

|Wi |
2. (44)

Note that the terms involving τ
√

n

n
i=1 Wiφ

′(X i ) can be removed because of the following
reasoning: if A > 0 then (−u A + B) ∧ ((1 − u)A + C) 6 −u A + B 6 B, while if A < 0 then
(−u A+ B)∧((1−u)A+C) 6 (1−u)A+C 6 C . Thus (−u A+ B)∧((1−u)A+C) 6 B ∨C .

Therefore the right-hand side of (43) is itself bounded as follows:

τ 2

2
E


∇1:nh(X)T W1:n

2  1

0
Λn(u; X1:n, W1:n) d u;

n
i=1

|Wi |
2 6 cn



6
τ 2

2
E


∇1:nh(X)T W1:n

2
exp


k τ 2

n cn


6

τ 2

2
exp


τ 2k(1 + ϵ)


E

∥∇1:nh(X)∥2


. (45)

Combining (42) and (45) we have

Φn(h) 6 sup
n>1


2 n P


n

i=1

|Wi |
2 > cn


E

h(X)2


+


τ 2

2
exp


τ 2k(1 + ϵ)


× E


∥∇h(X)∥2


.

The desired result now follows because nP
n

i=1 |Wi |
2 > cn


converges to 0 as n → ∞. �

We may now apply [30, Theorem 1] to deduce weak convergence of {X(n)(t) : t > 0} to
{X∞(t) : t > 0} as described in Theorem 15 in Section 2.5.

5. Discussion

The above work demonstrates that Dirichlet forms provide an effective methodology for
treating the Optimal Scaling framework in its natural infinite-dimensional context, and also for
reducing the framework’s dependence on severe regularity conditions. It is interesting to compare
the Dirichlet form approach with that of the recent paper by Durmus et al. [10], which does
manage to reduce the regularity conditions required by the classical [22] approach (though not
to the same extent as above), and also substantially relaxes smoothness requirements. It would
be interesting to see whether the smoothness requirements of the Dirichlet form approach could
be similarly reduced.

In this paper we have focused on establishing the utility of the Dirichlet form approach for the
special case of i.i.d. targets and for the Metropolis–Hastings random walk sampler; we expect
this approach will prove useful in studying optimal scaling for MALA, and for non-identically
distributed targets [3], and for the non-independent case [6,16]. Tied as it is to equilibrium
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calculations, it is less clear how to extend the approach of this paper to deal with the transient
behaviour of MCMC algorithms before they reach equilibrium (see for example the results
of [8,13,20]), and this is a clear challenge for future work. Finally, there is evident scope for
adapting the Dirichlet form approach to deal with Optimal Scaling frameworks in which there is a
natural Banach-space structure, and in this case we expect that the genuinely infinite-dimensional
nature of the Dirichlet form approach will be highly beneficial. The techniques discussed here
(especially that of Mosco convergence) also seem to have considerable potential for other high-
or infinite-dimensional problems in applied probability.
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Appendix. Existence of the limiting infinite-dimensional stochastic process

This appendix is devoted to proving the existence of an infinite-dimensional Markov process
associated to the limiting Dirichlet form Φ defined by Eq. (13). Albeverio and Röckner [1]
consider Dirichlet forms of this kind (sometimes called classic Dirichlet forms) in the framework
of topological vector spaces (which includes our case). They provide and discuss a sufficient set
of four conditions [1, (2.8)–(2.11)] (which we refer to below as conditions AR1–4 respectively)
for the existence of a diffusion process associated to Φ [1, Thm.2.7]. In summary, the conditions
AR1–4 imply that Φ is a (local) quasi-regular Dirichlet form [15, Definition 3.3.1], and this in
turn implies the existence of an associated Markov process [15, Theorem 3.5].

Therefore in this section we only need to show that the conditions AR1–4 are satisfied. In
our case, the only non-trivial task is to prove AR1. Indeed, since the state space (R∞, π⊗∞)

is both a Fréchet space and a Polish space ([9, Chapter IV]; [11, Exercises 3.1–3.2]), the
conditions AR2,4 follow respectively from Remark 2.4.(i) and Proposition 2.6 of Albeverio and
Röckner [1]. Moreover condition AR3 requires that if h1, h2 ∈ D(Φ) = S are continuous and
have disjoint supports (supp(h1) ∩ supp(h2) = ∅) then Φ(h1, h2) = 0. In our case Φ(h1, h2) =

E

⟨∇h1(X), ∇h2(X)⟩ℓ2


and supp(h1)∩supp(h2) = ∅ implies ⟨∇h1(X), ∇h2(X)⟩ℓ2 = 0 almost

surely, so AR3 follows.
We conclude by undertaking the only non-trivial task, that of verifying condition AR1. Given

Definition 5, condition AR1 is satisfied if we exhibit a Φ-nest of compact sets:

There exist compact sets K (1)
⊆ K (2)

⊆ K (3)
⊆ · · · ⊆ R∞

such that lim
n→∞

Cap(R∞
\ K (n)) = 0. (A.1)

We now prove that Condition (A.1) holds for the Dirichlet form Φ defined by Eq. (13). We will
use

K (n)
=

∞
ą

ℓ=1


−2k(n)

ℓ , 2k(n)
ℓ


, (A.2)
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where, for any positive integers n and ℓ,

k(n)
ℓ = (n ℓ) ∧


inf


x > 0 : π([−x, x]) > exp


−
1

n ℓ2


.

Note that it is the case that 0 < k(n)
ℓ < ∞ for any positive integers n and i . Since Cartesian

products of compact sets are compact in the product topology (Tychonoff’s theorem) it follows
that the set K (n) is a compact subset of R∞.

The following lemma completes the proof of (A.1).

Lemma 21. Given K (n) as in (A.2) it is the case that Cap(R∞
\ K (n)) → 0 as n → ∞.

Proof. For positive integers i and n, we define the function b(n)
ℓ : R → (R+

∪ {∞}) piece-wise
by

b(n)
ℓ (xℓ) =


0 for |xℓ| < k(n)

ℓ ,

xℓ − k(n)
ℓ

2k(n)
ℓ − xℓ

for k(n)
ℓ 6 |xℓ| 6 2k(n)

ℓ ,

∞ for 2k(n)
ℓ < |xℓ|,

(A.3)

and the function u(n) (defined for x ∈ R∞) by

u(n)(x) =



∞
ℓ=1

b(n)
ℓ (xℓ)

1 +

∞
ℓ=1

b(n)
ℓ (xℓ)

for
∞

ℓ=1

b(n)
ℓ (xℓ) < ∞,

1 for
∞

ℓ=1

b(n)
ℓ (xℓ) = ∞.

(A.4)

Note that if x ∈ R∞
\ K (n) then b(n)

ℓ (xℓ) = ∞ for at least one i in N and therefore u(n)
= 1 on

R∞
\ K (n). Consequently Cap(R∞

\ K (n)) 6 ∥u(n)
∥

2
H + Φ(u(n)).

So the lemma is proved if we can show that ∥u(n)
∥

2
H → 0 and Φ(u(n)) → 0.

We begin by considering ∥u(n)
∥

2
H. Since 0 6 u(n) 6 1 and u(n)(x) = 0 for x ∈

Ś

∞

ℓ=1


−k(n)

ℓ , k(n)
ℓ


, it is the case that as n → ∞ so

∥u(n)
∥

2
H 6


R∞\

Ś

∞

ℓ=1


−k(n)

ℓ ,k(n)
ℓ

 π⊗∞ (dx) = 1 − π⊗∞


∞
ą

ℓ=1


−k(n)

ℓ , k(n)
ℓ



= 1 −

∞
ℓ=1

π


−k(n)
ℓ , k(n)

ℓ


6 1 −

∞
ℓ=1

exp


−
1

n ℓ2


= 1 − exp


−

1
n

∞
ℓ=1

1

ℓ2



= 1 − exp


−
π2

6n


−→ 0.
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We turn to consideration of Φ(u(n)). From (13) we know Φ(u(n)) =
τc(τ )

2


∞

ℓ=1 E
 ∂u(n)

∂xℓ

(X)

2. From (A.3) and (A.4) it follows that if x ∈ R∞ then

∂u(n)

∂xℓ

(x) =



0 for |xℓ| < k(n)
ℓ or |xℓ| > 2k(n)

ℓ ,

∂

∂xℓ


∞
j≠ℓ

b(n)
j (x j ) + b(n)

ℓ (xℓ)

1 +

∞
j≠ℓ

b(n)
j (x j ) + b(n)

ℓ (xℓ)

 for k(n)
ℓ 6 |xℓ| 6 2k(n)

ℓ and

∞
j≠ℓ

b(n)
j (x j ) < ∞,

0 for k(n)
ℓ 6 |xℓ| 6 2k(n)

ℓ and
∞
j≠ℓ

b(n)
j (x j ) = ∞.

(A.5)

For k(n)
ℓ 6 |xℓ| 6 2k(n)

ℓ and


∞

j≠ℓ b(n)
j (x j ) < ∞ it is the case that


∂

∂xℓ


∞
j≠ℓ

b(n)
j (x j ) + b(n)

ℓ (xℓ)

1 +

∞
j≠ℓ

b(n)
j (x j ) + b(n)

ℓ (xℓ)


 =


∂

∂xℓ
b(n)
ℓ (xℓ)

1 +

∞
j≠ℓ

b(n)
j (x j ) + b(n)

ℓ (xℓ)

2


6


∂

∂xℓ
b(n)
ℓ (xℓ)

1 + b(n)
ℓ (xℓ)

2


=

 ∂

∂xℓ


b(n)
ℓ (xℓ)

1 + b(n)
ℓ (xℓ)

 =


∂

∂xℓ


xℓ−k(n)

ℓ

2k(n)
ℓ −xℓ

1 +
xℓ−k(n)

ℓ

2k(n)
ℓ −xℓ




=

 ∂

∂xℓ


xℓ

k(n)
ℓ

− 1

 =
1

k(n)
ℓ

. (A.6)

From (A.5) and (A.6) it follows that
 ∂u(n)

∂xℓ
(x)

 6 1
k(n)
ℓ

for any x in R∞, and thus

E
 ∂u(n)

∂xℓ
(X)

2 6


1

k(n)
ℓ

2

. Therefore

∞
ℓ=1

E

∂u(n)

∂xℓ

(X)


2
 6

∞
ℓ=1


1

k(n)
ℓ

2

6
∞

ℓ=1

1

n2ℓ2 =

∞
ℓ=1

1

n2ℓ2 =
π2

6n2 → 0,

and thus Φ(u(n)) → 0, which completes the proof. �
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