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In the modern industry, electro-hydraulic actuators (EHAs) have been applied to various applications for precise position
pressure/force control tasks. However, operating EHAs under sensor faults is one of the critical challenges for the control
engineers. For its enormous nonlinear characteristics, sensor fault could lead the catastrophic failure to the overall system
or even put human life in danger. Thus in this paper, a study on mathematical modeling and fault tolerant control (FTC) of a
typical EHA for tracking control under sensor-fault conditions has been carried out. In the proposed FTC system, the
extended Kalman-Bucy unknown input observer (EKBUIO) -based robust sensor fault detection and identification (FDI)
module estimates the system states and the time domain fault information. Once a fault is detected, the controller feedback is
switched from the faulty sensor to the estimated output from the EKBUIO owing to mask the sensor fault swiftly and retains
the system stability. Additionally, considering the tracking accuracy of the EHA system, an efficient brain emotional learning
based intelligent controller (BELBIC) is suggested as the main control unit. Effectiveness of the proposed FTC architecture
has been investigated by experimenting on a test bed using an EHA in sensor failure conditions.

Manuscript received: August XX, 201X / Revised: August XX, 201X / Accepted: August XX, 201X

NOMENCLATURE x, = cylinder piston position
Q; = inlet flow rate to the cylinder
Aj, = head side piston area 0O>= outlet flow rate from the cylinder
A, =rod side piston area 0,1 = flow rate through relief valve

A, = valve opening area

C, = valve discharge coefficient
D = pump displacement
d; = position sensor fault information of EHA
E,,... = the bulk modulus of the hydraulic fluid
frc = friction force between cylinder wall and piston

1. Introduction

Electro hydraulic actuators are one of the widely accepted
Fo0a= applied load on the cylinder

[ = cylinder length

m = piston mass

N = pump rotation per minute (RPM)
P; = pump pressure

P, = head side pressure

P, = rod side pressure

P, = relief valve settling pressure

p = hydraulic fluid density

Opump = pump flow rate

V. = control voltage of the servo motor

solutions in modern industries. With a wide range of applications
like heavy duty excavation or the precise operations like
computerized numerical control, it has been considered as a
potential choice owing to its compact size, high power to weight
ratio and small power consumption. For an example, highly
efficient EHAs from Moog, Inc. (East Aurora, New York) were
validated in real time simulators in terms of accuracy and fast
response [1]. In addition, Rahmfeld and Ivantysynova [2] derive the
effectiveness of EHAs mathematically. Such especial features

increase the popularity of EHAs over the electric motor driven
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actuators in current era. Despite the benefits of the EHAs, these are
one of the critical nonlinear systems. It is a challenge for control
engineers to control nonlinear systems under varieties of working
environments and loads. The system performances are then
depended on the adaptability of the controller, and especially the
reliability of the sensors.

In a closed-loop control system, faults could be raised either in
sensors or actuators. For instance, in sophisticated plants like power
plants, chemical process plants, fatal accident may occur due to
system fault [3, 4]. Subsequently, with the development of smart
machines and systems, safe operations and diagnosis of the
malfunctions with desirable performances are becoming important
aspects with time. Therefore, researchers have been showing
interests to develop fault diagnosis algorithm (FDA) in various
applications in recent years [5-9]. In parallel, by adopting control
laws with the FDA, one can realize the FTC for any system.

In general, the FTC is a control methodology that ensures the
safe operation under acceptable limit of a system when faults occur
under FDI system. The FDI problem consists of two sub modules:
binary decision making (fault detection) and finding the time
variant fault behavior (fault identification). Several procedures were
conducted by different researchers for fault detection mechanisms.
Chi and Zhang [10] proposed a fault detection method based on
failure and non-failure hypothesis of an aircraft system. Parameter
estimation is also a way for fault detection [11]. This is done by
measuring the input and output signals if the basic model structure
is known. Then the process follows direct estimation or numerical
optimization. In another case, passive robust fault detection was
presented by Puig and Quevedo [12] by bounding the uncertainties
in intervals, known as ‘interval model’. Process model-based fault
detection was also evaluated using residual analysis [13].
Meanwhile, observer-based fault identification was carried out by
different researchers [14, 15]. These conducted researches reflect
the effectiveness of the FDI in fault tolerant control systems.

In today’s industry, sensor fault is one of the most important
issues that could be occurred at any time without screening any
previous symptoms. Especially, a process operated by a nonlinear
EHA has potential probability of occurring sensor faults due to high
operating pressures or tough working environments or even external
impacts on the sensors. For example, sensor faults could be
happened in accelerometers of aircraft [16], position sensors [13],
sensors in heavy duty tele-operated demolition or excavation robots
or hydraulic press load cells due to fatigues, fluctuations of
hydraulic fluid, external impacts on sensors or human errors. Such
failures lead the controllers to produce wrong control signals which

may degrade significantly the overall performances or even put the

human life in endanger. Therefore, sensor FTC is becoming one of
the firing issues in modern control of EHAs.

In sensor FTC architecture, evaluation of redundant sensor
systems is generally used in most of the applications. For an
example, Chan and Hong [17] successfully showed how to classify
faults under noise using redundant sensors and a modified kohonen
network. Furthermore, linear sensor redundancy analysis-based
FTC has been recently carried out by Santhosh [18]. In commercial
EHAs like VariStroke-I from Woodward (USA), redundant linear
displacement transducers have been used for FTC operation.
However, the sensor redundancy increases the hardware and FDI
designing complexity as well as cost, weights, maintenance effort.
Therefore, researchers focused the spot light on the analytical
redundancy over hardware redundancy for designing FTC
architectures. For an instance, analytical redundancy-based fault
diagnosis method by developing a filter with sequential probability
ratio test was proposed by Chi and Zhang [10]. In an EHA
positioning system, such FTC was carried out by Navid and
Nariman [19]. They developed quantitative feedback-based FTC
module in which the system was identified by single-input-single-
output transfer function. However, the identification of such
nonlinear systems with this manner is not feasible. Also, they could
not reveal the fault information invoked at the sensors.

Intelligent approaches, like fuzzy, genetic algorithm (GA) and
neural network, have been found for FTC in EHA applications. FTC
of an electro hydraulic servo axis was studied by Beck and Mark
[13] with fuzzy logic-based fault diagnosis. Mendonca and Sousa
[20] presented a multiple fuzzy fault model-based FTC and verified
it through simulations of a three-tank hydraulic system. Although
the simulated fault diagnosis performance was feasible, the
excessive fuzzy-based fault model with high degree of expert
knowledge as well as large number of parameters increased the
computational complexity. Later on, Shang [21] proposed an
intelligent fault classification method based on GA and back
propagation technique applied to a transmission system. This
employed an improved genetic search with fast Fourier
transformation (FFT) to solve high dimensional feature selection
problem with low computational complexity. Nevertheless, the
system vibration and speed signals were required for spectral
transformation that involved lots of experimental tests.

Another technique based on system models and observers have
been widely used in various applications [6, 7, 14, 22-24]. In EHA
applications, several researches [13, 25, 26] have been conducted
with observer-based fault diagnosis. Among them, unknown input
observer (UIO)-based fault detection is one of the famous methods

in FTC. Previous studies [7, 15, 27] showed how this observer
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detects, isolates and identifies the sensor faults effectively. However
in most cases, these researches were conducted without practical
verification and sensor/process noises were omitted while large
categories of the real systems are stochastic. The extended Kalman
filter (EKF) can be a good solution to deal with the stochastic
system. Haldar [28] showed a procedure to detect and isolate the
sensor fault of an EHA system using conventional EKF. However,
the time domain fault information could not be revealed with this
approach.

From the above analysis, this paper develops an effective sensor
fault tolerant control for an EHA-driven cylinder. The main
objective is to control precisely the cylinder position while additive
or multiplicative fault is invoked in the system sensors during
operation. The FTC architecture is designed with two modules: FDI
module and main control module. An unknown input observer
adopting with extended Kalman-Bucy filter, called EKBUIO, is
proposed as the FDI module. This module takes part in estimating
the system states and the unknown input: sensor fault. Using the
estimated time domain fault information, threshold-based decisions
are then made for fault detection in the EHA system. In order to
control the system effectively, an adaptive and computationally
efficient online brain emotional learning-based intelligent controller
(BELBIC) has been suggested as the main control module. The
architecture is realized on the model to mimic those parts of the
brain which are known to produce emotion [29]. Consequently
being different from the conventional closed-loop architecture
having only single control module, the proposed FTC approach
possesses both the adaptive control solution and robust fault
tolerant methodology to meet the requirement of an effective EHA
control performance under sensor faults. An EHA apparatus is setup
and, the experimental investigation has been carried out in order to
validate the effectiveness of the FTC system in faulty conditions.

This paper is sketched as follows: in Section 2, the overall
description of the EHA apparatus has been introduced at first. Then
the mathematical modeling of the test bed and the system parameter
estimation are studied in Section 3. In Section 4, the developed FTC
controller with trajectory control strategy is discussed
comprehensively. The experimental investigations are carried out in

Section 5 to evaluate the effectiveness of the proposed FTC system

applied into EHA. Finally, the conclusion is drawn in Section 6.

2. EHA Apparatus

In this section, the outline of the overall EHA setup is presented.
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Fig. 1 Configuration of the EHA test rig

Fig. 1 shows the system configuration. As seen in Fig. 1, the EHA
system includes hydraulic cylinder driven by a three-phase servo
motor and a hydraulic pump with one direction and fixed
displacement through a hydraulic valve circuit. This valve circuit
consists of four high-speed ON/OFF solenoid controlled valves and
one safety pressure regulating valve to perform all operations of the
cylinder. The advantages of using a four-valve configuration, such
as velocity control or energy saving, has been clearly presented by
Shenouda [30]. By this concept, the pressurized flow from the
pump can be transmitted to the cylinder to follow the desired tasks
by smoothly selecting five modes [30].

In this study, only cylinder power extraction (PE) and power
retraction (PR) modes are considered for developing the FTC

approach. A personal computer (PC) with compatible specifications
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Fig. 2 Experimental EHA test bed
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3. System modeling and identification - = : (pr, - Qz)

3.1 System modeling

The mathematical modeling of the EHA described in the
previous section is elaborated in this part. As the valves and servo
motor are fast in response, the dynamics are assumed to be linear
for the sake of simplicity. The pump flow rate can be calculated as
qump =DN 1)
N=kJV,
where: k; is a proportional parameter, which defines the RPM to
voltage ratio of the servo motor. Now, the momentum equation is
mx, = (A4,P, - A.P,) = F,,, — frc 2)

Theoretically, the bulk modulus £, is the ratio of the change
in pressure to the fractional change in volume of any chamber and
can be assumed as its mean value given common pressures and
temperatures. However in practice, this can be substantially lowered
by entrained gas and mechanical compliance. In this study (Fig. 1),
it can be represented as a sensitive pressure-domain function [31].

By considering the entrained air and mechanical compliance, the

empirical effective bulk moduli of the divided chambers, ., , 5,

and [ are computed as

ﬂ(‘l - E (1 _e(o.4fzx107p,))

max

By = By (1= 04100 3

ﬂ -E (1—6(0’472“07[)’))
The flows and continuity equations through the circuit can be

expressed as (4) and (5) respectively [32].

dt  V,+(-x,)4,
where: V, ,V, , V. are the internal constant pipe volumes of

cr

‘Chamber 1°, ‘Chamber ch’ and ‘Chamber cr’ respectively and

a1=1;a3:1} Vi 50
a,=0,a,=0 ’
a, =0;a3=0} Vi <0
a,=la, =1 ’

Assuming  that the valve  discharge  coefficients

cy=cpo=c3=c,=C, are the same, due to the same valve
configuration. Certainly, this coefficient C, is dependent on the flow
dynamics of the valve including flow conditions, laminar or turbulent,

deferential pressure, dP, valve opening area, 4, and fluid density p .

For the sake of simplicity, the fluid density can be taken as a
constant and because of using high-speed ON/OFF solenoid
controlled valves in the EHA, the effect of changing valve area is
considered very low and can be neglected as well. Thus the C, is
defined by investigating the relationship between the pressure drop,
dP, and flow rate, O, of each valve as presented in Fig. 3(a). The
tendency of C, over dP is then illustrated as Fig. 3(b) and, finally,
approximated by a polynomial function using interpolation

technique [33] as follows

C, =—1.100x10>dP"+2.040x 10" dP° ~1.5263 dP° +5.8795 dP*
—12.17865832 dP’ +12.146 dP* —2.204 dP—1.890x 10

The friction load presented in (2) can be modeled as [31],

C,
o,x, + Sign(x )(Iiu+E,ue{ "y Vx>0
fre=1 "7 ! ‘ ! (7

Caa

4
O-dxp + Sign(xp)(F;d + F;de{ ) Vfcp <0
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1500 Table 1 EHA physical parameters
L L Components values Unit
1000 >
/ A, 0.00126 m
1 2
. - 4, 0.00088 m
HM A, 2.54x10° mm?
o D 16.3 cm’
. 7% F load 20 Kgf
=
‘é’ 500 m 0.43 Kg
5 ] x o 1.5x10° Pa
LC 3
-1000 - P 870 Kg/m
J P 40 bar
-1500 / 500 mm
000 / . Measured
B = Estimated] | Table 2 Optimized model parameters
2500 Parameters Identified values Unit
016 008 0.00 008 0.16 V., 0.1996 L
Velodity (m's) Ven 0.0394 L
Ve 0.201 L
Fig. 4 Friction force vs. cylinder speed. g, 5915.8 Ns/m
o, 22554 Ns/m
F, 28.62 N
here: o, and o, are the viscous friction parameters; F,, and F,, are =
Fy 364.02 N
the coulomb frictions; F, and F; are the static friction forces ; Cy, F,, 774.12 N
and Cy, are known as Stribeck velocity parameters for the ‘up” and Cy, 0.00012 m/s
‘down’ motion of the cylinder, respectively. Subsequently, based on Ca 0.007541 m/s
the dynamic equations from (1) to (7), the system can be ks 300 RPM/V

represented by a state vector

[x x x x, x]'=[x, x, B B FRJ] andcanbe expressed as

i(Alet = A,x; - fic) o ]
m

. 0
5 X 0
2| s s
):53 =T I;ll (a,0, —a,0,) + I;ll qump ®)
Xy
. B 0
— Pa (0 —x,4-1000
Sy +x2A11000(Q1 4 -1000) 0

B (4,x,-1000— Q,)
|V, +(I=x,)* 4, %1000

From (8), it can be seen that the presented EHA is the complex
system with nonlinear dynamic terms. Moreover, as the developed
FTC scheme (see Section 4) relies on the extended Kalman-Bucy
filter, the state estimation performance can get advantages from the
system description with minimal modeling error. Thus, it is
necessary to derive the accurate model. The system parameters can
be found either from the manufacture provided datasheet or can be
identified experimentally. In this paper, the observed and known

terms are listed in Table 1. On the other hand, some unobserved

terms like the chamber volumes, friction coefficients, valve
parameters and RPM to voltage ratio parameter can be derived by
performing a parameter optimization procedure which is discussed

in the next subsection.

3.2 Parameter estimation

Here, the unobserved parameters were estimated by offline
tuning method with Matlab/Simulink parameter estimation toolbox.
First based on the friction-velocity relationship (Fig. 4) derived

from the experiments, the friction parameters o,

Oy Py Fegy Fy,
Fy, Cy, and C,,; were identified. Next, with the identified friction
model, the constant volumes, V., V., V. and the proportional
parameter k, were estimated based on a random set of input/output
data of the EHA. Fig. 5 displays the comparison between the model
output and actual response of the cylinder corresponding to
arbitrary input signals of the motor and valves. This result shows
that the model with optimized parameters could represent well the
actual system

with adequate accuracy. Finally, the estimated system parameters

are summarized in Table 2.
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Fig. 6 Position control configuration of EHA with sensor FTC

4 FTC design for EHA

The proposed FTC system for EHA system has been
demonstrated in Fig. 6. In operation, the BELBIC acts as the main
controller and performs conventional closed-loop trajectory control.
Once the fault detection is made (See Section 4.2) the decision is to
switch the feedback from between the sensor and the estimated
position output of the EKBUIO using an operator defined as a ‘flag
switch’. Hence, the sensor fault can be masked and the controller
reconfiguration is not required which is a complicated procedure to
retain system stability. The design procedures of each module of the

FTC system are discussed in next subsections.

4.1 Extended Kalman-Bucy Unknown Input Observer
For a generic system, the unknown input is an undefined time
variant characteristic with unbounded amplitude that can be

experienced by either sensor or actuator which leads the system

instability. Therefore in this paper fault is considered as an
unknown input and in this section, the design procedure of
unknown input observer based on the extended Kalman-Bucy filter
(EKBF) is explained elaborately.

At first, a simple unknown input observer is derived for a linear
time invariant system with a form of
X =Ax+ Bu
y=Ca ®
where: xe R",y e R",u € R" are system state vector, output vector,

input vector. 4, B,C are the known matrices with proper dimensions

corresponding to linear, time invariant system state space

description. Now in discrete form, the linear system with actuator
unknown input and additive noises could be derived as [15]

Xy =Ax, +Bu, +Ed, +w, (10)
Vi =Cx + vy (1)
where: x, e R",y, e R",u, e R",d, € R? are discrete time system
state vector, output vector, known input vector, unknown input
vector representing as fault respectively. w,,v, are the zero mean
white noise and 4, =e”,B, =7Band C, =C are calculated for
discretization purpose with 7 sampling time.

Considering the unknown input observer in form of

Zp = Foaze + T By, + Ky, (12)
e = Zn Y H i (13)

where: X, € R",z,, € R"are the estimated state vector and states

of the observer. The observer matrixes £,,,1,,,,H,,, and K,
should be designed in a way that the state estimation error
€., =X, — X,,, asymptotically converses to zero. From (10) to (13),
the error term can be derived as

e =1F —(U—H,,C )4 + Kli+lck+l]xk +F e
- [Klf+l - FoHoa -0, - —H,,,CL)]Bay, (14)

+(I=H,,C)Ed, ~H, e, +( - H C)w ~ K,
where: K, =K, +K;, . Therefore to form the UIO, the

k+1 k+1

following relations must hold.

E, =H,C.E (15)
L,=1-H,,C,

Ec+l = Tk+1Ak - KI:+1CI(+1 (16)
K/f+1 =F . H,

The necessary and sufficient conditions for the observer of the
given system are [34]:

1) rank(C,,E,)=rank(E,)

2) (Cp,1» T, 4,) is a detectable pair.
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Subsequently, one special solution of (15) could be obtained as

Hk+| = Ek+]Hli+I
H11+I = (C'kJrIE‘kJrI)Jr (17)
= [(Ck+1Ek+1)TCk+1Ek+l ]7I (Ck+1Ek+1)T
Thus, the state estimation error becomes:
|
e =Fe—K v, —H v, +T W, (18)

It is obvious that without additional noises and disturbances,
er+; will converse to zero asymptotically if F;.; is stable. So, in
order to design the observer, one has to select the stable F;,; by a

proper choice of K, . Another study [35] shows that to derived e,

with minimum variance the gain matrix can be written as

K. =T

k+1 k+1

ARCCRC +R]! (19)

where: the covariance matrices are given by

Pk+l = 7;c+1AkPk+l/kA17,-k+l + 7;¢+1Qk7;£1 + Hk+1Rk+1HkT+l (20)
Pzﬂlk = Pk - KILICka];HIAk

Now, the observer can be converted into Kalman filter form in
order to estimate the states in the stochastic environment. Now,
multiplying (11) with H;,, and inserting in (10) leads
d, = H/lﬂ[y/nl =G (4%, + Bu,)] 1)

From (10) and (21), one has
X1 = ‘qu + E“k + Ek)’/m (22)
where:

Zk = ékAk .B, =GB
Gk ZI_EkHliHCkH’ E/: = E/:Hl

k+1
Consequently the unknown input observer for the linear system

can be given as [36]

X = T + K/:ﬂ(yk -C.%,) (23)
where:
Xesik = Zxk + Euk + Ekyk+l 24)

Secondly for a nonlinear discrete time invariant system,
Witczac and Pretki [37] developed an extended unknown input

observer based on EKF algorithm. Let the system is defined as

X = &) +hu) + Ed, +W, (25)
yk+1 = k+1xk+1 + Vk (26)
where: W, ~N(0,0,),V, ~N(O,R,),k€Z are independent and

2(.),h(.) are nonlinear functions. The extended UIO can be

expressed as
A _a 1 A
oo =X K e —CiX) 27

Similarly, by multiplying H,,, with (26) and solving with (25)

leads the unknown input as
d; :Hli-v-l[ylu-l = Cr(g(x) + h(u))] (28)

By substituting with (25), the prior state can be estimated as

T =8F) + fl(uk) + Ekyk+1 (29)
where:

g()=G,g(), h()=Gh()

~ _ 1 T _ 1
Gk _I_Eka+le+l’ E =EH,,
The error covariance matrixes and the Kalman gain can be

calculated as

By =A4PA+0, (30)
Kio = P Cla(Co By Gy + R 31
Py =l =K G 1P (32)
where: 4, = %t") =G, %(;(;:")XA . =G4,

In the above mathematical derivation, the unknown input dk
can be considered as an actuator unknown input. Consequently, in
order to find the sensor unknown input: the fault in the EHA system
position sensor, a subsequent procedure is followed. The nonlinear
EHA system is modeled as

X(0) = f(x(0) + b(u(®)) + W (1) 33)
v, =Cx, +V,

where: f{.) and b(.) are the nonlinear functions corresponding to (8)
and the observation with the unknown sensor fault with fault
distribution matrix E,, can be modeled as
Y, =Cx, +E d; +V,

d'(0)=d"(0)+y (1)

Here, w(¢#) € R is the auxiliary unknown input. Now to design the

(34)

proposed EKBUIO of the EHA system, consider the augmented

system state space representation becomes into

{%(t) } _ {f ({(t))} . {b(u(t))} . {0}//(0
(1) d'(t) 0 1
— =~

X(0) g(X() h(u(1)) E (35)
yk = [C Em]Xk
C,
Then, using the form of (29) to (32), the predict and time update
equations of the EKBUIO can be formulated as follows
X0 =X 0)+h(u@)+Ey@) (36)
P(t)=A.P(t)+ P()4," + Q"

where:
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X(I,H) = Xk—]\k—]
P(tk—l) = Pk—l\k—l
() = Yi-tk-1

7- BXQ) _ G, og(X )|
ax (1) oX(t) |

X

E =EH,

H,=[(C,E) CET(CE)"

Here X, . and P, is the estimated states and the corresponding error
covariance matrix of the system presented on (35) at time k. The
Kalman gain and covariance matrices are derived by

K, = Bc\k-leT(Cquk—lckT + Rk)_la VPk\k—l = P(tk)

(37)
R( = (1 - Kka )qu—l
Finally, the estimated states are calculated as
Xk = Xk\k—l +K, (v — Ck)%k\k—l)’ VXk\k—l = X(tk) (38)

4.2 Fault detection technique

In general fault diagnosis mechanism, a system fault is detected
by evaluating fault information (set of sensor data, estimated
unknown fault, etc.) through which ‘fault detection” decision is made.

Then the decision expression is conveyed as a Boolean indicator and
defined as a fault flag € {0,1} . For each fault flag, a recovery action
has to be taken in order to avoid system instability. In this paper, the
EKBUIO is implemented for sensor fault detection based on the

estimation of fault information ° d; °. Indeed, this estimated

information d; carries an unknown additive magnitude of the fault
invoked in the sensor at each time step k. Consequently, memory and
computational problems due to dealing with a vast amount of
sensor/process data in probabilistic approach [38] or signal processing
approach [39] can be avoided in the proposed fault detection
technique.

It is obvious that, d; should be zero when the sensor is out of the
fault and the fault flag is set to zero. A decision of ‘sensor fault’ is
made by triggering the fault flag=1 while |d; |>0 . However in
practice,

modeling error, system uncertainty or un-modeled

environment phenomenon are also considered as the unknown input
in the sensor and may interfere with the estimation performance (the

estimated error would be affected, (see (18)). These impacts are then
reflected through the estimated d; and directly affect the fault flag
handling. Therefore in order to reduce this influence, a simple but
effective solution is suggested by comparing d; with a threshold

value x to set the fault flag as follows:

fault flag=1
fault flag=0

if| d; |> x ( non-zero positive constant)

otherwise

The value of the threshold k is defined based on the system and
environment characteristics. It needs to be selected carefully to cover
only the modeling error and system uncertainties. If this threshold is
too tight, a false alarm can be triggered not only by the original sensor
fault, but also the modeling error or environmental influences (e.g.
electro-magnetic interferences). On the other hand, if it is set to too
large, original fault would be hidden. For both cases, the control
performance can be degraded or suffers from instability. Hence, in
our study, the reasonable value of k has been selected based on trial-
and-error method by investigating the system performance with its
different settings. The selection procedure as well as the influence of
different settings of k& on the system performance is clearly described

in Section 5.1.3.

4.3 BELBIC controller design

In this paper, one of the recent innovated psycho-biological
motivated brain emotional learning based intelligent controller
(BELBIC) has been used for tracking control of EHA. Recent
conducted researches [40, 41] revealed that how efficiently BELBIC
can handle nonlinearities and uncertainties under noise and
disturbances in EHA applications. The presented controller
configuration is mainly based on a typical brain emotional model
illustrated in Fig. 7.

In short, there are four main components in the BEL system.
According to study [29], there are some Sensory inputs Si entering
into Thalamus (Fig. 7(a)). In Thalamus, some simple pre-processes,
such as noise reduction, are done [39]. Then the signals are sent to
Amygdala and Sensory cortex. The Sensory inputs enter to
Orbitofrontal cortex (OFC) as well. There is a digital memory type
loop connection between Amygdala and OFC. Finally, the model
output E is produced by Amygdala. Fig 7(b) represents the detailed
configuration of these four blocks. In Amygdala, there exists a
relationship between sensory inputs by a plastic and a learning path to
each node ‘A’. There is an additional node connected to Thalamus, is
the maximum quantity of the Sensory inputs that is
Sy =max(s)) (39)
Amygdala output 4; and OFC output O; are calculated by (40) and
(41), respectively.

4 =5V, (40)

Q=5 (41)



INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING  Vol. X, No. X, pp. X-XX

XXXX201X /9

DOI: XXX-XXX-XXXX

|
Sensory ! dJ
Input Sensory Orbitofront
Thulamus Cortex al Cortex 7
I Y
A htaxy —
‘ o
Poe —
Reward Amygdala E [i @ [ | oy
J N _JJ
e -
(A== e,
S P

() BEL model (b) BEL internal structure

Fig. 7 General structure of a Brain Emotional Model (BEL)

—I :

2,(0) ey Amygcal

e(t) lﬁ T 5 B u(o)
ih o Reed ottt
L] o

BELBIC

Fig. 8 BELBIC architecture for EHA position control

Here, the plastic weights of the Amygdala V; and OFC W; are
evaluated by an associative learning system like Rescorla-Wagner

model of learning:

%=a.[max[0,S[.(Rew—2AiD (42)
i

ow.
a—tl:ﬂ. Si.max[O,ZAj—Rew]—ZOi if Rew#0
’ ’ “3)

Wi . ﬂ.S-.max[O,ZA —zo] if Rew=0
ot i ; J p i
Here, A4; are all the Amygdala nodes except the Thalamus node;
a and g are the learning rates of Amygdala and Orbitofrontal cortex
individually; Rew is the ‘Reward’ function. Finally, the model output
can be derived:
E=24-20 (44)
i i
The ‘max’ functions in (42) ensures the Amygdala’s monotonic

learning. That is, once the emotional reaction is learned, it should be

permanent. The OFC inhibits the inappropriate behavior of Amygdala.

The OFC learning rule is similar to the Amygdala rule except that the
plastic weights of this sector can increase and decrease.

In order to be used the BEL model as the controller — BELBIC,
the reward function and Sensory inputs should contain some feedback

signals, which are generally defined as

Rew=J(S;,e,y,) 45)
S; = f(e,7,,7,)

Tllustration from (45), the reward function and Sensory inputs S;’
could be arbitrary functions of the reference input y,, control
input u, error e and plant outputy,. In common, a proper set of
these functions and their weights are selected in order to increase

the control performance [40].

5. Experiments

In this section, real-time experiments with tracking control of the
EHA presented in Section 2 in faulty condition has been carried out to
evaluate the designed FTC approach (Fig. 6) including the fault
identification, fault detection and biologically inspired control
(BELBIC). The control design procedure and verification process

are then presented as bellows.

5.1 Experiment setting and control parameter design
5.1.1 BELBIC setting
To utilize the BELBIC for EHA tracking control, its structure is

built as shown in Fig. 8. For designing the BELBIC as the main
control module, the sensory inputs were carefully chosen as

180e
s =[3 J' wdt (46)

20y,

And the reward function can be selected as a formation of
proportional-integral-derivative control form [40]. In this study, it
was set as

R€W=100€+4J‘€dl+0.2% (47)

The learning rates were then selected as « =0.0000003 and

S =0.000002 for Amygdala and OFC respectively.

5.1.2 EKBUIO setting

The designed EKBUIO, expressed by from (33) to (38) in
Section 3, observes the system pressure and position signals, P;, P,
P, and y;. The measurement matrix C and the fault distribution

matrix £, in (36) can be written as

Oland E, =

m

aQ
1l
o o o o o
o o o~ o
o o~ o o
o — o o o
c o o = o

The process noise co-variance matrix, sensor noise co-variance

matrix was considered as,
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5.1.3 Fault detection threshold setting

In order to distinguish between the original invoked fault and the
un-modeled effects on the system, the fault detection threshold value
x was determined carefully by the experiment-based trial-and-error
method. It is to be mentioned that, k¥ played an important role in this
FTC performance. Fig. 9a shows an analysis of the effect of the
threshold values on the system tracking results using the proposed
FTC. With the large value, x =1.2, the FTC mechanism had low
sensitivity. Thus, the system could track well the desired trajectory

only when there was no fault existing.

= System response with fault B

Flag swith

Fig. 10 Simulink control system using the proposed FTC

When the fault appeared, it was covered by the threshold value and
the fault flag was not triggered. Subsequently, the system suffered
from instability for this missed alarm (see the red-dash lines in the
first, second and fourth sub-plots). On the other hand, with a small
setting of ¥ = 0.01 the FTC mechanism was set to higher sensitivity.
In this case, the system tracking performance was degraded. The
reason was that the estimated fault information of the EKBUIO
frequently passed the threshold value even there were only impacts of

un-modelled terms. This, subsequently, resulted many wrong fault

flags (see the blue-dot lines in the first, third and fourth sub-plots).

In order to find the optimum value of k', firstly the fault flag=0
was set, and then the system trajectory was controlled by the main
controller under no-fault condition (See the first sub-plot of Fig. 9b).
The estimated fault information can be observed as displayed in Fig.
9b (See the second sub-plot). As seen, it was bounded under 0.03 m,
and x = 0.03 was set in order to suppress this effect.

Finally, the designed control architecture was built in the
Simulink environment combined with Real-time Windows Target
toolbox of MATLAB as shown in Fig. 10. It has been then validated
on the EHA systems in two faulty conditions: additive sensor fault
case and multiplicative sensor fault case. Furthermore, a comparative
study with a typical BELBIC closed-loop control (without FTC
function) was also performed to clarify the ability of the proposed

approach. The sampling period was set to 0.001 s for all experiments.

5.2 Experiment results
5.2.1 Control under additive sensor fault

For the first faulty case, the system was tested to track a
sinusoidal trajectory with 0.7 Hz frequency and 0.4m amplitude
under the additive sensor fault as depicted in Fig. 11. Here, additive
fault was invoked into the controller feedback signal from time /=15
s as depicted in the third sub-plot of Fig. 11 with the solid-black
line. The effect of this fault on the system performance is shown in
the top sub-plot. As seen in this figure with the normal working

condition, the BELBIC controller could drive the system adaptively.
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However due to the lack of FDI ability, this controller could not
retain the performance when existing any fault (as shown in the first
and second sub-plots of Fig. 11 with the cyan-dash-dot-dot line and
red-dash line, respectively). Without the FTC, the BELBIC got the

wrong position information and subsequently, generated the wrong

control effort which caused the system to be unstable with large
tracking error. On the contrary by using the proposed control
approach, the tracking performance was always kept in the
acceptable range even existing any fault. It can be see that the
control error in this case was only changed slightly when the fault
happened (see the black-solid line in the second sub-plot). The
reason is that the proposed method possesses not only the
adaptability of the BELBIC module but also the sensor fault
masking capability of the EKBUIO-based FDI module. The fault
estimation result and control effort of this FTC method were in turn

shown in the third and fourth sub-plots.

5.2.2 Control under multiplicative sensor fault

Next, the experiments with the second faulty case were then
carried out. Here, a saw signal in the first sub-plot of Fig. 12 was
used to represent the desired trajectory. The fault was generated by
setting the position sensor gain to zero at r=9 s. Thus the sensor
response to be zero suddenly and the position sensor can be
considered as 100% failed (as shown in the first sub-plot of Fig. 12
with the red-dash-dot-dot line). Similarly to case 1, with the
existence fault, the BELBIC without FTC architecture, could not be
able to track the reference. Nevertheless, the designed FTC
method still enhanced the acceptable tracking performance even
facing fault (see black-solid line and the cyan-dash-dot-dot line of
the third sub-plot respectively). Moreover, the estimated fault
information of EKBUIO and good control effort of using this
method are showed in the third and fourth sub-plots of Fig. 12
respectively.

Finally, the experiments were carried out with a multi-step
tracking reference in the second faulty case. As the results obtained
in Fig. 13, the fault was invoked by setting the sensor gain with 0.7
at =12 s. That is the sensor was assumed to be degraded 30% of its
current value (see the red-dash line of the first sub-plot of Fig. 13).
With and without the FTC, the BELBIC tracks the trajectory in
similar fashion. Meanwhile without the FTC system, the control
error also degraded 30%. Because, the main control module could
not have any fault information (see the red-dash line of second sub-
plot). On the other hand, with FTC, the fault was detected quickly
and continued the tracking operation with an acceptable accuracy
(see the second sub-plot with black-solid line). The estimated fault
information of the EKBUIO and the optimal control effort
requirements are figured in the third and fourth sub-plots

respectively (see the black-solid lines in each of the sub-plot).
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6. Conclusions

In this paper, the fault tolerant control approach has been
developed for tracking control of an electro-hydraulic actuator
under sensor fault conditions. The proposed FTC is successfully
designed as the combination of the main control module, BELBIC,
and the fault detection and identification module. Here, the
BELBIC is designed as a trajectory controller. Meanwhile, the
EKBUIO-based FDI module estimates the system states and the
unknown fault information.

In order to investigate the practical effectiveness of the
developed FTC architecture, real-time experiments with position
tracking control of the researched EHA using this logic have been
carried out in case of existing additive and multiplicative sensor
fault conditions. In addition, the comparative study with the
BELBIC controller without FDI function was also performed to
validate the advance of the proposed control method. The
experimental results implied that the BELBIC controller could
ensure the precise and stable performance when tracking the desired
profiles in the normal working condition. However when facing
with the faulty problems, only the suggested FTC architecture with
the advanced design of the FDI module could retain the system
stability. Meanwhile, the stability was totally degraded when using

the conventional closed-loop system without this module. Our

future research topics will be carried out on partial-model and non-
model based robust fault tolerant control in different EHA driven

industrial applications.
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