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Abstract—This paper proposes an advanced position tracking
control approach, referred to as an integrated intelligent nonlinear
controller (IIN), for a pneumatic artificial muscle (PAM) system.
Due to the existence of uncertain, unknown, and nonlinear terms
in the system dynamics, it is difficult to derive an exact
mathematical model with robust control performance. To
overcome this problem, the main contributions of this work are as
follows: i) to actively represent the behavior of the PAM system
using a grey-box model, neural networks are employed as
equivalent internal dynamics of the system model and optimized
online by a Lyapunov-based method; ii) to realize the control
objective by effectively compensating for the estimation error, an
advanced robust controller is developed from the integration of
the designed networks and improvement of the sliding mode and
backstepping techniques and iii) the convergences of both the
developed model and closed-loop control system are guaranteed
by Lyapunov functions. As a result, the overall control approach
is capable of ensuring the system’s performance with fast
response, high accuracy, and robustness. Real-time experiments
are carried out in a PAM system under different conditions to
validate the effectiveness of the proposed method.

Index Terms—Pneumatic artificial muscle, backstepping
control, sliding mode control, integrated control, neural network,
online identification.

NOMENCLATURE

̂ Estimate of  .

ˆ   Estimation error of *,

,  Maximum and minimum values of *.

 sup  Supermen absolute value of  .

 Approximated error of the function  .

    Range width of *.

x Position of the PAM (mm).

dx Desired position of the PAM (mm).

x Velocity of the PAM (mm/s).
p Pressure inside the PAM (bar).

2 3,  Positive learning gains.

2 3,  Positive estimation error gains.

2 2 3 3, , , .|j j f g f gQ  Positive-definite diagonal gain matrices.

1 2 2 3 3, , , ,i ik k k k k Positive control gains.

2 3,  Positive integrated gains.
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I. INTRODUCTION

HE outstanding development of robotics in recent decades
has resulted in requirements for various actuators. For

compliant applications or rehabilitation robots, pneumatic
artificial muscle (PAM) actuator represents a feasible solution
due to many advantages of cleanliness, safety, low cost, light
weight, high force/volume ratio, and force/weight ratio. Some
remarkable applications of PAM actuators include therapy
machines [1]-[2], wearable robots for the treatment of ankle
injuries [3], limb exoskeletons [4], and parallel manipulators
[5]. First proposed by McKibben in the 1950s for orthotic and
prosthetic applications, the actuator is simply structured from a
contraction system and fitting connections at the end points.
The contraction system consists of an inner inflatable rubber
hose and a covering of loose-weave fibers. By applying a strong
enough pressure, the muscle shortens and generates a
contraction force along the axial direction. The generated force
depends on the strength of the applied pressure. The presence
of various uncertain, nonlinear, and unknown terms within the
device makes difficulties in deriving an accurate model as well
as designing an effective tracking controller for the actuator.

To model PAM dynamics, numerous approaches have been
developed in recent years. In mathematical methods [6]-[8], the
static and dynamic characteristics of PAMs were derived from
the physical analysis of pressure-force relationships, geometric
structure, contraction ratios, elastic characteristics, and viscous
and Coulomb frictions. The results showed that the actuators
were hard to accurately describe using these models. Thus, a
number of experimental approaches have been conducted to
obtain more accurate PAM dynamics [9]-[12]. Though the
dynamics have been estimated from empirical data and
successfully applied to position control, the wide-spread
applicability of these methods is limited. Recently, another
category of PAM modeling methods based on intelligent
techniques has been proposed to achieve better performance.
Previously [13]-[14], the system dynamics were represented by
a black-box model using a nonlinear auto-regressive exogenous
(NARX) fuzzy configuration and were then optimized by basic
or modified genetic algorithms. Although the modeling
effectiveness was clearly improved, some disadvantages were
still observed. For instance, the training process was attempted
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offline using input/output data and the models were hard to
combine with a model-based controller. Thus, it is necessary to
develop a flexible model that can represent the behavior of
PAM actuators and supply sufficient information to develop a
position controller.

From the PAM control perspective, a number of approaches
have been proposed to deal with the challenges of this actuator
type. A PID controller for a six degree-of-freedom (DOF)
robotic arm driven by PAM actuators was structured from the
mathematical model of the system dynamics [15]. An extended
PID controller was developed based on experimental modeling
of the actuator [16]. Through the good control results, the
effects of these methods were proven. Nevertheless, due to the
high nonlinearity and sensitivity to the working conditions of
PAM systems (for example, supplied pressure, temperature, or
viscosity), the applicability of such controllers is limited only
to a specific region. To increase the control performance by
covering the uncertain and nonlinear terms of PAM systems,
advanced robust adaptive approaches have also been exploited
based on the mathematical models. The system dynamics were
represented by linear models in which the system parameters
were identified through experimental measurements and were
then used to construct the controllers [17]-[21]. Although better
results were achieved, employing linear models in the controller
design for high nonlinear plants such as PAM actuators
certainly restricts the control efficiency. To overcome this
problem, a nonlinear model incorporated with an adaptive fuzzy
controller [22] was used to obtain higher control accuracy.
Nonetheless, neglecting the pressure dynamics can lead to
degradation of the control effect in different working
conditions. In [23]-[25], the nonlinear models were derived
more comprehensively than in [22] to exactly describe the
system behavior. After validating the control results, the author
confirmed that the control efficiency was not maintained even
for the same type of actuators. Hence, adaptive models were
employed to develop the controllers in which the system
uncertainties were identified online by the least-squares (LS)
methods [26]-[27]. The control performances were further
increased using these approaches. However, unmodeled and
unknown terms were not still covered by the controllers. To
solve these issues of the model-based approaches, intelligent
methods have been developed, such as neural network-based
control [28]-[30], fuzzy PD+I learning control [31], advanced
intelligent nonlinear PID controllers [32]-[34], hybrid fuzzy-
neural control [35], tuning fuzzy controllers [36]-[38], and
switching predictive approaches [39]. Here, the control
objective was realized by utilizing neural networks or fuzzy
schemes to represent the system behaviors as black-box models
or to adjust the control parameters via various learning
algorithms such as back propagation (BP), recursive least
squares (RLS), or bumpless transition (BT) mechanisms.
Hence, the problem of unknown or hard-to-model terms was
addressed. In fact, because most of the PAM applications are
used for therapy or nursery tasks, maintaining the stability of
the closed-loop system is very important [40]. This issue is hard
to resolve by typical intelligent approaches.

In this article, an extended study of the advanced intelligent

control category with a so-called “integrated intelligent
nonlinear controller” (IIN) for position tracking control of a
PAM system is proposed. The key features of this control
approach are as follows:
1) To properly represent the uncertain, nonlinear, and unknown
terms of the PAM system and to provide a feasible framework
for developing a position controller, neural networks are
proposed as equivalent internal dynamics based on a grey-box
model and their parameters are then optimized by a Lyapunov-
based method.
2) To realize the control objective by actively compensating for
the estimation error, a robust controller is designed from the
approximation results with the following improvements:
- To minimize the design procedure, the structure of the
controller is an advanced combination of the sliding mode and
backstepping schemes.
- To improve the control efficiency by reducing the steady-state
tracking error and avoiding the chattering problem described
previously ([20], [38]), integral terms of the state control errors
and linear robust functions are appropriately employed.
- To increase the excitation ability of the optimization process,
the developed networks are integrated into the controller.
3) Lyapunov stability laws are adopted to guarantee the

convergences of both the model optimization and the closed-
loop performance.

As a result, the design method can ensure good tracking
performance with fast response and high robustness for the
PAM system. In order to verify the designed IIN controller, a
PAM test rig was set up for a comparative study with tracking
control. Then, real-time experiments with different testing and
loading conditions were performed. The results are discussed to
clearly evaluate the control efficiency.

PAM

M

g

Steel
spring

a) Working principle of the PAM system.
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b) Mechanical design of the proportional valve MPYE-5-1/8-LF-010B.
Fig. 1. Configuration of the studied system.

II. PROBLEM STATEMENT AND GREY-BOX MODEL

In this section, the PAM dynamics are considered as grey-
box models in which their detailed structures are unknown and
their effective inputs are known. The studied system was set up
as shown in Fig. 1(a). It consists of a PAM actuator (MAS-10-
N-176-AA-MCFK, Festo), a steel spring, and a load. One end
of the PAM is fixed to the frame and the other end is connected
to the load-spring system through a disk. The system
performance represented by the disk displacement is driven by
the PAM, while the spring acts as an antagonistic component.
The motion of the actuator is adjusted by a proportional 5-
port/3-position pneumatic valve (Series MPYE-5-1/8-LF-010-
B, Festo) [41] as shown in Fig. 1(b).

By applying Newton’s second law and previous results ([7],
[8], [18], [30]), the force dynamics of the system can be
presented under a simple form as

2 2( , ) ( )x f x x g x p   (1)

where 2f is a grey-box function with two inputs (the system

position x and velocity x ), and 2g is another positive grey-box

function of the system position.
Figures 1(a) and 1(b) show that, at the same time, the system

flow is charged from port 1 to port 4 and is discharged from
port 4 to port 5. The opening area from port 1 to port 4 is
enlarged with the increase of the valve control input while,
inversely, the opening area from port 4 to port 5 is reduced. A
numerical investigation of the static flows through the ports
used to drive the PAM and the static pressure of the open-loop
system with respect to the input voltage was carried out and the
obtained results are shown in Fig. 2. It is noted that the total
effective opening area of the valve port is driven by the applied
voltage (control input u). The valve characteristics shown in Fig.
2 point out that the dead-zone phenomenon is very small and
can be eliminated. From the literature review ([24], [27], [37]),
the pressure dynamics of the system can be then derived as
follows:

3 3( , , ) ( , )p f x x p g x p u   (2)

where 3f is a grey-box function of the inputs ( , , )x x p and g3

is a positive grey-box function of the inputs ( , )x p .

Remark 1: The spool dynamics of the studied valve are ignored.
Based on previous studies [7], [8], [22], [27], [30], it can be seen
that the system dynamics (Eqs. (1) - (2)) are not only nonlinear

functions of the inputs ( , , )x x p and certain elements such as

the relative mass and string stiffness, but they also contain
uncertain parameters which are difficult to be determined or
may change during the working process, such as the elastic
modulus of the PAM rubber, thickness of the rubber sleeve,

friction coefficient, initial braiding angle, supply pressure,
temperature, and unknown terms.
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(b) Static pressure characteristics of the open-loop system.
Fig. 2. Static flow and pressure characteristics of the system.

III. SYSTEM DYNAMICS ESTIMATION

To deal with the difficulty of the representation of
uncertainties, nonlinearities, and unknown terms in the system
dynamics, in this section, neural networks are properly
constructed to approximate the internal functions

 2 2 3 3, , ,andf g f g of the grey-box model derived in Section

II.
We define the state variables as follows:

   1 2 3
T T

X x x x x x p  (3)

As a result, the system dynamics now become

2 2 1 2 2 1 3

3 3 1 2 3 3 1 3

( , ) ( )

( , , ) ( , ) .

x f x x g x x

x f x x x g x x u

 


 




(4)

Assumption 1: The input signal u and state vector X are bounded

and measurable. The internal functions

2 1 2 2 1 3 1 2 3 3 1 3( , ), ( ), ( , , ),and ( , )f x x g x f x x x g x x are bounded as

well. Thus, the system described by Eq. (4) is open-loop stable.

Assumption 2: With any bounded function ( )z h  , there exists

a neural network to approximate the function z [42]
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( )Tz W    (5)

where  1 2( ) ...
T

l     is the hidden neural matrix and

 1 2 ...
T

lW W W W is the constant weight matrix of the output

layer that satisfies the following condition:

   sup ( ) sup with ( 0).
z z

T
z zz W           (6)

Note that if the functions z and ( )  are bounded, then W is

also bounded.
Based on these assumptions, model (4) can be rewritten as

2 2 2 2 2 2

3 3 3 3 3 3

2 1 2 1 3 3

3 1 2 3 1 3

( , ) ( )

( , , ) ( , )

T T
f f g g f g

T T
f f g g f g

x W x x W x x x

x W x x x W x x u u

   

   

    


   




(7)

where
2 2 3 3
, , ,andf g f g    are bounded.

Proposition 1: In order to estimate the unknown functions of
the given system, an approximation system is proposed as
follows:

2 2 2 2

3 3 3 3

2 1 2 1 3 2 2 2

3 1 2 3 1 3 3 3 3

ˆ ˆˆ ˆ( , ) ( ) ( )

ˆ ˆˆ ˆ( , , ) ( , ) ( )

T T
f f g g

T T
f f g g

x W x x W x x x x

x W x x x W x x u x x

  

  

    


   




(8)

which satisfies the following conditions:

2 2 3 3, , ,
ˆ ,

ˆ ,

T T
j j j j j f g f g

W W W W

X X X X

    

    

 (9)

where
2 2 3 3, , ,|j j f g f gW  are network parameters.

Proposition 2: From the given system described by Eq. (4) and
the approximation system (8), the learning laws of the network
parameters are proposed as follows:

  
  

 
  

2 2 2 2 2 2

3 3 3 3 3 3

2 2 2 2 2 2

3 3 3 3 3 3

1
1 2 2 2

1
1 2 3 3 3

1
1 2 2 3

1
1 3 3 3

ˆ ,

ˆ , ,

ˆ ( )

ˆ ,

f f f f e f f

f f f f e f f

g g g g e g g

g g g g e g g

W Q x x e S

W Q x x x e S

W Q x e x S

W Q x x e u S

 

 

 

 









    



   

    

    


 


 


 


 

(10)

where | 2,3
ˆj j jej je x x x   

 .

2 2 3 3, , ,|j j f g f g  are the diagonal matrices of the boundary-

guarantee functions that are defined as

  
  

         

2 2 3 3 1, , , . ( )

1 ( )

1 1 ( ) ( )

| ... ...

... ...

... ...

j

j

j j

j j j jkj f g f g j length W

j jk j length W

j j jk jk j length W j length W

S diag r r r

diag s s s

diag r s r s r s

  
 

 
 

 
 

 



(11)

with

 

min min max max

ˆ1... ( );

;

min max
2

max min

min max min max

if ( )
( )

1 otherwise

where

( )( )
1 ; 0

( )

[ ; ]and ((2 ) 0) .

j jk

jk jk

jk jk k length W b W

b W b W

jk

jk

jk

cond
r s

b b b b

b b

cond b b b b b b s





 


 
   


    


 

 



(12)

To verify the convergence of the estimation method, the
following theorem is studied.

Theorem 1: Given a grey-box system (Eq. (4)) satisfying
Assumptions 1 and 2 and employing a neural-network model
(Eq. (8)) with the learning rules given by Eq. (10), if groups of

the constant vectors
2 2 3 3, , ,|j j f g f gW  exist and the estimating

state errors are sufficiently rich, i.e. 32 2

2
2

| |
f g x

x
 



   
 and

3 3

3
3

| |
f g u

x
 



   
 , in transient time, then the

approximation model will converge to the system model with
an allowable accuracy.

Proof:
Consider the following Lyapunov function:

2 2 3 3

2 2
1 2 2 3 3

, , ,

1 1 1
( ).

2 2 2
T
j j j

j f g f g

V x x W Q W 


       (13)

We differentiate the candidate function with respect to time and
note that Eqs. (4) and (8) lead to

  


2 2 3 3

2 2 2 2 3 3

3 3

2 2 3 3

1 2 2 2 2 3 3 3 3 3

2 2 1 2 1 3 3 3 1 2 3

1 3

, , ,

( ) ( )

( , ) ( ) ( , , )

ˆ( , ) ( ).

f g f g

T T T
f f g g f f

T T
g g j j j

j f g f g

V x x x x x u

x W x x W x x x W x x x

W x x u W Q W

       

    





      

  

  

    

   

 

(14)

Employing the learning laws (Eq. (10)) yields

2 2

3 3

1 2 2 2 2 3

3 3 3 3

( )

( ).

f g

f g

V x x x

x x u

   

   

   

  

  

 
(15)
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Thus, Theorem 1 is proven.

Remark 2: The magnitudes of the bounds
2 2 3 3, , ,|

j j f g f g 

depend on the design of the hidden matrices
2 2 3 3, , ,|j j f g f g  . In

order to reduce these magnitudes, the matrices are designed to
cover the whole working range of the system and to be sensitive
to changes of the system variables. Moreover, the larger time
derivative of state variables and larger 2 3,  values increase

the convergence rate of the identification method. Nevertheless,
in real-time applications, choosing very big values for these
factors could cause the identification to diverge. Thus, these
values should be assigned proper large values.

IV. INTEGRATED INTELLIGENT NONLINEAR CONTROLLER

DESIGN

In this section, the state-based control method is designed for
position tracking of the studied system. The proposed networks
are also integrated into the controller in order to enrich the
excitation signal of the learning process. The control algorithm
is structured from a combination of state stabilities, linear
robust functions, and offset cancellation terms.

We define a sliding surface as

1s k e e   (16)

where de x x  is the tracking error.

Differentiating the surface with respect to time and noting
Eq. (4) lead to

1 2 2 3.ds k e x f g x      (17)

Proposition 3: In order to control the surface to be as small as
possible, a state control signal is proposed as

3 1 2 2 2 2
2

1 ˆ ˆ( )
ˆv d i ix k e x f k g s k s
g

       (18)

where is is an integral function of s.

Note that the , , ds e x terms can be measured. The following

relationship is thus obtained:

3 3 2 2 2 2
ˆ ˆ( ), ( )and ( ) .v sx x f f g g s      Here, s is a

small boundary.
We consider a state control error as

3 3 3 .ve x x  (19)

By applying the system (Eq. (4)), the time derivative of the
error can be expressed as follows:

3 3 3 3 .ve f g u x    (20)

Proposition 4: The final control input is designed such that the
state control error can be stabilized within its defined bound, as
follows:

2
3 3 3 3 3 3 3 2

3 3

1 ˆ ˆ ˆ( )
ˆ v i iu x f k g e k e g s
g




       (21)

where 3ie is an integral function of 3e .

The designed control inputs always contain estimates of the
internal functions which can be calculated from the neural
networks presented in Section III. However, the excitation
signals of the learning laws depend only on the system states.
The learning process may turn off in the case of an
insufficiently rich trajectory.

Proposition 5: To increase the enrichment of the excitation
signals, the learning laws are improved as follows:

 

 

 

 

2 2 2 2

3 3 3 3

2 2 2 2

3 3 3 3

1
1 2 2 2 2

1
1 2 3 3 3 3 3

1
1 3 2 2 2

1
1 3 3 3 3 3

ˆ ( , )( )

ˆ ( , , )( )

ˆ ( ) ( )

ˆ ( , ) ( )

f f f f e

f f f f e

g g g g e

g g g g e

W Q x x e s

W Q x x x e e

W Q x x e s

W Q x x u e e

  

  

  

  









   



  

   

   













(22)

Theorem 2: Given a bounded grey-box system (Eq. (4))
satisfying Assumptions 1 and 2 and employing the neural-
network model (Eq. (8)) and control laws (Eqs. (18) and (21))
with the learning rules improved as described by Eq. (22), the
following statements will hold:
a. If the estimating state errors and the state control errors are

sufficiently rich, i.e.

3 3 32 2

3 3 32 2

2 3
2 3

3
2 2 3 3

| | , | | ,

| | and | |
ˆ ˆ2 2

f gf g

f gf g

ux

ux

x x

s e
k g k g

  

  

 

 

      
 

 

 

in transient time, then the approximation model will
converge to the system model with an allowable accuracy.

b. Choosing the positive constants 1 2 2 3 3 2 3, , , , , ,i ik k k k k  

appropriately, the tracking control error of the closed-loop
system will converge to a given bound.

Proof:

For any bounded set { : }y y y y   , there exists an

equivalent set as follows:

{ : and | | }.
2 2

yy y 
 


       (23)

We define composite functions and feasible ranges of the
unknown bounded terms as
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2 2

3 3

2 3 2 2

3 3 3

f g

f g

x

u

   

   

    


    

(24)

where

2

3

2 2
2 2

3 3
3 3

and | |
2 2

and | | .
2 2





 


 


 
  





  

(25)

The following new Lyapunov function is considered:

2 2 22
2 1 2 3 3 2 2

2

23
3 3 3

3

1 1 1
( )

2 2 2

1
( ) .

2

i i
i

i i
i

V V s e k s
k

k e
k


 



     

  

(26)

Differentiating the candidate function (Eq. (26)) with respect to
time and employing Eqs. (17) and (21) yield

2 1 2 2 2 1 2 3 3 3 3 1 2 3

2 2 2 1 3 2 2 2 3 2

2
3 3 3 3 1 3 3 3 3 2 3

3

( , ) ( , , )

ˆ ˆ( ( ) )

ˆ ˆ( ( , ) )

T T
f f f f

T
g g

T
g g

V V sW x x e W x x x

s W x x k g s g e

e W x x u k g e g s

   

  


  



  

   

   

   





(27)

where is s and 3 3ie e .

Combining the results of Theorem 1 and the improvement (Eq.
(22)), the following inequality is obtained:

2 2 2 2 2 3 3 3 3 3 3

2 2 2 2 2 3 3 3 3 3

ˆ ˆ( ) ( )

( ) ( ).

V s k g s e k g e

x x x x

   

     

    

   



   
(28)

Hence, the first statement of Theorem 2 is proven.
From Eq. (28), we obtain

2

2

3 3 3

3

2 2 2 2 2 2 2
2

3 3 3 3
3 3 3

ˆ( ) min ,| |
4

min ,| | min ,| | .
ˆ2 8 4

V s k g s x

e x
k g




  


  


 
 



 
       

 

   
       

  

 



(29)

Therefore, we have the following limitation:

2 2

2

2 2
1 2 2 2 2 22 2

1
| |

ˆ ˆ4ˆ16
e

k k g k gk g

  






 
   

 
 

(30)

where

3 3

2

2

3

3

3 3
3 3

2 2
2

3 3
3

min ,| |
ˆ2 8

min ,| |
4

min ,| | .
4

e
k g

x

x

 







 








 





 
  
 
 

 
    

 

 
    

 





(31)

Consequently, the second statement of Theorem 2 is proven.
Remark 3: As seen in the proof of Theorem 2, the effectiveness
of the designed controller depends not only on the estimation
results and control parameters, but also on the other state
control errors. Moreover, by adopting the integral terms, the
offset control errors are significantly compensated for. A
diagram of the proposed controller is illustrated in Fig. 3. A
procedure to select suitable parameters of the designed
controller is briefly described as follows. In Step 1, the learning

gains  2 2 3 3 2 3 2 3, , , , , , ,f g f gQ Q Q Q     are tuned by the trial-

and-error method in order to obtain the best estimation errors
based on Eqs. (8) and (10) throughout open-loop experiments.
The obtained gains are then used to construct the closed-loop
control in Step 2. Next, the main control parameters

 1 2 2 3 3, , , ,i ik k k k k are manually chosen for the best control

objective in both transient and steady-state responses in Step 3.

The integrated parameters  2 3,  are tuned to further

improve the control performance in Step 4. In the last step, the
control result is evaluated: IF it satisfies the desired
performance, THEN stop the tuning process, ELSE return to
Step 3.

2 2 2 3

3 3 3

x f g x

x f g u

 


 





dx

1 2 3[ ]TX x x x

1x

3x

2 3,x x
2 3
ˆ ˆ,x x2 3,x x 
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3 3
ˆ ˆ,f g

s

3es

u

uX

Fig. 3. Diagram of the proposed control algorithm.

V. EXPERIMENTAL RESULTS

The integrated intelligent nonlinear control approach was
validated on a real-time system through various experiments.
The testing system was comprised of the proposed PAM, which
has been introduced in Section II, and a control-data acquisition
(CDAQ) system including a personal computer (PC, CoreTM2
Duo 1.8 GHz), a data acquisition (DAQ) card (PCI-1711,
Advantech), and proper sensors. A potentiometer and a pressure
transducer were used to measure the disk position and the
pressure inside of the actuator, respectively. The system
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velocity and acceleration were indirectly measured by filtered
backward differentiation of the position with a cut-off
frequency of 31.8 Hz [24], [43]. In addition, a load cell and an
indicator were used to measure the system force. The proposed
controller was implemented on the PC within the
Matlab/Simulink (Version R2009b) environment combined
with the Real-time Window Target Toolbox with a sampling
time of 10 ms. This sampling time was chosen based on the
bandwidth of the used valve ([41], [44]) and the ability to obtain
an acceptable control result. The Bogacki-Shampine method
was selected as the solver for the differential equations.
Detailed specifications of the experimental devices are listed in
Table I, and a photograph of the system apparatus is shown in
Fig. 4.

First, the proposed identification method was evaluated by
using open-loop experiments. From the system inputs

 , andx x p , there were four internal functions

 2 2 3 3( , ), ( ), ( , , ),and ( , )f x x g x f x x p g x p  that needed to be

estimated by the neural networks. Five Gaussian functions were
designed to cover the feasible working range of each input. The
structure of the hidden layer of each network was then built as
a combination of these Gaussian functions with all of the
respective inputs and a bias value of 1.

The working ranges of the system were determined as
follows:

[ 13;12]mm, [ 100;100]mm/s,

[0;7]bar, and [ 5;5]V.

x x

P u

   

  



Here, to easily represent the valve acting direction, an offset
value (5 VDC) was added to the control input to convert the

valve driving voltage range from [0  10](VDC) to the control

input range of [-5  5](VDC).

TABLE I
DETAILED SPECIFICATIONS OF EXPERIMENTAL DEVICES

Device Description

PAM

Type: Festo MAS-10-N-176-AA-MCFK

Nominal length: 176 mm

Inside diameter: 10 mm

Max pressure: 8 bar

Proportional valve
Type: Festo MPYE-5-1/8-LF-010-B

Max pressure: 10 bar

DAQ card
ADVANTECH PCI-1711

AI and AO: 12 bits in resolution

Load cell
BONGSHIN CDFS

Capacity: 30 kg

Potentiometer
Type: CELESCO SP1-12

Input resistance: 10K Ohm

Moving bar Weight: 0.61 kg

Spring Static stiffness: 2.607 N/mm

Fig. 4. Photograph of the experimental apparatus.

A random signal to drive the proportional valve was selected
as the input for the open-loop identification process. The
learning rate matrices and other gains were chosen as

1 1 1
2 26 2 6 3 126

1
3 26 2 3 2 3

12.5 ; 30.26 ; 20.65 ;

19.6 ; 0.12; 0.15; 150; 135.

f g f

g

Q I Q I Q I

Q I    

  



  

    

The designed Gaussian functions, the input signal, and the
results obtained by applying the algorithm described in Section
III to the open-loop system are presented in Fig. 5. As can be
seen, despite containing large slopes, the estimated velocity
and pressure still converged to the indirectly measured velocity

and pressure with small errors (5 mm/s ~ 5.71% of the velocity

error and 0.2 bar ~ 5.68% of the pressure error). Moreover, the
approximation functions are the bounded curves. The ranges of

2 2 3 3( , ), ( ), ( , , ), ( , )f x x g x f x x p g x p  were determined to be [-25;

10], [1; 5], [-4.5; 4], and [2; 7.5], respectively. Note that these
functions did not tend to drift away from their own ranges.
These results imply that the proposed algorithm is definitely
stable.

Next, the integrated controller was implemented on the
testing system for position control based on the theory
presented in Section IV. The results achieved in the open-loop
experiments were used to set the initial values of the controller.
The reference trajectories were sinusoidal signals with different
frequencies (0.05, 0.5, 1, 1.5, and 0.2 Hz) with/without loading
(3, 5, and 7 kg) and a smooth multi-step signal. In addition, to
evaluate the designed controller more carefully, a conventional
PID controller and an adaptive recurrent neural network
(ARNN) controller were applied to the same system for
comparison. The respective PID control gains for different
properties of the experiments were derived by the trial-and-
error method, as displayed in Table II. The ARNN controller
was designed based on previous work [29]. The remaining
parameters of the IIN controller were selected as follows:

1 2 2

3 3 2 3

100; 2.1; 0.035;

0.38; 0.022; 0.2; 2.5.

i

i

k k k

k k  
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Case study 1: In this case, the control experiments were
carried out on the system for tracking the sinusoidal trajectory
with amplitude of 10 mm and a frequency of 0.05 Hz in the free-
load condition.

Applying the PID, ARNN, and proposed control methods in
turn, the experimental results were obtained and compared as
shown in Fig. 6. By employing the PID controller with a fixed
gain use, the tracking result was obtained with a 9% control
error (±0.9 mm). The ARNN method combined a PID controller
and a neural network to enhance the control performance. Here,
the network took part in inverse model-based control while the
PID functioned as a compensator to maintain the tracking error
within an acceptable range. Thus, better performance with a 5%
(±0.5 mm) control error was accomplished by using the ARNN.

The proposed control idea proved to be the best
comprehensive approach. The reason is that the IIN architecture
includes the advantages of the backstepping and sliding mode
techniques as well as the necessary improvements. As a result,
the figure shows that higher control accuracy (±0.25 mm ~
2.5%) was achieved by the proposed approach. The
effectiveness of the estimation idea was also demonstrated
through the obtained data. The system velocity and pressure
were estimated quite accurately with estimation errors of ±0.1
mm/s and 0.015 bar, respectively, while the internal dynamics

 2 2 3 3( , ), ( ), ( , , ), and ( , )f x x g x f x x p g x p  were approximated

as curves, in turn, within ranges of [-14; 5], [2.1; 3.5], [-1; 0.6],
and [2.4; 3.2]. Compared to the separated estimation (SE)
method described in Section III, the estimation errors of the
integrated estimation (IE) method were clearly improved.

Case study 2: Comparative experiments in the free-load
condition were carried out with a smooth multi-step tracking
reference within the range of [-10; 10] mm and the results are
depicted in Fig. 7. Although the PID controller can work well
for a nonlinear system, good performance is normally limited
only to a specific region [15], [16]. As seen in the figure, this
controller drove the system most accurately at the 3 mm set
point. At the other set points, the PID performance was
degraded due to the fixed gain use. This disadvantage could be
resolved by the ARNN controller by using the network to
compensate for the nonlinearities and unknown terms.
Consequently, the number of good working regions was clearly
increased. However, due to the slow adaption of the ARNN,
there were still some large steady-state errors in the tracking
results. The figures suggest that the transient response and
steady-state behavior of the system using the proposed method
were improved as compared to those using the PID and ARNN
controllers. This comes as no surprise due to the advanced
design of the IIN in which the control performance is enhanced
by the integral terms of all concerned state errors, the adaptation
laws via the online estimation method with initial parameters
well determined from the open-loop experiments.

TABLE II
TUNED PID GAINS FOR RESPECTIVE EXPERIMENTS

Case Trajectory PID Gains

KP KI KD

Case 1
Sin 0.05Hz-10mm 10 4.5 0.10

Free-load

Case 2
Smooth multi-step 8.5 3.2 0.40

Free-load

Case 3 Sin
10mm

0.5 Hz 13.7 1.3 0.21

1Hz 11.1 1 0.20

Free-load 1.5Hz 9.2 0.7 0.25

Case 4-1
Sin 0.2Hz-5mm 10.2 1.5 0.11

Free-load

Case 4-2 Sin 0.2Hz-5mm
9.8 0.5 0.15

Loading Load 3kg

Case 4-3 Sin 0.2Hz-5mm
9.2 0.7 0.22

Loading Load 5kg

Case 4-4 Sin 0.2Hz-5mm
8.7 0.2 0.07

Loading Load 7kg
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Fig. 5. Experimental data of the open-loop test.
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Fig. 6. Experimental data with respect to case study 1.
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Fig. 7. Comparative responses with respect to case study 2.
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Fig. 8. Comparative responses with respect to case study 3.

Case study 3: To make challenges for the controllers, another
series of experiments was performed for the sinusoidal
trajectory (as in Case study 1) at higher frequencies of 0.5, 1,
and 1.5 Hz. After applying the comparative controllers used in
the free-load condition, the obtained experimental results are
shown in Fig. 8. From the results, it is clear that both the PID
and ARNN performances were significantly degraded
according to the high tracking speeds. The control error of the
PID increased from 15% at 0.5 Hz to 48% at 1.5 Hz, and that of
the ARNN increased from 10.5% at 0.5 Hz to 38% at 1.5 Hz.
On the contrary, due to robustness, the performance of the
designed controller was still maintained within better ranges

(0.5 Hz0.45 mm (4.5%), 1 Hz0.7 mm (7%), 1.5

Hz1.1 mm (11%) of the control errors).
Case study 4: In order to further investigate the proposed

control algorithm, the frequency and amplitude of the reference
input were changed to 0.2 Hz and 5 mm, respectively. The
experiments with the investigated controllers were then carried
out for four conditions: free-load and loading (3, 5, and 7 kg).
The pressure, force variation, the control errors, and the
estimation results obtained with respect to the free-load and
maximum-load (7 kg) conditions are plotted in Fig. 9. Because
the idea of the PID method is only based on the control error, it
cannot adapt to system changes. Hence, the performance of the
PID controller became much worse with harder loading. In this
case, the control errors in the free-load and 7-kg-load conditions

were 0.48 mm (9.6%, PID lines) and 0.87 mm (17.4%, PIDL7
lines), respectively. Thanks to the self-adaptive characteristics,
the control error of the ARNN controller was clearly smaller
than that of the PID controller for the same loading conditions
where without a load, it was 0.38 mm (7.6%, ARNN lines) and
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with the 7 kg load, it was 0.65 mm (13%, ARNNL7 lines).
Nevertheless, the best tracking performance was achieved by
using the proposed controller, which integrated robustness and
adaptability. It can be seen that due to the hard load, the force
dynamics were decreased while the pressure dynamics were
increased. The changes inside the system in the two load cases
(free load and 7 kg load) were well represented using the
proposed identification method. As a result, the proposed IIN
controller could always keep the control error within an
acceptable range where without a load, it was 0.18 mm (3.6%,
IIN lines) and with the 7 kg load, it was 0.35 mm (7%, IINL7
lines).

Finally, Table III summarizes the root-mean-square (RMS)
errors of the three compared controllers for all of the
aforementioned case studies. As shown in the table, the
proposed controller always obtained better results than the
others under the same experimental conditions. These results
demonstrate that the effectiveness and feasibility of the
designed controller are proven.
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Fig. 9. Experimental data with respect to case study 4.

TABLE III

PERFORMANCE COMPARISON OF ALL STUDIED EXPERIMENTS

Case Trajectory
RMS Error

PID ARNN IIN

Case 1
Sin 0.05Hz-10mm 0.691 0.235 0.200

Free-load

Case 2
Smooth multi-step 0.451 0.401 0.153

Free-load

Case 3 Sin
10mm

0.5 Hz 0.96 0.550 0.368

1Hz 1.926 1.142 0.439

Free-load 1.5Hz 3.554 2.495 0.756

Case 4-1
Sin 0.2Hz-5mm 0.339 0.291 0.156

Free-load

Case 4-2 Sin 0.2Hz-5mm
0.525 0.376 0.203

Loading Load 3kg

Case 4-3 Sin 0.2Hz-5mm
0.638 0.433 0.216

Loading Load 5kg

Case 4-4 Sin 0.2Hz-5mm
0.676 0.502 0.247

Loading Load 7kg

VI. CONCLUSION

In this study, an advanced control approach, “integrated
intelligent nonlinear controller”, is developed and successfully
applied to position tracking control of a PAM system. The IIN
controller is constructed based on the new online estimation
method and the robust nonlinear approach. The estimation
method is employed to represent the system dynamics by neural
networks in the state-space form while the robust control
approach combines the sliding mode and backstepping
techniques incorporating with the improvements to realize the
control objective. The convergences of the model optimization
and the closed-loop control system are theoretically ensured
through Lyapunov stability conditions.

The PAM testing system was set up to investigate the
position tracking task. Furthermore, typical PID and intelligent
ARNN controllers were also implemented together with the IIN
controller to control this system. The real-time control
experimental results for the different cases of the references and
load conditions confirmed the effectiveness and feasibility of
the proposed approach in real-time applications.

However, there are some drawbacks that should be
considered in future research. From Remark 2, we note that to
improve the estimation result, the design of the used neural
network should be based on an exact mathematic model of the
system. The effectiveness of the proposed algorithm can be
further increased by developing a method to automatically tune
both the estimation and control gains. For better tracking
performance in real-time control, the sampling time should be
reduced [45]. Note also that the valve dynamics must be
considered in this case.
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