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Virtualized Execution Runtime for
FPGA Accelerators in the Cloud

Mikhail Asiatici, Nithin George, Kizheppatt Vipin, Suhaib A. Fahmy and Paolo Ienne

Abstract—FPGAs offer high performance coupled with energy effi-
ciency, making them extremely attractive computational resources within
a cloud ecosystem. However, to achieve this integration and make them
easy to program, we first need to enable users with varying expertise to
easily develop cloud applications that leverage FPGAs. With the growing
size of FPGAs, allocating them monolithically to users can be wasteful
due to potentially low device utilization. Hence, we also need to be able
to dynamically share FPGAs among multiple users. To address these
concerns, we propose a methodology and a runtime system that together
simplify the FPGA application development process by providing (i) a
clean abstraction with high-level APIs for easy application development,
(ii) a simple execution model that supports both hardware and software
execution, and (iii) a shared memory-model which is convenient to use
for the programmers. Akin to an operating system on a computer,
our lightweight runtime system enables the simultaneous execution of
multiple applications by virtualizing computational resources, i.e., FPGA
resources and on-board memory, and offers protection facilities to isolate
applications from each other. In this paper, we illustrate how these
features can be developed in a lightweight manner and quantitatively
evaluate the performance overhead they introduce on a small set of
applications running on our proof of concept prototype. Our results
demonstrate that these features only introduce marginal performance
overheads. More importantly, by sharing resources for simultaneous
execution of multiple user applications, our platform improves FPGA
utilization and delivers higher aggregate throughput compared to access-
ing the device in a time-shared manner.

I. INTRODUCTION

Virtualisation has enabled the efficient scaling and sharing of
compute resources in the cloud, adapting to changing user needs
at runtime. Users are offered a view of an application service with
management of resources hidden from view, or alternatively abstracted
development platforms for deploying applications that can adapt to
changing needs. The flexibility, scalability, and affordability offered
by cloud computing are fundamental to the massively connected
compute paradigm of the future. However, virtualisation of resources,
complex communication, and fluctuations in computational demands
can make running complex applications challenging [1]. And, as
the performance of server class processors has stuttered, alternative
strategies for scaling performance have been explored [2].

FPGAs have emerged as a contender in this area, combining
significant computational capabilities, similar to GPUs, with an
architecture more amenable to virtualisation, and a lower power
footprint. A number of architectural developments in server platforms
are enabling better integration of FPGAs. The Intel Xeon+FPGA
platform integrates an FPGA with a Xeon processor in a single
chip package [3], and Intel recently acquired Altera with this in
mind. The IBM POWER8 Coherent Accelerator Processor Interface
(CAPI) [4] allows tight coupling between the main processor and a
co-processing peripheral with a coherent view of memory. Microsoft
recently presented a comprehensive demonstration of the benefits of
FPGAs in a production datacenter application by accelerating the
Bing search algorithm [5].

Research efforts have so far focused on accelerating datacenter
applications, and integration of accelerators with server hardware. Most
published work considers the FPGA as a fixed function accelerator

This research is partially supported by Intel Corp.

tightly coupled with the host platform. The more general case of
a virtualised hardware resource for shared use has yet to be fully
explored. A key strength of FPGAs is the ability to modify their
operation at runtime, as well as the ease with which they can be
safely partitioned for sharing. To enable this, novel techniques for
managing FPGAs as shared compute resources are required. In Fahmy
et al. [6], a simple proof of concept accelerator management platform
was discussed. However, the architecture is optimized for streaming
applications, and no on-board memory virtualisation is performed.
Moreover, the flow to develop custom accelerators targeting the
platform was not discussed, and no tools are provided to simplify the
development of accelerators without extensive hardware expertise.

In this paper, we present a complete methodology and resource
management framework that allows design and dynamic mapping
of accelerators onto FPGAs in a cloud setting. FPGA accelerators
can be designed based on the users’ expertise levels, either using
domain specific languages (DSLs), high-level synthesis (HLS) tools,
or at the register transfer level (RTL). Furthermore, these accelerators
can execute simultaneously and can be managed dynamically by
the runtime system, which offers both virtualisation and protection
facilities and which can dynamically adjust the area and memory
resources attributed to each application depending on the workload.
Although these concepts are not intrinsically new, in previous work
they have been demonstrated separately and/or in simulation, at least
partially [7], [8], [9], [10]. In this paper, we instead develop an
end-to-end implementation as a proof of concept of the proposed
approach, we are able to demonstrate its feasibility and to measure
the performance overhead of implementing these features on a off-
the-shelf platform. Additionally, by sharing the FPGA, we show that
this setup can deliver improved aggregate performance from a single
device.

Following this introduction, Section II details the features we
identify as required for our system and describes the programming
and execution model that supports them. Section III presents the
hardware infrastructure. Section IV focuses on the runtime manager
architecture and features. Section V describes the design flow we offer
to allow users to easily target our infrastructure. Section VI discusses
experimental results. Section VII reviews related work on integration
of FPGAs in datacenters, dynamic management and sharing of FPGA
resources. Finally, Section VIII concludes the paper.

II. GOALS

A. Features Required for the Cloud

To enable virtualization of FPGAs in the cloud we took inspiration
from the system features used to virtualize CPUs. Here we propose
the minimum set needed to share FPGAs in the cloud:

• Memory management
— Virtual memory
— Dynamic memory allocation and deallocation
• Shared execution

— Multi-process
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Figure 1. Block diagram of the system on which we developed our
methodology.

— Multi-user
— Workload-dependent resource allocation
• Protection

— Memory and hardware protection
— Protection rings
• Application execution

— Loader
— Scheduler
• Code portability

— Hardware abstraction layer

Our objective in this work is to provide a complete implementation
that includes a development and an execution environment to evaluate
the benefits and measure the overheads of sharing an FPGA among
multiple users. By using a complete implementation, we avoid
potential inaccuracies that might arise from a model-based evaluation.
The following sections will discuss how each of these features are
implemented and how the benefits are evaluated.

Previously, various implementations of subsets of these features
have been proposed. For instance, SysAlloc [9] provides hardware
dynamic memory management to multiple masters in a system-on-a-
chip. However, it does not consider any of the other aspects above.
ReconOS [8] is an RTOS that enables both hardware and software
threads to communicate and synchronise between them and with the
OS. But it does not provide sharing or protection facilities to support
the simultaneous execution of multiple independent applications.
Finally, the work in Chen et al. [10] addresses sharing an FPGA
among multiple users in a cloud setting, and the related security
issues. However, it does not explore the design flow needed to enable
users with varying expertise to easily develop their own accelerators.
Moreover, dynamic attribution of a variable number of accelerator
slots to each application depending on the workload is not considered.

B. Programming and Execution Model

Our methodology targets a system organized as in Fig. 1. It includes
a host computer in a cloud environment with an FPGA board
connected via a high-bandwidth link. The FPGA is initialized with
a hardware system which contains 1) a number of regions where
accelerators can be instantiated at runtime without reprogramming
nor suspending the rest of the system and 2) a local processor, which
can interact with the accelerators and access FPGA resources with
lower latency than the host CPU. A runtime manager runs on the
local processor and is responsible for managing FPGA resources and
communicating with the host via PCIe.

We decided to introduce a local processor for the runtime manager
and for critical sections of user code following a series of preliminary
latency tests we performed. As an example, to perform a simple
write to an FPGA peripheral which causes an interrupt and the
acknowledgement of the same interrupt, we measured a latency of

success

inquire

success

download

success

write
input data

success

create

success

start

success

system call
return data

terminated
application
terminated

interrupt

read
output data

data

t

Host FPGA
VERT

HostUserThread ManagerThread RuntimeManager Memory

FPGAUserThread:

Figure 2. Sequence diagram for the lifetime of a typical application.

35 µs if the operation is performed on the host, in contrast to 2.9 µs
if we use a local processor. By providing a local processor we thus
offer the user the benefit of lower latency access to the memory
which is shared with the accelerators. Moreover, by running the
runtime manager on the local processor, we also reduce the latency
associated with all hardware accesses, such as accelerator instantiation
and execution control.

Users write applications for the host CPU where part of the
computations can be accelerated by the FPGA. To do so, our
toolchain generates an FPGA application package which includes
the specifications of the hardware accelerators and code to be run
on the local processor. This code is responsible for orchestrating
accelerator execution and for performing serial computations with
low-latency access to data on the FPGA memory shared with the
accelerators.

Fig. 2 provides an example of how, when, and where the different
parts of the application are executed. In order to start the FPGA
application, the user thread on the host CPU passes the package to
the manager thread, which deploys it to the FPGA. On the FPGA
side, the runtime manager is responsible for allocating the resources
required by the FPGA user application, creating an FPGA user
thread with the code for the local processor, serving its requests
(e.g., accelerator instantiation), and notifying the host when the FPGA
user application terminates. The host user thread can then retrieve the
output data from the FPGA and either send new data to be processed
or deallocate the FPGA user application.
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Figure 3. Structure of a basic hardware system to interface hardware
accelerators on an FPGA with an application running on a host machine.
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Figure 4. Overview of our hardware system, based on Fig. 3 with the addition
of virtualisation hardware, partial reconfiguration (darker boxes), and message
boxes for asynchronous communication (white boxes).

III. HARDWARE SYSTEM DESIGN

Fig. 3 shows an example of a basic hardware system required to run
an application on an FPGA connected to a host machine. The masters
in this system include the processor subsystem (local processor – a
MicroBlaze in the current implementation – and its peripherals), one or
more hardware accelerators and a PCIe interface to communicate
with the host machine, whereas the slaves are the shared internal (on
chip) memory and shared external memory which, in our case, is the
DRAM on the FPGA board. Masters and slaves are interconnected
using the shared bus.

In order to support the execution model described in Section II-B,
we expanded the basic system shown in Fig. 3, resulting in that shown
in Fig. 4. We replace the fixed hardware modules with a number of
partially reconfigurable (PR) regions, where user accelerators can be
loaded at runtime. Using PR means the fixed infrastructure required
to manage accelerators is always present, in the static region of
the design, while accelerators can be loaded at runtime in the PR
slots. Isolators are used in order to disconnect the PR regions during
reconfiguration.

ID marker modules mark every bus transaction with an ID which
identifies the application to which the corresponding master (PR
region or local processor) has been currently assigned1. The ID is
used to perform the virtual-to-physical address translation and to
implement memory protection. In the current implementation, the on-
chip memory available on the FPGA enables us to use a fully hardware

1In the current implementation, based on the AXI4 bus, AXI AxUSER lines
are used for this purpose.

page table for address translation and memory protection. Using the
FPGA BRAM to store the page table makes TLBs unnecessary as the
address translation latency (1 cycle on all transactions, 1 additional
cycle in the case of page change) is already negligible compared
to the latency of memory accesses (20 and 60–80 cycles for shared
internal and external memory respectively), especially when burst
accesses are used. We also leverage the MicroBlaze internal memory
protection infrastructure to prevent user code from executing privileged
instructions (such as disabling the interrupts) and from accessing the
runtime manager code and data, as well as system peripherals. Our
current system offers basic hardware virtualization and protection for
this first experimental evaluation of the impact of these features on
the performance of a complete working system. However, it is worth
noting that these features in the static system can be easily updated
in a manner that is completely transparent to the user. For instance,
the hardware page table can be replaced by a TLB for every master
to reduce FPGA BRAM usage and to increase flexibility in terms of
page size.

Since users are given complete control of communication with their
accelerators, we must ensure that faulty or malicious accelerators
cannot cause downstream interconnect to fail due to a non-compliant
protocol implementation. To achieve this goal, a protocol checker
actively checks the connections to the PR region for protocol violations.
If a violation occurs, an interrupt to the local processor is raised and
the module which caused the violation is removed. The corresponding
application task running on the local processor is then killed and
an error notification is sent to the host. In future, we plan to add a
module which performs bus recovery in case a transaction leads to a
hanged bus.

Finally, we provide message box modules, through which acceler-
ators can raise an interrupt to the local processor in order to request
services from the runtime manager (e.g., memory allocation and
deallocation) and to communicate asynchronously with user code. The
PCIe module can use the same mechanism to interrupt the runtime
manager to, e.g., request the allocation of a new application or interact
with user code running on the local processor. We also provide a
hardware mutex which applications can use to synchronize multiple
accelerators.

IV. RUNTIME MANAGER

The runtime manager is built on top of the MicroBlaze port of
FreeRTOS, a simple open-source, multi-threading real-time operating
system [11].

Specifically, our runtime manager consists of 4 FreeRTOS tasks,
each of them responsible for the low level management of one of the
hardware resources (memory, PCIe interface, partial reconfiguration,
and accelerators). Tasks do not consume any processor time until
the respective request queue is not empty. Requests can be generated
by other system tasks, interrupt service routines (ISRs), or user
applications via system calls. The local processor software provided
by each user is also wrapped in a FreeRTOS task with lower priority
than system tasks. This allows the FreeRTOS scheduler to allocate
processor time among all active applications.

We define two protection rings: supervisor and user. The 4 system
tasks are executed in supervisor mode, having full access to all
software and hardware infrastructure. Conversely, user application
tasks have a restricted access to the available resources. In order
to enforce these privilege levels, and to provide the applications
with a virtual view of the memory space, we modify the context
switch code in the FreeRTOS kernel to ensure that the ID on the
MicroBlaze ID marker always reflects the application (either one of
the user applications or the system) that is currently running on the
MicroBlaze.
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The only way user applications can access the hardware (accel-
erators included) and request services from the runtime manager is
by performing a system call. Examples of supported system calls
include instantiating an accelerator in one of the PR locations, starting
and stopping an accelerator, deallocating a previously allocated PR
location, allocating and deallocating memory, obtaining a timestamp,
and communicating with the application running on the host. In future,
FreeRTOS’ facilities such as mutexes, semaphores and queues could be
easily exposed via system calls in order to implement synchronisation
and message passing between processes.

A. Host Interface

All host-runtime manager communication occur via a modified
version of the DyRACT platform [12]. From the host side, the user
can interact with the runtime manager via an API that invokes the
manager thread, which in turn communicates with the FPGA via the
DyRACT driver. Examples of supported operations include initializing
and controlling the application running on the FPGA and performing
high speed memory transfers from/to the FPGA memory.

B. PR Region Allocation

The PR task is responsible for serving PR requests from the
applications. As for other shared resources (memory, processor time),
we virtualise PR locations by only providing the users with a minimum
number of locations that each application is guaranteed to receive
(MIN_LOC) and a maximum number of locations that can possibly
be allocated depending on the workload on the FPGA (MAX_LOC).
In this way, we provide a lower bound on the performance that each
application can expect and at the same time give the opportunity to
dynamically benefit from additional resources if and when available.
These parameters can be different for each application and can be
considered as in an advanced billing model.

Because all the applications share a single PR controller and a
finite number of PR locations, the runtime manager might not be able
to serve all PR requests immediately. In this case, requests are placed
in a queue and served as soon as both the PR controller and one PR
location become available. When an application does not require an
accelerator any more, the corresponding location is simply flagged as
free.

In the current implementation, all PR locations have the same size.
However, it is straightforward to extend the methodology to support
differently sized PR regions, as long as PR regions are always assigned
as a whole. For example, the set of PR regions where each accelerator
can be instantiated can be restricted based on accelerator resource
requirements. At runtime, the PR task attempts to satisfy accelerator
instantiation requests with the smallest available PR region in order to
maximize resource utilization. Even when the PR regions all have the
same size, it is still possible to scale the area and performance of an
application by partitioning accelerators into multiple smaller replicas
that operate in parallel [13], instantiated in different PR regions.

Since each PR operation requires a non-negligible time2, minimizing
the number of PR operations can result in a tangible reduction in the
total execution time of an application. Hence, whenever an accelerator
instantiation is requested, the PR task first checks if a previous instance
of the same accelerator is already available in a location that has been
flagged as available. If so, the PR task simply assigns the location
to the application and returns immediately, thus saving the PR time.
If not, the PR task randomly chooses a free location and proceeds
with the PR operation. Loops containing sequential instantiations of
different accelerators are an example of a situation where location

2In our experiments, 2–5 ms depending on accelerator resource utilization.

Local processorLocal processor
Host

Static
system

Figure 5. Design flow for our methodology. We define three entry points,
depending on the user’s expertise, which eventually converge to the same type
of output.

reuse can be advantageous; re-using accelerators still available from
previous iterations can save considerable time for high iteration counts.

C. Memory Management

We implemented two levels of memory management. The memory
management system task is responsible for the coarse memory
administration, which consists of mapping or unmapping full memory
pages (currently 1 MB) to/from each application’s virtual memory
space. For instance, the memory management task is invoked to
allocate the initial memory required for a new application to store
partial bitstreams and user code.

Each application is also assigned a heap, which is a memory region
dedicated to fine grained memory allocation and deallocation. For this
purpose, we provide each application with a dedicated heap manager
task. The heap manager is responsible for serving the dynamic memory
allocation and deallocation requests within each application’s heap
and for invoking the system memory manager to request an expansion
of the heap if needed. We implement the heap manager as a separate
task in order to be able to serve requests from local processor user
code, accelerators, or host CPU user code, independently from the
execution of the local processor user code. The heap manager features
a message exchange area, that is a memory region guarded by a mutex,
which the task itself uses to specify the parameters of a system call or
to receive a message from other tasks (e.g., a new memory request).
The mechanism used to implement the heap manager in the current
version of the system can be extended and generalized to support
multithreaded applications which share the same memory space and
which can communicate with other application threads, accelerators,
or host CPU code.

V. DESIGN FLOW

The infrastructure detailed in Section III and IV enables multiple
user applications to share FPGA resources and execute simultaneously
in a cloud-like setting. However, to successfully integrate FPGAs in
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the cloud, we need to provide a design flow that facilitates users with
varying expertise to develop applications targeting this infrastructure.
Hence, our toolchain, illustrated in Fig. 5, offers three different entry
points based on the user’s expertise and produces a package which
can be deployed to the runtime manager.

A domain expert only needs to provide high-level DSL code.
Similarly to George et al. [14], we use the Delite compiler [15]
to decompose the application into sequential and parallel kernels and
to infer the control flow graph. Parallel kernels are used to generate
an HLS description, which is processed by the HLS tool (Vivado HLS
2015.4.2 in our case) to generate an RTL description of the hardware
accelerators. Separately, the control flow graph is used to guide the
generation of the local processor software which is responsible for
running the sequential kernels and orchestrating execution of the
accelerators. It also generates the additional software to be run on the
host CPU which negotiates with the runtime manager the resources
needed on the FPGA, sends the input data and retrieves the output
data.

A user who needs more control of the HLS process can directly
provide an HLS description of the accelerators. The design must
match the specified interface specification and an API is exposed to
allow interaction with the runtime manager (to, e.g., perform dynamic
memory allocations).

Lastly, a third approach supports direct RTL description of acceler-
ators, bypassing the HLS generation stage. This low-level approach is
suitable for users with extensive hardware design expertise who require
full control of accelerator design for performance maximization. As
for the HLS case, an HDL interface and low level control specification
for data access and interaction with the runtime manager are provided.

HLS and RTL users must also provide the software which controls
the execution of these hardware accelerators and performs any software
computations required. Another API is provided to allow users to
interact with their accelerators via system calls to the runtime manager,
as detailed in Section IV. In our current implementation, the programs
to be run on the local and the host CPU must be provided separately
by partitioning the application as described in Section II-B. However,
a parser can generate the two programs by decomposing a single
piece of code based on user-specified directives or on the pattern of
access to the FPGA memory and of interaction with the hardware
accelerators.

Once the RTL description of the accelerators is available, the
standard FPGA tool is invoked using a custom script. A set of
partial bitstreams to implement the accelerators at runtime via
partial reconfiguration is generated. To allow each accelerator to
be instantiated in any of the PR regions, one partial bitstream per
accelerator per PR region is generated. These partial bitstreams are
based on the static system which we generated and downloaded to
the FPGA offline and which contains the static part of the system.
The partial bitstreams are in turn packaged together with the binaries
for the local processor in a single file. This file contains all the
information the runtime manager needs to properly allocate resources
to the application (e.g., the number and size of each partial bitstream
and the size of the local processor code) and all the data to be
transferred to the FPGA. By using the APIs we provide, the software
running on the host CPU can deploy the application to the FPGA by
passing this package to the manager thread, which forwards it to the
runtime manager, as described in Section II-B.

VI. RESULTS

A. Experimental Setup and Benchmarks

We evaluate the overhead of our proposed approach, by implement-
ing the hardware and software infrastructure described in Section III

and IV, including 3 PR regions, on a Xilinx VC709 development
board that hosts a XC7VX690T FPGA and has 8 GB of DDR3
memory, adapting the DyRACT framework [12]. Each application is
guaranteed to receive at least one PR region (MIN_LOC = 1) and can
potentially be assigned all the regions (MAX_LOC = 3). The following
applications have been used as benchmarks:

• PageRank (PRank) is a popular graph algorithm used in search
engines that iteratively computes the weights of each node in
the graph based on the weights of the nodes with edges leading
to it. We used a graph with 100,000 nodes and performed 10
iterations, each iteration consisting of two hardware accelerators
invoked sequentially.

• Triangle Counter (TCount) counts the number of triangles in
a graph with 1,000,000 nodes. It is based on a single hardware
accelerator, with the local processor only used to instantiate
the accelerator and performing no computationally-intensive
operation.

• Outlier Detector (Outl), a common kernel in machine learning
applications [16], counts the number of outliers in a set of 100,000
2D points according to the criterion proposed by Knorr and
Ng [17]. Similarly to TCount, it consists of a single accelerator
design performing all the computationally-intensive operations.
However, the workload can be parallelised among multiple clones
of the accelerator, if available, similarly to the work done by
George et al. [13]. The software tries to instantiate up to 5 such
clones then starts all the accelerators that the runtime manager
can provide.

• 1D Autocorrelation (ACorr), a common kernel in image
processing applications, computes the autocorrelation of a 15,000-
element floating-point vector. It consists of a 14,999-iteration
loop where 3 accelerators with short execution time are invoked
sequentially and the local processor performs 5 single and double-
precision floating point operations.

Table I summarizes the properties and the parameters of each
benchmark.

Benchmark Parameters Distinct
accelerators

Accelerator
invocations

Software
workload

PRank 100,000 nodes
10 iterations

2 20 medium

TCount 1,000,000
nodes

1 1 low

Outl 100,000
points

1 1-5
(in parallel)

low

ACorr 15,000
points

3 47,997 high

Table I

All the applications have been written in a high level DSL similarly
to George et al. [14]. This allows us to demonstrate the entire toolchain.
To simulate a scenario where only a critical part of the code of an
application is executed on the FPGA, we closely followed the flow
shown in Fig. 2. Specifically, the input data was generated by the
host CPU on the host RAM and transferred to the FPGA RAM over
PCIe. Similarly, the output data was retrieved from the FPGA to the
host RAM, and the host CPU was used to verify the correctness of
the results. In the following, we call setup time the time required to
perform such data transfer operations, to negotiate with the runtime
manager the resources required by the FPGA application, to download
the application package to the FPGA, and to eventually free the
allocated FPGA resources.

This work is focused on the development of the lightweight
management infrastructure rather than on the design of efficient
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Figure 6. Breakdown of overhead components due to our infrastructure for all
benchmarks. Except for ACorr, the total overhead is always less than 3%. The
different structure of ACorr results in additional overhead due to the currently
unoptimized implementation and is not an intrinsic limitation of the approach.

hardware accelerators. For this reason, we concentrate on the analysis
of the features and requisite overheads of the infrastructure rather than
on comparison with software implementations of the benchmarks.

All the measurements reported represent the average of the execution
times for 5 runs; the standard deviation was always less than 1%.

B. Overheads

To evaluate the overhead associated with our virtualisation infras-
tructure, we first run each benchmark separately and compare the
execution time on our platform compared to that achievable with the
basic system shown in Fig. 3. We divide the total runtime into four
components:

• Accelerator execution: overall time spent by the application
waiting for one or more accelerators to terminate.

• User code: local processor time spent in the user application.
• PR: overall time spent by the PR controller to perform PR

operations for the application.
• Runtime manager: local processor time spent in the runtime

manager code during application lifetime and setup time. For all
applications, the setup time accounted for 8–40 ms depending
on the size of the input and output data and on the number of
partial bitstreams.

Results are shown in Fig. 6. For PRank, TCount and Outl, our
approach introduces a total overhead of between 1% and 3%, mostly
due to the additional latency that the page table and the second
interconnect impose on every bus transaction. On the other hand, the
overhead for ACorr reaches 54%. This is primarily due to a number
of causes associated with the peculiar structure of ACorr compared
to the other benchmarks:

1) A high count of short accelerator executions (about 45000, each
of them lasting 1.35 ms on average), in contrast with a single
(TCount, Outl) or a small number (20, for PRank) of longer
accelerator executions.

2) A correspondingly high count of system calls, one per accelerator
invocation.

3) A much more computationally intensive local processor workload
on the MicroBlaze, consisting of 75000 floating point operations
overall.

The higher overhead over the accelerator’s execution time is due
to the shorter runtime of each accelerator invocation. Indeed, the
execution of all accelerators generated by our toolchain from DSLs
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Figure 7. Comparison between simultaneously sharing the FPGA among
multiple applications and providing exclusive use of the FPGA in a serial
manner. Parallelising multiple applications reduces the overall execution time
and, if the FPGA configuration time is taken into account, the performance
improvement is even more significant.

starts with an initialisation sequence, consisting of several single-word
reads to retrieve parameters and addresses of the input data. This
represents a fixed-length overhead on accelerator execution time and
could become relevant if the processing time is short, and the impact
of the additional latency due to the page table is greater on these
short reads compared to burst reads/writes that are mostly used during
processing.

The high count of system calls, each of them requiring approxi-
mately 185 µs on the MicroBlaze, is instead the cause of the increased
runtime manager overhead. The system call overhead could be reduced
by introducing new system calls that can perform multiple accelerator
instantiations with a single call.

Finally, the increased execution time for the user code is due to the
current implementation, where the user code resides in the DRAM, a
high-latency memory, in contrast to the basic system where all the
code is executed from a local memory with a single-cycle latency.
Indeed, the other applications suffered from increased code execution
time, but because of the simpler operations completed by the local
processor, user code execution time was still negligible compared
to total execution time. We expect this overhead to be reduced by
moving the user application code to a dedicated on-chip memory with
reduced latency.

Importantly, in the case of the basic system, the FPGA must be
reconfigured prior to starting application execution. This additional
step results in an increased effective execution time3 for the static
system. If the FPGA configuration is taken into account, the overhead
of our infrastructure decreases and might even be negative, which is
the case for all the benchmarks we consider here except ACorr.

In terms of area overhead, we measured a 3–5% increase in utilised
LUTs, FFs and BRAMs, a 1% increase in memory LUTs and no
impact on DSP utilisation.

C. Benefits of Sharing

To analyse the benefits of simultaneously sharing the FPGA
compared to giving exclusive access to the whole FPGA to each
application sequentially, we analysed the overall execution time of

3By approximately 20 s in our tests (JTAG configuration).
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a workload comprising the 4 benchmark applications. By running
more applications than PR regions (3), we also evaluated whether
the overhead associated with continuous PR region allocation and
partial reconfiguration can offset any gain obtained by simultaneously
sharing the FPGA.

As shown in Fig. 7, even without considering the static FPGA
configuration time, our approach reduces total execution time. This
is due to the limited overhead that FPGA sharing imposes on the
execution of each application, which is smaller than the sum of
the execution times for all applications, and is a clear indication
of the underutilization of FPGA resources if each application is
given exclusive access to the whole FPGA. The gain resulting from
FPGA sharing is even more significant if we take into account FPGA
configuration time4. Moreover, our approach is beneficial even when
the number of applications, each of them potentially requesting one
PR location at the same time, is greater than the total number of PR
locations physically available (in this example, 4 and 3 respectively).
This demonstrates the validity of our resource allocation methodology,
with no application suffering from resource starvation nor hogging
all available resources.

D. Benefits of Dynamic Management

We also evaluated the advantages of the dynamic slot management
we perform, compared to statically allocating tasks to slots as in other
pieces of work [18], [10]. To do so, we compared the execution time
of ACorr and Outl alone on a system with 1, 2, or 3 physical PR
locations, where 1 PR location essentially represents the case of a
static accelerator slot allocation [18]. The execution time of the other
benchmarks did not show any dependence on the number of physical
PR locations and thus is not reported here.

The results in Fig. 8 show that the performance of both applications
scales according to the available resources. Outl can benefit from
an underutilized FPGA by deploying multiple instances of the same
accelerator on as many locations as the runtime manager can provide.
ACorr, containing a loop where multiple hardware kernels have to
be executed sequentially, can benefit from the location reuse feature
described in Section IV-B with increased probability as the number of
locations increases. These performance boosts for some applications
directly result from the dynamic resource partitioning performed
by the runtime manager in a manner completely transparent to the
user, which would not be possible without resource virtualisation or
with static allocation. Moreover, the software overhead required to
implement these features was found to have a negligible impact on
applications that cannot benefit from dynamic resource management
because the PR time is in any case negligible or because the workload
cannot be partitioned across multiple accelerators, as in the case of
the other benchmarks.

VII. RELATED WORK

FPGAs are being investigated for a variety of applications in the
cloud and datacentre. They have been offered as a way to improve
security and privacy by moving sensitive data processing into hard-
ware to reduce possible attack vectors [19], [20]. High throughput
complex data filtering and compression/decompression have also been
demonstrated [21]. The Microsoft Catapult architecture [5] represents
the first detailed application of FPGAs in an enterprise-level datacentre
application. They are used to accelerate the document ranking part of
the Bing search engine with hardware split across 8 FPGAs within a
rack. The authors report almost doubled throughput in search ranking

4In the shared FPGA scenario, the FPGA configuration is performed only
once during boot, resulting in no actual overhead once the system is running.
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Figure 8. Breakdown of execution time for ACorr and Outl with differing
numbers of available locations. When the FPGA is underutilized, the dynamic
partitioning performed by our runtime manager can transparently boost the
performance of some applications.

at a cost of only 10% increased power consumption and 30% increased
total cost of ownership. Baidu have also presented FPGA-accelerated
neural networks for recognition applications offering an order of
magnitude better performance at minimal additional power cost [22].
All these represent fixed-function deployments.

More recent efforts have explored how FPGAs can be integrated
into the cloud and shared among multiple users [18], [10]. These
efforts partition FPGA resources into reconfigurable regions and use
partial reconfiguration to dynamically deploy accelerators as we do.
In Byma et al. [18], on-board memory is statically partitioned among
accelerators making it impossible for regions to work in a producer-
consumer fashion, a frequently occurring computational model, which
is also used in two of our benchmark applications (ACorr and PRank).
The work in Chen et al. [10] overcomes this limitation, but does not
perform any dynamic management of accelerator slots. The ability to
dynamically manage accelerator slots depending on runtime-varying
workloads has been shown to be useful in applications such as ACorr
and Outl in our evaluation. Additionally, in the architecture proposed
by Chen et al., accelerators only access memory via DMA units in the
FPGA static logic, which can be detrimental to the performance of
accelerators that require sparse small irregular accesses. Our approach
avoids this limitation and enables the memory interface of each
accelerator to be customized based on its memory access pattern.

There have been previous efforts in the area of dynamic manage-
ment of FPGA resources in embedded systems. This has included
managing partial reconfiguration within Linux [23], abstracting partial
reconfiguration control for adaptive systems [24], extending an RTOS
to manage hardware tasks [8], and accessing the programmable logic in
hybrid FPGAs from a microkernel hypervisor [25]. However, these are
all system-on-chip scenarios with more tightly coupled communication
that is not the case in a cloud-based deployment. Furthermore, the
sharing and protection needed in a cloud setting are not considered.
Another line of work dealing with FPGAs for high performance
computing focuses more on optimising communication between a host
and accelerator for maximum performance, in some cases offering
reconfiguration of the accelerators [26]. However, these scenarios
consider a single application requiring multiple accelerator tasks and
do not consider sharing.

There has been work on advanced dynamic memory allocation
schemes, e.g., SysAlloc [9], that can be used to extend our current
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approach and overcome the memory wastage introduced by the fixed
size pages we use. Other efforts, such as LEAP [27] and CoRAM [28]
have investigated the creation of custom memory hierarchies to provide
high performance memory systems to accelerators. We can utilize
these techniques in conjunction with our approach to improve the
performance of our memory system in the future. But our main
objective in this work was to empirically study the performance
overheads introduced by our memory virtualisation and protection
techniques.

Recent open source FPGA interface frameworks have simplified
integration of FPGAs with host PCs. RIFFA [29] is an established
framework for integrating static accelerators with support for a range of
boards and high PCIe throughput. However, it does not support partial
reconfiguration, thereby requiring the full interface to be compiled
into each accelerator design. DyRACT combines communication and
reconfiguration over a single PCIe interface [12]. This overcomes the
need for the extra cabling and drivers required to configure FPGAs in
the traditional manner, which can be problematic in a tightly managed
datacenter environment. It also virtualises the PCIe interface to allow
a varying number of accelerators to exploit available bandwidth. We
uses a modified version of DyRACT for host-FPGA communication.

VIII. CONCLUSIONS

FPGAs are an attractive computing platform for the cloud because
of their energy efficiency and flexibility. To make FPGAs suitable
for the cloud environment, we propose a methodology which enables
developers to view FPGAs as a computational resource similar to
CPUs, providing facilities such as memory management, virtualisation
and a hardware abstraction layer. We also provide a design flow that
enables developers to write FPGA-accelerated applications at differ-
ent levels of abstraction, up to high-level DSLs where CPU-FPGA
partitioning and interaction are done seamlessly. By implementing a
simple but fully functional system, we have demonstrated that FPGAs
can be virtualised with limited overhead, in terms of both area and
execution time. Secondly, simultaneously sharing an FPGA among
multiple applications is beneficial both in terms of overall execution
time and effective device utilisation. Finally, dynamic partitioning of
reconfigurable slots enables applications to benefit from additional
resources whenever available. Therefore, this methodology represents
a valid and feasible approach for integrating FPGAs in the cloud as
a first class compute resource.
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