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In the framework of a multiscale modeling approach, we present a systematic study of a bipolar
rectifying nanopore using a continuum and a particle simulation method. The common ground in
the two methods is the application of the Nernst-Planck (NP) equation to compute ion transport in
the framework of the implicit-water electrolyte model. The difference is that the Poisson-Boltzmann
theory is used in the Poisson-Nernst-Planck (PNP) approach, while the Local Equilibrium Monte
Carlo (LEMC) method is used in the particle simulation approach (NP+LEMC) to relate the con-
centration profile to the electrochemical potential profile. Since we consider a bipolar pore which
is short and narrow, we perform simulations using two-dimensional PNP. In addition, results of a
non-linear version of PNP that takes crowding of ions into account are shown. We observe that
the mean field approximation applied in PNP is appropriate to reproduce the basic behavior of
the bipolar nanopore (e.g., rectification) for varying parameters of the system (voltage, surface
charge, electrolyte concentration, and pore radius). We present current data that characterize the
nanopore’s behavior as a device, as well as concentration, electrical potential, and electrochemical
potential profiles.

PACS numbers: 87.16.dp, 02.70.-c, 05.10.Ln, 07.05.Tp

I. INTRODUCTION

In this paper, we compare Poisson-Nernst-Planck
(PNP) theory with particle simulations for ionic trans-
port through a rectifying bipolar nanopore. Both meth-
ods use the Nernst-Planck (NP) transport equation to
describe the ionic flux of i = {1, 2} species:

ji(r) = −
1

kT
Di(r)ci(r)∇µi(r), (1)

where ji(r) is the particle flux density of ionic species i, k
the Boltzmann’s constant, T the temperature, and Di(r)
the diffusion coefficient profile. The main difference be-
tween the two techniques is that PNP makes use of the
Poisson-Boltzmann (PB) theory to relate the concentra-
tion profile, ci(r), to the electrochemical potential pro-
file, µi(r), while the particle simulation method uses the
Local Equilibrium Monte Carlo (LEMC) technique1–4 to
establish this relation. The particle simulation method
includes all the ionic correlations that are beyond the
mean field approximation applied in PNP. The differ-
ence between the two approaches can be quantified by
considering the electrochemical potential

µi(r) = µ0
i + kT ln ci(r) + µEX

i (r), (2)

where µ0
i is a standard chemical potential, a constant

term that does not appear in the calculations. The

∗Author for correspondence: boda@almos.vein.hu

µEX
i (r) term is the excess chemical potential that de-

scribes all the interactions acting between the particles
forming the system and all the interactions with external
forces (including an applied electrical potential). PNP
defines the excess term as the interaction with the mean
electric field produced by all the free charges and induced
charges. Thus the electrochemical potential in the case
of PNP is

µPNP
i (r) = µ0

i + kT ln ci(r) + zieΦ(r), (3)

where zi is the ionic valence, e the elementary charge,
and Φ(r) the total mean potential. The missing term can
be identified with what is beyond mean field (BMF) and
quantifies the difference between PNP and a solution that
is accurate from the point of view of statistical mechanics:

µi(r) = µPNP
i (r) + µBMF

i (r). (4)

In the implicit solvent framework used here the BMF
term includes the volume exclusion effects (hard sphere
effects) due to the finite size of the ions and electrostatic
correlations that are beyond the mean-field level. This
partitioning has been used to study selective adsorption
of ions at electrodes5 and in ion channels6–8.

It is also usual to break the electrochemical poten-
tial into a chemical and an electrical component that are
loosely identified with the chemical and electrical works
needed to bring an ion from one medium to the other:

µi(r) = µCH
i (r) + µEL

i (r), (5)

where the EL term can be identified with zieΦ(r), while
the CH term can be identified with µ0

i + kT ln ci(r) +

http://arxiv.org/abs/1701.06344v1
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µBMF
i (r). Although these two terms cannot be sepa-

rated in experiments9–11, the separation is possible in
computational studies because Φ(r) can be determined.
In PNP, where µBMF

i (r) = 0, the CH term is just
µID
i (r) = µ0

i + kT ln ci(r), the ideal expression (ID).
The PNP model is based on an approximate mean

field approach with all the advantages and disadvantages.
First of all, the mean field method does not consider the
particles as individual entities, but works with their con-
centration profiles which can be understood as the prob-
ability of finding an ion at a specific point in space and
time. This probability depends on the interaction energy
of the ion with the average (mean) electrical potential
produced by all the charges in the system, including all
the ions. Two- and many-body correlations between ions,
therefore, are neglected in PNP. The ions are treated as
point charges omitting their size.

In this work, we also use a non-linear variant of PNP
(denoted by nPNP from now on) that can be derived (for-
mally) from a discrete hopping model12. Similar models
have been derived by Bikerman13 and Li14. In all these
models Eqs. (1) and (3) are replaced by

jnPNP
i (r) = −

1

kT
Di(r)ci(r)α(r)∇µnPNP

i (r) (6)

and

µnPNP
i (r) = µPNP

i (r) − kT lnα(r), (7)

where

α(r) = 1 −
c1(r)

cmax

−
c2(r)

cmax

, (8)

and we have chosen cmax = 61.5 mol/dm3 as a maximum
value for the concentation at close packing. The scaling
factor, α(r) approaches 1 as ci → 0, so nPNP turns into
PNP in this limit. Another approach to overcome these
limitation is density functional theory (DFT)15–23 which
includes additional terms in the free energy that take care
of the interactions in the BMF term. A recent review
discusses different possibilities to account for ions size24.

In most of the literature, a one-dimensional (1D) re-
duction of PNP is used. This gives good results especially
for long and narrow nanopores25 as its derivation is based
on the assumption that the radius is significantly smaller
than the length. Its advantage is that it requires less
computational effort and makes the computation of long
pores possible. In this work, however, we use a two di-
mensional (2D) PNP (respectively nPNP) model which is
a suitable approximation to the three-dimensional (3D),
but rotationally symmetric, system studied here. Our
model, furthermore, includes the bulk regions and the ac-
cess regions at the entrances of the nanopore, as opposed
to other studies25,26. Solving PNP in a larger domain and
also in the radial dimension gives more accurate results.

Summarised, we can couple the NP equation either to
LEMC simulations or to the PB theory. The former is
referred to as the NP+LEMC technique, while the latter

could be termed as NP+PB, but we stay with the usual
name, PNP. Poisson’s equation is satisfied in both meth-
ods. In PNP, it is solved in every iteration, while it is au-
tomatically fulfilled in LEMC because Coulomb’s law is
used to handle electrostatics in the simulations (including
the applied field in the framework of the Induced Charge
Computation method27,28). Both approaches provide ap-
proximate indirect solutions for the dynamical problem
through the NP equation. Direct simulation of ionic
transport in the implicit solvent framework is commonly
done by Brownian Dynamics (BD) simulations29–31. The
main difference between NP+LEMC and PNP is the
way they handle the statistical mechanical problem of
establishing the closure between ci(r) and µi(r). The
NP+LEMC technique provides a solution on the basis
of particle simulations that contain all the correlations
ignored by PNP. The main goal of our study is to dis-
cuss the effects of the approximations applied in PNP
for different sets of physical parameters. Comparing to
NP+LEMC results makes it possible to focus on the ap-
proximations applied in the statistical mechanical part of
the PNP theory (the PB theory), because NP is common
in them. If we want to reveal the magnitude and nature
of errors resulting from the application of the approxi-
mative NP equation instead of simulating ion transport
directly, we need to compare to BD32,33. Comparison be-
tween BD and NP+LEMC results will be published in a
separate paper.

We apply our methods to a bipolar nanopore that is a
suitable case study for our purpose. Bipolar nanopores
have an asymmetrical surface charge distribution on the
pore wall changing sign along the central axis of the
pore. Pore regions with opposite surface charges can be
achieved by chemical modifications. For example, in the
case of PET nanopores, carboxyl groups can be trans-
formed into amino groups by a coupling agent34. The
surface potential can also be regulated similarly to field-
effect transistors if the pore walls are made of conducting
materials.

The reason of choosing the bipolar nanopore for this
comparative work is that the source of rectification in
this case is purely electrostatic in nature and thus a ro-
bust effect. Therefore, we can afford a short nanopore
(only 6 nm in length) that can be handled with LEMC.
In the case of conical nanopores, where only a geometrical
asymmetry is present, long pores are needed to produce
a considerable effect which makes it computationally un-
feasible.

Although bipolar nanopores have been studied exten-
sively using PNP25,34–46, we are not aware of any paper,
where a direct comparison to particle simulations is dis-
cussed for this system. Furthermore, most of those works
use 1D PNP, while we report results of 2D PNP here and
the comparison with nPNP is also completely new.

Particle simulations are necessary for narrow pores,
where ions are crowded and their size and the correla-
tions between them (the BMF term) matter. This is the
case in ion channels, where the ions correlate strongly
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with each other and with the charged amino acids along
the ionic pathway. Although nanopores are larger in re-
ality, the electrical double layers formed by the ions at
the pore walls overlap if the the Debye length is larger
than the pore radius. This occurs if the pore is narrow
enough (such as conical nanopores at their tips) or if the
electrolyte is dilute.

This work belongs to a series of studies, where we apply
a multiscale modeling approach47. We can create differ-
ent models (with less or more details) and we can study
these models with computational methods that fit the
model. In another recent work,48, we compared results
of molecular dynamics (MD) simulations performed for
an all-atom model including explicit water to NP+LEMC
calculations performed for the implicit-water model (the
same model studied in this paper). We concluded that,
despite all the simplifications, the implicit-water model
provides an appropriate framework to study nanopores.
The link between the two modeling levels is the diffusion
coefficient profile, Di(r), used in NP+LEMC as an input,
while the MD simulations can provide information about
this profile.

The advantage of NP+LEMC over MD is that it is
faster and can handle larger systems that are closer to
realistic length scales of nanodevices. From this point of
view, PNP is even more advantageous, because it does
not involve particle simulations, therefore, it can handle
even larger systems.

II. MODELS AND METHODS

A. Models

When we extract macroscopic information (currents,
profiles, etc.) from a microscopic model, we construct
a model that contains the interactions between the par-
ticles and the external constraints (hard walls, applied
field, etc.). This is equivalent with defining the Hamil-
tonian of the system precisely. This model then can
be studied with different statistical mechanical methods
(simulations or theories). Whether a disagreement with
experiments is due to oversimplifications in the modeling
or the approximations in the method can be sorted out
by comparing to particle simulations, where approxima-
tions in the method are usually absent (system size errors
and statistical noises are still present).

Although the separation of model and method is not
so distinct in PNP, we describe the two models together
in this subsection in order to emphasize similarities and
differences. Note, however, that the term “method” in
the case of PNP refers to the physical equations used in
PNP (see next subsection), not the numerical method
with which we solve the PNP equation.

The electrolyte is modeled in the implicit solvent
framework in both cases. Water is a continuum back-
ground, whose energetic effect is taken into account by a
dielectric screening (ǫ = 78.5 in the denominator of the

Coulomb potential and as coefficient in the Poisson equa-
tion, respectively), while its dynamic effect is included in
the diffusion coefficient in the NP equation (Di(r) in Eq.
1). The ions are point charges in PNP, while they are
hard spheres (of radius 0.3 nm for both ions) with point
charges at their centers in LEMC.

The nanopore is a cylinder of 6 nm in length with a
varying radius (R = 0.5 − 3 nm). It penetrates a mem-
brane that separates two bulk electrolytes. The walls of
the pore and the membrane are hard impenetrable sur-
faces in the LEMC simulations (Fig. 1A), while they are
part of the boundaries of the solution domain in the PNP
calculations (Fig. 1B).

The diffusion coefficient of the ions are usually smaller
inside the pore than outside in the bulk regions. This
finding was confirmed by our other study that com-
pares MD and NP+LEMC results48. Here, for sim-
plicity, we assigned Dbulk

i = 1.333 × 10−9 m2s−1 and
Dpore

i = 1.333 × 10−10 m2s−1 values in the bulk and in
the pore, respectively, for both ions.

The charges on the cylinder’s surface are partial point
charges in the case of LEMC that are placed on grid
points whose average distance is about 0.25 nm. The
values of the partial charges depend on the prescribed
surface charge density, σ. The surface charge densities
are included in PNP through Neumann boundary condi-
tions for the potential.

Athough ions are excluded from the interior of the
membrane by hard walls in LEMC, the electric field is
still present there and could be computed. The dielectric
constant is the same there as in the electrolyte (ǫ = 78.5),
therefore, the surface of the membrane is not a dielectric
boundary and polarization charges are not induced there
(Fig. 1A). In the case of PNP, the interior of the mem-
brane is not part of the computational domain (Fig. 1B).
An appropriate Neumann boundary condition is applied
on the surface of the membrane in order to mimic the
system used in LEMC. Boundary conditions as handled
in the two methods are detailed in the following subsec-
tions.

B. Poisson-Nernst-Planck theory

Introduced for modeling semiconductors,49,50, PNP
was soon adapted to the modeling of biological ion
channels32,33,51–60 as well as synthetic nanopores61–63.
The classical PNP is a self-consistent system providing a
flux that satisfies the continuity equation

∇ · ji(r) = 0. (9)

The flux is computed from the NP equation (Eq. 1) for
the linear and Eq. 6 for the nonlinear version) with the
electrochemical potential, µi, defined in Eqs. 3 and 7, re-
spectively. The mean electrostatic potential, Φ(r), is con-
nected to the concentration profiles in both cases through
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FIG. 1: Geometry of computation domain (A) in the NP+LEMC system and (B) in the PNP system. (A) Boundary conditions
for the NP+LEMC system are prescribed for the two half-cylinders (dark and light green lines, ΓL and ΓR domains) on the two
sides of the membrane. Dirichlet boundary conditions are applied by using the appropriate applied potential obtained by solving
the Laplace equation (a linear interpolation way used inside the membrane, see the dotted lines). Boundary conditions for the
concentrations are ensured by using appropriate electrochemical potentials at the boundaries that correspond to the chemical
potentials producing the prescribed concentrations. The domains outside the green lines are in thermodynamic equilibrium,
where the chemical potential is constant, so equilibrium GCMC simulations are performed there. Pore charges are free charges
present explicitly in the simulation cell. They are placed on the pore wall on a grid as partial point charges. The dielectric
constant is the same everywhere, including the interior of the membrane. (B) The PNP computational cell excludes the interior
of the membrane from the solution domain. The pore charges are polarization charges that are induced as a result of the
prescribed Neumann boundary conditions on the pore wall (red and blue lines, ΓW). On the surface of the membrane (brown
lines, ΓM), a Neumann boundary conditions is applied in order to mimic the NP+LEMC solution. On the two half cylinders,
the same boundary conditions are used as in NP+LEMC (ΓL and ΓR).

the Poisson equation:

−∇ · (ε∇Φ) =
e

ǫ0

∑

i

zini(r). (10)

Here ni(r) is the number density of ions (measured in
m−3) connected to concentration (measured in mol/dm3)
through ni(r) = 1000NAci(r). We further denote by NA

Avogadro’s number and by ǫ0 the permittivity of vacuum.

Equation 3 is equivalent to the application of Boltz-
mann’s distribution, which provides the statistical me-
chanical description of the system. Together with the
Poisson equation it forms the PB theory. Coupling
these to the NP equation applies the theory for a non-
equlibrium situation and provides the PNP theory. From
a physical chemical point of view, Eq. 3 corresponds
to the statement that the electrolyte solution is ideal
(µBMF

i (r) = 0). While many theories were developed
in the last years to overcome this limitation (e.g. DFT),
here we employ a variant of PNP that features non-linear
cross-diffusion in the continuity equations which limits
the maximal density and thus takes into account the fi-
nite size of the ions.

The (n)PNP systems are solved inside the computa-
tional domain, whose boundary is separated into four
parts as shown in Fig. 1B. The first two parts corre-
spond to the left and right half-cylinders (dark and light
green lines in Fig. 1B) and are denoted by ΓL and ΓR.
These regions are the same in NP+LEMC. Both the con-
centration and the potential are set using the following

boundary conditions

ci(r) = cLi and Φ(r) = 0 on ΓL

ci(r) = cRi and Φ(r) = U on ΓR (11)

The third part are the regions of the membrane which
are attached to the baths and are denoted by ΓM (brown
lines in Fig. 1B). As the membrane is impenetrable for
the particle flux, we set the flux to be equal to 0 there.
In LEMC simulations the membrane is penetrable for the
electric field, which is not the case in PNP. Therefore we
impose the boundary conditions

ji(r) · nM = 0 and
∂Φ(r)

∂nM

= g(r) on ΓM, (12)

where nM is the outer normal on ΓM and the function
g(r) is supposed to mimic the LEMC case (where there
is an electric field across the membrane). More precisely,
it is obtained by solving a Laplace equation with zero left
hand side without permanent charges and with bound-
ary condition Eq. 11 in the domain of Fig. 1A. Then,
evaluating the normal derivative of this solution at the
boundary ΓM yields the function g(r). This additional
Neumann boundary condition matches the value of ap-
plied potential crossing the membrane in the LEMC.

The last part of the boundary is on the inside wall
of the pore, called ΓW. As it is a part of the membrane,
which is impenetrable for the particles, no-flux conditions
are also imposed for the current. The permanent charges
induce an additional electric field and are included by



5

another Neumann boundary condition:

ji(r) · nW = 0 and
∂Φ(r)

∂nW

= σ0(z) on ΓW, (13)

where σ0 = σ and σ0 = −σ for z < 0 and z > 0, respec-
tively, and nW is the outer normal on ΓW.

One of the most popular simplification of the full PNP
model is the 1D reduction. It is broadly used and com-
pared with experimental data61. It also allows to sim-
ulate very long nanopores with complex geometry using
reasonable computational time. The derivation of the 1D
model is based on the assumption that the length of the
nanopore is significantly larger than its radius. Since in
our setup this is not the case, we perform all simulations
in two spatial dimensions.

To actually solve the 2D (n)PNP system we use the
well-known Scharfetter–Gummel scheme which is based
on a transformed formulation of the system in exponen-
tial variables, see64 for detail. We use a 2D finite element
method for the actual implementation and a triangular
mesh containing 20 − 60 thousand elements, depending
on the radius of the pore. The mesh is also non-uniform
in order to obtain high accuracy, especially close to the
pore entrances.

C. Nernst-Plank equation coupled to Local

Equilibrium Monte Carlo

To solve the NP+LEMC system, an iterative proce-
dure is needed, where µi is updated until the continuity
equation (Eq. 9) is satisfied. The procedure can be sum-
marized as

µi[n]
LEMC
−−−−→ ci[n]

NP
−−→ ji[n]

∇·j=0
−−−−→ µi[n+1]. (14)

The electrochemical potential for the next iteration,
µi[n+1], is computed from the results of the previous it-
eration, ci[n], in a way that they together produce a flux
(through the NP equation) that satisfies the continuity
equation. Details on the algorithm can be found in our
original paper1.

The concentration profile in an iteration, ci[n], corre-
sponding to the electrochemical potential profile, µi[n], is
obtained from LEMC simulations. We divide the compu-
tational domain (inside the green lines in Fig. 1A) into
volume elements and assume local equilibrium in these
volume elements. We assume that these local equilibria
can be characterized by local electrochemical potential
values. We also assume that the gradient of the µi pro-
file defined this way is the driving force of ion transport
as described by the NP equation (Eq. 1).

The heart of the LEMC simulation is a MC step, where
we insert/remove an ion into/from a volume element Bk.
The acceptance probability of an insertion is

pki,INS = min

{

1,
V k

Nk
i + 1

exp

(

−∆Uk + µk
i

kT

)}

, (15)

where V k is the volume of Bk, Nk
i is the number of parti-

cles of component i in Bk before insertion, ∆Uk is the en-
ergy change associated with the insertion (including the
effect of the external field), and µk

i is the configurational
(total minus µ0

i ) electrochemical potential of component
i in Bk. In the particle deletion step we randomly choose
a particle of component i in sub-volume Bk and delete it.
The deletion is accepted with probability

pki,DEL = min

{

1,
Nk

i

V k
exp

(

−∆Uk − µk
i

kT

)}

. (16)

Here, Nk
i is the number of particles of component i in

subvolume Bk before deletion.

The energy change ∆Uk contains the effect of the full
simulation domain outside subvolume Bk including short-
range interactions such hard-sphere exclusions between
ions and hard-wall exclusion with membrane wall. The
configurational space is sampled properly, because the
ions experience the potential produced by billions of pos-
sible configurations, not just a mean potential as in the
case of PNP.

The effect of the applied potential is also included in
∆Uk. The applied potential is computed by solving the
Laplace equation with the Dirichlet boundary condition
of Eq. 11 for the boundary surface confining the solution
domain. The boundary conditions for concentrations (see
Eq. 11) are set by finding the appropriate chemical poten-
tials in the two baths that produce the desired concentra-
tions in the GCMC simulations. We used the Adaptive
GCMC method65 to determine these chemical potentials.

The result of the simulation is the concentration cki
in every volume element. The values cki and µk

i are as-
signed to the centers of the volume elements and so the
corresponding profiles are constructed. Both cki and µk

i

fluctuate during the iteration process, so the final results
are obtained as running averages.

The NP+LEMC technique has been applied to study
transport through membranes1,2, calcium channels3,4,
and bipolar nanopores48.

III. RESULTS AND DISCUSSION

The reference point of all simulations corresponds to
the following parameter set: voltages ±200 mV (200
mV is the ON, while -200 mV is the OFF state of the
nanopore), concentrations c = 0.1 and 1 M, surface
charge σ = 1 e/nm2, and nanopore radius R = 1 nm.
Then, we vary the parameters systematically by chang-
ing only one and keeping the others fixed. Rectification
is defined by |I(U)/I(−U)|, i.e. the ratio between the
currents in the ON and OFF state, respectively. In our
case, this implies that it is always larger than 1. In all
figures we plot the NP+LEMC, PNP, and nPNP results
with symbols, solid lines, and dashed lines, respectively.
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FIG. 2: Current-voltage curves for concentrations c = 0.1 M
(top panel) and c = 1 M (bottom panel) as obtained from
NP+LEMC, PNP, and nPNP (symbols, solid curves, dashed
curves, respectively). The insets show rectification as com-
puted from the ratio of the ON and OFF state currents (the
absolute values). The model parameters are R = 1 nm and
σ = 1 e/nm2.

A. Comparison of I-U curves and rectification

behavior

First, we look at the nanopore as a device that gives an
output signal (current) as an answer to the input signal
(voltage). The relation of these is the transfer function of
the device. Then, we study various profiles (concentra-
tion, potential, chemical potential) and try to understand
the differences between PNP and NP+LEMC.

Figure 2 shows current-voltage (I-U) curves for the con-
centrations c = 0.1 and 1 M. Rectification is observed us-
ing all the three methods: the current is larger at positive
voltages than at negative voltages (note that electrical
currents are multiplied with -1 in order to get positive
currents for positive voltages). Rectification increases
with increasing |U | as shown in the insets. Agreement
between NP+LEMC and (n)PNP data is better at low
concentration (0.1 M) and smaller voltages as expected.
The data from nPNP are slightly better than those from
PNP, especially for c = 1 M.

The value of the σ parameter can be considered as a
measure of the nanopore’s polarity. At σ = 0 e/nm2, the
pore is uncharged and symmetric, so currents at the two
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FIG. 3: The absolute value of the current as a function of
σ (characterizing the strength of the polarity of the pore) in
the ON and OFF states (200 vs. -200 mV, respectively) as
obtained from NP+LEMC, PNP, and nPNP (symbols, solid
curves, dashed curves, respectively). The inset shows rectifi-
cation. The model parameters are c = 1 M and R = 1 nm.

voltages of opposite signs are the same and rectification
is 1. Figure 3 shows current values in the ON and OFF
states as functions of σ. As σ is increased, the current
increases in the ON state, while decreases in the OFF
state. Rectification, therefore, improves as the strength
of the polarity of the pore increases. The σ-dependence
is well described by (n)PNP qualitatively. The errors
manifest in the fact that rectification is underestimated
by (n)PNP.

One source of the errors is that the effective cross sec-
tion of the pore through which the centers of ions can
move is smaller in the case of the charged hard sphere ions
used in LEMC (R− 0.15 nm, where 0.15 nm is the ionic
radius) than in the case of point ions used in (n)PNP
(the whole pore radius, R, is used in (n)PNP). (n)PNP,
therefore, systematically overestimates current in both
the ON and OFF states as seen in Fig. 3. The overesti-
mation of the denominator (OFF current) dominates the
ratio. Rectification, therefore, is underestimated.

One way to partially overcome this difference between
the two models would be using the effective cross section
of the finite ions (R− 0.15 nm) in the PNP calculations.
In this case, Fig. 3 would show better agreement, but
cause other problems, such as the presence of ions with
different diameters. Therefore, we decided to keep the
pore cross section in PNP in this study as it is (R), but
point out the problems with this approach.

Figure 4 shows the currents as functions of the elec-
trolyte concentration, c. Currents decrease with decreas-
ing c as expected, but the current decreases faster in
the OFF state, so rectification increases with decreas-



7

0.01 0.1 1
c / M

0

50

100

150

200

250

| I
 / 

pA
 |

NP+LEMC
PNP
nPNP

R = 1 nm,  U = ±200 mV, σ = 1 e/nm
2

0.01 0.1 1
0

100

200

300

400

500

R
ec

tif
ic

at
io

n

ON

OFF

FIG. 4: The absolute value of the current as a function of
the electrolyte concentration in the ON and OFF states (200
vs. −200 mV, respectively) as obtained from NP+LEMC,
PNP, and nPNP (symbols, solid curves, dashed curves, re-
spectively). The inset shows rectification. The model param-
eters are c = 1 M and R = 1 nm.

ing concentration, a well-known result. The explanation
is that depletion zones dominate the currents in bipolar
nanopores, but depletion zones are more depleted at low
concentrations. Changing the sign of the voltage from
positive (ON) to negative (OFF), therefore, can deplete
the depletion zone further more efficiently at low concen-
trations.

Agreement between NP+LEMC and (n)PNP is better
in the ON state. The nonlinear version of PNP works
better in this case, because it handles crowding better.
In the OFF state, (n)PNP systematically overestimates
the current partly from the reason discussed above. Rec-
tification, interestingly, is underestimated by (n)PNP at
large, while overestimated at small concentrations.

Finally, we show the dependence of currents on the
pore radius in Fig. 5. Currents increase with widen-
ing pores as expected. The relative difference between
the ON and OFF states decreases as R increases. Rec-
tification is the result of the interplay between the ef-
fect of pore charges and the applied potential. The av-
erage distance of pore charges from the ions increases
as R increases, therefore, the pore charges get less and
less able to produce the depletion zones inside the pore.
(n)PNP qualitatively reproduces the behavior obtained
from NP+LEMC. Also, the systematic underestimation
of rectification is present for all pore radii studied.

1 2 3
R / nm

0

500

1000

1500

| I
 / 

pA
 |

NP+LEMC
PNP
nPNP

c = 1 M, U = ±200 mV, σ = 1 e/nm
2

1 2 3

10

20

30

40

R
ec

tif
ic

ai
on

OFF

ON

FIG. 5: The absolute value of the current as a function of
the pore radius in the ON and OFF states (200 vs. -200 mV,
respectively) as obtained from NP+LEMC, PNP, and nPNP
(symbols, solid curves, dashed curves, respectively). The inset
shows rectification. The model parameters are R = 1 nm and
σ = 1 e/nm2.

B. Analysis of profiles for concentration, electrical

potential, and electrochemical potential

To get additional insights into the physical mechanisms
beyond the device-level behavior, we also analyze profiles
for the concentration, electrical potential, and electro-
chemical potential.

In Fig. 6, we plot the concentration profiles for c = 1
(panel A) and 0.1 M (panel B) in order to study the
differences between high and low concentrations. This
figure shows the results for σ = 1 e/nm2. Figure 7 shows
the same concentration profiles but for σ = 0.25 e/nm2.

The curves show that the ions have depletion zones in
the middle of the pore and in the zone, where they are
the co-ions (having ionic charge with the same sign as the
pore charge, σ). We distinguish basically four regions:

1. left bath, near the membrane (z < −3 nm)

2. the left part of the pore with positive surface charge
(−3 < z < 0 nm, N region) – anions the counter-
ions, cations the co-ions

3. the right part of the pore with negative surface
charge (0 < z < 3 nm, P region) – cations the
counter-ions, anions the co-ions

4. right bath, near the membrane (z > 3 nm)

In the access regions, close to the pore entrances (regions
1 and 4) ionic double layers are formed. Double layer is
common name for the separation of cations and anions
(polarization of the ionic distributions) as a response to
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FIG. 6: Concentration profiles of cations and anions as obtained from NP+LEMC, PNP, and nPNP for (A) c = 1 M and (B)
c = 0.1 M for parameters R = 1 and σ = 1 e/nm2. These concentration profiles have been computed by taking the average
number of ions in a slab and dividing by the available volume. For −3 < z < 3 nm, the cross section of the pore was used to
obtain this volume in both methods.

the presence of a charged or polarized object. In this case,
double layers appear partly as a response to the applied
field, partly as a response to the charge imbalance inside
the pore. Realize that the sign of the double layer (which
ions are the co-ions and counter-ions in the double layer)
depends on the sign of the applied voltage.

The basic reason of rectification is that the ions are
more depleted in their depletion zones in the OFF state
than in the ON state; cation concentration in the N zone
is lower in the OFF state than in the ON state, for exam-
ple. Basically, the depletion zones are caused by the pore
charges. The applied field modulates the effect of pore
charges, therefore, it increases or decreases concentra-
tions compared to the zero-voltage case. Depletion zones
are the main determinants of the current, because they
are the high-resistance elements of the system modeled as
resistors connected in series along the ionic pathway. So,
if depletion zones are more depleted, current is reduced.

It is important, however, that not only the co-ion con-
centrations decrease by switching from ON to OFF, but
also the counter-ion concentrations. As a matter of fact,
this is crucial, because co-ions are brought into their de-
pletion zones with the help of their strong correlations to
counter-ions. So there are less co-ions because there are
less counter-ions. The quantity of counter-ions, on the
other hand, seems to be related to the double layers at
the entrances of the pore on the two sides of the mem-

brane. At least, this seems to be suggested by the results
of NP+LEMC.

The double layers have opposite signs in the ON and
the OFF states that can be explained through the mean
electrical potential profiles that have two components
produced by all the free charges, ΦFREE(r), and induced
charges, ΦAPP(r), in the system. In this study, induced
charges appear at the boundaries where the boundary
conditions are applied, therefore, they produce the ap-
plied potential, ΦAPP(r). The total mean potential,
therefore, is obtained as

Φ(r) = ΦFREE(r) + ΦAPP(r). (17)

In the case of NP+LEMC, the double layers are necessary
to produce the ΦFREE(z) component that counteracts the
applied field, ΦAPP(z). Figure 8A shows that the slope of
ΦFREE(z) is the opposite to the slope of ΦAPP(z) in the
bulks, so their sum (TOTAL) has the slope close to zero.
This is necessary because the bulks are low-resistance
elements, where the potential drop is small.

In the case of (n)PNP, this phenomenon depends on
the imposed boundary conditions, Eq. 12, on the mem-
brane surface. Using, for example, g = 0 yields to-
tally different results which are in poor agreement with
NP+LEMC as far as the structure of these double layers
is concerned (the behavior inside the pore is less influ-
enced).
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FIG. 7: Concentration profiles of cations and anions as obtained from NP+LEMC, PNP, and nPNP for (A) c = 1 M and (B)
c = 0.1 M for parameters R = 1 and σ = 0.25 e/nm2.

Comparing the counter-ion profiles in the double layers
and in the neighbouring half nanopores (Figs. 6 and 7),
we can see that if there are less counter-ions in the double
layer, there are less counter-ions in the half nanopore too
(see anions on the left hand side in the OFF state com-
pared to the ON state, for example). Although the de-
crease of counter-ion concentration in the pore is related
to the decrease of the concentration of the same ion in the
neighbouring double layer, it would be an overstatement
to say that one is a consequence of the other.

Rectification works without this coupling between ion
quantities in the double layer and in the nanopore. For
example, rectification is reproduced in the case of PNP
with boundary condition g = 0 although with worse
agreement with NP+LEMC. Furthermore, the formation
of the double layers is absent in MD simulations using ex-
plicit water, still, rectification is present. MD results us-
ing explicit water are in good agreement with NP+LEMC
results using implicit water48. These contradictions re-
quire more study, but it seems that the formation of the
double layers is rather related to boundary conditions
and larger-scale effects, while the structure of the ionic
profiles inside the pore is rather related to local effects
such as interaction with pore charges, applied field, and
other ions.

As far as the agreement between the NP+LEMC and
the theoretical profiles is concerned, it is generally bet-
ter in the ON state than in the OFF state (see Figs. 6

and 7). In the OFF state, (n)PNP usually overestimates
concentrations causing the overestimation of current as
we have seen before. This is counterintuitive, because
it was said that (n)PNP is better at low concentrations,
but pore concentrations are higher in the ON state. We
can resolve this contradiction if we consider that the sys-
tem’s behavior is a result of the balance of basically three
effects: (1) interaction with the fixed pore charges, (2)
interaction with the fixed applied field, and (3) mutual
and complicated interactions between ions. The mutual
weight of these terms is different in the ON and OFF
states.

In the ON state, pore charges and applied field act
in the same direction, so they dominate the energy and
errors in the ion-ion term have less effect. In the OFF
state, however, pore charges and applied field act in the
opposite directions, so their sum is smaller and the ion-
ion term has a larger weight and the BMF term with
it.

Our next goal is to better understand the different con-
tributions of the components of the total electrochemical
potential µi as defined in Eqs. 2–5. The electrical com-
ponent µEL

i is defined as the interaction with the (to-
tal) mean electrical potential that is shown in Fig. 8A.
Note that the BMF term is fully included in the CH
term and therefore, in the case of (n)PNP, µCH

i (r) is just
µID
i (r), while it also contains the BMF term in the case

of NP+LEMC.
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FIG. 8: (A) Electrical potential profiles and components (see Eq. 17) as obtained from NP+LEMC and PNP. Component
ΦFREE(z) is the product of ions and pore charges in the system, while ΦAPP(z) is the applied potential computed from the
Laplace equation with Dirichlet boundary conditions. (B) Electrochemical potential profiles and components (see Eqs. 2, 3-5)
as obtained from NP+LEMC and PNP. The ideal (µID

i (z) = µ0

i + kT ln ci(z)), the electrochemical (µi(z)), and the chemical
(µCH

i (z)) terms are shifted to zero by deducting µCH

i (L), which is the value of the chemical term in the left bath. In the case
of PNP the ID and CH terms are the same, so µBMF

i = 0. Results are shown for the anion; data for the cation do not reveal
new insights (subscript i is dropped in the legend). Parameters are c = 1 M, σ = 1 e/nm2, and R = 1 nm.

Figure 8B shows the full electrochemical potentials, the
CH terms, and the EL terms. In the case of NP+LEMC,
we also plot the ln ci(z) term (denoted as ID) and the
BMF term. The ID and CH terms, as well as the total
electrochemical potential, are all shifted by the value of
the CH term in the left bath (µCH

i (L)). In this way, the
µi(z), µCH

i (z), and µEL
i (z) contributions take the value

zero at the left edge of the plot.

The errors in µi have three components: the error in
reproducing (1) the ln ci term, (2) the EL term, and (3)
the BMF term that can be identified with errors in re-
producing the particle correlations which are missing in
PNP, due to the mean field approximation. The first two
errors have different signs and tend to balance each other.
They are coupled through the Poisson equation, so in the
limiting case of agreeing ci profiles, the Φ profiles agree
if the boundary conditions are also the same.

In this case, the NP equation would give the same flux
if the BMF term were constant, because ∇µi would be
the same in the two methods. Therefore, the real source
of errors is not the magnitude of the BMF term, but the
r-dependence of the BMF term, that is, the fact that
ionic correlations are different inside the pore than out-
side. The nonzero value of the BMF term, on the other

hand, indicates that there is an error in “chemistry”, so
there is a possibility for further errors in both the ci(r)
and Φ(r) profiles inside the pore. Those potential errors
can eventuate inside the pore and become visible in all
profiles. Local fluctuations in the BMF term inside the
pore indicate how seriously do the errors of the mean-
field treatment of PNP contribute to inaccuracies of all
the profiles inside the pore.

IV. SUMMARY

The general conclusion is that the BMF term is small
and the agreement between PNP and NP+LEMC is quite
good. Yet, since the mean field theory does not capture
the OFF state behavior as good as the ON state be-
havior, derived quantifies as the rectification cannot be
predicted that well. Still, the results are very promising
given that these calculations have been performed for a
narrow (R = 1 nm) and short (6 nm) pore with experi-
mentally typical, but quite large surface charges (σ ∼ 1
e/nm2). This indicates that the 2D PNP used in this
study is an appropriate tool to study more realistic ge-
ometries (wider and longer pores), at least, as far as the
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agreement with simulations in the framework of an im-
plicit solvent model is concerned.

This work is a link in a series of works, where a given
system (a bipolar nanopore) is studied using different
levels of modeling. Our results only prove that PNP
calculations are useful in the framework of an implicit
water model. Whether the implicit water model is a
useful one is the topic of another publication48, where
we compare implicit-water NP+LEMC simulations with
explicit-water MD simulations.

A real nanopore is obviously too big to use MD simu-
lations and all-atom models as a general tool. Although
computers are getting faster and faster, the quality of
force fields seems to be a serious limiting factor. Still,
all-atom (in this case, this means explicit water) MD sim-
ulations can be done for the nanopore of the size studied
in this work. Therefore, MD simulations can have a cru-
cial role in a chain of calculations, where we increase the
complexity of modeling step by step.

In general, particle simulation studies are more use-
ful where local effects are important. The typical ex-
ample is the narrow bottleneck of a nanopore, where
double layers overlap. Nanopores can also be used as
sensors26,66–70, where the detectable analyte molecule is
selectively bound by a binding site of another molecule
that is attached to the tip of the nanopore. The bind-
ing of the analyte molecule influences the effective cross
section, and, thus, the current. An associated and
thoroughly studied phenomenon is the crossing the a
DNA molecule through the nanopore during which the
sequencing might be possible in an efficient and fast
manner71,72. These are obviously local effects, where par-

ticle simulations are useful.

The device itself that is around the tip of the nanopore,
however, is too big to compute with particle simulations
using its real dimensions. In general, it is our purpose to
model phenomena with their appropriate boundary con-
ditions using close to real time and length scales at least
on the mesoscopic level. This purpose can be achieved
using the multiscale modeling framework in which the
advantages of all the modeling levels and associated com-
putation methods can be exploited.

This series of calculations proves that reducing the
models by neglecting certain effects is an appropriate
procedure for the case of ionic solutions and the bipo-
lar nanopore studied here. This is also due to the fact
that the transport of ions is mainly determined by elec-
trostatic effects. The interactions with the applied field,
permanent surface charges, and other ions treated on a
mean field level are sufficient to reproduce the system’s
basic behavior. For different systems, procedures simi-
lar to this should be repeated in order to evaluate the
validity of the mean field approximation.
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Multiscale modeling of a rectifying bipolar nanopore:
explicit-water versus implicit-water simulations, Nano
Lett. in preparation (2017).

49 P. A. Markowich, C. A. Ringhofer, C. Schmeiser, Semicon-
ductor equations, Springer-Verlag New York, Inc., 1990.

50 P. Markowich, The stationary semiconductor device equa-
tions, volume 1, Springer Science & Business Media, 1985.

51 D. Chen, V. Barcilon, R. Eisenberg, Constant fields and
constant gradients in open ionic channels, Biophys. J. 61
(1992) 1372–1393.

52 R. Eisenberg, Computing the field in proteins and chan-
nels, J. Membr. Biol. 150 (1996) 1–25.

53 D. Chen, J. Lear, B. Eisenberg, Permeation through an
open channel: Poisson-Nernst-Planck theory of a synthetic
ionic channel, Biophys. J. 72 (1997) 97–116.

54 D. Chen, L. Xu, A. Tripathy, G. Meissner, B. Eisenberg,
Permeation through the calcium release channel of cardiac
muscle, Biophys. J. 73 (1997) 1337–1354.

55 D. P. Chen, J. W. Jerome, R. S. Eisenberg, V. Barcilon,
Qualitative properties of steady-state Poisson–Nernst–
Planck systems: Perturbation and simulation study, SIAM
J. Appl. Math. 57 (1997) 631–648.

56 W. Nonner, D. P. Chen, B. Eisenberg, Anomalous mole
fraction effect, electrostatics, and binding in ionic channels,



13

Biophys. J. 74 (1998) 2327–2334.
57 W. Nonner, B. Eisenberg, Ion permeation and glutamate

residues linked by Poisson-Nernst-Planck theory in L-type
calcium channels, Biophys. J. 75 (1998) 1287–1305.

58 D. P. Chen, L. Xu, A. Tripathy, G. Meissner, B. Eisenberg,
Selectivity and permeation in calcium release channel of
cardiac muscle: Alkali metal ions, Biophys. J. 76 (1999)
1346–1366.

59 W. Nonner, L. Catacuzzeno, B. Eisenberg, Binding and
selectivity in L-type calcium channels: A mean spherical
approximation., Biophys. J. 79 (2000) 1976–1992.

60 G. Richardson, A multiscale approach to modelling
electrochemical processes occurring across the cell mem-
brane with application to transmission of action potentials,
Math. Med. Biol. 26 (2009) 201–224.

61 J.-F. Pietschmann, M.-T. Wolfram, M. Burger, C. Traut-
mann, G. Nguyen, M. Pevarnik, V. Bayer, Z. Siwy, Rec-
tification properties of conically shaped nanopores: conse-
quences of miniaturization, Phys. Chem. Chem. Phys. 15
(2013) 16917–16926.

62 H. Daiguji, P. Yang, A. Majumdar, Ion transport in
nanofluidic channels, Nano Lett. 4 (2004) 137–142.

63 Z. Siwy, A. Fulinski, Fabrication of a synthetic nanopore
ion pump, Phys. Rev. Lett. 89 (2002) 198103.

64 H. K. Gummel, A self-consistent iterative scheme for one-

dimensional steady state transistor calculations, IEEE
Transactions on electron devices 11 (1964) 455–465.

65 A. Malasics, D. Boda, An efficient iterative grand canon-
ical Monte Carlo algorithm to determine individual ionic
chemical potentials in electrolytes, J. Chem. Phys. 132
(2010) 244103.

66 L. T. Sexton, L. P. Horne, C. R. Martin, Developing syn-
thetic conical nanopores for biosensing applications, Mol.
BioSyst. 3 (2007) 667–685.

67 S. Howorka, Z. Siwy, Nanopore analytics: sensing of single
molecules, Chem. Soc. Rev. 38 (2009) 2360–2384.

68 A. Piruska, M. Gong, J. V. Sweedler, Nanofluidics in chem-
ical analysis, Chem. Soc. Rev. 39 (2010) 1060–1072.

69 Y. Ai, J. Liu, B. Zhang, S. Qian, Ionic current rectification
in a conical nanofluidic field effect transistor, Sensors and
Actuators B: Chemical 157 (2011) 742–751.

70 S. Howorka, Z. S. Siwy, Nanopores as protein sensors, Nat.
Biotechnol. 30 (2012) 506–507.

71 H. Peng, B. Luan, G. Stolovitzky, Nanopore-based DNA
sequencing and DNA motion control, in: Nanopores,
Springer Nature, 2011, pp. 255–286.

72 O. Otto, U. F. Keyser, DNA translocation, in: Engi-
neered Nanopores for Bioanalytical Applications, Elsevier
BV, 2013, pp. 31–58.


