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Abstract: 34 

Left-ventricular (LV) remodelling, associated with diastolic heart failure, is driven by an 35 

increase in myocardial stress. Therefore, normalisation of LV wall stress is the cornerstone of 36 

many therapeutic treatments. However, information regarding such regional stress-strain for 37 

human LV is still limited. Thus, the objectives of our study were to determine local diastolic 38 

stress-strain field in healthy LVs, and consequently, to identify the regional variations 39 

amongst them due to geometric heterogeneity. Effects of LV base movement on diastolic 40 

model predictions, which were ignored in the literature, were further explored. Personalised 41 

finite-element modelling of five normal human bi-ventricles was carried out using subject-42 

specific myocardium properties. Model prediction was validated individually through 43 

comparison with end-diastolic volume and a new shape-volume based measurement of LV 44 

cavity, extracted from magnetic resonance imaging. Results indicated that incorporation of 45 

LV base movement improved the model predictions (shape-volume relevancy of LV cavity), 46 

and therefore, it should be considered in future studies. The LV endocardium always 47 

experienced higher fibre stress compared to the epicardium for all five subjects. The LV wall 48 

near base experienced higher stress compared to equatorial and apical locations. The lateral 49 

LV wall underwent greater stress distribution (fibre and sheet stress) compared to other three 50 

regions. In addition, normal ranges of different stress-strain components in different regions 51 

of LV wall were reported for five healthy ventricles. This information could be used as 52 

targets for future computational studies to optimise diastolic heart failure treatments or design 53 

new therapeutic interventions/devices. 54 

Keywords: Ventricular diastolic mechanics, Finite element, Patient-specific modelling, 55 

Ventricular geometry, Fibre structure 56 
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1. Introduction: 57 

 Epidemiological studies reported that more than half of the patients diagnosed with 58 

heart failure (HF) have left-ventricular (LV) diastolic dysfunction with normal systolic pump 59 

function (Wang and Nagueh, 2009). LV remodelling process, associated with diastolic heart 60 

failure (HF), was identified to be driven by an increase in LV wall stress (Lee et al., 2014, 61 

Wall et al., 2006). The LV remodelling is, therefore, increasingly recognized as a potential 62 

target for therapeutic interventions, which include the use of hydrogel injection (Lee et al., 63 

2013a), anisotropic reinforcement (Fomovsky et al., 2012), cardiac support and resistance 64 

devices (Lee et al., 2014, Wenk et al., 2013a). The main objective of these surgical 65 

interventions was to normalise the LV wall stress at end diastole (ED). Finite element (FE) 66 

modelling, in combination with new cardiac imaging modalities and advanced simulation 67 

tools, can be used to analyse the diastolic mechanics of healthy heart and identify the normal 68 

ranges of stress-strain distribution in LV wall. Such information will provide a greater insight 69 

of the physiology and pathophysiology of HF patients, and thereby, predict their response to 70 

medical and surgical interventions.  71 

 The majority of diastolic FE modelling in existing literature was based on either 72 

animal heart or idealised geometry of single LV (Guccione et al., 1995, Costa et al., 1996, 73 

Usyk et al., 2000, Vetter and McCulloch, 2000) (Table 1). With the advancement in imaging 74 

modalities over the years, subject-specific single LV geometry was used for FE modelling 75 

(Wang et al., 2013, Wang et al., 2009, Genet et al., 2014). Recent study by Palit et al. (2015b) 76 

showed that the right-ventricle (RV) deformation has a significant effect on LV wall stress 77 

distribution and should be considered during ventricular modelling. Furthermore, in majority 78 

of the computational models, Fung-type transversely isotropic constitutive law was used 79 

(Guccione et al., 1995, Costa et al., 1996, Vetter and McCulloch, 2000, Wang et al., 2009, 80 

Genet et al., 2014) (Table 1). In contrast, simple shear test of pig and human myocardium 81 
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(Dokos et al., 2002, Sommer et al., 2015b, Gultekin et al., 2016) clearly exhibited orthotropic 82 

viscoelastic behaviour. Modified Fung-type (Usyk et al., 2000, Costa et al., 2001) and pole-83 

zero law (Stevens et al., 2003) were used in diastolic modelling to incorporate material 84 

orthotropy. However, the material parameters in these orthotropic models were merely used 85 

as weighting factors, rather than any physical significance (Göktepe et al., 2011). Recently, 86 

Holzapfel and Ogden (2009) developed a constitutive law that considered the locally 87 

orthotropic tissue architecture. The parameters of this model were closely related to the 88 

characteristic microstructure of myocardium. However, all the diastolic FE studies of human 89 

LV using Holzapfel-Ogden law used experimental data of animal myocardium which resulted 90 

in too stiff stress-strain relation, and thereby,  unable to produce expected LV inflation 91 

through simulation (Wang et al., 2013, Palit et al., 2015b, Baillargeon et al., 2014). The 92 

majority of diastolic modelling of human LV used only one subject except the study 93 

conducted by Genet et al. (2014) which had limitations of using single LV model and 94 

transversely isotropic material law (Table 1).  Therefore, the effect of geometrical 95 

heterogeneity in LV wall stress prediction is an important issue which is addressed in this 96 

study. There are two types of geometrical heterogeneity - (a) local geometrical heterogeneity 97 

which is present within a single LV geometry, and (b) global geometrical heterogeneity that 98 

is observed amongst different LV geometries (amongst different subjects). In this study, the 99 

focus was mainly on the global geometrical heterogeneity although local heterogeneity was 100 

included as the geometry was developed from subject-specific MRI.   101 

 In majority of the FE models, kinematic constraints were typically used to fix 102 

longitudinal basal movement to avoid any rigid body displacement and allowed the apex to 103 

move freely (Wang et al., 2013, Genet et al., 2014, Walker et al., 2008, Eriksson et al., 2013). 104 

However, as reported by Wang et al. (2009) and observed from CMRI data, the apex of the 105 
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heart did not move considerably during diastole, as opposed to the mitral valve plane (Figure 106 

1c).  107 

Therefore, in the present study, personalised passive diastolic modelling of five 108 

normal human BV was carried out to address the following objectives - (1) to identify the 109 

effect of LV base movement on FE model predictions; (2) to investigate the changes in LV 110 

wall stress-strain distribution at ED due to geometric heterogeneity; and (3) to provide a 111 

reference map of regional stress-strain field in healthy LV wall at ED.  112 

2. Material and Methods 113 

2.1 Construction of Subject-specific Bi-ventricular Geometry  114 

 ECG gated, breathe hold, steady state free precession (SSFP) cardiac magnetic 115 

resonance imaging (CMRI) was performed to capture the images of five normal human 116 

ventricles at UHCW, Coventry, UK. BSREC ethics approval and patient consents were 117 

obtained to carry out the research on anonymised human data. Details of the mesh geometry 118 

construction were described in (Palit et al. (2015b), Palit et al. (2014)). The early-diastolic 119 

volume (ErDV), EDV and ejection fraction (EF), were calculated from CMRI (Figure 1a). 120 

Average longitudinal movement of base and apex during diastole were measured from 121 

constructed LV cavity geometry (Figure 1b). It was observed that the average longitudinal 122 

movement of base was considerably higher than the movement of apex for all five ventricles 123 

during diastole (Figure 1c). Figure 2a, 2b and 2c show the early diastolic BV mesh 124 

geometries, early and end diastolic LV cavities respectively, constructed from CMRI.  125 

Detailed CMRI scanning protocol and demographic information of the subjects are enclosed 126 

in Appendix A. 127 

 128 
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2.2 Construction of Rule-based Fibre-Sheet Orientation 129 

 Myocardial fibre-sheet orientation was implemented by ‘Laplace-Dirichlet-Region 130 

growing-FEM’ (LDRF) based algorithm (Palit et al., 2014, Wong and Kuhl, 2014). Based on 131 

previous studies (Streeter et al., 1969, Arts et al., 2001, Rohmer et al., 2007, Sommer et al., 132 

2015a, Holzapfel and Ogden, 2009), the fibre orientation was defined by a linear variation of 133 

helix angle from -70° in the sub-epicardium and RV septal endocardium to almost 0° in the 134 

mid-wall to +70° at sub-endocardium and RV free wall endocardium for all five ventricles 135 

(Figure 2d). The sheet direction was assumed to be aligned with local radial direction as it 136 

has very little effect on passive stress-strain distribution of LV wall (Wang et al., 2013). 137 

2.3 Constitutive Law for Passive Myocardium 138 

The Holzapfel-Ogden material law (Eq. (1)) was used to define myocardium (Holzapfel and 139 

Ogden, 2009). Appendix B includes a detailed description of the strain energy function. Table 140 

2 shows the material parameters used in this study. A brief description of the material 141 

parameter identification is included in Appendix C. 142 
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  (1) 143 

2.4 Finite Element Model of Passive LV Mechanics 144 

Early-diastolic (ErD) BV mesh geometry was constructed from ErD CMRI of human 145 

ventricle. According to state-of-the-art, ErD is assumed as initial stress free configuration 146 

since the ventricular pressure is lowest at this point, and therefore, stress is minimum (Usyk 147 

et al., 2000, Genet et al., 2014, Palit et al., 2015b, Sun et al., 2009, Wenk et al., 2011b, Wenk 148 

et al., 2011a, Palit et al., 2015a). Due to the unavailability of subject-specific ventricular 149 
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pressure, which requires invasive measurement, LV EDP was considered 10 mmHg  (Genet 150 

et al., 2014, Wang et al., 2013, Lee et al., 2013b, Lee et al., 2013a). One third of the LV 151 

blood pressure was applied on the RV endocardium (Palit et al., 2015b). Traditionally, the 152 

longitudinal movement of the base and the circumferential displacement of epicardial wall at 153 

the base were suppressed whereas apex was set free (Lee et al., 2014, Wang et al., 2013, 154 

Genet et al., 2014, Palit et al., 2015b, Eriksson et al., 2013, Wenk et al., 2011b, Dorri, 2004). 155 

However, as reported by Wang et al. (2009) and observed from CMRI (Figure 1b and c), the 156 

upward basal movement was greater compared to the movement of apex during diastole. 157 

Therefore, two cases were considered for all five BVs to explore the effect of base 158 

movement. Case-1 used the traditional method of constraining the longitudinal movement of 159 

base and allowing the apex to move free  (Lee et al., 2014, Wang et al., 2013, Genet et al., 160 

2014, Palit et al., 2015b, Eriksson et al., 2013, Dorri, 2004, Wenk et al., 2011b). In case-1, 161 

the circumferential displacement of epicardial wall at the base is also constrained along with 162 

the longitudinal movement of base as described in Sun et al. (2009), Wenk et al. (2013a), and 163 

Wang et al. (2013). Case-2 followed the method of Wang et al. (2009) in order to include the 164 

base movement to match the data from the CMRI. Average longitudinal displacement (Figure 165 

1c) was prescribed in all the basal nodes except the basal endocardial nodes (Wang et al., 166 

2009). The movement of apex and the circumferential displacement of epicardial wall at base 167 

was supressed in order to avoid any rigid body displacement (Wang et al., 2009). Radial 168 

direction was assumed to be free to deform (Wang et al., 2013, Wenk et al., 2013a) for both 169 

cases.  170 

In order to study the stress-strain distribution of the LV wall, three short-axis slices 171 

were considered: (1) basal slice positioned 10mm  below the base; (2) equatorial slice located 172 

20mm below the basal slice; and (3) apical slice positioned 20mm  above the apex. In 173 

addition, two long-axis slices were defined. The s-l slice, passing through the septum and 174 
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lateral wall, divided both RV and LV in the middle. The a-p slice, passing through anterior 175 

and posterior wall, divided the LV cavity in the middle. In addition, each short-axis location 176 

was divided in four regions such as: anterior, lateral, posterior, and septum.  177 

3. Results 178 

3.1 Model Validation: 179 

Validation of Holzapfel-Ogden material model implementation in FE framework was 180 

detailed in Palit (2015). A shape-volume based validation procedure was introduced, for the 181 

first time, instead of comparing only LV EDV. The geometry of LV cavity at ED, constructed 182 

from CMRI, was attributed as ‘original’ shape (Figure 2c). The geometry of LV cavity at ED, 183 

resulted from simulation, was considered as ‘predicted’ shape. The intersected volume 184 

between ‘original’ and ‘predicted’ geometry was calculated to incorporate shape-volume 185 

relevancy (Figure 3b), and consequently, to check the accuracy of the model predictions. This 186 

is performed in 3-matic by importing both the .stl files of ‘original’ and ‘predicted’ LV 187 

cavity, and thereafter, by using the intersected volume option. Figure 3c shows that the 188 

‘predicted’ LV cavity is able to produce 85.91 2.84%  shape-volume similarities when 189 

compared with ‘original’ LV cavity at ED (case-2). 190 

3.2 Effect of Base Movement 191 

 Two separate simulations (case-1 and case-2) were carried out for each BV to 192 

investigate the effect of base movement on FE model prediction. Three different parameters 193 

were compared. First, the LV EDV was compared by plotting the LV end diastolic pressure 194 

volume relation (EDPVR) for both the cases (Figure 3a). It was observed that the base 195 

movement did not affect the EDPVR of LVs, and therefore, both cases achieved same LV 196 

EDV as measured from CMRI. Second, although both the cases produced same LV EDPVR, 197 
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the shape-volume relevancy was better for case-2 for all subjects (85.91 2.84%   in case-2 198 

compared to 70.72 4.05%  in case-1) (Figure 3c). Third, a qualitative comparison in fibre 199 

stress-strain distribution in LV wall (BV1) at ED for both cases was carried out (Figure 4). It 200 

was identified that the following areas experienced higher fibre stress in case-2: anterior and 201 

posterior regions of basal and equatorial locations, LV endocardium and near epicardium. 202 

The fibre stress distribution at apical location was completely different between the cases 203 

(Figure 4). Moreover, the entire LV wall experienced higher fibre strain in case-2. 204 

3.3 Stress-strain amongst the different wall locations of the five ventricles 205 

 Figure 5 shows that the LV endocardium experiences higher fibre stress compared to 206 

the LV epicardium. The average fibre stress was marginally higher in the equatorial location 207 

compared to the basal and the apical location (except for BV3). Both sheet and sheet-normal 208 

stresses were greater in the basal location and minimal in the apical location for all five 209 

ventricles (Figure 6b). Variations in fibre and sheet stresses in the apical location were higher 210 

in comparison with the other locations (Figure 6a). In contrast, the variation in sheet-normal 211 

stress was greater in the basal location. The average fibre stress at ED was higher compared 212 

to sheet and sheet-normal stresses. The ranges of fibre, sheet and sheet-normal stresses were 213 

approximately in the range of 0 to 6 ,  1.5 to 1.5   1 to 5 kPa kPa and kPa     214 

respectively for all locations (Figure 6a).  215 

Figure 6c and 6d show the average GL strain in local cardiac coordinate ( ,,c z ne e e ) 216 

(Palit et al., 2014, Wang et al., 2013). The circumferential and radial strains were higher in 217 

the basal and the equatorial locations compared to the apical location, whereas the 218 

longitudinal strain was higher in the apical location and lowest in the equatorial location. The 219 

circumferential GL strain was greater in comparison with longitudinal and radial strain 220 

(Figure 6c). 221 
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 222 

3.4 Stress-strain amongst the different wall regions of the five ventricles 223 

The lateral region of LV in all the short-axis locations was experienced comparatively 224 

higher fibre stress for all the ventricles (except BV4 in equatorial location) whereas the 225 

septum in the apical location experienced lower fibre-stress (Figure 7b). Compressive sheet 226 

stress was greater in the lateral region of the equatorial and the apical locations. Sheet-normal 227 

stress was higher in the posterior region of the equatorial location whereas the lateral wall 228 

experienced comparatively lower sheet-normal stresses (except BV3 sheet-normal stress). 229 

Moreover, the variation in fibre-stress amongst the regions was less in the basal and the 230 

equatorial locations compared to the variation in the apical location. The ranges of stresses, 231 

experienced by different regions of LV wall in different short-axis location, are shown in 232 

Figure 7a. 233 

 The ranges of different GL strain components are plotted in Figure 8a. High 234 

circumferential GL strain was experienced by the lateral wall at the basal location, and the 235 

posterior region of the equatorial and the apical locations (Figure 8b). The anterior and the 236 

septum wall received comparatively lower circumferential GL strain. The longitudinal GL 237 

strain was less in the posterior region of the basal and the equatorial locations.  238 

4. Discussion   239 

4.1 Comparison with state-of-the-art 240 

Passive diastolic modelling was carried out for five human ventricles to investigate 241 

the effect of base movement and geometrical heterogeneity on LV wall stress-strain 242 

distributions. Authors’ previous work (Palit et al., 2015b) included the effect of fibre 243 

orientation and right ventricle (RV) on LV mechanics using porcine myocardium data, and 244 
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without considering base movement. The current study aimed to explore the effect of global 245 

geometrical heterogeneity and base movement on LV mechanics using human myocardium 246 

properties.  The previous study was conducted by implementing different fibre orientation on 247 

single ventricular geometry, whereas in this study, five BV geometries were used with similar 248 

fibre structure to find the effect of global geometrical heterogeneity. Several improvements 249 

were incorporated in the present study over state-of-the-art for better model prediction. 250 

Firstly, BV geometries were used in the study to consider the effect of RV deformation. Palit 251 

et al. (2015b) reported that the inclusion of RV deformation in computational model not only 252 

changed the stress-strain distribution pattern but also increased LV wall stress-strain during 253 

diastole. The majority of previous studies used only single LV geometry (Genet et al., 2014, 254 

Wang et al., 2013, Wang et al., 2009), and therefore, the effects of RV deformation were not 255 

considered. Secondly, subject-specific passive orthotropic material properties for human 256 

myocardium were used instead of transversely isotropic properties (Genet et al., 2014). 257 

Thirdly, LV base movement was included in diastole to predict more accurate shape-volume 258 

changes of ventricles during diastole. Although Wang et al. (2009) included base movement 259 

in their model, the effect was first investigated in this study. Fourthly, a new shape-volume 260 

based validation procedure was introduced to measure the model prediction accuracy. 261 

Finally, the variation of fibre, sheet and sheet-normal stresses (and strains) amongst different 262 

wall regions and locations of the five normal ventricles were reported.  263 

The shape-volume based validation procedure is easy to implement without the use of 264 

extra scanning operation or higher computational cost, yet provides a great way to compare 265 

the predication of FE modelling. As tag-MRI is not a routine clinical practice in majority of 266 

the hospitals, cine MRI could be used to calculate strain. Cine images are 2D, and thus, out of 267 

plane motion cannot be easily estimated (Gao et al., 2015). In addition, due to lack of 268 

patterns/features in cine images, higher uncertainties presents while estimating pixel-wise 269 
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strain. Gao et al. (2014) showed that the regional circumferential strains could be estimated 270 

correctly from cine images. However, greater discrepancies exists during the estimation of 271 

regional radial strains, and therefore, could not be used in FE modelling (Gao et al., 2015). 272 

Even with tag-MRI, the radial strain cannot be measured with adequate accuracy (Declerck et 273 

al., 2000, Denney et al., 2003, Sun et al., 2009). Therefore, when short axis images are used, 274 

only single parameter (circumferential strain) could be used for validation which is not 275 

sufficient to compare the global deformed shape. Also, it is difficult to estimate strain in late 276 

diastole due to the fading of tag data (Gao et al., 2014, Xu et al., 2010) (however, DENSE 277 

MRI does not have this issue). It leads to complex and additional computational time. In 278 

addition, some studies used (Genet et al., 2014, Gao et al., 2015, Sun et al., 2009) tag MRI in 279 

FE modelling without considering the longitudinal basal movement. However, it is evident 280 

from the present study that the inclusion of base movement is mandatory for better model 281 

prediction. Therefore, shape-volume based validation should be performed along with strain-282 

based validation for improved model prediction. 283 

4.2 Effect of Base Movement 284 

 The EDPVRs of LV did not alter due to the inclusion of longitudinal base movement, 285 

and therefore, same subject-specific EDV was achieved for both the cases. However, it was 286 

observed that the shape-volume prediction was better (85.91 2.84%  compared to287 

70.72 4.05% ) when longitudinal movement of base was included in the model. It showed 288 

that the LV wall expanded more in the radial direction in the fixed base case, and 289 

consequently led to inaccurate shape. In addition, including base movement increased the 290 

average fibre strain in the LV. These observations indicated two aspects which should be 291 

incorporated in any future computational studies of cardiac mechanics. Firstly, the 292 

longitudinal base movement should be included in the model; otherwise the model would 293 

provide accurate volume estimation with inaccurate geometrical shape. Any surgical 294 
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simulations with such inconsistency could result in imprecise model prediction, and 295 

therefore, lead to the selection of wrong surgical treatment. Secondly, the traditional method 296 

of validating the diastolic model prediction only by comparing the LV EDV (Genet et al., 297 

2014, Lee et al., 2013a), would not be sufficient. Future studies should also compare the 298 

geometrical shape to provide precise model estimation for diastole and systole. 299 

4.3 Stress-strain amongst the different wall locations and regions of five ventricles 300 

 It was identified that the endocardium region experienced higher fibre stress 301 

compared to the epicardium of LV wall at ED. Similar observation was identified by Genet et 302 

al. (2014) using scaled myocardium properties for human LV, and by Wenk et al. (2013b) 303 

using animal myocardium properties and different constitutive law (fung-type law). Genet et 304 

al. (2014) reported that the volume-averaged fibre stress at ED was 2.21 0.58  kPa . In the 305 

present study, it was identified that the average fibre stress was in the range of 2 to 3.5 kPa  306 

(Figure 6b). Due to the lack of diastolic strain measurement for human myocardium, the 307 

circumferential and radial strain values in the present study were compared with the strain 308 

values provided for animal heart in the literature. It was reported that the circumferential 309 

strain for animal heart was 0.07 to 0.15  (Sinusas et al., 2001), 0.07 to 0.22 (Veress et al., 310 

2005), 0.09 to 0.15  (Guccione et al., 1991) and 0.05 to 0.22  (Omens et al., 1991). In this 311 

study, the circumferential strain was in the range of 0.1 to 0.3  (from apex to base), which 312 

agreed excellently with the literature. In addition, radial strain for animal heart was reported 313 

as 0.15 to 0.25(Sinusas et al., 2001), 0.09 to 0.14  (Veress et al., 2005), 0.19 to 0.34314 

(Guccione et al., 1991) and 0.12 to 0.18  (Omens et al., 1991). The absolute value of radial 315 

strain was also in the similar range ( 0.1 to 0.2 ).  Due to the lack of published data on 316 

transmural stress-strain distributions in the human LV at ED where human myocardial 317 

properties were used (see Table 1), and given the differences in subjects, more detailed 318 
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quantitative comparisons do not seem merited. Although the average fibre stress was 319 

comparatively higher in the equatorial location, the differences were not considerable. 320 

Furthermore, the sheet and sheet-normal stresses and circumferential strain were higher in the 321 

basal location compared to the equatorial and the apical locations.  Therefore, it was 322 

concluded that the LV wall near base location experienced higher stress-strain. In addition, it 323 

was observed that the lateral region of LV wall experienced higher fibre and sheet stress. 324 

These results were mostly consistent for all five normal human ventricles.  325 

4.4 Limitations and Future Work 326 

 First of all, rule-based fibre-sheet orientation was used instead of subject-specific 327 

ones. Precise fibre-sheet orientation can be measured only ex-vivo and feasibility of in-vivo 328 

diffusion tensor imaging (DTI) for subject-specific fibre-sheet orientation is still an open 329 

question (Wang et al., 2009, Genet et al., 2014). The LV EDP was considered 10 mmHg  due 330 

to the unavailability of subject-specific EDP, which requires invasive measurements. Due to 331 

such ethical and technical limitations, studies of human ventricular mechanics assumed 332 

physiologically reasonable values of ventricular pressure in computational model (Genet et 333 

al., 2014, Wang et al., 2013, Lee et al., 2013b, Lee et al., 2013a). The third limitation was the 334 

assumption of an initial stress-free state, which was present in all the previous simulations 335 

study (Usyk et al., 2000, Genet et al., 2014, Palit et al., 2015b, Sun et al., 2009, Wenk et al., 336 

2011b, Wenk et al., 2011a). Wang et al. (2014) reported that the effects of such initial 337 

(residual) stresses are relatively small in late diastole when pressure is higher. In contrast, a 338 

recent study observed measurable effect of pre-stress during diastole (Genet et al., 2015). 339 

Therefore, it is still an open question and future studies will be carried out to compute 340 

personalised diastolic mechanics by considering physiological pre-stress condition.  341 
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From the perspective of myocardial physiology and ventricular blood pressure, the 342 

structure-functional relations of normal human heart are very complex. It was not claimed 343 

that the computational model of BV being able to realistically simulate all the coupled 344 

phenomena with inadequate clinical data. However, the model realistically simulated only a 345 

limited scope of local LV diastolic mechanics, and within that scope, the model was state-of-346 

the-art in their pragmatism and consistent with which they were validated. 347 

5. Conclusions 348 

 In the present study, personalised passive diastolic modelling of human LV was 349 

carried out to identify the changes in regional stress-strain distributions in LV wall at ED due 350 

to geometrical heterogeneity and base movement. The improvements of the current study 351 

over the state-of-the-art as follows. (1) Subject-specific passive orthotropic material 352 

properties of human myocardium was used for better model prediction, instead of previously 353 

used animal myocardium data with transversely isotropic properties.  2  Personalised 354 

computational models of five healthy human ventricles were carried out instead of using 355 

single human heart.  3  A new shape-volume based validation procedure was introduced 356 

along with traditionally used EDV based comparison. (4) Subject-specific base movement, 357 

which was not considered by the majority of previous studies, was included, and 358 

consequently, the effect of such movement on model prediction was explored. (5)  Bi-359 

ventricular model was considered to include RV deformation. Results indicated that only 360 

EDV based validation was not sufficient for accurate model prediction, and therefore, shape-361 

volume relevancy should be compared. Including base movement increased the shape-362 

volume relevancy of LV cavities, and consequently, improved the model prediction. The 363 

endocardium of LV wall was experienced high fibre stress compared to the epicardium wall. 364 

The LV wall near base location was experienced greater stress and strain compared to the 365 
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other locations. In general, the lateral LV wall experienced higher stress-strains compared to 366 

the other three regions. In addition, a detailed measurement of different stress-strain 367 

components amongst different locations and regions of LV wall was reported for five healthy 368 

ventricles. These could be used as a reference map for future computational studies or could 369 

serve as targets for in-silico design of therapeutic interventions for diastolic heart failure 370 

treatments.   371 
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Caption of the figures: 

Figure 1: Subject-specific values. (a) Early Diastolic Volume (ErDV), End Diastolic Volume (EDV) 

and Ejection Fraction (EF) extracted from CMRI of five normal ventricles (BV1 to BV5); (b) 

Measurement procedure of longitudinal base and apex movement ; (c) Longitudinal movement of 

base and apex measured for five ventricles (BV1 to BV5) 

Figure 2: (a) Subject-specific bi-ventricular mesh geometry; (b) LV cavity at early diastole 

constructed from cardiac MRI; (c) LV cavity at end diastole constructed from cardiac MRI; (d) fibre 

orientation map using LDRF algorithm 

Figure 3:  Effect of base movement on diastolic model prediction. (a) EDPVRs of LV for both cases 

(i.e. base fix vs base move) show that the EDPVR remains same even with the inclusion of base 

movement; (b) Procedure to calculate intersected volume to incorporate the shape-volume relevancy 

at ED; (c) Percentage of intersected volume between original and simulated LV cavity at ED; it shows 

that the better model prediction is achieved when base movement is included  

Figure 4: Comparison between fibre stress (Cauchy) and fibre strain (logarithmic) predictions 

between the two cases (base move vs base fix) for BV1. The location definition of the images are 

described in section 2.4 

Figure 5: Subject-specific fibre stress (Cauchy stress) at three short axis (base, equatorial and apex) 

and two long-axis (s-l and a-p) locations. The location definition of the images are described in 

section 2.4 

Figure 6 : (a) Range and (b) average values of the fibre (ff), sheet (ss) and sheet-normal (nn) stresses 

at base, equatorial and apical locations of each BV; (c) Range and (b) average values of the 

circumferencial (cc), longitudinal (ll) and radial (rr) strains at base, equatorial and apical locations of 

each BV.  

Figure 7: (a) Range and (b) average values of the fibre (ff), sheet (ss) and sheet-normal (nn) stresses at 

anterior (A), lateral (L), posterior (P) and septum (S) regions of each locations (i.e. base, equatorial 

and apical) of each BV 

Figure 8 : (a) Range and (b) only average values of the circumferencial (cc), longitudinal (ll) and 

radial (rr) strains at anterior (A), Lateral (L), posterior (P) and septum (S) regions of each location (i.e. 

base, equatorial and apical) of each BV. 

 

Figure Legends



Figure 1
Click here to download high resolution image



Figure 2
Click here to download high resolution image



Figure 3
Click here to download high resolution image



Figure 4
Click here to download high resolution image



Figure 5
Click here to download high resolution image



Figure 6
Click here to download high resolution image



Figure 7
Click here to download high resolution image



Figure 8
Click here to download high resolution image



Table 1: Previous work on passive diastolic modelling of LV with the key attributes 

considered in the study 

 

Single  LV Bi-ventricle (BV) 

Effect of 

base 

movement 
Animal 

myocardium 

passive 

properties 

Human 

myocardium 

passive 

properties 

Animal 

myocardium 

passive 

properties 

Human 

myocardiu

m passive 

properties 

Animal 

ventricle / 

Idealised 

geometry 

Humphrey and 

Yin (1989) 

Guccione et al. 

(1995) 

Costa et al. 

(1996) 

Vetter and 

McCulloch 

(2000) 

Usyk et al. 

(2000) 

Wang et al. 

(2009) 

 

- 

Stevens et al. 

(2003) 
- - 

Transversely  

isotropic 

Humphrey and 

Yin (1989) 

Guccione et al. 

(1995) 

Costa et al. 

(1996) 

Vetter and 

McCulloch 

(2000) 

Wang et al. 

(2009) 

Genet et al. 

(2014) 
- - - 

Human 

ventricle  

Wang et al. 

(2013) 

 

Genet et al. 

(2014) 

Palit et al. 

(2015) 

Research in this paper 
Orthotropic 

Usyk et al. 

(2000) 

Wang et al. 

(2013) 

 

- 

Stevens et al. 

(2003) 

Palit et al. 

(2015) 

Göktepe et al. 

(2011) 

Effect of 

global 

Geometric 

Heterogeneity 

- 
Genet et al. 

(2014) 
- 
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Table 2: Subject-specific values of Holzapfel-Ogden material parameters used in this study 

 

 

Subject 

 

Passive Material Properties 

a 

(kPa) 

b 

 

af 

(kPa) 

bf 

 

as 

(kPa) 

bs 

 

afs 

(kPa) 

bfs 

 

BV1 0.080 6.00 2.951 5.893 0.492 3.393 0.070 3.929 

BV2 0.092 4.800 2.647 5.323 0.441 3.065 0.063 3.548 

BV3 0.089 4.760 2.579 5.000 0.430 2.879 0.061 3.333 

BV4 0.060 4.450 2.500 4.853 0.417 2.794 0.059 3.235 

BV5 0.048 4.380 2.466 5.000 0.411 2.879 0.058 3.333 
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