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Direct grid-based quantum dynamics on propagated diabatic potential
energy surfaces

Gareth W. Richings∗, Scott Habershon∗

Department of Chemistry and Centre for Scientific Computing, University of Warwick, Gibbet Hill Road, Coventry, CV4
7AL, UK

Abstract

We present a method for performing non-adiabatic, grid-based nuclear quantum dynamics calculations using
diabatic potential energy surfaces (PESs) generated “on-the-fly”. Gaussian process regression is used to in-
terpolate PESs by using electronic structure energies, calculated at points in configuration space determined
by the nuclear dynamics, and diabatising the results using the propagation diabatisation method reported
recently [J. Phys. Chem. A, 119, 12457 - 12470 (2015)]. To test this new method, the nuclear dynamics on
the ground and first electronic excited states of the butatriene cation is studied using a grid-based method.
The evolution of diabatic state populations is in very good agreement with those produced using a fitted
potential. Overall, our scheme offers a route towards accurate quantum dynamics on diabatic PESs learnt
on-the-fly.
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The study of nuclear quantum dynamics of nuclei
is of great importance in helping to understand of
the time-evolution of molecular systems upon exci-
tation of the electronic degrees-of-freedom (DOFs);
such simulations can make direct connections to5

the spectroscopy[1] and femtochemistry[2] exper-
iments such as those pioneered by Zewail.[3–5]
Quantum dynamics simulations amount to solving
the time-dependent nuclear Schrödinger equation
(SE) on a potential energy surface (PES) which10

arises due to electronic interactions. Such PESs
can be model functions or generated by reference
to solutions of the electronic SE. To correctly de-
scribe the dynamics of electronically excited sys-
tems, it is necessary to include multiple PESs in15

the calculations so as to represent the different elec-
tronic states involved. At points in nuclear con-
figuration space where two PESs approach each
other in energy, it is possible for the nuclear wave-
function to undergo non-radiative transfer between20
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the states.[6, 7] One can model these non-adiabatic
transitions using classical mechanics, as in the tra-
jectory surface hopping (TSH) algorithm,[2, 8–10]
but as the dynamics are inherently quantum me-
chanical, it is better to use a quantum mechani-25

cal method such as the multi-configuration time-
dependent Hartree (MCTDH) approach[1, 11, 12]
where possible.

The major bottleneck in performing quantum
dynamics calculations is usually not the wavefunc-30

tion time-propagation, but the creation of an ap-
propriate PES on which to run the dynamics. As
quantum mechanics is non-local, one needs a PES
which is known everywhere in the configuration
space of the nuclear motion prior to running the35

dynamics. For the fully quantum mechanical study
of non-adiabatic systems it is usually necessary to
convert the PESs from the adiabatic representation
to a diabatic representation. The adiabatic repre-
sentation of the potential is an energy-ordered set40

of PESs, and corresponds to the energies gener-
ated by electronic structure programs. However, at
points in configuration space where adiabatic sur-
faces become degenerate, such as at conical intere-
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sections (CIs), there is a discontinuity in the gradi-45

ent of the states, such that the adiabatic states are
no longer smooth; furthermore, the coupling be-
tween the states at these points is also infinite. Nei-
ther property of the adiabatic PESs is conducive to
performing wavepacket dynamics, so transforma-50

tion to the diabatic representation is performed,
resulting in smoothly varying surfaces with finite
couplings. Diabatic representations are not unique
for a given set of adiabatic states, so an appropri-
ate diabatisation scheme must be chosen before the55

PES can be used in a dynamics calculation.
PESs are usually created by fitting functions to

large numbers of electronic energies calculated at
different points in nuclear configuration space[1,
13, 14]. Besides the amount of time it takes to60

perform the necessary calculations, the fitting pro-
cedure can also be very time-consuming. In or-
der to alleviate this issue, much recent work has
focussed on so-called direct-dynamics (DD) meth-
ods whereby the PESs are generated ”on-the-fly”65

as the nuclear dynamics proceeds[15, 16]. In ad-
dition to the previously mentioned TSH method,
the ab initio multiple spawning (AIMS) method
[17–20] and the DD-variational multi-configuration
Gaussian (DD-vMCG)[21–26] method have shown70

much success in modelling non-adiabatic dynam-
ics. AIMS uses a wavefunction formed of a linear
combination of classically-evolving Gaussian func-
tions with quantum mechanically-evolving coeffi-
cients, whilst the DD-vMCG method takes this a75

step further by using quantum mechanical (rather
than classical) propagation of Gaussians. The use
of Gaussian wavepackets and classical trajectories
is advantageous because the PES only needs to be
known locally, around the centre of each Gaussian80

or trajectory, hence avoiding the issues of non-
locality noted above. Locality is ideal for a DD
method as the potential only has to be calculated
at appropriate molecular geometries using an elec-
tronic structure program. However, such methods85

have their downsides: TSH and AIMS are lim-
ited by their classical dynamics, while DD-vMCG
has numerical difficulties which arise from the non-
orthogonality of the Gaussian basis functions.

Recently, we have proposed a method which90

combines the best elements of a DD method (i.e.
on-the-fly generation of the PES) with the fully
quantum nature and numerical stability of grid-
based nuclear dynamics methods[27]. That work
was restricted to a single ground-state PES, but95

here we extend the method to multiple electronic

states using diabatic potentials generated with a
propagation diabatisation scheme previously pro-
posed by one of us.[28] In the next section we
present the necessary theory behind each aspect100

of the method: grid-based dynamics, the method
used to interpolate the PESs, and the diabatisa-
tion scheme. Subsequently, some technical details
of the implementation are presented followed by re-
sults of a test calculation on the dynamics of the105

butatriene cation.

1. Methodology

In order to solve the nuclear time-dependent SE
for a molecular system with S electronic states,
we define the nuclear wavefunction as a vector of
functions, Ψ =

(
Ψ(1), · · · ,Ψ(S)

)
, each component

of which represents the wavefunction moving in
a particular state. The ansatz chosen for these
components is a linear combination of products
of time-independent basis functions along each nu-
clear DOF, qκ. For state α we have [11]

Ψ(α)(q, t) =

N1∑
j1

· · ·
Nf∑
jf

C
(α)
j1,··· ,jf (t)

f∏
κ=1

χ
(κ)
jκ

(qκ)

=
∑
J

C
(α)
J (t)XJ (q)

(1)

where, for convenience, we introduce a compound
index, J = j1, · · · , jf , in the second equality. In
this work, the basis functions are taken to be the110

point-like discrete variable representation (DVR)
functions; eigenfunctions of the position operator
expectation value of appropriate continuous basis
functions.[11]

Using a matrix representation of the Hamil-115

tonian (on-diagonal elements representing terms
affecting only individual states and off-diagonal
terms describing inter-state coupling), one can ap-
ply the Dirac-Frenkel variational principle [29, 30]

〈δΨ|Ĥ − ih̄ ∂
∂t
|Ψ〉 = 0, (2)

to obtain a set of equations-of-motion (EOMs) for
the wavefunction on each state[11],

ih̄Ċ
(α)
J =

Ns∑
β=1

N∑
L=1

〈XJ |Ĥ(αβ)|XL〉C(β)
L . (3)
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In order to integrate the EOMs it is necessary
to be able to evaluate the Hamiltonian matrix el-
ements. The kinetic energy contribution of the
Hamiltonian is usually straightforward to evalu-
ate, particularly in rectilinear coordinates, but in
the context of a direct-dynamics approach the dif-
ficulty lies in the evaluation of the potential energy
terms. The use of a DVR basis makes life easier in
that the value of the integral is simply the value of
the potential at the location of the grid-point [11]

〈XJ |V̂ |XL〉 = V (qJ) δJL. (4)

However, values must be known at every gridpoint,120

meaning that a global representation of the poten-
tial must be provided.

In this work, to generate a global representation
of the potential in an ”on-the-fly” manner, rather
than using a precomputed PES, we employ Gaus-
sian process regression (GPR) to approximate the
potential[31–33]. In GPR, the potential is rep-
resented as a linear combination of Gaussian ba-
sis functions, k (q,qi), each of which is centred at
some point in nuclear configuration space qi, such
that

k (q,qi) = exp
(
−α|q− qi|2

)
. (5)

The total approximation to the PES is then given
by

V (q) ≈
M∑
m=1

wm k (q,qm) . (6)

The expansion coefficients wm are found by solving
the following set of linear equations

Kw = b (7)

where bi = V (qi), the actual value of the potential
at qi, and Kij = k (qi,qj) + δijγ

2, the covariance
between members of a reference set of M points
in configuration space. The parameter, γ, is used
to regularise the covariance matrix and is set to
10−4 in all calculations here, although the final re-
sults are quite insensitive to this parameter in this
work. It is the choice of reference points which
gives a particular representation of the potential;
the method for choosing the reference set used here
will be outlined in the next section. Finally, it is
useful to define a variance function for the GPR
approximation [33]

σ2 (q) = 1 + γ2 − kTK−1k (8)

where ki = k (q,qi). This function, which is inde-
pendent of the actual potential, gives a measure of

the accuracy of the GPR representation of the po-125

tential at q, generated by equation (6), when using
a given set of reference points, {qi}.

Previously one of us published a method for
generating quasi-diabatic PESs on-the-fly, within
the context of DD-vMCG[28]. The approach is
based on the idea of the propagation of the trans-
formation matrix between the adiabatic and di-
abatic representations[34], A, using line integrals
of the non-adiabatic coupling terms (NACTs) be-
tween adiabatic states ψi and ψj ,

Fij =
〈ψi|∇Ĥ|ψj〉
Vjj − Vii

, (9)

where Vii and Vjj are the respective energies of the
adiabatic states; in this expression, and those that
follow, ∇ implies differentiation with respect to the
nuclear coordinates. The diabatisation method re-
lies on the approximate relationship [35]

∇A ≈ −FA, (10)

with the underlining indicating that F is a ma-
trix of vectors. The relationship is approximate be-
cause only a subset of all electronic states is used in130

practical calculations, meaning that it is not pos-
sible to totally remove inter-state coupling when
diabatising the PESs. However, we are mainly in-
terested in non-radiative transfers which occur in
regions where a few (typically two) states of inter-135

est are very strongly coupled, in fact dominating
the total coupling present in the system[36]. To
be pragmatic, we therefore use the equation as an
equality, accepting that in some regions of config-
uration space the diabatisation procedure is not140

strictly valid.
Given the transformation matrix at some point,

A(q), integration of equation (10) along a path
between two molecular geometries, q and q + ∆q,
yields the transformation matrix at the latter point
as

A (q + ∆q) = exp

(
−
∫ q+∆q

q

F · dq

)
A (q).

(11)
With the transformation matrix at some molecular
geometry, it is then possible to perform a similar-
ity transform to obtain the diabatic energy matrix,
VD, from the adiabatic states, VA,

VD = ATVAA. (12)
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It is the diabatic PESs given by this procedure
which are used to perform the nuclear dynamics
calculations herein.

2. Implementation145

In this section, we described how the GPR
approximation of a set of diabatic PESs, gener-
ated on-the-fly, is combined with an implementa-
tion of grid-based quantum dynamics. The over-
all methodology has been implemented in a de-150

velopment version of the Quantics nuclear quan-
tum dynamics package, [37] such that it is com-
patible with quantum dynamics simulations per-
formed using simple grid-based methods, MCTDH
or DD-vMCG. Here, we focus on using a grid-based155

method to solve the time-dependent SE on diabatic
PESs given by our GPR approach.

The quantum dynamics calculation approach
here is much the same as is normally the case when
using grid-based methods in the Quantics package;160

the DVR basis is defined, and initial wavefunction
conditions prescribed. The multi-state DD method
described here is implemented using a coordinate
system of mass-frequency scaled normal modes (al-
though it can in principle be extended to any arbi-165

trary coordinate system). As the electronic struc-
ture calculations which are performed during the
course of the dynamics are carried out using atomic
Cartesian coordinates, it is necessary to provide a
transformation matrix to convert between the nor-170

mal modes and Cartesian coordinates. To this end,
prior to the dynamics calculation, one must per-
form a normal mode analysis to generate the har-
monic vibrational modes, their associated frequen-
cies, and the required transformation matrix be-175

tween Cartesian and normal-mode space. Usually,
only a subset of normal modes is used to perform
the dynamics. This subset is defined by the choice
of DVR and it is the configuration subspace defined
by this selection in which the GPR approximation180

of the PES is constructed. With regards to the
GPR, we note that we used α=0.5 in all simula-
tions reported here (see equation (5)); earlier work
has shown that variation of this parameter within
a reasonable range should give give little overall185

change in the results presented below[38].
At the start of a quantum dynamics calculation,

an initial electronic structure calculation is per-
formed at the geometry represented by the cen-
tre of the initial wavefunction. At this point, the
adiabatic/diabatic transformation matrix is chosen

to be the unit matrix, hence setting the global
gauge of the transformation. Subsequently, 100
random geometries are chosen such that the value
of each coordinate is within three standard devia-
tions (SDs) of the centre of the wavefunction along
that coordinate. The SD of the wavefunction on
state α along coordinate, qi, is defined as

〈dq(α)i 〉 =
(
〈Ψ(α)|q̂2i |Ψ(α)〉 − 〈Ψ(α)|q̂i|Ψ(α)〉2

) 1
2

.

(13)
To maintain symmetry of the PES, according to the
point group of the molecule, symmetry-equivalent
geometries for the 100 random initial configura-
tions are also defined. Electronic structure cal-190

culations are then performed at all of the cho-
sen geometries, generating electronic energies for
each state and the non-adiabatic couplings between
them; all of these results are subsequently stored
in a database.195

With the initial set of adiabatic data, the cre-
ation of the diabatic energies at each geometry is
the next step in the calculation. The calculated
points are ordered in terms of increasing Euclidean
distance from the central reference point; further-200

more, for each reference point n, we identify of
the reference point which is the nearest neighbour
and which is also closer to the central reference
point. The adiabatic/diabatic transformation ma-
trix is then propagated out from the central refer-205

ence point, each step moving to the next member
in the list of proximity to the reference; in this
way, the transformation matrix is approximated at
all reference points. Each step of this diabatisa-
tion simply involves a numerical integration (us-210

ing trapezium rule with 20 steps) of the integral in
equation (11) along a straight line path between q
and q + ∆q. The numerator of the non-adiabatic
coupling (equation (9)) is linearly interpolated be-
tween these two points, but a GPR approxima-215

tion of the adiabatic energies is used to evaluate
the denominator. To maintain a constant phase in
the non-adiabatic couplings (a problem due to the
sign indeterminacy in inter-state matrix elements,
inherent in electronic structure codes), the scalar220

product of the numerator in equation (9) at geome-
tries q and q + ∆q is calculated. If the result is
less than zero, then the sign of the numerator at
the latter geometry is switched.

After calculation of the integral, the exponential
matrix in equation (11) must be formed. However,
to maintain the unitarity of A between consecutive

4



points, equation (11) is rearranged as [28, 34]

A (q + ∆q) = exp

(
1

2

∫ q+∆q

q

F · dq

)−1

× exp

(
−1

2

∫ q+∆q

q

F · dq

)
A (q).

(14)

The matrix exponentials are then expanded in a
Taylor series to fifth order. This resulting transfor-
mation matrix is then used to calculate the diabatic
energy matrix using Eq. (12). This procedure is
repeated for all reference points in the GPR ap-
proximation; having diabatised the points defining
the PES, the dynamics proceeds using a GPR ap-
proimation of all elements of the diabatic energy
matrix,

V D
ij (q) ≈

M∑
m=1

wmij k (q,qm) (15)

The remaining aspect of our approach is the225

method adopted to update the reference points
used by the GPR approximation to construct the
diabatic PESs. With a pre-determined frequency,
a new sampling of configuration space takes place
to update the PES. Here, a further 100 points is230

randomly selected around the current wavepacket
centre, using the current wavepacket SD. At each of
these geometries the variance, as defined in equa-
tion (8), is calculated using the set of points calcu-
lated at earlier times to define the matrix K and235

vector k. If the variance is greater than or equal
to 10−6, then a new electronic structure calcula-
tion is performed at that geometry, and this cal-
culated energy is added to the reference set con-
structing the GPR approximation; if the variance240

is less than 10−6 it is assumed that the GPR ap-
proximation is sufficiently accurate at the selected
geometry, and the point is discarded. As in the
first step, if a new point is added to the database,
then any symmetry equivalent geometries are also245

added. The diabatisation propagation procedure is
then repeated, using all data calculated at earlier
times as well as any newly added points. The old
reference points are re-diabatised if any new ref-
erence points which are closer to the central refer-250

ence geometry have been added. The growth of the
PES continues for the duration of the dynamics; as
more points are added to the database, the repre-
sentation of the PES improves. In practice, we find

that fewer points need to be added as the dynam-255

ics proceeds, a natural consequence of the fact that
the wavefunction typically explores a finite region
of space during a given propagation time.

3. Results and Discussion

To demonstrate the proposed method, test cal-260

culations were performed on the butatriene cation,
a classic test case for methods in non-adiabatic
dynamics[39]. Nuclear dynamics on the ground-
state and first excited state of the cation have
been studied using TSH[40], MCTDH[41] and DD-265

vMCG[22]. Furthermore, the butatriene cation
was previously used to demonstrate the efficacy
of the propagation diabatisation scheme outlined
above[28].

Our calculations used a two-dimensional sub-270

space of the normal modes of the ground state
of the neutral butatriene molecule, as determined
using complete active space self-consistent field
(CASSCF) method with 6 electrons in 6 active or-
bitals and a 3-21G basis set. [42] The two normal275

modes selected to describe the nuclear dynamics, as
illustrated in Fig. 1, are those representing the tor-
sion of the molecule (labelled 5Au with frequency
767.6 cm−1), and the symmetric stretching of the
central carbon-carbon double bond (14Ag with fre-280

quency 2196.2 cm−1). All necessary electronic en-
ergies and NACTs were calculated using state-
averaged (SA) CASSCF(5,6)/3-21G (with equal
weighting given to both electronic states). The
quantum dynamics calculation used a sine DVR285

basis along each mode; 101 functions were used
along the 5Au mode spanning the coordinates [-
10,10], whilst 81 functions between [-8,8] were used
along the totally symmetric mode, 14Ag (the ori-
gin of this coordinate system corresponds to the290

Franck-Condon (FC) point). The short iterative
Lanczos integrator was used to solve the EOMs.
The initial wavefunction, representing the ground
harmonic vibrational state, was placed on the di-
abatic state corresponding to the first excited adi-295

abatic state of the cation at the FC point; it was
formed as the product of Gaussian functions along
each mode, centred at the origin, with no initial
momentum and width of 0.7071 along each mode.
The wavefunction was propagated for 100 fs with300

the PES reference points updated every 0.5 fs ac-
cording to the algorithm outlined in the previous
section. The choice of the kernel function used
to construct the GPR approximation to the PES

5



was the two-dimensional Gaussian given in equa-305

tion (5).

(a)

(b)

Figure 1: Pictorial representation of the normal modes of
butatriene used as coordinates in this work. (a) 5Au: molec-
ular torsion. (b) 14Ag: symmetric stretching of the central
C-C bond.

In Fig. 2 the PESs generated during the course
of the calculation are shown: Fig. 2 (a) shows the
adiabatic surfaces, while Fig. 2 (b) shows the di-310

abatic surfaces generated by the propagation dia-
batisation algorithm. In total, 813 electronic struc-
ture energies were generated during propagation;
we note that this represents around 10% of the
total number of gridpoints used in the wavefunc-315

tion propagation, demonstrating the efficiency of
our ”on-the-fly” interpolation approach. The con-
ical intersection between the D0 and D1 adiabatic
surfaces is clearly visible in the former plot at co-
ordinates of about 2 along the 14Ag mode and at 0320

across the 5Au mode (representing a planar geom-
etry). From Fig. 2 (b) it is clear that the diabatic
surfaces cross smoothly at the location of the inter-
section, indicating the success of the diabatisation
scheme. However, the surfaces are not perfectly325

smooth at the extremities of the plot. This arises as
an artefact of the sampling of configuration space
during the creation of the PES; only points with
the space of [−5.5, 5.5] × [−5.5, 5.5] were sampled
so, for the gridpoints at the edge of this space, the330

GPR approximation to the PESs is much less ac-
curate. However, as the sampling is guided by the
actual wavefunction dynamics, the parts of the con-
figuration space most relevant to the dynamics are
accurate.335
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Figure 2: Potential energy surfaces of the butatriene cation
calculated at the SA-CASSCF(5,6)/3-21G level using Gaus-
sian 03 during during direct dynamics calculations as out-
lined in the text. (a) Adiabatic surfaces for the 2-state
model. (b) Diabatic surfaces for the 2-state model.

Moving now to the actual dynamics (Fig. 3),
the observable followed was the population of the
Ã-diabatic state (corresponding to D1 at the FC
point). As a comparison to the results from the340

new DD method, based on SA-CASSCF, we also
performed a calculation using the fitted PES from
Ref. [41]. The comparison between the two meth-
ods is not perfect, although neither is it expected
to be; the coordinate systems used in each calcula-345

tion do not match exactly. As with our DD calcu-
lation, the fitted surface was constructed along the
14Ag stretching mode but, instead of using the nor-
mal mode representing the molecular torsion mode
(5Au here), the PES was fitted as a function of the350

torsion angle and a periodic DVR basis used. In
spite of this difference, the comparison between the
two calculations is very good. The population of
the Ã state is plotted in Fig. 3 for both the fitted
surface calculation and our grid-based DD method.355

Clearly, the two results are in agreement; the im-
mediate de-population of the excited state as the
intersection between the X̃ (corresponding to the
ground state at the FC point) and Ã states is en-
countered, complete with the brief deceleration at360

about 5 fs in both cases. Both plots demonstrate
the partial re-population and second period of de-
population between 15 and 40 fs. The two plots

6



correspond to one another somewhat less well at
later times, but oscillation of the population be-365

tween about 0.4 and 0.6 is common to both.
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Figure 3: Wavepacket population of the first-excited, dia-
batic, cation state of butatriene as a function of propaga-
tion time using a two-dimensional model. The red, solid
line corresponds to propagation on surfaces fitted along the
14Ag normal mode and along the molecular torsion angle.
The blue, dashed line corresponds to propagation on sur-
faces generated on-the-fly (using SA-CASSCF(5,6)/3-21G)
and fitted using the GPR method, with dynamics proceed-
ing along the 5Au and 14Ag normal modes.

Differences in the plots are to be expected of
course; firstly because of the slight difference in
the nature of the torsion coordinate explained370

above and secondly due to the form of the PES.
The fitted PES was generated using the VCHAM
method[41, 43, 44], a best-fit expansion in polyno-
mials around the FC point (with additional sine
functions along the torsion coordinate in this case375

to replicate the periodicity of the PES), and with
polynomial couplings between modes and states.
The GPR method approximates the PES in a sim-
ilar way to an interpolation, so that the fit to points
far away from the FC point is treated on the same380

footing as the fit at the FC point. With these
small, but significant, differences it is not surpris-
ing that a sensitive measure of the dynamics such
as a state population does not exactly match be-
tween the calculations, but the results are remark-385

ably good nonetheless.

Our initial results successfully demonstrate that
it is possible to perform non-adiabatic quantum dy-
namics calculations using a traditional grid-based
method, while also generating the PES on-the-fly;390

the results obtained here are in very good agree-
ment with those obtained using the more usual
method of fitted surfaces. The GPR approxima-
tion provides a good approximation to the PESs

and to the couplings between them, allowing repli-395

cation of population transfer between the states.
It should also be noted that the total time taken
for the DD calculation, including the 813 electronic
structure calculations, was just over 9 hours on a
standard dual-core desktop.400

Immediate future work will focus on interfacing
the GPR method for creating multi-state PESs on-
the-fly with MCTDH, allowing extension to higher-
dimensional molecular systems. We note that the
diabatisation method described here is also appli-405

cable to systems with more than two coupled elec-
tronic states. Further work is also required to in-
crease the efficiency of the GPR-based method de-
scribed herein, both in terms of computational time
and memory requirements; however, we expect410

that this approach may become a useful tool for
both computational and experimental researchers
in the field of chemical dynamics.
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