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ABSTRACT

Linear nonhydrostatic theory is used to evaluate the drag produced by 3D trapped lee waves forced by an

axisymmetric hill at a density interface. These waves occur at atmospheric temperature inversions, for ex-

ample, at the top of the boundary layer, and contribute to low-level drag possibly misrepresented as turbulent

form drag in large-scale numerical models. Unlike in 2D waves, the drag has contributions from a continuous

range of wavenumbers forced by the topography, because thewaves can vary their angle of incidence tomatch

the resonance condition. This leads to nonzero drag for Froude numbers (Fr) both ,1 and .1 and a drag

maximum typically for Fr slightly below 1, with lower magnitude than in hydrostatic conditions owing to wave

dispersion. These features are in good agreement with laboratory experiments using two axisymmetric ob-

stacles, particularly for the lower obstacle, if the effects of a rigid lid above the upper layer and friction are

taken into account. Quantitative agreement is less satisfactory for the higher obstacle, as flow nonlinearity

increases. However, even in that case the model still largely outperforms both 3D hydrostatic and 2D non-

hydrostatic theories, emphasizing the importance of both 3D and nonhydrostatic effects. The associated wave

signatures are dominated by transverse waves for Fr lower than at the drag maximum, a dispersive ‘‘Kelvin

ship-wave’’ pattern near the maximum, and divergent waves for Fr beyond the maximum. The minimum

elevation at the density-interface depression existing immediately downstream of the obstacle is significantly

correlated with the drag magnitude.

1. Introduction

Topographically forced waves in the atmosphere fall

essentially into two categories: vertically propagating or

trapped. Vertically propagating waves where the re-

storing force is gravity have been studied extensively in

recent years (Lin 2007; Nappo 2012) in the context of

drag parameterization for global weather and climate

predictionmodels. Themomentum transported by these

waves is deposited in the atmosphere at high levels

(McFarlane 1987; Teixeira and Yu 2014), decelerating

the mean circulation, an effect that is typically un-

resolved by those models (Stensrud 2009; Teixeira

2014). The importance of trapped waves propagating at

temperature inversions has only been recognized more

recently, in particular in connection with the occurrence

of lee-wave rotors (Vosper 2004; Hertenstein 2009;

Knigge et al. 2010), although early allusions to this kind

of waves go back to the pioneering work of Scorer (1949,

1953, 1954). In the ocean, trapped waves are perhaps

more familiar, including interfacial waves propagating

at the thermocline in flow over submarine ridges and

sills (Apel et al. 1985; Farmer and Armi 1999; Cummins

et al. 2003), forced by drifting ice keels (Pite et al. 1995)

or by ships in the context of the ‘‘dead water’’ phe-

nomenon (Grue 2015a), and also, obviously, surface

waves propagating at the air–water interface (Phillips

1977), including those generated by ships (Benzaquen

et al. 2014; Moisy and Rabaud 2014; Rabaud and

Moisy 2014).

In a recent atmospheric study, Teixeira et al. (2013)

showed that waves trapped at a temperature inversion

(which corresponds to a density interface) produce a

drag on 2D topography. This should come as no surprise

by analogy with the resistance exerted by internal or
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surface waves on vessels (Benzaquen et al. 2014; Rabaud

and Moisy 2014; Grue 2015a) or submerged bodies

(Tuck 1965). The drag produced by hydrostatic verti-

cally propagating waves in a continuously stratified fluid

is especially easy to understand and calculate, forming

the basis of current orographic drag parameterizations.

However, the mechanisms behind the drag due to waves

trapped at low levels in the atmosphere, such as at in-

versions at the top of the boundary layer, are intrinsically

nonhydrostatic (Vosper 2004; Yu and Teixeira 2015),

since dispersion is required to produce a spatially ex-

tended wavy wake. These waves are forced by relatively

narrow mountains, usually poorly represented in large-

scale models. Steeneveld et al. (2008) noted that there is

currently missing drag in meteorological numerical

models, and this deficiency is often alleviated, without a

convincing physical justification, by including a so-called

long-tail formulation in the form drag parameterization

of the turbulent boundary layer [see also Sandu et al.

(2013)]. Those authors raise the possibility that this

missing drag may be due to unresolved subgrid-scale

terrain effects instead. An obvious candidate to account

for these effects is the drag associated with trapped lee

waves generated over narrowmountains and hills, which,

like the turbulent form drag, is also exerted on the at-

mosphere at low levels. In the present study, this trapped

lee-wave drag is investigated theoretically and compared

with laboratory experiments, by considering the flow of

two fluid layers of different (constant) density over a 3D

topography. This setup approximates waves forced by

topography at a temperature inversion (in the atmo-

sphere), or waves at the thermocline (in the ocean),

forced by, for example, drifting ice keels, ships, or flow

over submarine topography (e.g., Pite et al. 1995; Grue

2015a; Farmer and Armi 1999; Bordois et al. 2016). Ge-

nerically, the applicability of this model to the real at-

mosphere relies on the dominance of waves that may

propagate at the inversion relative to those that may

propagate in the layers existing above or below, if any of

those are stratified. For a discussion of these conditions,

and the effect of stratification aloft on such waves, the

reader is referred to a recent study by Sachsperger et al.

(2015).

While the drag from waves generated at a free surface

in hydrostatic (sometimes called shallow water) flow

over 3D topography and nonhydrostatic flow over 2D

topography is well known (being given by closed ana-

lytical expressions; see Baines 1995), that is not the case

with nonhydrostatic flow over 3D topography. The

present study proposes deriving an expression for this

drag, studying its behavior in parameter space, and

comparing it with laboratory experiments carried out

in a large water tank following an original idea of

E. R. Johnson (University College London). In these ex-

periments, from which results regarding interface dis-

placements were reported by Lacaze et al. (2013), the

dependence of the drag on the Froude number (Fr; a key

parameter of the flow) is different from that predicted by

the theories of hydrostatic flow over 3D topography

(where the drag is only nonzero in so-called supercritical

conditions, Fr . 1) and nonhydrostatic flow over 2D to-

pography (where, on the contrary, it is only nonzero in

subcritical conditions, Fr , 1).

Some previous studies of related problems have

considered the shallow-water equations including

weak nonlinearity and weak wave dispersion (i.e.,

nonhydrostatic effects), resulting in a governing

equation akin to the Korteweg–de Vries equation

(Johnson and Vilenski 2004, 2005; Esler et al. 2007) or

arbitrarily strong nonlinearity (Jiang and Smith 2000;

Grue 2015b). These studies addressed flow features

such as the shape of the wake behind an obstacle and

the drag produced by it. They improved the prediction

of the latter quantity from hydrostatic (i.e., shallow

water) linear theory, among other reasons by avoiding

the singular behavior of the drag at Fr 5 1, and being

able to produce steady waves and nonzero drag for

subcritical flow (Fr , 1), as observed experimentally

and simulated numerically in fully nonlinear condi-

tions (e.g., Jiang and Smith 2000; Esler et al. 2007;

Grue 2015a). However, these authors did not

provide a closed-form expression for the drag which

could potentially be used with minor adaptations in

drag parameterizations. That is one of the aims of the

present study. The following calculations will show

that inclusion of arbitrarily strong nonhydrostatic and

3D effects is sufficient to produce a very substantial

improvement on the predictions from hydrostatic or

2D theory, in fairly good agreement with experimen-

tal data, even if the flow is assumed to be strictly

linear.

The remainder of this paper is organized as follows.

Section 2 describes the linear wave model developed in

this study. In section 3, the laboratory experiments are

briefly described. Section 4 presents theoretical results,

and their comparison with the laboratory experiments,

as well as with 3D hydrostatic and 2D nonhydrostatic

theories. Finally, in section 5, the main conclusions are

summarized and discussed.

2. Theoretical model

Two-layer flow over an axisymmetric obstacle is

considered. Each layer is assumed to have constant

density: r1 in the lower layer and r2 in the upper one.

It is assumed that these densities differ by a small
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amount, so that they may be approximated without

appreciable loss of accuracy by their average value;

that is, r1 ’ r2 ’ r5 (r1 1 r2)/2. The lower layer is as-

sumed to extend from the ground z 5 0 up to a height

z5H1 if undisturbed, while the upper layer is assumed

to have a generic thicknessH2, with a rigid lid at its top

(see Fig. 1). This configuration is relevant for compar-

ison with the laboratory experiments to be described

below, but the model can also be applied to the atmo-

sphere if it is assumed thatH2 /‘, since the rigid lid is

moved to infinity in that case. The undisturbed in-

coming flow velocity is assumed to be constant in time

and space (i.e., the same in both layers), and any effects

of the thin boundary layer existing near the ground are

neglected (this last assumption will be relaxed, as de-

scribed in section 2c, strictly for the purpose of com-

parison with the laboratory experiments).

Subject to these assumptions, the velocity perturba-

tion that is forced as the incoming flow reaches the ob-

stacle is irrotational and stationary. The corresponding

velocity potential, denoted by f(x, y, z), then satisfies

=2f5 0 (1)

from mass conservation for an incompressible fluid.

Additionally, the Bernoulli equation valid for steady,

incompressible flow is

1

2
v2 1

p

r
1 gz5 const (2)

along a streamline, where v5U1=f is the total ve-

locity vector, U is the velocity of the incoming flow, p is

the pressure, r is the density, g is the acceleration of

gravity, and z is height.

Equation (1) must be solved in both layers. If the

velocity potential is denoted by f1 in the lower layer and

f2 in the upper layer, the flow perturbations are as-

sumed to be of relatively small amplitude so that the

flow may be linearized, and the incoming flow is as-

sumed to be in hydrostatic equilibrium, the boundary

conditions that must be satisfied are

›f
1

›z
(z5 0)5U

›h

›x
, (3)

›f
1

›z
(z5H

1
)5

›f
2

›z
(z5H

1
)5U

›h

›x
, (4)

rU
›f

1

›x
(z5H

1
)1 r

1
gh5 rU

›f
2

›x
(z5H

1
)1 r

2
gh, and

(5)

›f
2

›z
(z5H

1
1H

2
)5 0, (6)

where h(x, y) is the ground elevation (giving the obsta-

cle height) and h(x, y) is the vertical displacement of

streamlines (or density surfaces) at the interface be-

tween the two layers relative to their average height z5H1.

Formally, this linearization is valid if h0/H1 � 1, where

h0 is the maximum elevation of the hill. Note that

this allows applying the boundary conditions (3)–(5) at

the constant coordinates z 5 0 and z 5 H1 instead of

at the ground and at the perturbed streamline separating

the two layers. It is assumed (without loss of generality)

that the incoming flow U5 (U, V) is aligned in the x

direction; that is, V5 0. The first boundary condition (3)

expresses free-slip flow at the ground, the second one (4)

continuity of the vertical velocity w at z 5 H1, the third

one (5) continuity of the pressure at z 5 H1, in accor-

dance with a linearized version of (2), and the fourth one

(6) no flow across the rigid lid at the top of the do-

main, z5H1 1H2. Note that in (5) r1 and r2 have

been approximated by r except in the terms involving

gravity. This is equivalent to applying the Boussinesq

approximation.

a. Solution procedure

The surface elevation, as well as flow perturbations

associated with the waves—namely, fj (with j5 1, 2)

and h—are expressed as Fourier integrals along the

horizontal directions x and y:

h(x, y)5

ð1‘

2‘

ð1‘

2‘

ĥ(k
x
, k

y
)ei(kxx1kyy) dk

x
dk

y
, (7)

FIG. 1. Profile view of the flow setup considered in the 3D non-

hydrostatic linear model developed here. A lower layer, of density

r1 and thickness H1, and an upper layer, of lower density r2 and

thickness H2, flow with a constant incoming velocity U over an

axisymmetric hill with maximum height h0 and half-width l. Sta-

tionary resonant (or free) waves at the interface between the two

layers are possible if the intrinsic phase velocity of these waves,

directed upstream, matches U. This schematic may also represent

flow over a 2D obstacle if all represented features are assumed to

extend indefinitely in the across-plane direction.
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h(x, y)5

ð1‘

2‘

ð1‘

2‘

ĥ(k
x
, k

y
)ei(kxx1kyy) dk

x
dk

y
, (8)

and

f
j
(x, y, z)5

ð1‘

2‘

ð1‘

2‘

f̂
j
(k

x
, k

y
, z)ei(kxx1kyy) dk

x
dk

y
,

j5 1, 2, (9)

where i5
ffiffiffiffiffiffiffi
21

p
, (kx, ky) is the horizontal wavenumber

vector, and the hat denotes Fourier transform.

If (9) is inserted into (1), the corresponding solutions

for f̂j in the two layers are

f̂
1
5 a

1
e2kz 1 b

1
ekz and (10)

f̂
2
5 a

2
e2kz 1 b

2
ekz , (11)

where k5 (k2
x 1 k2

y)
1/2 is the magnitude of the horizontal

wavenumber and the coefficients a1, b1, a2, and b2 are

functions of (kx, ky) to be determined. If the boundary

conditions (3)–(6) are applied to these solutions, it is

possible to determine these coefficients as a function of

ĥ and ĥ, the latter of which can also be expressed in

terms of ĥ. Thus,

a
1
5

iUk
x
(ĥ2 ĥekH1 )

2k sinh(kH
1
)

, b
1
5

iUk
x
(ĥ2 ĥe2kH1 )

2k sinh(kH
1
)

, (12)

a
2
52

iUk
x
ĥek(H11H2)

2k sinh(kH
2
)
, b

2
52

iUk
x
ĥe2k(H11H2)

2k sinh(kH
2
)

, and

(13)

ĥ5
U2k2

xĥ

sinh(kH
1
)fU2k2

x[coth(kH1
)1 coth(kH

2
)]2 g0kg ,

(14)

where g0 5 gjr1 2 r2j/r is the reduced gravity of the in-

terface existing between the two layers at z5H1.

b. Wave drag

The primary aim here is to evaluate the surface drag

produced by the waves. This is given by

D5

ð1‘

2‘

ð1‘

2‘

p0(z5 0)
›h

›x
dx dy

5 8p2Im

� ð1‘

2‘

ð1‘

0

k
x
p̂0(z5 0)ĥ*dk

x
dk

y

�
, (15)

where p0 is the pressure perturbation and p̂0 its Fourier
transform, and the asterisk denotes complex conjugate.

The drag only has an x component, since the topography

is assumed to be axisymmetric (as will be defined) and

the wind velocity is along x. In the second equality of

(15), use was made of Parseval’s theorem and of the fact

that p0, h, and D are real quantities.

From a linearized version of (2), along with (10), the

Fourier transform of the pressure perturbation at the

surface may be written

p̂0(z5 0)52ir
1
Uk

x
(a

1
1 b

1
)5r

1
U2k2

x

ĥ2 ĥ cosh(kH
1
)

k sinh(kH
1
)

,

(16)

where, in the second equality, (12) has been used. It can

be easily seen that, when (16) is inserted into (15), since

the term involving ĥ is real and has no singularities, it

cannot contribute to the imaginary part of the integral

in (15). Hence, only the term involving ĥ in (16) can

contribute to the drag. Taking this into account, and

using also (14), it can be shown that (15) may be ex-

pressed as

D5 16p2r
1
U2Im

8<
:
ð1‘

0

ð1‘

0

k5
xjĥ(kx

, k
y
)j2

k sinh2(kH
1
)

3
1

k2
x[coth(kH1

)1 coth(kH
2
)]2 (g0/U2)k

dk
x
dk

y

9=
;,

(17)

where the fact that the integrand is symmetric with re-

spect to ky (the wavenumber in the y direction) has been

used. It is now convenient to introduce polar co-

ordinates, where kx 5k cosu and ky 5 k sinu. In terms of

these coordinates, (17) becomes

D5 16p2r
1
U2h2

0

�
l

H

�4

Im

(ð1‘

0

ðp/2
0

k04 cos5ujĥ0(k0)j2
sinh2(k0H0

1)

3
1

k0 cos2u[coth(k0H0
1)1coth(k0H0

2)]2Fr22
dudk0

)
,

(18)

where H5H1H2/(H1 1H2) is a weighted thickness of

the two fluid layers,H0
1 5H1/H,H0

2 5H2/H, k0 5 kH is a

dimensionless wavenumber, and ĥ0 5 ĥ/(h0l
2) is a di-

mensionless Fourier transform of the terrain elevation,

normalized using the height of the obstacle h0 and its

width l. The Froude number Fr5U/(g0H)1/2 quantifies

the ratio between the mean-flow speed and the phase

speed of shallow-water waves at the interface separating

the two fluid layers. Note that, since the mountain is

assumed to be axisymmetric, ĥ does not depend on u,

and thus may be moved outside the integral in u. This

is one of the reasons for using polar coordinates in
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(18). Since the integrand in (18) is real, any contri-

bution to the drag must come from singularities when

the denominator of the fraction in the second line of

this equation is zero. These singularities, which cor-

respond to resonant wave modes, are given by the

condition

cos2u
R
5

Fr22

k0[coth(k0H0
1)1 coth(k0H0

2)]
, (19)

where uR denotes the resonant azimuthal wavenumber

angle. These waves travel, in general, at an angle to the

mean flow, as is observed in ship waves and trapped lee

waves over 3D mountains (Wurtele et al. 1996), be-

cause that is the way they can oppose the mean flow

exactly (so as to become steady) even when their phase

speed does not match the incoming wind speed. This

angle is explicitly given by (19) as a function of k0, and
that is another reason for having adopted polar co-

ordinates. If (19) is satisfied, the integral over u in (18)

may be calculated using complex integration (see ap-

pendix), and its only imaginary contribution comes

from the singularity defined by (19). After some alge-

bra, this yields

D5 8p3r
1
g0lh2

0Fr
22

�
l

H

�3 ð1‘

0

k0[ĥ0(k0)]2

sinh2(k0H0
1)

3
1

[coth(k0H0
1)1 coth(k0H0

2)]
3

�
12

Fr22

k0[coth(k0H0
1)1 coth(k0H0

2)]

)
1/2

dk0 , (20)

where (19) has been used to eliminate uR. Note that (20)

is only valid when the term in the curly brackets in the

denominator is positive. This corresponds to having the

right-hand side of (19) less than or equal to 1, as must be

for resonant wave modes to be possible. These resonant

wave modes correspond to free waves that are able to be

sustained in a steady-state flow. The component of the

incoming flow perpendicular to the phase lines of these

waves U cosuR is equal and opposite to their intrinsic

phase velocity. If this condition is not satisfied, then no

resonant wave modes exist and D5 0.

Equation (20) is the main theoretical result of this

study. In what follows, the drag is normalized by r1g
0lh2

0

[as done by, e.g., Jiang and Smith (2000) and Esler et al.

(2007)], because this choice reduces the number of input

parameters of the theoretical model to a minimum. A

requirement for this to happen is that the normalizing

factor is proportional to h2
0, because this eliminates the

dependence of the normalized drag on mountain height,

which should not exist in a linearized framework. Note

that although this choice is the best one for making

comparisons with linear theory, it may not give the best

scaling for the dragwhen nonlinear effects are important

(as will be seen).

With this choice, the drag depends on three di-

mensionless parameters: Fr, l/H1, and H1/H2. The

physical meaning of Fr was already mentioned, and

l/H1 quantifies nonhydrostatic effects. When l/H1 /‘,
the flow is hydrostatic or ‘‘shallow water.’’ It might be

argued that l/H should be used instead of l/H1, since it

appears explicitly in (20); however, l/H1 is preferred

here instead because it can be calculated more directly

from basic parameters of the flow. Note also that l/H1

and H1/H2 appear implicitly in ĥ, since this is provided

in the form ĥ(lk) (as will be seen in the next section),

and this dependence can also be expressed as

ĥ(k0, l/H1, H1/H2) because of the definition of k0. It can
be easily shown that H0

1 and H0
2 are exclusive functions

ofH1/H2. Finally, note that, unlike what happens in 2D

trapped lee waves, the drag in (20) receives contribu-

tions from a range of wavenumbers, so it is influenced

by the shape of the orography in its entirety, instead of

only by a single harmonic (as happens in 2D flow; e.g.,

Teixeira et al. 2013).

The case most relevant to the atmosphere is that

where the upper layer becomes infinitely thick,H2 /‘.
Then H5H1H2/(H1 1H2)’H1, H

0
1 ’ 1, H0

2 /‘, and
consequently (20) becomes

D5 8p3r
1
g0lh2

0Fr
22

�
l

H
1

�3 ð1‘

0

k0 sinhk0jĥ0(k0)j2

(coshk0 1 sinhk0)3
h
12

Fr22 sinhk0

k0(coshk0 1 sinhk0)

�1/2 dk0 . (21)
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When additionally the flow is hydrostatic, which corre-

sponds to assuming in (21) that k0 / 0, and therefore

sinhk0 ’ k0 ’ 0 and coshk0 ’ 1, (21) reduces to

D5 8p3r
1
g0lh2

0

�
l

H
1

�3
Fr22

(12Fr22)1/2

ð1‘

0

k0 2jĥ0(k0)j2 dk0 ,

(22)

as noted by Baines (1995) or Jiang and Smith (2000).

This equation clearly shows that, in this limit, wave drag

only exists for supercritical flow, Fr . 1, as is well

known. That does not happen when the flow is non-

hydrostatic, as can be inferred from (19) and will be il-

lustrated in section 4.

An analogous procedure may be used to calculate

the resonant component of h, denoted hR, which

should dominate the flow downstream of the obstacle.

Using also complex integration to eliminate the in-

tegral along the azimuthal angle u, as in (21), hR nor-

malized by h0 in the H2 /‘ limit is found to take the

form

h
R
(x, y)

h
0

522p

�
l

H
1

�2 ð1‘

0

k0 cosu
R
ĥ0(k0)

sinu
R
(coshk0 1 sinhk0)

3 fsin[k0(x0 cosu
R
1 y0 sinu

R
)]

1 sin[k0(x0 cosu
R
2 y0 sinu

R
)]gdk0 , (23)

where x0 5 x/H1, y
0 5 y/H1, and both cosuR and sinuR

can be obtained from (19) evaluated in the same limit. In

the second and third lines of (23), it is clear that hR

contains waves that are oblique in the x–y plane and

symmetric with respect to x5 0, which is consistent

with a ‘‘ship wave’’ pattern. In what follows, hR is only

going to be analyzed for H2 /‘, as this is the situation

most relevant to the atmosphere.

c. Inclusion of friction

To compare the drag predictions produced by the

present model with those of the laboratory experiments

to be described next, it is necessary to consider the ef-

fects of friction. The simplest possible way of doing this

is by incorporating friction as a Rayleigh damping acting

on the flow. A slightly more elaborate choice would be

including a bulk representation of the boundary layer, as

developed by Smith et al. (2006) and Smith (2007). This

latter approach, which was followed recently by Teixeira

(2017) in the context of trapped lee-wave rotors, how-

ever adds three new input parameters to the model de-

scribed previously. Tests with both approaches show

that the added complexity of the bulk boundary layer

approach does not translate into an improvement in the

performance of the model (as quantified in the com-

parisons of section 4b); therefore, the Rayleigh damping

approach, which only has one additional input parame-

ter, is adopted. This can be accomplished by changing

the boundary condition based on the Bernoulli equa-

tion, (5), to

r

�
U

›f
1

›x
(z5H

1
)1 lf

1
(z5H

1
)

�
1 r

1
gh

5 r

�
U

›f
2

›x
(z5H

1
)1 lf

2
(z5H

1
)

�
1 r

2
gh ,

(24)

where l is the Rayleigh damping coefficient. This

approach, where friction is applied globally, ac-

counts for all possible sources of friction occurring

in the experiments. If (24) is implemented in the

model, (12) and (13) remain unchanged, but (14) is

modified to

ĥ5
U2k2

xĥ[12 il/(Uk
x
)]

sinh(kH
1
)fU2k2

x[12 il/(Uk
x
)][coth(kH

1
)1 coth(kH

2
)]2 g 0kg . (25)

This will lead to a more complicated expression for the

drag than (20) (which is omitted here), involving a

double integral in both k and u, since the singularity in

(18) is moved away from the real axis by friction, and

hence the integral in u may not be eliminated using

contour integration (as done previously). All results

including friction will use this drag expression, which, as

the integrals in (20)–(23), is evaluated using numerical

integration. Note that the only additional dimensionless

input parameter that accounts for friction is lH/U,

whose value will be adjusted to optimize the results.

3. Laboratory experiments

The experiments were performed in the large strati-

fied water flume at the Geophysical Fluid Mechanics

Laboratory of CNRM in Toulouse, upon an original

idea of E. R. Johnson (University College London). This

laboratory has been used in the recent past to study a

wide range of stratified flows in a geophysical context,

from oceanic tides (e.g., Dossmann et al. 2011;

Dossmann et al. 2014) to atmospheric stable boundary

layers and orographic waves (e.g., Knigge et al. 2010).
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The flume was used here as a 22-m-long, 3-m-wide, and

1-m-high towing tank. The tank was filled with a strati-

fied two-layer fluid made of saline water using a special

procedure to ensure a sharp density interface between

the two layers.

Two axisymmetric obstacles, referred to herein as

obstacle A and obstacle B, of base diameter 100 cm

and maximum heights h0 5 7.7 and 12.5 cm, re-

spectively, were towed at the surface of the tank at

several constant speeds U in the range 5–33 cm s21,

allowing the achievement of different Froude num-

bers. For this two-layer fluid, the Froude number

is defined as in the theoretical model described in

section 2:

Fr5
Uffiffiffiffiffiffiffiffi
g0H

p . (26)

Also as in themodel,H1 is the depth of the layer in direct

contact with the obstacle (typically H1 5 15 cm), and

H2 is the depth of the other layer (farther from

the obstacle), with a value close to H1 or slightly larger

(the total depth H1 1 H2 ’ 31 cm is fixed). But, in

contrast with the model and with Fig. 1, the first layer is

above the second, so layer 1 (of typical density

r1 ’ 1000 kgm23) is the least dense one in the experi-

ments (r2 ’ 1059 kgm23). This detail makes no signifi-

cant difference in the Boussinesq approximation

framework that applies here, as the density discontinuity

between the two layers Dr5 jr1 2 r2j is small relative to

r (Dr/ r’ 63 1022). The radial profile of the obstacles,

which is also adopted in the model calculations, is

given by

h(r)5 h
0
exp(22r 2/l2) , (27)

where r5 (x2 1 y2)1/2 [the obstacle being centered at

(x5 0, y5 0)] and l 5 32 cm is defined as l5 2s, where

s is the standard deviation of the Gaussian function,

corresponding to a characteristic horizontal length scale

of the obstacle. The Fourier transform of the obstacle

elevation then takes the form

ĥ(k)5
h
0
l 2

8p
exp

�
2
1

8
l 2k2

�

0 ĥ0 5
1
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exp
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1
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11
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1

H
2

��2�
, (28)

which is used in all model calculations.

The flow configuration is equivalent to that shown in

Fig. 1 turned upside down, with the ground replaced by

the free surface of the upper fluid layer, and the frame of

reference traveling with the flow. Note that, because the

obstacle is the only solid boundary moving relative to

layer 1, the boundary layer develops only on the obstacle

and is therefore less developed than if a solid surface

extended over the whole boundary. In other words, the

boundary condition is no slip only on the obstacle and

free slip elsewhere.

Measurements combined an optical stereoscopic

method to retrieve the interface shape [reported in

Lacaze et al. (2013)] and a force measurement on the

obstacle being towed to estimate the drag. More spe-

cifically, drag measurements were carried out using a

strain gauge able to measure a force in the range from

20mN to 20N with a resolution of 10mN and a data

acquisition rate of 1Hz. Data were first filtered by re-

moving values differing from the average by more than

1.96 times the standard deviation. The estimate of the

drag was then obtained by averaging the remaining

data excluding the transient periods that comprise the

towing bank acceleration time necessary to attain a

constant speed and the deceleration time from a con-

stant speed to zero. Error bars are the 90% confidence

interval computed from bootstrap resampling. More

details regarding the experiments can be found in

Lacaze et al. (2013).

Laboratory experiments are particularly appropriate to

evaluate a theoretical model, as they represent a real

flow, but with highly controlled conditions. To be repre-

sentative of the geophysical flows they intend to simulate,

laboratory experiments must be in a flow regime similar

to the corresponding atmospheric or oceanic flows. This

requires first of all having density stratification effects and

high Reynolds numbers in the laboratory experiments.

These conditions are rarely met simultaneously in the

same facility, but the CNRM large stratified water flume

in Toulouse was designed specifically for this purpose. In

addition, the relevant dimensionless parameters con-

trolling the physics of the problem must be similar. This

means that the key parameters (such as Fr in the present

case) need to be equal, whereas it is enough for other

parameters to be above (or below) a given threshold (e.g.,

the Reynolds number in the present case).

4. Results

a. Behavior of the normalized drag

First of all, the drag behavior produced by the theo-

retical model described in section 2 is explored in the

inviscid limit as a function of the input parameters

H1/H2, l/H1, and Fr. Figure 2 shows the normalized drag

as a function of Fr for different values of l/H1 and three

representative values ofH1/H2. Figure 2a corresponds to

H1/H2 5 0, the case most relevant to the atmosphere,

Fig. 2c toH1/H2 5 1, a case where the finite thickness of
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the upper layer affects the flow in a way not too different

from that produced in the experiments, and Fig. 2b to an

intermediate situation (H1/H2 5 0:5). The drag has a

strong variation with Fr, approaching zero at low and

high Fr and attaining a maximum near Fr’ 1. This is

reminiscent of the drag behavior in Teixeira et al.

(2013), although in that 2D geometry the trapped lee-

wave drag for Fr . 1 was zero. This no longer happens

for the 3D geometry considered here, because the waves

have the additional degree of freedom of being able to

vary their incidence angle to satisfy the resonance con-

dition over the whole range of variation of Fr (except for

Fr , 1 in the limit of perfectly hydrostatic flow, as

explained below).

For hydrostatic flow (l/H1 5‘), the drag is only non-

zero for Fr $ 1, in accordance with (22). This situation

corresponds to shallow-water waves propagating at a

constant angle to the incoming flow, so that the pro-

jection of their phase along x allows U to match the

corresponding intrinsic phase speed cs 5 (g0H)1/2. As

shown by Fig. 3, this occurs only when Fr $ 1, because

U. cs is then a necessary condition for steady waves.

The infinite value of the drag that occurs at Fr 5 1

corresponds to waves with phase velocity aligned with

the incoming flow and is obviously an artifact of the

linear and inviscid approximations, which for these

conditions break down.

As the flow becomes more nonhydrostatic (i.e., l/H1

decreases), the normalized drag decreases globally in

magnitude but becomes nonzero for Fr, 1, attaining its

maximum for a value of Fr slightly lower than 1. This

translation of the drag maximum to lower Fr is espe-

cially pronounced for H1/H2 5 0 (Fig. 2a), and less sig-

nificant for H1/H2 5 1 (Fig. 2c), probably because the

finite extent of the upper layer makes the flow more

hydrostatic (shallow water) than when that layer ex-

tends indefinitely. Not surprisingly, the fact that the drag

is nonzero for Fr , 1 is due to nonhydrostatic effects.

This can be understood most easily if we look now at

Fig. 1 as portraying a 2D situation, where resonant

waves can only propagate in the x direction. Since the

intrinsic phase speed c of nonhydrostatic waves is

smaller than that of hydrostatic (shallow water) waves cs
(i.e., c, cs) and the former speed must be matched by

the mean flow speed U in order for the waves to be

stationary, this requires that Fr5U/cs 5 c/cs # 1. This

argument applies not only to pure interfacial waves

(Baines 1995), but also to those influenced by continu-

ous stratification aloft, as in Teixeira et al. (2013). For

waves at different incidence angles, the resonance con-

dition can also be fulfilled for Fr . 1, as in hydrostatic

conditions. The fact that the drag maximum occurs for

lower Fr as nonhydrostatic effects increase is a joint

FIG. 2. Drag from (20) normalized by r1g
0lh2

0 as a function of

Fr for different values of l/H1 (which controls nonhydrostatic

effects—see legend) and H1/H2 (which controls the relative

thickness of the two layers). The condition l/H1 5‘ corresponds to

hydrostatic (shallowwater) flow (where the drag is zero for Fr, 1),

and H1/H2 5 0 to an infinitely thick upper layer. (a) H1/H2 5 0,

(b) H1/H2 5 0:5, (c) H1/H2 5 1.
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effect of the ability to have stationary waves for Fr , 1

(as seen above) and existence of sufficient forcing at the

corresponding resonant wavenumbers, provided by the

orography.

The drag becomes generally lower as l/H1 decreases

as a result of a decreasing height or depth of penetration

of the waves—that is, the vertical distance over which

the orbital motions of the waves decay (which is infinite

for hydrostatic or shallow-water flow). As this distance

becomes a smaller fraction of H1, the interaction be-

tween the waves at z5H1 and the topography pro-

gressively weakens. The fact that the drag maximum

becomes finite at Fr 5 1 and there is nonzero drag for

subcritical flow (Fr , 1) are intrinsic features of 3D

nonhydrostatic theory, associated with wave dispersion

(or nonhydrostatic/deep-water effects), which bring it in

closer agreement to both the present measurements (as

shown next) and those by previous authors (e.g., Pite

et al. 1995). By decreasing the amplitude of the wave

perturbation relative to hydrostatic flow, dispersion also

necessarily extends the range of applicability of linear

theory to larger obstacle heights.

b. Comparison with experimental data

The model described in section 2 is now compared

with the experiments described in section 3. As will be

seen, nonlinear processes seem to be relatively modest

for obstacle A but more important for obstacle B. The

balance between nonlinear and nonhydrostatic effects

[as assumed in Esler et al. (2007)] might provide a better

description of the flow in the latter case, as will be

speculated below.

Figure 4 shows the normalized drag calculated from

(20) with Rayleigh friction included (solid lines and fil-

led circles) and from the measurements (open circles

with error bars) for the lower obstacle A (Figs. 4a,c,e)

and for the higher obstacle B (Figs. 4b,d,f). For com-

parison, the dashed–dotted lines and stars correspond to

the model (without friction) where H2 /‘ is assumed

(21), the dashed–double-dotted lines correspond to (20)

(without friction), the dotted lines correspond to results

from inviscid 3D hydrostatic theory (22), and the dashed

lines correspond to results from inviscid 2D non-

hydrostatic theory, equivalent to those produced by the

model of Teixeira et al. (2013) when the stratification of

the upper layer is zero. Note that the 2D drag is ex-

pressed per unit length, and so has different units to the

3D drag, hence it is normalized here by r1g
0h2

0 instead of

r1g
0lh2

0.

For all theoretical results, the symbols correspond to

drag values where the value of each model input pa-

rameter was taken from the experiments point by point,

whereas the lines show the variation of the drag with Fr

for averaged values of the other input parameters. No

symbols were included along with the dotted, dashed,

and dashed–double-dotted lines because those symbols

would follow the lines fairly closely but also make the

graphs too confusing.

In Figs. 4a,b the experimental data use the default

definition of the Froude number based on an infinitely

thin density-interface approximation (26). In Figs. 4c–f,

on the other hand, Fr values that were corrected for

the real finite thickness of the interface were used in

the experimental data. Since this procedure allows a

more accurate estimate of the phase speed of the

waves trapped at the interface, which is crucial for

defining a physically meaningful Froude number, it

should provide a better comparison with the model

developed here. In Figs. 4a,b both the model results

and the data use the Fr values given by the default

definition; in Figs. 4c,d the data use the corrected Fr

values, whereas the model results use the default

definition (which is consistent with the model’s as-

sumptions). This should provide the fairest compari-

son. However, the fact that in this case the model and

the data use different values of Fr precludes a com-

parison of the drag point by point. To avoid this, in

Figs. 4e,f corrected Fr values are used both in the data

and in the model, keeping all other input parameters

unchanged.

In all model results with friction displayed in Fig. 4,

the Rayleigh damping parameter was adjusted to pro-

duce the best possible agreement of the drag between

FIG. 3. Plan view of stationary interfacial waves in hydrostatic

(shallow water) flow over a 3D obstacle. Resonant or free steady

waves (those that produce drag) are possible if the angle uR be-

tween the intrinsic shallow-water phase velocity, with value

cs 5 (g0H)1/2, and the wind velocity U is such that cosuR 5 cs/U.

From the definition of Froude number Fr5U/cs, this necessarily

corresponds to Fr $ 1.
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model and experimental data for obstacle A, taking the

value lH/U5 0:06.

Given the measurement error bars, and the nu-

merous assumptions in the model that are not strictly

or even approximately satisfied, the agreement is

surprisingly good in Figs. 4a,c,e (obstacle A). In

Fig. 4a, the two-layer model with friction (solid line

and filled circles) predicts the magnitude of the drag

maximum accurately (which is not surprising, since

the friction coefficient was adjusted to achieve this),

FIG. 4. Comparison of the normalized drag between experimental data (open circles with error bars) and 3D

nonhydrostatic two-layer theory (20) including friction (solid lines and filled circles), inviscid 3D hydrostatic theory

(22) (dotted lines), inviscid 2D nonhydrostatic theory (dashed lines), inviscid 3D nonhydrostatic theory forH2 /‘
(21) (dashed–dotted lines and stars), and inviscid 3D nonhydrostatic two-layer theory (20) (dashed–double-dotted

lines). The symbols use parameter values Fr, l/H1, andH1/H2 from the experiments for each data point, whereas the

lines use averaged values of l/H1 and H1/H2. (a),(b) Default Fr definition (26) used in both theory and data;

(c),(d) default Fr definition used in theory and corrected Fr used in data; (e),(f) corrected Fr used in both theory and

data. (a),(c),(e) Lower obstacle A: averaged values ofM5 0:66, l/H1 5 2:73, andH1/H2 5 0:64 frommeasurements

assumed in lines; (b),(d),(f) higher obstacle B: averaged values of M5 1:12, l/H1 5 3:14, and H1/H2 5 0:52 from

measurements assumed in lines.
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while the model for H2 /‘ without friction (dashed–

dotted line and stars) slightly overestimates this

maximum but predicts better its location in terms of

Fr, as well as the drag to the left of this maximum. The

two-layer model without friction (dashed–double-

dotted line) overestimates both the drag maximum

and the value of Fr at which it occurs. The effect of

friction is primarily lowering the drag maximum,

broadening it as a function of Fr, and moving it to

lower Fr, which corresponds to a frictional decrease of

the phase speed of the waves (supported by previous

studies; e.g., Hunt 1964).

Figure 4c shows that when the Fr used in the ex-

perimental data is the corrected one, agreement with

the two-layer model including friction improves very

substantially, and becomes unquestionably the best

one. This agreement is preserved in Fig. 4e, where the

model also uses the corrected Fr values. Since the

values of H1/H2 and l/H1 are unchanged from Fig. 4c,

the same dependence on Fr is retained, while

allowing a more detailed comparison to be made point

by point. In both cases (Figs. 4c,e), despite the data

scatter, there is still a slight tendency to underestimate

the drag to the left of its maximum and overestimate it

to the right of the maximum, which may be due to

nonlinearity (cf. Fig. 3 of Grue 2015b). However, the

drag values predicted by the two-layer model with

friction in Fig. 4e are typically within a factor of 2 of

the experimental data. Among the 14 data points

available from the experiments, in 13 of them (93%)

the model results differ from the data by a factor no

larger than 2, 6 points (43%) are within the error bars,

and 11 points (79%) are within twice the error bars.

The average ratio between the theoretical and the

experimental drag values is 1.10.

The nonzero values of the drag for Fr , 1 and drag

maximum existing at Fr ’ 0.9 are well reproduced. The

model also seems to capture quite well the nonzero

values of the drag to the right of the main maximum

(e.g., at Fr’ 1.6), whichmay be interpreted physically as

being due to frictional effects [cf. Figs. 9 and 10 of Pite

et al. (1995) for a similar drag behavior]. An estimate of

frictional effects even more simplified than the one in-

corporated in the present model uses a friction co-

efficient cD, yielding the drag

D
F
5

1

2
r
1
c
D
U2A , (29)

where A is the cross-sectional area facing the flow. For

the type of Gaussian obstacle described in section 3, this

can be evaluated A5
ffiffiffiffiffiffiffiffi
p/2

p
lh0, making DF normalized

by r1g
0lh2

0 take the form

D
F

r
1
g0lh2

0

5
1

2

	p
2


1/2
c
D
H021

1 M21Fr2 , (30)

where M5h0/H1 is the nonlinearity parameter, reveal-

ing a dependence proportional to Fr2, which is consis-

tent with what can be seen in the results with friction in

Fig. 4.

The contrast of all the model results described above

with those from 3D hydrostatic theory (dotted lines),

which severely overestimate the drag for all Fr. 1 and

obviously underestimates it for Fr, 1, is striking. Two-

dimensional nonhydrostatic theory (dashed lines), on

the other hand, severely overestimates the drag for

Fr , 1 and underestimates it for Fr $ 1, as would be

expected.

Figures 4b,d,f shows that the agreement between

theory and measurements is not as satisfactory for the

higher obstacle B. As mentioned previously, the choice

made to normalize the dragmay not give the best scaling

when nonlinear effects are important, as seems to hap-

pen here. Note also that the error bars in the experi-

mental data are considerably smaller than in Figs. 4a,c,e

owing to a larger signal-to-noise ratio in the measure-

ments. The measured drag has a somewhat flatter dis-

tribution as a function of Fr and, hence, is more

substantially overestimated at the maximum by all

models and underestimated at low Fr (only one data

point). The agreement between the model for H2 /‘
without friction (dashed–dotted lines and stars) and

measurements is more satisfactory for Fr. 1.3 than that

of the two-layermodel with friction (solid lines and filled

circles), apparently because frictional effects are being

overestimated. This is consistent with the result that the

normalized form drag given by (30) is inversely pro-

portional to the dimensionless mountain height

M5 h0/H1 and is, hence, smaller for obstacle B (which

hasM5 1.12 on average) than for obstacle A (withM5
0.66 on average). This nonlinear effect cannot, however,

be incorporated in the representation of friction adop-

ted here other than by decreasing lH/U, which would

necessarily also increase the predicted drag maximum,

further degrading the agreement there.

Near the main drag maximum, the experimental data

in Figs. 4b,d,f are substantially less overestimated by the

discretemodel data than by the continuous line obtained

with averaged flow parameters, except for a few data

points that are overestimated even more. In Fig. 4f, the

average ratio between the theoretical and experimental

values is 2.24, with a large contribution from the points

with higher Fr. Among 28 data points available, the two-

layer model with friction is within a factor of 2 of the

data for 9 (32%) of these points and within a factor of 3

for 24 (86%) of them.
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Again, 3D hydrostatic theory and 2D nonhydrostatic

theory producemuchworse agreement, withmuchmore

severe overestimation of the data for Fr . 1 or Fr , 1,

respectively.

Differences between Figs. 4a,c,e and 4b,d,f can be

largely attributed to nonlinear effects. Both Jiang and

Smith (2000) and Johnson and Vilenski (2004) showed

that these effects lead to an overestimation of the drag

maximum as a function of Fr by linear theory (without

friction) and an underestimation of the drag away from

the maximum. However, Fig. 7 of Jiang and Smith

(2000) shows amigration of the dragmaximum to higher

values of Fr as nonlinearity (quantified byM) increases.

This does not explain the drag behavior seen in Fig. 4,

described above. The numerical model used by Jiang

and Smith (2000) was based on the shallow-water

equations, so nonhydrostatic effects were not taken

into account. This suggests that nonhydrostatic effects

may be dominant over nonlinear effects to explain the

value of Fr at which the maximum drag is attained in

Fig. 4. Besides, Fig. 7 of Johnson and Vilenski (2004)

shows a very substantial flattening of the drag distribu-

tion as a function of Fr [or, equivalently, with the related

‘‘detuning parameter,’’ defined in their paper as

G5 (Fr2 1)M22/3], which is qualitatively similar to what

can be seen in Figs. 4b,d,f, although the nonlinearity is

somewhat weaker here withM5 1.12 on average than in

Fig. 7 of Johnson and Vilenski (2004), where M5 2. By

comparison with that latter figure, the secondary drag

maxima in Figs. 4a,c,e (at Fr’ 1.2–1.3) and in Figs. 4b,d,f

(at Fr ’ 1.5–1.6) might be interpreted as manifestations

of solitary waves (which require both nonlinearity and

nonhydrostatic effects to exist). However, the fact that

both the two-layer model with friction and the model for

H2 /‘without friction are able to somehow predict this

secondary maximum in Figs. 4a,c shows that it can be

attributed at least partly to the variation of l/H1 between

data points in the experiments with obstacle A.

Some speculative comments may be made on the role

of nonlinear effects in these cases. Esler et al. (2007)

developed a scaling for the drag as a function of the

detuning parameter, showing from nonlinear theory that

the drag maximum scales as M5/3. In terms of the nor-

malization used in Fig. 4, this means that the drag

maximum should vary as M21/3. Since the maximum of

the normalized drag in the data is about 0.40 for obstacle

A (Figs. 4a,c,e), this would imply (assuming other pa-

rameters remained constant) a drag maximum of ;0.33

for obstacle B (Figs. 4b,d,f), which seems to agree

qualitatively with the data (the maximum is actually

0.30). The linear prediction of themaximum inFigs. 4b,d,f

is actually higher than in Figs. 4a,c,e because the flow

is more hydrostatic (cf. Fig. 2) and obviously nonlinear

effects are neglected. So, differences between Figs. 4a,c,e

and 4b,d,f appear to be dominated by nonlinear effects. It

should be noted, however, that the previous studies

mentioned above used one-layer models, which is an

obvious limitation.

The main conclusion to take from this comparison is

that 3D and nonhydrostatic effects appear to explain the

drag behavior observed in the experiments to a certain

extent, accounting for the nonzero drag for Fr , 1 and

the migration of the drag maximum to Fr, 1. Frictional

effects act in the same direction. The effect of non-

linearity, which appears to bemuch stronger for obstacle

B (Figs. 4b,d,f), consistent with the corresponding value

of M, may explain the worse performance of the model

in that case.

c. Waves at the density interface

It is useful to understand what kinds of waves are

associated with each drag regime. Figure 5 presents the

normalized streamline (or density interface) vertical

displacement field at z5H1 due to resonant waves

given by (23), which is representative of density in-

terfaces within the atmosphere or the ocean, for dif-

ferent values of Fr and l/H1. The selected values of Fr

(0.6, 0.8, 1.0, 1.2, 1.4, 1.6, and 1.8) have been chosen to

encompass cases with both Fr # 1 and Fr $ 1 and on

both sides of the drag maxima shown in Fig. 2a.

Figures 5a–d, 5e–h, 5i–l, and 5m–p present results for

l/H1 5 1, l/H1 5 2, l/H1 5 5, and l/H1 5‘, respectively,
which correspond to flow that is strongly non-

hydrostatic, intermediate, weakly nonhydrostatic, and

perfectly hydrostatic.

In each row except Figs. 5m–p, as Fr increases, the

resonant wake downstream of the obstacle shifts from

being dominated by transverse waves, with phase lines

almost perpendicular to the incoming flow, to being

dominated by divergent waves, with crests and troughs

making a smaller angle with the flow. For intermedi-

ate values of Fr where both types of waves are im-

portant, the well-known ‘‘Kelvin ship-wave’’ pattern

can be seen (e.g., Figs. 5b,f). As would be expected,

the magnitude of the wave disturbance peaks near

the drag maximum: for Fr between 0.6 and 0.8 in

Figs. 5a–d and for Fr’ 0.8 in Figs. 5e–h and 5i–l (in the

hydrostatic situation of Figs. 5m–p the drag maximum

is infinite and occurs at Fr 5 1, as discussed pre-

viously). More specifically, the minimum in streamline

elevation (corresponding to an interface depression)

immediately downstream of (x, y)5 (0, 0) appears to

be roughly proportional to the drag, which makes

sense, since the drag force is essentially caused by the

thinning of the lower fluid layer associated with this

minimum. The value of Fr for which each type of
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waves occurs increases as l/H1 becomes higher, which

is consistent with the corresponding migration of the

drag maximum to higher values of Fr closer to 1 in

Fig. 2.

The relation between drag and interface depression

can be made more quantitative by plotting the normal-

ized drag as a function of the minimum of the interface

elevation occurring immediately downstream of the

obstacle, as shown in Fig. 6. This latter quantity was

obtained from the hR/h0 field provided by (23) using a

numerical iterative procedure. In this procedure, the

minimum of hR/h0 is sought in the direction of the flow

along the downstream portion of a line passing through

the hill centerline. The process ends when a given

threshold (1026) for the difference between the position

of the minimum (expressed in terms of x/H1) in con-

secutive iterations is reached. Figure 6 shows that there

is a clear relationship between the drag and this mini-

mum, which was fitted empirically using a power law

(dotted line) expressed by

FIG. 5. Normalized vertical displacement of the streamlines (or density interface) at z5H1 associated only with resonant or free

stationary waves, hR(x, y)/h0, as a function of x/l and y/l, calculated from (23) (i.e., for H1/H2 5 0). (a)–(d) l/H1 5 1, (e)–(h) l/H1 5 2,

(i)–(l) l/H1 5 5, (m)–(p) l/H1 5‘. See legend for values of the Froude number used in each panel. The white circle centered at

(x5 0, y5 0) corresponds to the outline of the obstacle, drawn to scale, with l5 32 cm; that is, its normalized radius is 50 cm/32 cm’ 1:56

(see text). Solid white lines in (a),(b),(e),(f), and (i) denote predicted wavelengths. Dashed white lines show predicted wake angles. Scales

on the right pertain to each row of graphs to their left.
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D

r
1
g0lh2

0

5 0:40

�jmin(h
R
)j

h
0

�1:65
. (31)

Both the drag and the interface depression increase as

l/H1 increases, because the interface is able to interact

more strongly with the topography. The fact that the

power law in (31) is not linear accounts partly for the fact

that the drag is a quadratic quantity, while the interface

elevation is linear in the wave perturbations. The non-

quadratic dependence and the scatter in the data points

about the line account for the different locations along

the hill slope where the hR/h0 minimum occurs, which

affects the drag.

Some additional physical interpretation of the re-

sults can be obtained from (19), which gives the ori-

entation angle of the resonant wavenumber vector uR
(it must be kept in mind, however, that the definition

of a wake angle is not trivial in the presence of both

divergent and transverse waves). The function of k0 on
the right-hand side of this equation decreases mono-

tonically with its argument from 1 toward 0, which

means that uR increases as both Fr and k0 increase. This
implies that the angle of wave crests with the mean

flow must decrease as either Fr or k0 increase (i.e., the

wavelength decreases). These two aspects can be

confirmed by Fig. 5 if one focuses on the orientation of

the phase lines: it is visible not only that the crests of

divergent waves become more aligned with the flow as

Fr increases but also that the crests making the

smallest angle correspond to the shortest waves (e.g.,

Figs. 5b–d and 5f–h). It also results from (19) that no

transverse waves may exist if Fr . 1, and even if they

do exist at Fr 5 1, their wavelength is exceedingly

large, and therefore impossible to detect, because

k0 / 0 is required. This is confirmed by Figs. 5c,d, 5g,h,

and 5j,k.

A more thorough interpretation of the flow behavior

requires more detailed analysis of the strongly non-

hydrostatic (deep water) and nearly hydrostatic (shal-

low water) cases. In the strongly nonhydrostatic limit

(19) reduces to

cos2u
R
5

Fr22

2k0 , (32)

from which it is easy to deduce the minimum wave-

number (or maximum wavelength lmax) of resonant

waves, corresponding to wavenumber vectors aligned

with the mean flow (transverse waves):

l
max

H
1

5 4pFr2 . (33)

This wavelength normalized by l instead ofH1 takes the

values lmax/l 5 4.5, 8.0, 2.3, and 4.0 for the cases dis-

played in Figs. 5a, 5b, 5e, and 5f, respectively. These

values (marked in the corresponding graphs) provide a

good prediction of the observed wavelengths of trans-

verse waves for Figs. 5a and 5e, but underestimate them

in Figs. 5b and 5f, probably because of shallow-water

effects.

As is well known (e.g., Rabaud andMoisy 2013), the

dispersiveness of nonhydrostatic waves allows the

derivation of an upper bound for the wake angle.

Using the fact that the group velocity of deep water

waves is half of its phase velocity (a result that holds

for the present interfacial wave case), it can be de-

duced that the angle of the wake made by waves of a

given wavenumber is

a(k0)5 arctan

"
(2k0Fr2 2 1)1/2

4k0Fr2 2 1

#
. (34)

This is found to attain a maximum of amax 5 19:478 for a
wavelength l5 (2/3)lmax, independently of Fr. This

angle (marked in Figs. 5a,b,e,f) is in agreement with the

wake angle seen in Figs. 5a and 5e, but the wake angle is

larger in Figs. 5b and 5f, probably because of shallow-

water effects in the excited waves, and also owing to the

dominance of divergent waves, whose crests make a

larger angle of 54.78with the flow [determined from (32)

and also marked in the same graphs]. The absence of

transverse waves and the large wavelength of the leading

FIG. 6. Variation of the normalized drag with the normalized

value of the minimum of the interface elevation occurring im-

mediately downstream of the obstacle in the flows illustrated in

Fig. 5. Each data point corresponds to one of the panels in that

figure. Squares: l/H1 5 1, circles: l/H1 5 2, triangles: l/H1 5 5, di-

amonds: l/H1 5‘. Dotted line: empirical fit to the data, expressed

by (31).
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divergent waves make it difficult to determine the wake

angle for Fr $ 1.

In weakly nonhydrostatic conditions (19) reduces to

cos2u
R
5

Fr22

11 k0 , (35)

which allows one to define a wake angle (in this case,

simply as a5p/22 uR since nearly hydrostatic waves

are almost nondispersive), given by

a5 arcsin

"
Fr21

(11 k0)1/2

#
(36)

from (35), and a maximum wavelength (again cor-

responding to transverse waves, which only exist if

Fr # 1) as

l
max

H
1

5
2p

Fr22 2 1
. (37)

These two equations tell us that in the near-hydrostatic

limit there is no upper bound for a when Fr # 1, since

(37) inserted into (36) always gives a5p/2. However,

angles near p/2 must be attained for very large wave-

lengths, which may not be easily discernible as waves

(see, e.g., Fig. 5j). In the exact hydrostatic limit, dis-

persion ceases to exist and all wavenumbers are su-

perposed spatially. In that limit, (36) reduces to

a5 arcsin(Fr21), which although only valid for Fr . 1,

obviously decreases as Fr increases. This behavior can

be clearly confirmed in Figs. 5m–p, and still with some

dispersion due to nonhydrostatic effects in Figs. 5j–l. In

this latter case, (37), which is only valid for Fr , 1,

gives a good estimate of the wavelength lmax/l5 2:2

(marked in the graph) for the transverse waves shown

in Fig. 5i. In the former case, the values of Fr used in

Fig. 5m–p (Fr 5 1.2, 1.4, 1.6, and 1.8) yield a 5 56.48,
45.68, 38.78, and 33.78, respectively (marked in

Figs. 5m–p), which are in good agreement with what is

seen in the graphs.

It can be noticed that there are many qualitative

similarities between the wave patterns displayed in

Figs. 5a–l and in Fig. 8 of Lacaze et al. (2013); for ex-

ample, there is a transition from the Kelvin ship-wave

pattern to a wake dominated by divergent waves as Fr

increases. A detailed comparison is beyond the scope of

this article, but quantitative agreement seems less ob-

vious. A reason for this could be that the shape to be

taken into account in the theory to force the waves

(using Fourier transforms) may not be exactly the to-

pography shape itself. Instead the shape ‘‘seen’’ by the

flow may include the effect of the boundary layer

developing over the obstacle (Peng and Thompson

2003), which can separate from the topography under

certain conditions or generate an upstream/downstream

asymmetry, among other possibilities. However, this

should in theory also affect the drag, which does not

seem to occur, at least for obstacle A.

5. Discussion and conclusions

Theoretical calculations were developed for the drag

force produced by an obstacle at the boundary of a

stratified flow comprising two layers with different

densities, owing to the generation of waves at the in-

terface between them. The theoretical predictions were

then tested using data from laboratory experiments. The

conditions considered here are representative of either

an atmosphere with a sharp temperature inversion at the

top of the boundary layer flowing over an isolated hill,

the motion of drifting ice keels at the surface of an ocean

with a sharp thermocline, or an ocean flow with a sharp

thermocline over a sill. The problem also has much in

common with that of waves generated either at the

thermocline or at the sea surface by ships (Grue 2015a;

Moisy and Rabaud 2014), and their corresponding re-

sistance force, which have been studied extensively.

Results both from ship-wave theory (Rabaud andMoisy

2013) and from geophysical studies (e.g., Steeneveld

et al. 2008) suggest that this gravity wave drag may be a

substantial fraction of the total drag exerted on these

obstacles. However its effect is usually neglected in a

meteorological or oceanographic context (Lott and

Miller 1997; Pite et al. 1995) and possibly mis-

represented as turbulent form drag.

Two essential differences between the present study

and the ship-wave problem are that the density discon-

tinuity is much smaller than at an air–water interface

(and can be in practice neglected except in the definition

of buoyancy), hydrostatic (or shallow water) effects may

be relevant, and the waves are generated remotely

rather than at the same interface where the obstacle sits.

The first difference allows us to use the Boussinesq ap-

proximation without substantial loss of accuracy. The

second difference means that a theory for waves in a

fluid of arbitrary depth must be used, which allows us to

take both the ‘‘deep water’’ and the ‘‘shallow water’’

(hydrostatic) limits, the latter of which yields the hy-

drostatic drag expression from linear theory that was

used in most previous studies. All of these differences

are absent in the generation of waves by ships or ice

keels at the thermocline, which is essentially similar to

the problem being addressed here turned upside-down.

The drag estimated from laboratory experiments of a

two-density-layer flow across an axisymmetric Gaussian
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hill attains a maximum at a Froude number (Fr) slightly

lower than 1 and is severely overestimated by 3D hy-

drostatic linear theory, which predicts the maximum to

be infinite and exactly centered at Fr 5 1. The experi-

mental data are much better predicted by the 3D non-

hydrostatic linear calculation developed here, in

particular its two-layer version with a rigid lid including

the effect of friction. However, even the model that is

more directly applicable to the atmosphere, in which the

upper layer is infinite and friction is neglected, produces

much better results than hydrostatic theory. The inviscid

two-layer version of the model provides an explicit ex-

pression for the drag in terms of a 1D integral. This

expression shows that, for the conditions in the experi-

ments, the drag depends essentially on three di-

mensionless parameters: Fr, the ratio of the obstacle

width to the depth of the layer in contact with it; l/H1,

which quantifies nonhydrostatic effects; and the ratio of

the thicknesses of the two fluid layers, H2/H1. An addi-

tional parameter of the flow, which is not taken into

account in the model, is the nonlinearity parameter

M5h0/H1. This model shows that a finite value of l/H1

makes the drag maximum migrate to lower Fr and have

its magnitude considerably reduced, markedly improv-

ing the agreement with experimental data compared to

3D hydrostatic linear theory or 2D nonhydrostatic linear

theory, especially for the lower obstacle A used in the

experiments. This suggests that the essential features of

the drag behavior seen in the laboratory experiments,

particularly for moderately steep orography, can be

explained by nonhydrostatic effects, paving the way for

the development of a simple parameterization of this

process in atmospheric models. While the 3D non-

hydrostatic linear results presented, for example, in

Fig. 7 of Johnson and Vilenski (2004) or Fig. 3 of Grue

(2015a) are byproducts and limit cases of their nonlinear

nonhydrostatic models, the present study presents an

explicit mathematical expression for this drag, which

may be easily adapted for parameterization purposes.

Agreement with our 3D nonhydrostatic linear model,

at least for obstacle A, may have been facilitated by the

fact that the depths of the two fluid layers in the ex-

periments are not equal. As noted by Johnson and

Vilenski (2005) and Esler et al. (2007), this excludes

cubic nonlinearities in the weakly nonlinear wave

equation adopted by them, which can amplify the drag

by a factor larger than 10 [see also Grue (2015b)]. De-

partures of the drag behavior from 3D nonhydrostatic

linear theory, which are especially salient for the higher

obstacle B considered in the experiments, are consistent

with what is known from previous studies about the

impact of nonlinearity on the flow—namely, causing a

flattening of the drag variation with Fr.

The drag behavior in 3D nonhydrostatic linear the-

ory is associated with characteristic wave signatures at

the density interface. For Fr, 1, andmore precisely for

an Fr lower than that where the drag maximum occurs,

the flow is dominated by transverse waves with crests

almost perpendicular to the flow, which are the only

ones that exist in 2D nonhydrostatic conditions (where

the drag is only nonzero for Fr , 1). In contrast, when

Fr . 1 the flow is dominated by divergent waves, with

crests at smaller angles to the flow, which are the only

ones that exist in 3D hydrostatic flow (where the drag

is only nonzero for Fr . 1). When Fr & 1 and l/H1 is

not too high, transverse and divergent waves coexist,

forming a dispersive pattern strongly reminiscent of

classical Kelvin ship waves, with a well-defined wake

angle. The experimental results reported by Lacaze

et al. (2013) are broadly qualitatively consistent with

this structure of the wave pattern.

Feasible improvements to the 3D nonhydrostatic lin-

ear calculations developed here include a more accurate

representation of friction—for example, using a bulk

boundary layer approach akin to that developed by

Smith et al. (2006) and Smith (2007). While in the data

from laboratory experiments used here the boundary

layer developed only over the obstacle, boundary layer

influence on the drag may be more pervasive in the

atmosphere—for example, when it is associated with

the formation of rotors downstream of the obstacle

(Teixeira 2017), which can substantially complicate the

flow topology and lead to additional drag.

Part of the effect of the boundary layer is to modify

the way the obstacle is ‘‘seen’’ by the flow, so that the

actual shape to take into account in the theory is not

the topography shape (Peng and Thompson 2003) but

what the inviscid part of the atmosphere above ‘‘sees.’’

This is an important lead to improve both drag and

wave-pattern predictions. Another feasible improve-

ment would be considering the effects of stratification

of the upper fluid layer, as in Teixeira et al. (2013) or

Sachsperger et al. (2015).

Future work could include a combination of theory,

numerical modeling, and laboratory experiments to

explore further the combined influence of nonlinearity

and nonhydrostatic effects. This could be based on the

theoretical framework developed by Johnson and

Vilenski (2005) and Esler et al. (2007), which includes

weak nonlinearity and weak nonhydrostatic effects, or

the more recent fully nonlinear framework developed

by Grue (2015a, 2015b).
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APPENDIX

Complex Integration for Evaluating the Drag

The method to obtain (20) from (18) is outlined next.

Taking the inner integral of (18), along u

ðp/2
0

k04 cos5ujĥ0(k0)j2
sinh2(k0H0

1)fk0 cos2u[coth(k0H0
1)1 coth(k0H0

2)]2Fr22gdu ; (A1)

this can be expressed generically as

ðp/2
0

f (u)

g(u)
du , (A2)

where, in the present case,

f (u)5 k04 cos5ujĥ0(k0)j2/sinh2(kH0
1) and

g(u)5 k0 cos2u[coth(k0H0
1)1 coth(k0H0

2)]2Fr22 .

(A3)

If there is no singularity in the integrand, the imagi-

nary part of the integral (A1) is zero. If there is a

singularity at uR within the interval [0, p/2] [i.e.,

g(uR)5 0], then, since the integrand is real, the imag-

inary part of the integral will only come from this

singularity; namely,

Im

ðp/2
0

f (u)

g(u)
du5 Im

(
lim

«/0

" ðuR1«

uR2«

f (u)

g(u)
du

#)

5 Im

(
lim

«/0

"
f (u

R
)

g0(u
R
)

ðuR1«

uR2«

1

u2 u
R

du

#)

5 Im

"
6ip

f (u
R
)

g0(u
R
)

#
56p

f (u
R
)

g0(u
R
)
,

(A4)

where f (u) and g(u) have been Taylor expanded around

uR and the prime denotes differentiation with respect to

u. The sign can be elucidated by including friction in the

problem. In the particular case under consideration, the

minus sign must be chosen in (A4). Since

g0(u)522k0 cosu sinu[coth(k0H0
1)1 coth(k0H0

2)] , (A5)

then

Im

 ðp/2
0

k04 cos5ujĥ0j2
sinh2(k0H0

1)fk0 cos2u[coth(k0H0
1)1 coth(k0H0

2)]2Fr22g du
!

5
p

2

k03 cos4u
R
jĥ0j2

sinh2(k0H0
1) sinuR[coth(k

0H0
1)1 coth(k0H0

2)]
. (A6)

If cosuR and sinuR are eliminated in (A6) using (19) and

(A6) is inserted into the outer integral of (18), (20) is

obtained.

A similar type of procedure, based on the original ap-

proach of Scorer (1949) but followingmore directly Sawyer

(1962), may be used to obtain (23) from (8) and (14).
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