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ASYMPTOTIC STABILITY OF THE OPTIMAL FILTER
FOR RANDOM CHAOTIC MAPS

JOCHEN BRÖCKER AND GIANLUIGI DEL MAGNO

Abstract. The asymptotic stability of the optimal filtering pro-
cess in discrete time is revisited. The filtering process is the con-
ditional probability of the state of a Markov process, called the
signal process, given a series of observations. Asymptotic stability
means that the distance between the true filtering process and a
wrongly initialised filter converges to zero as time progresses. In
the present setting, the signal process arises through iterating an
i.i.d. sequence of uniformly expanding random maps. It is showed
that for such a signal, the asymptotic stability is exponential pro-
vided that its initial conditions are sufficiently smooth. Similar to
previous work on this problem, Hilbert’s projective metric on cones
is employed as well as certain mixing properties of the signal, albeit
with important differences. Mixing and ultimately filter stability
in the present situation are due to the expanding dynamics rather
than the stochasticity of the signal process. In fact, the conditions
even permit iterations of a fixed (nonrandom) expanding map.

1. Introduction

This paper concerns the long term properties of the filtering pro-
cess, a subject that has attracted considerable interest for some time.
Suppose that the state of a system is modeled by a discrete-time ho-
mogenous Markov chain {Xn}n≥0 with values in some measurable space
E. Suppose also that the state Xn is not directly observed, and that it
can only be observed through observations that are realisations of some
stochastic process {Yn}n>0 with state space Rd. Concerning the pre-
cise connection between the processes {Xn} and {Yn}, we assume, as
most authors do, a memoryless channel (although more general setups
have been considered), which means that conditionally on {Xn}n≥0, the
observations {Yn}n>0 are independent and identically distributed with
some nonsingular distribution (precise definitions will be given later).
The stochastic filtering problem amounts to computing the conditional
probability πn of Xn given the observations Y0, . . . , Yn. The process
{πn}n≥0 takes values in the space of probabilities of E, and is called
the filter process.
An important problem in stochastic filtering is to establish the as-

ymptotic stability of πn depending on its initial state π0. The value

Date: March 6, 2017.
1



2 J. BRÖCKER AND DEL MAGNO

πn of the filter process at time n can be obtained from πn−1 and Yn
by an essentially Bayesian calculation. There exists a family of linear
operators {Ly}y∈Rd on the space of signed measures over E, leaving
invariant the set of probability measures such that the filtering process
satisfies the iterative relation

(1) πn =
LYnπn−1

LYnπn−1(E)
=: L̂Ynπn−1

with initial condition π0 = P(X0 ∈ ·). The operators LYn and L̂Yn are
called the unnormalised and the normalised filtering operators, respec-
tively. Note that L̂Yn is a nonlinear operator due to the normalisation.
One of the difficulties with applying the nonlinear filter in practice

is that the initial condition π0 is required to be known. An experimen-
tor who sets up an optimal filter for a series of incoming observations
though will hardly know the correct initial distribution of X0. Using
the wrong initial condition in (1) will result in a filter with suboptimal
performance. This would not be so much of a problem though if the
filter were insensitive to misspecification of the initial condition, in the
sense that it “forgets” the initial condition as time progresses. In other
words, considering the wrongly initialised filtering process

(2) π(ρ)
n = L̂Ynπ(ρ)

n−1

with initial condition π
(ρ)
0 = ρ, where ρ is some probability measure

over E, we are interested in the difference between π
(ρ)
n and πn as n

becomes large.
Insensitivity of the optimal filter with respect to the initial condi-

tion has been investigated by many authors and from different an-
gles. In [14], the authors distinguish “intrinsic” approaches from ap-
proaches which consider (1) as the sequential application of positive
random operators acting on signed measures. According to the au-
thors, intrinsic approaches exploit the probabilistic interpretation of
the filtering process as a conditional probability, as opposed to non–
intrinsic ones, where filter stability is investigated using for example
the Hilbert projective metric or the Dobrushin ergodic coefficient (see
e.g. [2, 3, 10, 11, 12, 21, 27, 26]); our results will develop the latter
approach further. (Although the authors of [14] identify strong mixing
properties of the signal—regardless of the observation structure—as
one “intrinsic” mechanism ensuring filter stability, there is a strong
overlap with approaches employing positive random operator tools, as
the latter will necessarily have to exploit the properties of the signal
process.)
In this paper, we assume {Xn} to be generated by compositions of

random maps. More precisely, we consider a sequence of independent
identically distributed transformations φn : E → E of a compact con-
nected Riemannian manifold E with canonical volume m. If X0 is
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independent from all φn, then the relation

Xn = φn−1(Xn−1)

defines a homogenous Markov process. Our main conditions (to be
made precise later) will be that

(1) φ is a random local diffeomorphism of a manifold E of class
C1+α such that ‖Dxφ v‖ ≥ σ0‖v‖ for every v ∈ TxE, and for
some nonrandom constant σ0 > 1.

(2) Conditionally on {Xn}n≥0, the observations are independent
and identically distributed, and the (conditional) distribution
has a density (the likelihood) with respect to some σ-finite mea-
sure.

(3) The logarithm of the likelihood function is of class Cα on E.
(4) Certain integrability conditions apply to the Hölder coefficients

of log |detDxφ| and the logarithm of the likelihood function.

Condition 1 above implies that each realisation of φ is uniformly ex-
panding. Expanding maps form a nontrivial but still relatively simple
class of “chaotic” maps with strong ergodic properties such as mixing
and exponential decay of correlations.
The main results of this paper are the following. First, we will

argue that under the conditions above, we can assume the observa-
tion process to be ergodic. We may then assume that there exists
an ergodic automorphism T : Ω → Ω preserving the probability P so
that Yn(ω) = Y1(T

n−1ω). Our main Theorem 3.1 shows that there
exist a unique stationary filtering density, that is a positive function
h : Ω×E → R so that h(ω, ·) ∈ Cα and

∫

E
h(ω, x)dm(x) = 1 so that if

ρω = hωm, then we have

(1) {ρTnω}n≥0 is a stationary orbit of the filter equation (1).
(2) ρω emerges as the limit of “going backwards” in Equation (2),

with exponential speed of convergence in ‖ · ‖TV.
(3) Initial conditions q with Cα densities are forgotten exponen-

tially fast, that is

lim
n→+∞

1

n
log ‖L̂n(ω)q − ρTnω‖TV ≤ ξ.

(We have used the short hand L̂n(ω)q = L̂Y1(Tn−1ω) ◦ · · · ◦ L̂Y1(ω)q.)
The norm ‖ · ‖TV denotes the total variation norm, which for a signed
measure µ on E is defined as

‖µ‖TV = sup
A

µ(A)− inf
A
µ(A),

where sup and inf run over all Borel sets of E. Note also that ‖ · ‖TV is
‖ · ‖1 on the level of densities with respect to the Riemannian volume
m on E.
The proof of Theorem 3.1 consists of two major steps. Firstly, we

show that under our assumptions on the system φ, the operators Lω
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preserve certain cones consisting of positive Hölder continuous func-
tions. By equipping these cones with Hilbert’s projective metric, we
show that the operators Lω are contractions using classical results from
[5, 6]. As a second step, the existence of the function h is proved em-
ploying a Fixed Point Theorem for random Lipschiz maps contracting
on average (generalising a theorem of Bougerol [8]).
Our paper is similar to previous work on the stability of the nonlinear

filter (e.g. [2, 10, 27]) in that we employ Hilbert’s projective metric on
cones, albeit with important differences. In those papers, the authors
work with a fixed cone C, namely the cone of positive measures in
the Banach space of signed measures with the total variation norm,
and require that there is a finite measure λ on the state space E of
the Markov process so that the transition kernel K(x,B) satisfies the
strong mixing condition

(3) cλ ≤ K(x, .) ≤ 1

c
λ for all x ∈ E and some c > 0.

This condition ensures that the image of the cone C under the Markov
kernel has finite diameter in the Hilbert metric. The contracting effect
of the filter is due to the stochasticity of the signal process, while the
observation process is largely unimportant under these circumstances.
In our setting, the condition (3) is not satisfied. In fact, our condi-

tions permit situations in which the φn are not even random but equal
to a fixed (expanding) map φ, in which case K(x,B) = δφ(x)(B) and
hence condition (3) cannot hold. Mixing and ultimately filter stability
in our situation is due to the expanding dynamics, which has a ten-
dency to render smooth densities even smoother and thus acts similar
to the stochasticity in the situation of mixing Markov kernels. In order
to exploit this though, we cannot work with a single cone but have to
construct a random family of cones. Another important aspect of the
present setting is that the filter will not be stable with respect to arbi-
trary initial conditions; the initial conditions need to exhibit a certain
smoothness already, as explained in item 3 above.
Nonrandom expanding maps have been extensively investigated, see

for instance [4, 31] and references therein. Random expanding maps
have been considered too, and many techniques presented in the present
paper have been used in previous publications to find random invariant
measures of random dynamical systems; this problem bears strong sim-
ilarity to ours. For instance [22, 23, 24, 34] consider the case of random
maps expanding on average. In [34], Hilbert’s projective metric is used
to find random invariant measures of random maps expanding on aver-
age, including measures that are absolutely continuous with respect to
Lebesgue measure. The strongly related problem of random subshifts
was considered by [7, 19]; see also [4] for many interesting applications.
In [33], invariant measures of random Lasota-Yorke maps were in-

vestigated, again using Hilbert’s projective metric. In that work, the
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author proves a general result for what he calls good transfer operators,
and then shows that transfer operators for random Lasota-Yorke maps
emerge as a special case. The result of Buzzi however requires that
the operators preserve the integral of nonnegative functions; hence it
cannot directly be applied to filter operators (at least not without mod-
ification). Further, good transfer operators (in the sense of Buzzi) work
on function spaces with a notion of variation, while in the present paper
we prefer to use functions that are log–Hölder continuous which seem
to be more amenable to our setting. Building on the work of Buzzi,
Froyland et al established the stability of the invariant measure of ran-
dom Lasota- Yorke maps under various types of perturbations [32].
The result is formulated for abstract random linear operators as in the
work of Buzzi, and for the same reasons the result does not apply, at
least not directly, to our filter operators.
The paper is organized as follows. In Section 2, we briefly review

the theory of nonlinear filtering and prove two lemmas concerning the
ergodic properties of the observations. Further, we present the particu-
lar signal processes discussed in this paper. In Section 3, we formulate
our main result in Theorem 3.1. As already explained, this theorem
is proved by using Hilbert’s projective metric on cones and a Fixed
Point Theorem for random maps. The latter is proved in Section 4. In
Section 5, we introduce Hilbert’s projective metric on cones and recall
relevant results for this metric obtained by Garrett Birkhoff. Finally,
Section 6 contains the proof of Theorem 3.1.

2. Nonlinear filtering – general theory

In this section we will explain the notion of nonlinear filtering in an
abstract setting.

2.1. Basic Definitions and assumptions. Let (Ω,F ,P) be a prob-
ability space. The signal process is a homogeneous Markov process
{Xn : n ∈ N0} on a polish space E endowed with the Borel σ-algebra
B. By K we will denote the transition kernel of {Xn} (i.e. K is regular
and K(x,B) = P(X1 ∈ B|X0 = x) a.s.); further, π0 denotes the dis-
tribution of X0. Throughout the paper, we will use the abbreviations
K(x, ϕ) =

∫

E
ϕ(z)K(x, dz) and Kµ(B) =

∫

E
K(x,B)dµ(x).

For any I ⊂ Z, we write XI for the σ-algebra generated by {Xk : k ∈
I∩N0}. The observation process {Yn : n ∈ N} is a process on Rd. By A,
we denote the Borel algebra of Rd. Let YI be the σ-algebra generated
by {Yk : k ∈ I ∩ N}. We assume that YI (resp. XI) are trivial if I ∩ N

(resp. I ∩ N0) are empty.

Definition 2.1. The filtering process {πn : n ∈ N0} is a sequence of
regular conditional probabilities on E so that for P–a.a. ω,

(4) πn(B) = P
(

Xn ∈ B|Y[1,n]

)

∀B ∈ B.
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Note that π0 is the distribution of X0 in agreement with our previous
definition of π0.

The problem of calculating πn is called nonlinear filtering. Provided
that further assumptions apply (to be specified later), the filtering pro-
cess can be calculated in an iterative fashion.
We make the assumption of a homogeneous memoryless channel

throughout the paper. This means that given Ak ∈ A for k = 1, . . . , n,
we have

(5) P
(

Y1 ∈ A1, . . . , Yn ∈ An|X[1,n]

)

=
n
∏

k=1

P(Yk ∈ Ak|Xk).

Since Rd is separable, there exist regular conditional probabilities

Γn : A× E → [0, 1]

so that for any A ∈ A we have P(Yn ∈ A|Xn) = Γn(A,Xn) a.s. We
further assume that Γn does not depend on n, and that Γ(·, x) is abso-
lutely continuous with respect to some σ-finite Borel measure λ on Rd

for all x. Define the likelihood function

g(y, x) :=
dΓ(·, x)

dλ
(y).

Again due to the separability of Rd, we can assume that g is measurable
on (Rd × E,A ⊗ B) (see Part (3) of Lemma A.1). Further, due to
Tonelli’s theorem we also have that for any probability measure ν on
(E,B),

∫

Rd×E

g d(λ⊗ ν) =

∫

E

∫

Rd
g(y, x)dλ(y)dν(x) = 1,

hence g is integrable with respect to λ⊗ν and g(y, ·) is integrable with
respect to ν except for y in some λ–null set.

2.2. Filtering equations.

Proposition 2.2. Under the assumptions on {Xn, Yn} imposed in Sec-
tion 2.1, the filtering process {πn} satisfies the following recursion equa-
tions:

πn(ϕ) =

∫

E
ϕ(x)g(Yn, x)dπ

+
n−1(x)

∫

E
g(Yn, x)dπ

+
n−1(x)

,(6)

π+
n (ϕ) =

∫

E

K(z, ϕ)πn(dz).(7)

The denominator in (6) is P–a.s. positive.

Equations (6) and (7) are referred to as prediction and update step,
respectively. For a proof, see [15, Section 3.2, Theorem 3.9]. In fact, in
[15], different conditions are imposed which however contain an error,
as a closer inspection of the proof will reveal. The first starred condition
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in Section 3.2 of [15] should state that {Xn} is Markov with respect
to the filtration X[1,n] ∨ Y[1,n], rather than just with respect to its own
filtration [16]. Then it can be shown that the conditions in [15] are
equivalent to ours.
The proof of the following lemma is straightforward and is left to the

reader.

Lemma 2.3. Suppose that π+
n is absolutely continuous with respect

some σ-finite measure m on E. Then πn+1 is absolutely continuous
with respect to m as well. Moreover,

(8)
dπn+1

dm
(x) =

1

c
g(Yn, x)

dπ+
n

dm
(x),

where

(9) c =

∫

E

g(Yn, x)
dπ+

n

dm
(x)dm(x).

The following two results will be relevant later for the type of signal
processes considered mainly in this paper (Sec.2.3).

Lemma 2.4. Suppose that the signal process {Xn} is stationary, and
the memoryless channel assumption holds. Then the process {Xn, Yn}
is a stationary Markov process.

Again, the proof is simple and left to the reader. The following
proposition will be important later in our work. It relates the ergodicity
of the observation process, which we will need, to the ergodicity of the
signal process, resulting from the assumptions we will impose.

Proposition 2.5. Assume the memoryless channel assumption holds,
and suppose that {Xn} is ergodic. Then {Yn} is also ergodic.

Proof. For sets A1 ∈ Y[1,k] and A2 ∈ Y[k+1,k+m], the relation

(10) P(A1 ∩ A2|X[1,n]) = P(A1|X[1,n]) · P(A2|X[1,n]) a.s.

follows from the memoryless channel assumption as long as k+m ≤ n.
We also have that if B is an m–dimensional cylinder set in AN, then

P({(Yk+1, . . . , Yk+m) ∈ B}|X[1,n] = (x1, . . . , xn))

= P({(Y1, . . . , Ym) ∈ B}|X[1,n−k] = (xk+1, . . . , xn)) a.s.
(11)

again from the memoryless channel assumption as long as k +m ≤ n
(here we use the fact that Γn does not depend on n). Letting n → ∞
in these relations, we get by martingale convergence

(12) P(A1 ∩ A2|X[1,∞]) = P(A1|X[1,∞]) · P(A2|X[1,∞]) a.s.

from Equation (10) and

P({(Yk+1, . . . , Yk+m) ∈ B}|X[1,∞] = (x1, x2, . . .))

= P({(Y1, . . . , Ym) ∈ B}|X[1,∞] = (xk+1, xk+2, . . .)) a.s.
(13)
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from Equation (11), respectively. Since P is regular, (12) holds for
A2 ∈ Y[k+1,∞], and (13) holds for B ∈ AN, in the sense that

P({(Yk+1, Yk+2, . . .) ∈ B}|X[1,∞] = (x1, x2, . . .))

= P({(Y1, Y2, . . .) ∈ B}|X[1,∞]) = (xk+1, xk+2, . . .)) a.s.
(14)

If A ∈ Y[1,∞] is invariant, i.e., if there is B ∈ AN such that

A = {(Yk+1, Yk+2, . . .) ∈ B} for every k,

then (14) shows that P(A|X[1,∞]) is an invariant random variable and
thus almost sure equal to P(A) by ergodicity of {Xn}. On the other
hand, an invariant event is in Y[k,∞] for every k, so (12) applies with A
in place of A2, and we get

P(A1 ∩ A|X[1,∞]) = P(A1|X[1,∞])P(A),

or after taking expectations

(15) P(A1 ∩ A) = P(A1)P(A)

for invariant A and A1 ∈ Y[1,k]. We now approximate A with sets
Ak ∈ Y[1,k] so that Ak → A in symmetric difference; (15) holds for any
such Ak in place of A1. Taking limits in (15) then gives P(A) = P(A)2

for any invariant A, establishing ergodicity of {Yn}. �

2.3. Random mappings. The results of this paper apply to signal
processes of a particular kind. We assume that {Xn} is generated by
iterating a random sequence of transformations of a manifold. The
transformations are assumed to be independent and identically dis-
tributed. More specifically, let now E be a compact connected smooth
Riemannian manifold. Denote by B the Borel σ-algebra and by m the
Riemannian volume of E. Further, let

φ : Ω× E → E, (ω, x) 7→ φ(ω, x)

be a measurable mapping so that φ(ω, .) is a local C1–diffeomorphism
for all ω. We will refer to such mappings as random local diffeomor-
phisms. Since φ(ω, ·) is continuous for all ω, it is sufficient that φ is
measurable only in ω for all x to obtain joint measurability in (ω, x)
(see Part (4) of Lemma A.1). A random local diffeomorphism φ gives
rise to a random variable ω → φ(ω, ·) with values in EE with the prod-
uct σ-algebra B⊗E; by slight abuse of notation, this random variable
will again denoted by φ.
Assume that we are given a sequence φn of random local diffeomor-

phisms that are independent and identically distributed (as random
variables in the sense defined above), and let X0 : Ω → E be a random
variable independent from all φn. Then the relation

Xn = φn(ω,Xn−1), n ≥ 1
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defines a homogenous Markov process on E with transition kernel given
by

K(x,B) = P({ω : φn(ω, x) ∈ B}) = E(1B ◦ φn(ω, x)).
and initial distribution π0(B) = P(X0 ∈ B), where B ∈ B and x ∈ E.
For a proof of these assertions, see [1, Theorem 2.1.7.].
For the remainder of this section, we will establish a representation

of the filtering process in terms of densities where the Frobenius–Perron
operator plays an essential role. (A very fruitful approach to studying
the statistical properties of deterministic dynamical system goes via
investigating the spectrum of the associated Frobenius–Perron operator
and more general transfer operators, see [4, 31].)

Definition 2.6. The Frobenius–Perron operator associated with a local
diffeomorphism φ is defined as

Pψ(x) =
∑

y∈E;φ(y)=x

ψ(y)| detDφ(y)|−1

for ψ : E → R.

The number of y ∈ E with φ(y) = x (i.e. the number of terms in the
sum representing the Frobenius–Perron operator) is called the degree
of x. Due to our assumptions on φ, the degree is a finite constant [25,
Proposition 4.46]. Note that by substitution, we have the identity

∫

ϕ ◦ φ(x) ψ(x) dm(x) =

∫

ϕ(x) Pψ(x) dm(x)

for ϕ measurable and bounded and ψ ∈ L1(m), the space of all Borel
measurable functions ψ : E → R with

∫

E
|ψ(y)|dm(y) <∞.

Lemma 2.7. Suppose that h : Ω×E → R is nonnegative, measurable,
and h(ω, ·) ∈ L1(m) for every ω ∈ Ω. Then the same is true for the
mapping (ω, x) 7→ P(ω)h(ω, x).

Proof. The function (ω, x) 7→ 1B ◦ φ(ω, x)h(ω, x) is nonnegative, mea-
surable, and in L1(m) for every ω, so

ω 7→
∫

1B ◦ φ(ω, x)h(ω, x)dm(x) =

∫

B

P(ω)hω(x)dm(x)

is finite and measurable by Tonelli’s theorem. Hence

(ω, x) 7→ P(ω)hω(x)

is nonnegative and in L1(m) for every ω, and joint measurability follows
from Part (3) of Lemma A.1. �

Lemma 2.8. Suppose that π is a probability measure on E with density
h(x), then

dKπ

dm
(x) = E (P(ω)h(x)) =

∫

P(ω)h(x)P(dω).
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Proof. Since (ω, x) 7→ P(ω)h(x) is measurable by Lemma 2.7, the state-
ment is an easy application of Tonelli’s theorem. �

If we now combine Lemmas 2.3 and 2.8 with Proposition 2.2, we
obtain the following representation of the filtering process in terms of
densities.

Proposition 2.9. Suppose the signal process is generated as stated in
the beginning of this section, and the observations satisfy the memo-
ryless channel assumption. Let {πn : n ∈ N0} be the filtering process,
and assume that πn for some n has a density pn(x) with respect to the
Riemannian volume m. Then also πn+1 has a density pn+1 with respect
to m given by

pn+1(x) =
1

wn
g(Yn+1, x)Ppn(x)

with

P : h 7→
∫

P(ω)h(x)dP(ω)

and the normalisation factor

wn =

∫

g(Yn+1, x)Ppn(x)m(dx)

In view of Proposition 2.9 and to facilitate the subsequent discussion,
we make the following definitions.

Definition 2.10. With a given likelihood function g and a given ran-
dom local diffeomorphism φ as defined at the beginning of this section,
we associate the family of operators

L(y) : h 7→ g(y, x)Ph(x), L̂(y) : h 7→ L(y)h(x)
‖L(y)h‖1

,

which are called the unnormalised and the L1–normalised filter oper-
ators, respectively. The L1–norm is taken with respect to m, and the
operator P is as defined in Proposition 2.9.

Remark 2.11. Our conditions imposed later on the likelihood function
will ensure that the denominator ‖L(y)h(x)‖1 is not zero for every
nonnegative and measurable h with ‖h‖1 = 1. Note that in the filter
recursion, positivity of the denominator is ensured by Proposition 2.2.

3. Main result

We will first formulate our main result in a somewhat more abstract
setting and later establish the connection with filtering. Suppose that
{Yn : n ∈ N} is a stationary and ergodic process with state space Rd.
By stationarity (and possibly after extending the probability space),
we can construct random variables Y0, Y−1, Y−2, . . . so that {Yn, n ∈ Z}
becomes a stationary and ergodic process over Z. We may then assume
that there exists an ergodic automorphism T : Ω → Ω preserving the
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probability P so that Yn(ω) = Y1(T
n−1ω). If at the same time {Yn} were

the observations of some signal process in the sense of Proposition 2.9,
then (according to that proposition) the densities pn(x) of the filtering
process for any n could be generated by applying an ergodic sequence
of filter operators to the initial density p0. Namely, we would have

pn(x) = L̂Y1(Tn−1ω) ◦ · · · ◦ L̂Y1(T kω)pk(x).
The subject of our main theorem is the asymptotic behaviour of sta-
tionary operator sequences of this form, where the operators are as in
Definition 2.10.
To formulate the theorem, let 0 < α ≤ 1, and φ be a random local

diffeomorphism of a manifold E of class C1+α. Define Cα
+ as the set of

strictly positive functions on E whose logarithm is Hölder continuous
with exponent α. Let g be a likelihood function on E with g(y, ·) ∈ Cα

+

for all y. The least expansion coefficient of φ(ω, ·) is given by

σ(ω) = min
x∈E

‖(Dxφ(ω, ·))−1‖−1.

The function σ(ω) is strictly positive, because φ(ω, ·) is a local diffeo-
morphism. Next, define

b(ω) = |log |detDxφ(ω, ·)||α and c(ω) = max{| log g(Y1(ω), ·)|α, 1},
where |·|α denotes the Hölder constant with respect to Hölder expo-
nent α. The separability of E implies that the functions σ, b, c are
measurable (see Lemma 6.6). We further impose on σ, b, c the follow-
ing conditions:

C1 (Uniform Expansion and Regularity): there exist b0 > 0 and
σ0 > 1 such that σ0 ≤ σ(ω) and b(ω) ≤ b0 for a.e. ω ∈ Ω;

C2 (Temperedness): limn→±∞ |n|−1 log c(T nω) = 0 for a.e. ω ∈ Ω.

At the end of this section, we discuss an example satisfying these as-
sumptions.
For the purpose of the following theorem, we use the shorthand L(ω)

instead of L(Y1(ω)) and put Ln(ω) = L(T n−1ω) ◦ · · · ◦ L(ω). Similar

notation is used for L̂.
Theorem 3.1. Suppose that φ and g satisfy conditions C1 and C2,
and let L(ω) and L̂(ω) be the associated filter operators as in Defi-
nition 2.10. Let ξ =

∫

r(ω)dP(ω) < 0, where r is as in the proof
of Lemma 6.5. Then there exist a T -invariant set Ω0 ⊂ Ω of full
measure, a unique1 pair of measurable functions h : Ω × E → R and
Λ: Ω → (0,+∞) such that for ω ∈ Ω0 and ϕ ∈ Cα

+, we have

(1) h(ω, ·) ∈ Cα
+(E) and ‖h(ω, ·)‖1 = 1,

(2) limn→+∞

1

n
log ‖h(ω, ·)− L̂n(T−nω)1‖∞ ≤ ξ,

1The uniqueness has to be understood in the sense explained in the footnote of
Theorem 4.3.
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(3) L(ω)h(ω, ·) = Λ(ω)h(Tω, ·),

(4) limn→+∞

1

n
log ‖h(T nω, ·)− L̂n(ω)ϕ‖∞ ≤ ξ,

(5) limn→±∞

1

|n| log ‖h(T
nω, ·)‖∞ ≤ 0.

The interpretation of Theorem 3.1 in terms of filtering is straight
forward if indeed the observations {Yn} are ergodic. In this situation,
L(T n−1ω) is the filtering operator associated with the observation Yn,
and the eigenfunction h is to be interpreted as a stationary solution of
the filtering equations, in the following sense: If we combine conclu-
sions (1) and (3) for the L1–norm, we obtain

L̂(ω)h(ω, ·) = h(Tω, ·).
The conclusion (2) of Theorem 3.1 provides information as to how the
stationary filtering process h is constructed, namely as the limit of the
sequence {L̂n(T−nω)1}n∈N. This means that the stationary filtering
process is essentially a filtering process that started in the infinitely re-
mote past, and also provides a way to approximate h. Conclusion (4)
of Theorem 3.1 gives a related but slightly different result, namely that
a forward orbit of the form {L̂n(ω)ϕ}n∈N with ϕ ∈ Cα

+(E), that is, a
filtering process initialised with some sufficiently smooth but otherwise
arbitrary density ϕ (when driven by the same observations) is asymp-
totically attracted by the stationary filtering process {h(T nω, ·)}n∈N
with exponential speed of convergence.
The ergodicity of {Yn} required in Theorem 3.1 would follow if {Xn}

were known to be ergodic, thanks to Proposition 2.5. But this can
in fact be obtained as a corollary of Theorem 3.1 which requires only
the condition C1 on the signal process {Xn} (this result might be of
independent interest):

Corollary 3.2. Suppose that φ satisfies condition C1. Then there exist
a constant ξ < 0 and a function h̄ ∈ Cα

+(E) with ‖h̄‖1 = 1 such that
for any ϕ ∈ Cα

+(E) with ‖ϕ‖1 = 1, we have

(1) Ph̄ = h̄,

(2) limn→+∞

1

n
log ‖Pn

ϕ− h̄‖∞ ≤ ξ.

Furthermore, h̄m is the unique invariant measure for the Markov kernel
K which is equivalent to the Riemannian volume, and letting h̄m be the
distribution of X0 renders the signal process ergodic.

Proof. Statements 1 and 2 follow directly from Theorem 3.1 by con-
sidering the case g = 1. Further, statement 1 shows that h̄m is an
invariant measure for the Markov kernel which is clearly equivalent
to the Riemannian volume m because h̄ is positive. The uniqueness
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statement follows from ergodicity, which we will prove now. The proof
is fairly standard. Let C be an invariant event for {Xn} and put
ψ(x) = P(C|X0 = x). It can be shown (see [9], proof of Theorem 7.16)
that ψ can assume the values 0 or 1 only h̄m-a.s., and further that

(16) ψ(x) =

∫

ψ(y)K(x, dy).

Thus we have to show that any ψ bounded and in L1(m) satisfying
Equation (16) is h̄m-a.s. equal to a constant. With ϕ ∈ Cα

+(E), we
have (by Eq. (16), Lemma 2.8, and item 2, respectively)

∫

ϕ(x)ψ(x) dm(x) = ‖ϕ‖1
∫

ϕ(x)

‖ϕ‖1
Kn(ψ, x) dm(x)

= ‖ϕ‖1
∫

Pn

(

ϕ

‖ϕ‖1

)

(x) ψ(x) dm(x)

→ ‖ϕ‖1
∫

h(x)ψ(x) dm(x),

(17)

which implies that ψ(x) =
∫

h(z)ψ(z)dm(z), completing the proof. �

Finally, the following theorem covers some situations in which the
signal process is not ergodic.

Theorem 3.3. Suppose that φn is an i.i.d. series of random local dif-
feomorphism of class C1+α satisfying C1, that x → E(log+(c)|X1 = x)

is in L1(m), and that dP(X0∈·)
dm

= π0 exists. Then there exist a constant
ξ < 0 and a set Ω0 ⊂ Ω of full measure so that for any ω ∈ Ω0 and
ϕ, ψ ∈ Cα

+(E) we have

(18) lim
n→+∞

1

n
log ‖L̂n(ω)ϕ− L̂n(ω)ψ‖∞ ≤ ξ

where we write L̂n(ω) = L̂(Yn(ω)) ◦ . . . ◦ L̂(Y1(ω)). In particular, if
π0 ∈ Cα

+(E) we have for the filtering process πn and any ϕ ∈ Cα
+(E)

lim
n→+∞

1

n
log ‖L̂n(ω)ϕ− πn(ω)‖∞ ≤ ξ

Proof. We can introduce a new probability measure P̃ on YN ∨ XN0

without changing the distribution of {φn} by putting dP̃(X0∈·)
dm

= h̄ where

h̄ is as in Corollary 3.2. This renders {Xn} ergodic and thus also {Yn}
by Proposition 2.5. We can thus extend the probability space (Ω, P̃)
so that {Yn} extends to negative times, and we are in the setting of
Theorem 3.1. Condition C1 is satisfied by assumption. Condition C2
is satisfied if we can show that c is integrable with respect to P̃ (see



14 J. BRÖCKER AND DEL MAGNO

Remark 4.2). But this is the case because

Ẽ(c) =

∫

E

E(c|X1 = x)h̄(x) dm

≤ ‖h̄‖∞
∫

E

E(c|X1 = x) dm <∞

by assumption on c. Statement (18) now follows from item 4 in Theo-
rem 3.1 and the triangle inequality. Since the set Ω0 on which (18) is
valid is in YN, and since dP

dP̃
|YN∨XN0

= π0
h̄
, we have P(Ω0) = 0, as claimed.

The last statement follows because πn = L̂n(ω)π0. �

Example 3.4. Let E = Td = Rd/Zd be the d–dimensional flat torus,
and Ak ∈ Zd×d for k = 1 . . . l with ‖A−1

k ‖−1 ≥ σ0 > 1 for some
σ0. Let {Zn : n ∈ N} be a series of independent and identically dis-
tributed random variables on some probability space (Ω,F ,P) with
values in {1 . . . l}. Then φn : (ω, x) 7→ AZn(ω)x mod 1 is an i.i.d.
series of random local diffeomorphisms of Td which satisfies assump-
tion C1. Further, let {Rn : n ∈ N} be a series of iid standard nor-
mal random variables, independent of the {Zn : n ∈ N}. We as-
sume that X0 is independent of {Rn} and {Zn : n ∈ N}, and that
the signal process {Xn : n ∈ N0} is generated as in Subsection 2.3.
Now for some constant s > 0 and w : Td → R a α–Hölder continu-
ous function, let the observation process be Yn = w(Xn) + s · Rn for
n ∈ N. With λ being the Lebesgue measure on R, we get the likelihood
g(y, x) = exp(−(y −w(x))2/(2s2))/(

√
2πs). We are now in the setting

of Proposition 2.9.
Further, | log g(y, ·)|α = 1

s2
|yw − 1

2
w2|α ≤ 1

s2
(|w|α|y|+ 1

2
|w|2α) so that

| log g(Y1(ω), ·)|α ≤ 1
s2
(|w|α|R1| + |w|α‖w‖∞ + 1

2
|w|2α) which gives that

E(c|X1 = x) is bounded by a finite constant independent of x. Hence

if dP(X0∈·)
dm

= π0 exists, the conditions of Theorem 3.3 are satisfied.
Further, the conditions of Corollary 3.2 are also satisfied and if we let
π0 = h̄, then the conditions of Theorem 3.1 are satisfied, too.

4. Random fixed point theorem

Let (Ω,F ,P) be a probability space together with an automorphism
T : Ω → Ω preserving the probability P. The abstract dynamical sys-
tem (Ω,F ,P, T ) is assumed to be ergodic. In the rest of the paper,
any almost everywhere true statement on Ω has to be understood with
respect to the measure P. We assume that there exist a collection
{Xω}ω∈Ω of subsets of some space X and a complete metric dω on each
Xω. Let U =

⋃

ω∈Ω ({ω} ×Xω). We also assume that there exists a
transformation

φ : U → X
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such that φ(ω,Xω) ⊆ XTω. The iterations φn : U → X of φ are given
by

φn(ω, x) =

{

x if n = 0,

φ(T n−1ω, ·) ◦ · · · ◦ φ(ω, x) if n > 0.

For every ω ∈ Ω and every x ∈ Xω, the sequence {φn}n≥0 satisfies the
cocycle property :

φn+m(ω, x) = φn(T
mω, φm(ω, x)), m, n = 0, 1, 2, . . . ,

and is called a random dynamical system on X over (Ω,F ,P, T ) gen-
erated by φ, or simply the random dynamical system φ.

Remark 4.1. The notion of random dynamical system presented here
coincides essentially with the one of a discrete time random dynamical
system generated by the random map φ given in Arnold’s book [1].
The only difference between the two definitions is that our definition
does not require the map φ to be measurable.

4.1. Random fixed point theorem. We now prove a random fixed
point theorem (Theorem 4.3), which will be instrumental in proving our
main result. The main hypotheses of the theorem are Conditions A1
and A2 below. The extra Condition A3 is required for the measurability
and uniqueness of the random fixed point.

A1 (Contraction on average): The map φ(ω, ·) is Lipschitz for all
ω ∈ Ω. The Lipschitz constant of φn(ω, ·) : (Xω, dω) → (XTnω, dTnω) is
denoted by ρn(ω) for all ω ∈ Ω and n ≥ 0. There exists an integrable
function r : Ω → R such that log ρ1(ω) ≤ r(ω) for a.e. ω ∈ Ω and
β :=

∫

Ω
r(ω)dP(ω) < 0.

A2 (Temperedness): There exist a map x0 : Ω → X and a mea-
surable function g : Ω → (0,+∞) with limn→±∞ |n|−1 log g(T nω) = 0
for a.e. ω ∈ Ω such that x0(ω) ∈ Xω for every ω ∈ Ω, and l(ω) :=
dω (x0(ω), φ(T

−1ω, x0(T
−1ω))) ≤ g(ω) for a.e. ω ∈ Ω.

A3 (Measurability): The setX is equipped with a metric d such that
d|Xω ≤ dω for every ω ∈ Ω. Denote by X and U the Borel σ-algebra
of X generated by d and the restriction of F ⊗ X to U , respectively.
The transformations φ : (U,U) → (X,X ) and x0 : (Ω,F) → (X,X ) are
both measurable.

Remark 4.2. We recall that if f : Ω → R is measurable, then

lim
n→∞

1

n
f(T nω) = lim

n→∞

1

n
f(T−nω) ∈ {0,+∞} for a.e. ω ∈ Ω.

and that the limit is equal to 0 if f+ := max{0, f} ∈ L1(P) [1, Propo-
sition 4.1.3].
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Theorem 4.3. Let φ be a random dynamical system satisfying condi-
tions A1 and A2. Let β be the constant in A1, and let x0 be the map
in A2. Then there exist a T -invariant set Ω1 ⊂ Ω of full measure and
a map Z : Ω → X such that for every ω ∈ Ω1, we have

(1) Z(ω) ∈ Xω,

(2) limn→+∞

1

n
log dω (Z(ω), φn(T

−nω, x0(T
−nω))) ≤ β,

(3) Z(T n+1ω) = φ(T nω, Z(T nω)) for n ∈ Z,

(4) limn→+∞

1

n
log dTnω(Z(T

nω), φn(ω, x)) ≤ β for x ∈ Xω,

(5) limn→±∞

1

|n| log dTnω (Z(T
nω), x0(T

nω)) ≤ 0.

Moreover, if condition A3 holds as well, then Z is measurable wrt to
the Borel σ-algebra of (X, d), is the unique2 measurable map satisfy-
ing conclusions (1) and (3), and conclusions (2),(4) and (5) hold with
respect to the metric d as well.

Proof. By the Birkhoff Ergodic Theorem, there exists a measurable set
Ω∗ ⊂ Ω of full measure such that

lim
n→±∞

1

|n|

n−1
∑

k=0

r(T kω) = β for ω ∈ Ω∗.

One can easily construct a T -invariant set Ω1 ⊂ Ω∗ of full measure such
that both conditions A1 and A2 are satisfied for every ω ∈ Ω1.
For every ω ∈ Ω1 and every ǫ > 0, there exists k̄(ω, ǫ) > 0 such that

for every k > k̄(ω, ǫ),

(19)

∣

∣

∣

∣

∣

k−1
∑

i=0

(

r(T±iω)− β
)

∣

∣

∣

∣

∣

≤ ǫk and g(T−kω) ≤ eǫk.

Hence,

ρk(ω) ≤
k−1
∏

i=0

ρ1(T
iω) ≤ e

∑k−1

i=0
r(T iω) ≤ e(β+ǫ)k,(20)

ρk(T
−kω) ≤

k−1
∏

i=0

ρ1(T
−iω) ≤ e

∑k−1

i=0
r(T−iω) ≤ e(β+ǫ)k,(21)

and

(22) l(T−kω) ≤ g(T−kω) ≤ eǫk.

2This means that if Y : Ω → X is a measurable map satisfying conclusions (1)
and (3) on an invariant set Ω2 ⊂ Ω of positive measure, then Y = Z a.e. on Ω2.
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For each n ≥ 0, define

Zn(ω) =

{

φn(T
−nω, x0(T

−nω)) if ω ∈ Ω1,

x0(ω) if ω ∈ Ω \ Ω1.

By A2, we have Zn(ω) ∈ Xω for every ω ∈ Ω.
Let ω ∈ Ω1 and 0 < ǫ < −β/2. From (21) and (22), it follows that

if n > m > k̄(ω, ǫ), then

dω (Zm(ω), Zn(ω)) ≤
n−1
∑

k=m

dω (Zk(ω), Zk+1(ω))

≤
n−1
∑

k=m

ρk(T
−kω)l(T−kω)

≤
n−1
∑

k=m

e(β+2ǫ)k ≤ e(β+2ǫ)m

1− eβ+2ǫ
.

(23)

To obtain the second inequality, we used the fact that Zk+1(ω) is
equal to φk(T

−kω, φ(T−k−1ω, x0(T
−k−1ω))). It follows that {Zn(ω)} is

a Cauchy sequence. Since (Xω, dω) is complete, there exists Z(ω) ∈ Xω

such that

(24) lim
n→+∞

dω(Zn(ω), Z(ω)) = 0,

proving the existence of Z and conclusion (1) of the theorem. By taking
the limit in (23) as n→ +∞, we obtain

dω(Zm(ω), Z(ω)) ≤
e(β+2ǫ)m

1− eβ+2ǫ
for m > k̄(ω, ǫ).

Since ǫ is arbitrarily small, the previous inequality gives conclusion (2)
of the theorem.
Let ω ∈ Ω1. The set Ω1 is T -invariant, and so T nω ∈ Ω1 for every

n ∈ Z. From (24), it follows that

Z(T n+1ω) = lim
k→+∞

φk(T
−k+n+1ω, x0(T

−k+n+1ω)).

Using the cocycle property of φ and the continuity of φ(ω, ·), we obtain
conclusion (3) of the theorem:

Z(T n+1ω) = lim
k→+∞

φk(T
−k+n+1ω, x0(T

−k+n+1ω))

= lim
k→+∞

φ(T nω, φk−1(T
−k+n+1ω, x0(T

−k+n+1ω)))

= φ(T nω, Z(T nω)).
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In particular, we have Z(T nω) = φn(ω, Z(ω)). This together (20)
implies that if x ∈ Xω, then

dTnω (φn(ω, x), Z(T
nω)) = dTnω (φn(ω, x), φn(ω, Z(ω)))

≤ ρn(ω)dω (x, Z(ω))

≤ e(β+ǫ)ndω(x, Z(ω))

for ǫ > 0 and n > k̄(ω, ǫ), giving conclusion (4) of the theorem.
By the definition of Z and using the first two inequalities in (23), we

obtain

dω (Z(ω), x0(ω)) = lim
n→+∞

dω (Zn(ω), Z0(ω))

≤ lim
n→+∞

n−1
∑

k=0

ρk(T
−kω)l(T−kω)

≤
∞
∑

k=0

e
∑k−1

i=0
r(T−iω)g(T−kω) =: f(ω).

The function f is well defined, because
∑k−1

i=0 r(T
−iω) ∼ kβ < 0 as

k → ∞, and g ◦ T−i has sub-exponential growth. Note also that f is
measurable, since it is the limit of measurable functions with values in
R. To prove conclusion (5), it is enough to show that

lim
m→+∞

1

m
log f(T−mω) ≤ 0 for ω ∈ Ω1.

Indeed, by Remark 4.2, we then have

lim
m→+∞

1

m
log f(T−mω) = lim

m→+∞

1

m
log f(Tmω) = 0 for a.e. ω ∈ Ω.

Fix m > k̄(ω, ǫ). From (19), it follows that

k−1
∑

i=0

r(T−i−mω) =
k+m−1
∑

i=0

r(T−iω)−
m−1
∑

i=0

r(T−iω) ≤ βk + 2ǫm,

and
g(T−k−mω) ≤ e(k+m)ǫ.

Now, fix 0 < ǫ < β. Combining all together, we obtain

f(T−mω) =
∞
∑

k=0

e
∑k−1

i=0
r(T−i−mω)g(T−k−mω)

≤ e3mǫ
∞
∑

k=0

e(β+ǫ)k =
e3mǫ

1− eβ+ǫ
,

and so

lim
m→+∞

1

m
log f(T−mω) ≤ 3ǫ.

Since ǫ is arbitrary, we obtain the wanted conclusion.
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Condition A3 implies that each map Zn : Ω → X is measurable, and
that the sequence {Zn} converges pointwise to Z with respect to the
metric d, since it does with respect to the metric dω. We can therefore
conclude that Z : Ω → X is measurable (for example, see [18, Theorem
4.2.2]).
To prove the uniqueness of Z, we argue by contradiction. Suppose

that there exist a T -invariant subset Ω2 ⊂ Ω of positive measure and a
measurable Y : Ω2 → X satisfying conclusions (1) and (3) on Ω2. Also,
suppose that X 6= Y on a measurable subset of Ω1 ∩ Ω2 of positive
measure. It follows that there exists η > 0 such that the measurable
set A = {ω ∈ Ω1 ∩ Ω2 : d(Z(ω), Y (ω)) > η} has positive measure. By
the Poincaré Recurrence Theorem, there exist ω ∈ A and a diverging
sequence of positive integers such that T nkω ∈ A for every k > 0. Then,
by applying conclusions (1) and (3) to Y and using conclusion (4), we
obtain the contradiction,

η < dTnkω (Z(T
nkω), Y (T nkω)))

= dTnkω (Z(T
nkω), φnk(ω, Y (ω))) −−−−→

k→+∞
0.

Thus, X = Y a.e. on Ω2, and conclusion (6) holds. �

4.2. Affine systems. When φ is affine, then the map Z of Theo-
rem 4.3 has an explicit representation. Indeed, suppose that Xω = Rk

with dω = d being the distance generated by the Euclidean norm
‖ · ‖. Let Ek be the space of k × k matrices. Also, suppose that
ω 7→ A(ω) ∈ Ek and ω 7→ B(ω) ∈ Rk are measurable. The random
dynamical system generated by φ(ω, x) = A(ω)x+B(ω), ω ∈ Ω, x ∈ Rd

is called affine. Systems of this type will appear in Section 6.1.

Proposition 4.4. Suppose that φ is an affine random dynamical sys-
tem satisfying

(1)
∫

log ‖A(ω)‖dP(ω) < 0,

(2) limn→±∞ |n|−1 logmax{1, ‖B(T nω)‖} = 0.

Then all the conclusion of Theorem 4.3 hold for φ. Moreover,

Z(ω) =
∞
∑

k=1

(

k−1
∏

i=1

A(T−iω)

)

B(T−kω) for a.e. ω ∈ Ω.

Proof. By choosing x0(ω) ≡ 0, we see that Condition A3 is immediately
satisfied. Since ρ1(ω) = ‖A(ω)‖, the first hypothesis of the propo-
sition implies Condition A1. Finally, since l(ω) = ‖B(T−1(ω))‖ ≤
max{1, ‖B(T−1(ω))‖}, the second hypothesis of the proposition im-
plies Condition A2. Now, the first conclusion of the proposition is just
Theorem 4.3; Part (2) of Theorem 4.3 and a straighforward computa-
tion yield the second conclusion of the proposition. �
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5. Hilbert’s projective metric

In this section, we recall the essential definitions and properties con-
cerning Hilbert’s projective metric on cones. This metric plays a key
role in the proof of Theorem 3.1. For a more complete account on the
subject, the reader is referred to [4, 5, 6, 28, 29, 31].

5.1. Hilbert’s metric on cones. Let (B, | · |) be a real normed space
with the topology induced by the norm | · |. A subset C of B \ {0}
is called a convex cone if λϕ + µψ ∈ C for every ϕ, ψ ∈ C and every
λ, µ > 0. We say that C is closed if C ∪ {0} is closed. Any cone C
defines a partial ordering on B by the rule ϕ � ψ with ϕ, ψ ∈ B if and
only if ψ − ϕ ∈ C ∪ {0}. If C is also closed, then � is continuous, i.e.,
if ϕn, ψ ∈ B such that ψ � ϕn for every n > 0 and limn→+∞ ϕn = ϕ,
then ψ � ϕ. Henceforth, a cone is always understood to be closed and
convex, unless said otherwise.
We say that two elements ϕ, ψ of a cone C are comparable and write

ϕ ∼ ψ if and only if λϕ � ψ � µϕ for some λ, µ > 0. The relation ∼
is an equivalence relation, and the equivalence classes of C are called
components of C. We denote by Cψ the component of C containing the
element ψ ∈ C. A component of C has all the property of the cone C
except possibly the closedness.
The Hilbert metric θ on a cone C is defined as follows. Let

a(ϕ, ψ) = sup{λ > 0 : λϕ � ψ},
b(ϕ, ψ) = inf{µ > 0 : ψ � µϕ}.

Then for any pair ϕ, ψ ∈ C, define

(25) θ(ϕ, ψ) =

{

log b(ϕ,ψ)
a(ϕ,ψ)

if ϕ ∼ ψ,

+∞ otherwise.

It is easy to check that the restriction of θ to each component Cψ of
C with ψ ∈ C is a pseudo-metric, and the restriction of θ to the set
{ϕ ∈ Cψ : |ϕ| = 1} is a metric.

5.2. Birkhoff’s contraction coefficient. Let (C1, θ1) and (C2, θ2) be
cones of the real normed spaces (B1, | · |1) and (B2, | · |2), respectively,
with their respective Hilbert metrics. Suppose that L : B1 → B2 is a
linear transformation such that LC1 ⊂ C2. Then it can be shown that
the restriction of L to C1 is a contraction with respect to θ1 and θ2 [31,
Section 2.1], i.e.

θ2(Lϕ,Lψ) ≤ θ1(ϕ, ψ) for ϕ, ψ ∈ C1.

The next result due to Birkhoff shows that L is a strict contraction
if the diameter of LC1 is finite.



ASYMPTOTIC STABILITY, NONLINEARITY (2017) 21

Proposition 5.1. Suppose that D = sup{θ2(Lϕ,Lψ) : ϕ, ψ ∈ C1} is
finite, then

(26) θ2(Lϕ,Lψ) ≤ tanh

(

D

4

)

θ1(ϕ, ψ) for ϕ, ψ ∈ C1.

For the proof of this proposition, see [5]. The factor tanh(D/4) is
called the Birkhoff coefficient of L.

5.3. Cones of Hölder continuous functions. We now introduce the
family of cones used in the proof of Theorem 3.1. Let E be a connected
compact smooth Riemannian manifold, and consider the Banach space
(C(E), ‖ · ‖∞). We denote by C+ the set of strictly positive continuous
functions on E, and (as in Section 3) we put Cα

+ the set of strictly
positive functions on E whose logarithm is Hölder continuous with
exponent α > 0.
For every t ≥ 0, let

C(t) = {ϕ ∈ C+(E) : ϕ(x) ≤ etd(x,y)
α

ϕ(y) for x, y ∈ E}
One can easily check that each C(t) is a cone of (C(E), ‖ · ‖∞) and
Cα

+ =
⋃

t≥0 C(t). The Hilbert projective metric θt on C(t) is given by

θt(ϕ, ψ) = log



sup
x 6=y
u 6=v

etd(x,y)
α

ϕ(x)− ϕ(y)

etd(x,y)αψ(x)− ψ(y)
· e

td(u,v)αψ(u)− ψ(v)

etd(u,v)αϕ(u)− ϕ(v)





for ϕ, ψ ∈ C(t). For a proof, see [4, Lemma 2.3].
Let �t be the partial ordering on C(E) generated by C(t). We will

simply write � when there is no danger of ambiguity. Let ψ ∈ C(t),
and define Σψ(t) = {ϕ ∈ Cψ(t) : ‖ϕ‖1 = 1}. For the proof of the next
lemma, see [28, Lemma 1.3].

Lemma 5.2. For every ψ1, ψ2 ∈ Σψ(t), we have

‖ϕ1 − ϕ2‖1 ≤
(

eθt(ϕ1,ϕ2) − 1
)

,

and
‖ϕ1 − ϕ2‖∞ ≤

(

eθt(ϕ1,ϕ2) − 1
)

min{‖ϕ1‖∞, ‖ϕ2‖∞}.
The following proposition follows immediately from [29, Theorem 1.2].

Proposition 5.3. (Σψ(t), θt|Σψ(t)) is a complete metric space for k =
1,∞.

Denote by 1 the characteristic function on E. Clearly, 1 ∈ C(t) for
every t ≥ 0. The next lemma shows that C(s) ⊂ C1(t) (the component
of C(t) containing 1) for every 0 ≤ s < t.

Lemma 5.4. Let ϕ ∈ C(δt) for some t ≥ 0 and 0 < δ < 1. Then

θt(1, ϕ) ≤ log
1 + δ

1− δ
+ (diamE)αtδ.
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Proof. It is not difficult to check that for z > 1 and 0 < δ < 1, we have

1− δ <
z − zδ

z − 1
<
z − z−δ

z − 1
< 1 + δ.

Using the previous inequality and the fact that ϕ ∈ C(δt), we obtain

etd(x,y)
α

ϕ(x)− ϕ(y)

etd(x,y)α − 1
= ϕ(x)

etd(x,y)
α − ϕ(y)

ϕ(x)

etd(x,y)α − 1

= ϕ(x)
etd(x,y)

α − e−tδd(x,y)
α

etd(x,y)α − 1

≤ ϕ(x) · sup
z>1

{

z − z−δ

z − 1

}

≤ ϕ(x)(1 + δ) for x 6= y.

Similarly, we obtain

etd(u,v)
α

ϕ(u)− ϕ(v)

etd(u,v)α − 1
≥ (1− δ)ϕ(u) for u 6= v.

We can now conclude that

θt(1, ϕ) = log sup
x 6=y
u 6=v

{

etd(x,y)
α

ϕ(x)− ϕ(y)

etd(x,y)α − 1
· etd(u,v)

α − 1

etd(u,v)αϕ(u)− ϕ(v)

}

≤ log

(

1 + δ

1− δ
· sup
x,u∈E

{

ϕ(x)

ϕ(u)

})

≤ log
1 + δ

1− δ
+ log sup

x,u∈E

etδd(x,u)
α

≤ log
1 + δ

1− δ
+ tδ(diamE)α.

�

6. Proof of Theorem 3.1

In this section, we prove Theorem 3.1. Recall that E is a connected
compact smooth Riemannian manifold (without boundaries), φ is a
random local diffeomorphism on E, and γ is a likelihood function on E
of class Cα with 0 < α ≤ 1. We assume that φ and γ satisfy Conditions
C1 and C2. The main idea of the proof is to apply Theorem 4.3 to the
random dynamical system generated by the random operator L.

6.1. Dynamics in the space of cones. Let {C(t)}t≥0 be the family
of cones defined in Subsection 5.3.

Lemma 6.1. Suppose that ϕ ∈ C(t) with t ≥ 0. Then

(27) L(ω)ϕ ∈ C
(

t+ b0
σα0

+ c(ω)

)

for ω ∈ Ω.
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Proof. Since E is compact, the map φ(ω, ·) is proper for every ω.
But φ(ω, ·) is also a local diffeomorphism for every ω, and so φ(ω, ·)
is a N(ω)-covering map of E with N(ω) ∈ N being the degree of
φ(ω, ·) (see [25, Proposition 4.46]). Covering maps have the path lifting
property [25, Proposition A.77]: given a curve ξ : [0, 1] → E and a

point x̃ ∈ φ(ω, ·)−1(ξ(0)), there exists a unique curve ξ̃ : [0, 1] → E

such that ξ̃(0) = x̃ and φ(ω, ξ̃) = ξ. From this property, it fol-
lows that given any two points x, y ∈ E, we can order the preimages
{x̃1, . . . , x̃N(ω)} = φ(ω, ·)−1(x) and {ỹ1, . . . , ỹN(ω)} = φ(ω, ·)−1(y) so
that

(28) σ(ω)d(x̃i, ỹi) ≤ d(x, y) for i = 1, . . . , N(ω).

Define η(ω, x) = log | detDxφ(ω, x)| for ω ∈ Ω and x ∈ E, and let
ϕ ∈ C(t) for t ≥ 0. Let x, y ∈ E. From (28) and the properties of ϕ,
we obtain

(Pωϕ)(x) =
N(ω)
∑

i=1

exp [η(ω, x̃i)]ϕ(x̃i)

≤
N(ω)
∑

i=1

exp [η(ω, ỹi) + b(ω)d(x̃i, ỹi)
α]ϕ(ỹi) exp [td(x̃i, ỹi)

α]

≤ exp

(

t+ b(ω)

σ(ω)α
d(x, y)α

)N(ω)
∑

i=1

exp [η(ω, ỹi)]ϕ(ỹi)

= exp

(

t+ b(ω)

σ(ω)α
d(x, y)α

)

(Pωϕ)(y).

The previous inequality combined with Condition C1 gives

Pϕ(x) ≤ exp

(

t+ b0
σα0

)

Pϕ(y).

Now, the wanted conclusion follows easily from the definitions of the
operator L and the function c. �

Inclusion (27) defines an action of L on the cone-parameter t. We
associate to this action an affine random dynamical system as follows.
Recall that σ0 > 1 by Condition C1. Pick σ−α

0 < δ < 1, and let
β = − log(δσα0 ) < 0. Let q : Ω× R → R be the map given by

q(ω, t) = eβt+ b0e
β + c(ω) for ω ∈ Ω and t ∈ R.

This map generates an affine random dynamical system on R. Denote
by qn the nth iterate of q.

Proposition 6.2. There exists a full measure T -invariant set Ω1 ⊂ Ω
such that

Z(ω) :=
b0e

β

1− eβ
+

∞
∑

k=1

eβ(k−1)c(T−kω) > 0 for ω ∈ Ω1,
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is the only measurable function on Ω1 with the following properties:

(1) Z(T n+1ω) = q(T nω, Z(T nω)) for ω ∈ Ω1 and n ∈ Z,

(2) limn→+∞

1

n
log |Z(T nω)− qn(ω, t)| ≤ β for ω ∈ Ω1 and t ∈ R,

(3) limn→±∞

1

|n| logZ(T
nω) = 0 for ω ∈ Ω1.

Proof. The proposition is now a corollary of Proposition 4.4. Indeed, in
the notation of Proposition 4.4, we have A(ω) = eβ and B(ω) = b0e

β.
The first hypothesis of Proposition 4.4 is trivially satisfied, whereas the
second one follows directly from Condition C2. �

Lemma 6.3. Let Ω1 and Z be as in Proposition 6.2. Then for every
n > 0, we have

(1) Ln(ω)C(t) ⊂ C(δqn(ω, t)) ⊂ C1(qn(ω, t)) for ω ∈ Ω and t ≥ 0,
(2) Ln(ω)C(Z(ω)) ⊂ C(δZ(T nω)) ⊂ C1(Z(T nω)) for ω ∈ Ω1.

Proof. The lemma is an easy consequence of Lemmas 5.4 and 6.1 and
Proposition 6.2. �

Theorem holds for functions ϕ ∈ Cα
+(E). The next proposition allows

us to reduce the proof of Theorem 3.1 to the special case when ϕ ∈
C(Z(ω)).

Proposition 6.4. Let Ω1 and Z be as in Proposition 6.2. Then

(1) for every t ∈ R and a.e. ω ∈ Ω1, there exists n > 0 such that
δqn(ω, t) < Z(T nω);

(2) for every ϕ ∈ Cα
+(E) and a.e. ω ∈ Ω1, there exists an integer

n > 0 such that Ln(ω)ϕ ∈ C(Z(T nω)).

Proof. By conclusion (1) of Theorem 6.2, we can find ǫ > 0 such that
the set Ω̃ = {ω ∈ Ω1 : Z(ω) > ǫδ/(1 − δ)} has positive P-measure.
Since (Ω,F ,P, T ) is ergodic, there exists a set Ω2 ⊂ Ω1 of full measure
such that for every ω ∈ Ω2, we can find an increasing sequence of
positive integers {nk(ω)}k>0 with the property that T nk(ω)ω ∈ Ω̃ for
every k > 0.
Fix ω ∈ Ω2 and t ∈ R, and write nk for nk(ω). From conclusion (3)

of Theorem 6.2, it follows that qnk(ω, t) ≤ Z(T nkω)+ǫ for k sufficiently

large. Since T nkω ∈ Ω̃, we obtain

qnk(ω, t) ≤ Z(T nkω) +

(

1

δ
− 1

)

Z(T nkω) ≤ 1

δ
Z(T nkω),

which proves part (1) of the proposition.
Given ϕ ∈ Cα

+(E), there exists t > 0 such that ϕ ∈ C(t). By
Lemma 6.3, we know that Ln(ω)ϕ ⊂ C(δqn(ω, t)) for ω ∈ Ω and n > 0.
Part (2) of the proposition now follows from Part (1). �
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6.2. The random dynamical system generated by L̂. Let X be
the Banach space (C(E), ‖·‖∞). Let Ω1 be the set as in Proposition 6.2.
Without loss of generality, we can assume that Ω1 = Ω and that the
function Z is strictly positive everywhere on Ω. Recall that 1 is the
characteristic function on E. As before, let C1(t) be the component of
C(t) containing 1. Define

Xω = {ϕ ∈ C1(Z(ω)) : ‖ϕ‖1 = 1} = Σ1(Z(ω)) for ω ∈ Ω.

Denote by θω the Hilbert metric of C(Z(ω)). By Proposition 5.3,
the metric space (Xω, θω|Xω) is complete. By Lemma 6.3, we have

L(ω)C1(Z(ω)) ⊆ C1(Z(Tω)), and so L̂(ω)Xω ⊆ XTω.

Lemma 6.5. The random dynamical system generated by L̂ satisfies
Conditions A1 and A2.

Proof. Fix ω ∈ Ω. By Lemma 5.4, the diameter of C(δZ(Tω)) com-
puted with respect to the metric θTω is bounded above by the measur-
able function

D(ω) := 2 log
1 + δ

1− δ
+ 2δ (diamE)α Z(Tω).

Proposition 5.1 implies that L̂(ω) : (Xω, θω) → (XTω, θTω) is a strict
contraction with Lipschitz constant ρ(ω) ≤ tanh(D(ω)/4). Since 0 <
Z < +∞ a.e. on Ω, it is easy to check that the function r(ω) :=
log tanh(D(ω)/4) is negative and bounded a.e. on Ω. This implies
that r ∈ L1(P) and

∫

r(ω)dP(ω) < 0. Hence, Condition A1 is satisfied.
We now prove that A2 is satisfied with x0 ≡ 1. Note that 1 ∈ Xω

for every ω ∈ Ω. By Lemma 5.4, we have θω(1, L̂(T−1ω)1) ≤ D(ω).
So it is enough to observe that limn→±∞ |n|−1 logD(T nω) = 0 for a.e.
ω ∈ Ω, which follows easily from conclusion (3) of Proposition 6.2.

�

Lemma 6.6. Suppose that ϕ : Ω×E → R is a measurable function such
that ϕ(ω, ·) ∈ C(E) for every ω ∈ Ω. Then the function ω 7→ ‖ϕ(ω, ·)‖1
is measurable.

Proof. The lemma follows directly from Tonelli’s Theorem. �

We will now conclude the proof of Theorem 3.1. By Lemma 6.5, con-
clusions (1)-(5) of Theorem 4.3 hold for the random dynamical system

L̂. This means precisely that there exist a T -invariant set Ω0 ⊂ Ω of
full measure and a function h : Ω × E → R such that for ω ∈ Ω0 and
ϕ ∈ Xω, we have

(i) h(ω, ·) ∈ Xω,

(ii) limn→+∞ n−1 log θω(h(ω, ·), L̂n(T−nω)1) ≤ ξ,

(iii) L̂n(ω)h(ω, ·) = h(T nω, ·) for every n ∈ Z,

(iv) limn→+∞ n−1 log θTnω(h(T
nω, ·), L̂n(ω)ϕ) ≤ ξ,

(v) limn→±∞ |n|−1 log θTnω (h(T
nω),1) ≤ 0.
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Conclusions (1)-(4) of the theorem are straightforward consequences
of statements (i)-(iv) above. Indeed, conclusion (1) is just statement
(i). By Lemma 5.2, we have

‖h(ω, ·)− L̂n(T−nω)1‖∞ ≤ (eΘω(h(ω,·),L̂n(T
−nω)) − 1)‖h(ω, ·)‖∞.

This together with (ii) implies conclusion (2). Conclusion (5) is de-
rived similarly from (v). To prove conclusion (3), we define Λ(ω) =
‖L(ω)h(ω, ·)‖1, and then use (iii). The proof of Conclusion (4) is sim-
ilar to that of (2), and follows directly from (iv), (v), Lemma 5.2 and
the second part of Proposition 6.4. Note that in (iv), it is assumed
that ϕ ∈ Xω with ω ∈ Ω0. We can assume that this is the case even
when ϕ ∈ Cα

+(E) in virtue of the second part of Proposition 6.4 and
the T -invariance of Ω0.
Let gn(ω, x) = (L(T−nω)1)(x) for ω ∈ Ω, x ∈ E and n > 0. By

Lemma 2.7, each gn is measurable, and by Lemma 6.6, ω 7→ ‖gn(ω, ·)‖1
is also measurable. Hence, hn(ω, x) := gn(ω, x)/‖gn(ω, ·)‖1 is measur-
able. Now, by conclusion (2), the sequence {hn(ω, ·)}n>0 converges
uniformly to h(ω, ·) for every ω ∈ Ω0. Hence, the restriction h|Ω0×E

is measurable. By construction of h (see the proof of Theorem 4.3)
and our choice x0(ω, ·) = 1, we also have h(ω, ·) = 1 for Ω \ Ω0. We
conclude that h is measurable on the entire set Ω× E.
We now show that Λ is measurable. Since h is measurable, Lemma 2.7

implies that (ω, x) 7→ (L(ω)h(ω, ·))(x) is measurable. Moreover, since
h(ω, ·) ∈ C(E) is continuous, L(ω)h(ω, ·) is continuous as well. Hence,
(ω, x) 7→ (L(ω)h(ω, ·))(x) satisfies the hypotheses of Lemma 6.6, and
so Λ is measurable.
It remains to show that h and Λ are unique. The proof is the same

as the one of the uniqueness of Z in Theorem 4.3, and so we omit
it. Finally, we remark that if Z is bounded in ω (for instance if c is
bounded), then the converge in Theorem 3.1 is uniform in ω.

Appendix A. Disintegrations and their Radon–Nikodym

derivatives

In this paper, we consider mappings and measures on product spaces
Ω × E, where E is metric. The following facts prove useful in this
context.

Lemma A.1. Suppose E is polish space, and let B be the Borel algebra
on E.

(1) Let Q be a probability measure on (Ω,A)×(E,B) with marginal
P on Ω. There exists a regular conditional probability µω which
disintegrates Q. That is, µω is a probability measure on (E,B)
for every ω, the function ω → µω(B) is measurable for every
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B ∈ B, and

Q(A,B) =

∫

A

µω(B) dP.

(2) If µω disintegrates Q and ϕ ∈ L1(Q), then the mapping

µω(ϕω) : ω →
∫

ϕ(ω, x) dµω(x)

is in L1(P), and
∫

ϕdQ =

∫

µω(ϕω) dP.

(3) If µω is regular and µω ≪ λ for every ω with some σ–finite mea-
sure λ, then there is a A × B–measurable version of q(ω, x) =
dµω
dλ

(x).
(4) If F is metric and ϕ : Ω×E → F is so that ϕ(., x) is measurable

for every x ∈ E and ϕ(ω, .) is continuous for every ω, then there
is a version of ϕ : Ω× E → F jointly measurable in (ω, x).

For a proof of (1), see [20], p.196. Item (2) is an easy consequence
of the monotone convergence theorem. Item (3) is a known fact; for
convenience of the reader, a proof is given below. Item (4) can be found
in [13], Lemma 3.14. Note that for every A ∈ A,

P(A) = Q(A,E) =

∫

A

µω(E) dP.

whence µω(E) = 1 a.s.

Proof. (of Item 3) A very similar statement is demonstrated in the
proof of theorem 3.1 in [30] for λ a probability measure, see also [17],
Ch. XI, Sec. 17. At first, let λ be a probability measure, and consider
the probability space (E,B, λ) with expectation M. Clearly, q(ω, ·) is
in L1 for every ω and ω → M(1B(·)q(ω, ·)) = µω(B) is measurable for
every B ∈ B. Let B1, B2, . . . be the countable basis for B and put Bn =
σ(B1, . . . , Bn). The function (ω, x) → qn(ω, x) = M(q(ω, ·)|Bn)(x) is
easily seen to be measurable as it can be explicitely constructed using
a finite disjoint Bn–measurable partition of E. But qn(ω, ·) is a L1–
martingale for every ω, so by martingale convergence limn qn(ω, x) =
q(ω, x) for any x not in some set Nω with λ(Nω) = 0. This means that
the measurable set N of points (ω, x) where qn does not converge has
ω–sections of zero measure, and Fubini implies (λ × P)(N) = 0, that
is, qn converges λ×P–almost everywhere. Hence q is measurable. The
extension to σ–finite λ is analogous to the corresponding statement for
Radon–Nikodym derivatives. �
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