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 2 

Abstract 27 

Intensifying livestock production to meet the demands of a growing global population 28 

coincides with increases in both the administration of veterinary antibiotics and manure 29 

inputs to soils. These trends have the potential to increase antibiotic resistance in soil 30 

microbial communities. The effect of maintaining increased antibiotic resistance on soil 31 

microbial communities and the ecosystem processes they regulate is unknown. We 32 

compare soil microbial communities from paired reference and dairy manure-exposed 33 

sites across the US. Given that manure exposure has been shown to elicit increased 34 

antibiotic resistance in soil microbial communities, we expect that manure-exposed sites 35 

will exhibit 1) compositionally different soil microbial communities, with shifts toward taxa 36 

known to exhibit resistance; 2) greater abundance of antibiotic resistance genes; and 3) 37 

corresponding maintenance of antibiotic resistance would lead to decreased microbial 38 

efficiency. We found that bacterial and fungal communities differed between reference 39 

and manure-exposed sites. Additionally, β-lactam resistance gene ampC was 5.2-fold 40 

greater under manure exposure, potentially due to the use of cephalosporin antibiotics in 41 

dairy herds. Finally, ampC abundance was positively correlated with indicators of 42 

microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under 43 

manure exposure. These findings demonstrate that the maintenance of antibiotic 44 

resistance associated with manure inputs alters soil microbial communities and 45 

ecosystem function. 46 

 47 

Key Words: Agroecology, soil ecology, ecosystem function 48 

 49 

 50 

 51 
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 3 

1. Background 53 

Globally, demand for livestock products is increasing [1]. With this demand and 54 

subsequent expansion in livestock production, antibiotic use is projected to increase by 55 

67% within the next two decades [2]. Given that in the United States almost 80% of the 56 

total antibiotics sold are used in the livestock industry [3, 4] and that 40-95% of the 57 

administered antibiotic is excreted in faeces and urine there is the potential to markedly 58 

increase antibiotic resistance in soil microbial communities  [5-7]. Compounding this 59 

probability is the observation that manure from cattle not administered antibiotics can 60 

also stimulate an increase in antibiotic resistance in the microbial community [8]. While 61 

the human health consequences of both possibilities are being investigated, the effect of 62 

manure and/or antibiotic inputs, and increasing antibiotic resistance on soil microbial 63 

community composition and ecosystem function are largely unknown, yet potentially 64 

important given widespread antibiotic use and projected increased livestock production 65 

and subsequently increased inputs of livestock waste [9].  66 

 67 

The potential ecological consequences of increased antibiotic exposure and/or 68 

maintenance of antibiotic resistance in response to manure inputs on soil microbial 69 

communities is largely unexplored. This oversight fails to consider growing evidence that 70 

links soil microbial community composition and physiology to ecosystem function [10-71 

13]. Furthermore, microbial efficiency has been tied directly to increased formation of soil 72 

organic matter and decreased loss of soil carbon via respiration [14-16]. Observations 73 

showing specific antibiotic effects on soil microbial community composition, and 74 

physiology [5, 7, 17], thus highlight the potential that the maintenance of antibiotic 75 

resistance could ultimately influence ecosystem-scale processes. That is, if soil bacteria 76 

must maintain some form of active antibiotic resistance – such as production of β-77 

lactamases – microbial growth efficiency could decrease through increased metabolic 78 
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 4 

costs, resulting in altered ecosystem function of soil microbes (and likely change in soil 79 

microbial community composition). Decreasing microbial efficiency indicated by 80 

increased mass-specific respiration could result in subsequent declines in soil carbon 81 

(C) retention. This is akin to the widely studied stress response in soil microbial 82 

communities (e.g. drought), whereby microbes shift allocation of C and nutrients from 83 

microbial growth to the production and maintenance of molecules (e.g. osmolytes) for 84 

survival [18].  85 

 86 

To examine the potential implications of the maintenance of antibiotic resistance on 87 

ecosystem scale processes we employed a large-scale assessment of reference and 88 

manure-exposed soils. We examined how long-term exposure to dairy cattle manure 89 

from herds treated with antibiotics can influence, the abundance of antibiotic resistance 90 

genes (ARGs) in soil, soil microbial community composition and microbial efficiency. 91 

While soils from these 11 paired sites represented a wide variety of edaphic, climate, 92 

and biological characteristics, we expected that with prolonged exposure to dairy 93 

manure and any excreted antibiotics, the microbial community would be altered. In 94 

particular, we expected an increase in the relative abundance of taxa associated with 95 

antibiotic resistance in general, and cephalosporins specifically. Secondly, we expected 96 

an increase in abundance of ARGs. Specifically, we expected that if antibiotic exposure 97 

was an important driver of resistance (as opposed to the manure itself) then this could 98 

potentially be indicated by an increase in ARGs related to cephalosporin resistance and 99 

little to no change in microbial mass-specific respiration when directly exposed to the 100 

cephapirin benzathine – the only antibiotic given to cattle at these sites (personal 101 

communication with dairy managers). Finally, we expected that indicators of microbial 102 

growth efficiency would decrease with manure and any associated antibiotic exposure 103 

due to the increased maintenance demands associated with antibiotic resistance, and 104 
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 5 

that this would ultimately increase the amount of C respired per unit microbial biomass. 105 

This would be apparent as a positive relationship between ARG abundance and mass-106 

specific respiration, even when considering the potential influence of other soil 107 

characteristics. 108 

 109 

2. Materials and Methods 110 

(a) Study design 111 

Between 21 November 2013 and 1 January 2014 soil samples were collected from 11 112 

dairy farms across the United States (figure S1). At each farm, onsite personnel 113 

collected soil samples from areas of cattle congregation (visually assessed and typically 114 

located near feed or water troughs, obvious inputs of manure at the time of sampling) 115 

and reference sites (a location not heavily trafficked by cattle, within close proximity to 116 

the manure-exposed site, free of manure at the time of sampling, but potentially exposed 117 

to minimal manure) – hereon, manure-exposed and reference, respectively. Pastures 118 

were stocked or had recently been stocked with cattle actively treated with a 119 

cephalosporin antibiotic (cephapirin benzathine) prior to the collection of soil samples 120 

(personal communication with the individual farm mangers). Cephapirin, an antibiotic 121 

used to prevent mastitis, has been shown to be excreted by cattle administered the drug 122 

[19]. Three soil samples (0-5 cm depth) were collected per site and combined into one 123 

composite sample from each location and then immediately shipped to Virginia Tech, 124 

Blacksburg, VA, USA for further processing. Once received, soils were sieved (4 mm), 125 

homogenized, and stored at 4°C or -80°C (for determination of ARG abundance and 126 

microbial community composition) until further analysis.  127 

 128 

(b) Abundance of antibiotic resistance genes and microbial community composition 129 

Microbial community composition was determined for both bacteria and fungi. DNA was 130 
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 6 

extracted from the soils using MoBio's PowerSoil DNA extraction kit (MoBio 131 

Laboratories). Community composition was assessed via amplification of the V4 region 132 

of the bacterial/archaeal 16S rRNA gene and the fungal ITS1 region, using primer pairs 133 

515F / 806R, and ITS1 / ITS2, respectively [20]. Amplification followed Caporaso et al. 134 

[21]. Amplicons were multiplexed then sequenced on an Illumina MiSeq producing 135 

250bp paired-end reads [21]. Quality filtering and clustering reads into operational 136 

taxonomic units (OTUs) were accomplished using USEARCH, following a customized 137 

UPARSE pipeline [22]. Taxonomy was assigned to OTUs via the RDP classifier (OTU 138 

cut-off for clustering was 97%), using the GreenGenes 13.8 reference database for 139 

bacteria/archaea and the UNITE 6.97 database for fungi [23-25]. QIIME was used to 140 

generate rarefied OTU tables and alpha diversity estimates [26]. We assessed ARG 141 

(ampC, tetO, tetW, and ermB) abundance and fungal-to-bacterial ratios— using the ratio 142 

of ITS to 16S gene copy numbers—via quantitative PCR (qPCR). The qPCR procedures 143 

followed Thames et al. [27] for ARGs and Fierer et al. [28] for fungal-to-bacterial ratios. 144 

Our selection of ARGs was based on the following: 1) ARGs confer resistance to various 145 

types of antibiotics (i.e. bactericidal or bacteriostatic) and are of potential human health 146 

concern [29]; 2) we expected that specific ARGs would be affected differently based on 147 

manure inputs, antibiotic usage, and/or natural prevalence across our study sites. 148 

Specifically, ampC (codes for β-lactamase) abundance was hypothesized to be greater 149 

with inputs of dairy manure, given that cattle from our study sites are treated with a β-150 

lactam antibiotic (i.e. cephapirin) to prevent mastitis; tetO and tetW (code for Ribosomal 151 

protection proteins) may be in high abundance but show no difference between site 152 

types, given the overall prevalence of tetracycline resistance in soils; and ermB (codes 153 

for rRNA adenine N-6-methyltransferase) would be in low abundance and also show no 154 

difference between site types, given that erythromycin is only rarely used in dairy 155 

management operations [30-32].  156 
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 157 

 158 

(c) Response of soil communities to antibiotic additions 159 

To assess the potential influence of antibiotic additions on microbial respiration (i.e. 160 

active versus simply present), we conducted a 60d laboratory experiment whereby soils 161 

from both reference and manure-exposed sites were amended with cephapirin, 162 

tetracycline, or erythromycin at a rate of 0.6 mg of antibiotic g dry weight soil-1 week-1 163 

and then respiration from these soils (i.e. CO2) was compared to respiration from a 164 

water-only control. This antibiotic concentration was not intended to mimic field 165 

conditions, but instead to maximize the response of the microbial community to a given 166 

antibiotic. During this time, we monitored soil respiration via an infrared gas analyser 167 

(IRGA; Model LI-7000, Li-Cor Biosciences, Lincoln, Nebraska, USA) using the procedure 168 

outlined in Strickland, Callaham [33]. At the end of 60 d, we calculated total mineralized-169 

C via integration and determined both mass-specific respiration (see d below), and the 170 

respiratory response ratio as the natural log of the antibiotic treatment divided by the 171 

water only control. We expected that lab-based additions of antibiotics (i.e. cephapirin, 172 

tetracycline, erythromycin) to soils would elicit a greater change in microbial respiration 173 

for microbial communities that are naive to these antibiotics (see Response of soil 174 

communities to antibiotic additions, below, for further details). In contrast, little change in 175 

microbial respiration would be expected for additions of antibiotics to soils where the 176 

microbial community has had previous exposure, either through direct antibiotic 177 

exposure or manure mediated effects. Specifically, we expected that direct cephapirin 178 

additions would elicit little change in microbial respiration of manure-exposed soils 179 

compared to the change in respiration of reference soils. 180 

 181 

(d) Microbial stress and soil characteristics 182 
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We determined an array of soil characteristics including soil texture, pH, soil organic C 183 

and N in particulate organic matter (POM) and mineral-associated soil fractions, 184 

dissolved organic matter C (DOC), microbial biomass C and nitrogen (N), and active 185 

microbial biomass via substrate induced respiration (SIR). Soil texture was determined 186 

using the hydrometer method [34]. Soil pH was determined in water (1:1 volumetric ratio 187 

of water to soil) using a bench-top pH meter (Hatch® sensION+ PH3). Mineral and 188 

particulate organic matter (POM) associated C and N were determined by dispersing 189 

soils with sodium hexametaphosphate for, at least 18h, and then passing the suspension 190 

through a 53 µm sieve. Material >53µm is considered POM material and <53µm is 191 

considered mineral-associated material. Concentrations of C and N in these two 192 

fractions were determined using a CE Elantech EA 1112 elemental analyser (Thermo 193 

Scientific, Waltham, MA, USA). Microbial biomass C and N, and DOC were determined 194 

using the simultaneous chloroform fumigation extraction procedure described in 195 

Strickland, Devore [35], with N determined colourometrically (Lachat QuikChem® 8500 196 

FIA System) and C determined on a TOC analyser (Ohio Instruments Corporation Model 197 

700). SIR, a measure of active microbial biomass, was determined following Strickland, 198 

Devore [35]. Briefly, soil slurries were incubated, after a 1 h pre-incubation with excess 199 

substrate (i.e. autolyzed yeast extract), for 4 h at 20 C. After the 4-h incubation, SIR is 200 

determined via infrared gas analysis of headspace CO2 concentrations using a static 201 

incubation technique. Using the conversion described in Phillips et al. [36] we converted 202 

the SIR rate to equivalents of microbial biomass C.  203 

 204 

Microbial stress was assessed using two techniques. The first, qCO2 or the metabolic 205 

quotient, was determined according to Wardle and Ghani [37]. Briefly this is a short-term 206 

incubation similar to SIR, described above, where each soil is incubated with either 207 

water or glucose. qCO2 is calculated as the ratio of basal respiration (i.e water amended) 208 
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 9 

to glucose respiration. The expectation is that with increasing microbial stress and/or 209 

maintenance demands, qCO2 will increase. Secondly, we used a 60d soil C 210 

mineralization coupled to an average of active microbial biomass determined at the 211 

beginning and end of the 60 d period. This estimate allowed us to determine a long-term 212 

estimate of microbial mass-specific respiration. As with the short-term qCO2 estimate, 213 

we expected greater respiration per unit microbial biomass to be indicative of greater 214 

microbial stress and maintenance demands. 215 

 216 

(e) Statistical analyses 217 

The effect of cattle manure inputs on ARG abundance and microbial mass-specific 218 

respiration, blocked by site location, was determined via analysis of variance (ANOVA). 219 

Relationships between ampC abundance and qCO2 and microbial mass-specific 220 

respiration were assessed via regression analysis. Because of the variation across sites 221 

and manure input levels (TableS1), we determined the overall importance of ampC 222 

abundance as a control on microbial stress (i.e. qCO2), via model comparison and 223 

selection using an information-theoretic approach [38]. This approach allowed us to 224 

compare multiple linear models that included parameters, which we expected would 225 

influence microbial stress in soil using Akaike’s information criteria for small sample size 226 

(AICc) – a metric used to assess model parsimony. These parameters included: ampC 227 

abundance, silt + clay content, pH, SIR biomass, microbial biomass C:N, POM C:N, 228 

mineral-associated C:N, latitude, input level, and the interaction of these parameters with 229 

input. These were not randomly determined. For instance, we expected that with 230 

increasing silt + clay content that communities would experience less moisture stress 231 

and that latitude could be an indicator of temperature stress. Model selection also allows 232 

for the determination of ‘parameters of interest’ via model averaging, allowing for the 233 

robust determination of potential controls on microbial stress and in this instance 234 
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enabling us to determine if ampC abundance is a major control when considering 235 

models with a difference in AICc < 4 from the most parsimonious model. Note that 236 

models within this AICc range are likely to have substantial empirical support [38]. 237 

Additionally, using model averaging for models with a difference in AICc < 4 we 238 

determined coefficient estimates. 239 

 240 

The effect of manure exposure on bacterial and fungal community composition was 241 

assessed via permutational-MANOVA and visualized using principal components 242 

analysis. The relationship between bacterial and fungal communities was determined via 243 

a Mantel test. To determine which fungal or bacterial taxa contributed to differences 244 

between cattle input levels, the percentage contribution of taxa to dissimilarity between 245 

inputs was determined. Regression, ANOVA, and multi-model inference were conducted 246 

in R [R Core 39] and microbial community analyses were conducted in Primer [40]. 247 

When necessary, data were log or square root transformed to meet assumptions of 248 

normality and homogeneity.    249 

  250 

3. Results and Discussion 251 

(a) Bacterial and Fungal Community Composition 252 

We observed significant differences in bacterial (F1,10 = 3.69; P < 0.01) and fungal (F1,10 253 

= 3.90; P < 0.01) communities between soils sourced from reference and manure-254 

exposed sites (figure 1A and 1C). For fungal communities (figure 1A and 1B), 255 

differences between manure-exposed and reference sites were driven primarily by 256 

changes in the relative abundance of genera in the phyla Zygomycota and Ascomycota. 257 

The Zygomycota and class Sordariomycetes tended to be in greater abundance in the 258 

reference sites (figure 1B).  Class Dothideomycetes and phyla Ascomycota were greater 259 

in the manure-exposed compared to the reference sites (figure 1B). These shifts in 260 
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fungal community composition could be driven by multiple factors including soil C:N 261 

ratios, antibiotic inputs, and/or manure additions [41-43]. Interestingly, the relative 262 

abundance of genus Preussia (class Dothideomycetes) was 3.3-fold greater in the 263 

manure-exposed sites (figure S2A). Given that Preussia species are generally 264 

coprophilous (i.e. manure-associated) [44] this provides evidence that a priori 265 

assessment of manure-exposure and reference locations by onsite personnel was 266 

effective. Additionally, we observed a marginally significant, positive relationship 267 

between the abundance of the ARG (antibiotic resistance gene), ampC, and Preussia 268 

abundance for the manure-exposed sites (F1,9 = 5.09; P = 0.05; r2 = 0.36; Figure S2B). 269 

This relationship may reflect a proxy of manure inputs and associated inputs of the 270 

antibiotic cephapirin benzathine, especially given no relationships associated with the 271 

other three ARGs. On the other hand, coprophilous fungi are known antimicrobial 272 

producers [45], and the positive association with ampC abundance found here with 273 

Preussia (figure S2B) may be indicative of microbial competition. This increase in 274 

microbial competition, particularly fungal-bacterial competition, may explain the 275 

observations (i.e. ARG abundance increases due to manure inputs from cows receiving 276 

no antibiotics) of Udikovic-Kolic et al. [8] and is in line with the observation of Fierer et al.  277 

[46] showing increased ARG abundance (and microbial competition) associated with 278 

more copiotrophic environments. While the exact mechanism causing an increase in 279 

ARG abundance requires more attention (i.e. competition induced by manure inputs 280 

versus direct antibiotic exposure), we would still expect increasing antibiotic resistance 281 

with manure exposure to be associated with a decrease in microbial growth efficiency. 282 

   283 

For bacterial communities (figure 1C and 1D), the relative abundance of the phylum 284 

Firmicutes and classγ-Proteobacteria were ~67 and 70% greater, respectively, in 285 
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manure exposed soils (figure 1D). This is notable, given that these two groups are 286 

considered indicators of ARGs in the environment [29]. Additionally, greater dissimilarity 287 

between reference and manure-exposed bacterial communities was associated with a 288 

greater relative increase in total ARG abundance (i.e. the sum of the four ARGs 289 

measured in this study; F1,9 = 8.14; P < 0.05; r2 = 0.48; figure S3A). This relationship is 290 

likely driven by a similar observation for the change in Firmicute abundance from 291 

reference to manure-exposed sites (F1,9 = 13.56; P < 0.01; r2 = 0.60; figure S3B), 292 

potentially corroborating that Firmicutes are indicators of ARGs. Furthermore, changes 293 

in the genus Acinetobacter – commonly occurring in soil, water, and on human skin [47] 294 

– accounted for 1.31% of the percentage dissimilarity (determined by the contribution of 295 

each bacterial genus to the dissimilarity between reference and manure-exposed 296 

communities [40]) between reference and manure-exposed sites, with a 25-fold increase 297 

in relative abundance of this genus in soils from manure-exposed versus reference sites. 298 

This genus contains species associated with low-virulence hospital-associated infections 299 

that are of growing human health concern [48-50]. Acinetobacter are also known to 300 

produce a variety of cephalosporinases and show widespread resistance to β-lactam 301 

antibiotics [51]. This suggests that manure from dairy cattle administered cephapirin 302 

benzathine as a disease prevention therapy may contribute to a shift in soil bacterial 303 

community composition. Inputs of manure from cattle treated with antibiotics may 304 

therefore fundamentally alter soil microbial community structure, which in turn likely 305 

leads to changes in ecosystem processes [11, 52]. 306 

 307 

(b) Manure Inputs Increase ARG Abundance and Alter Microbial Respiration in 308 

Response to Experimental Antibiotic Additions 309 

We assessed the absolute abundance of four different genes related to β-lactam 310 

(ampC), tetracycline (tetO, tetW), and macrolide (ermB) antibiotic resistance in soil 311 
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samples from all sites. Of the ARGs assessed, the average abundance of both ampC 312 

(F1,10=7.4; P<0.05) and tetO (F1,10=11.4; P<0.01) were 421 and 3,283% greater, 313 

respectively, in manure-exposed soils compared to reference soils (figure 2A). This was 314 

potentially expected for ampC, given the treatment of cattle with cephapirin benzathine, 315 

but not for tetO, given that farm managers did not report any recent use of tetracyclines. 316 

This increase in tetO may indicate that manure inputs simply lead to an increase in 317 

multiple ARGs. Another, non-mutually exclusive, explanation for this would be co-318 

selection of ampC and tetO, either because of species selection or because these genes 319 

are co-selected on the same plasmid [53]. The observed positive relationship between 320 

ampC and tetO (y=1.57x-2.9; F1,20=15.1; P<0.001; r2=0.43) supports some form of co-321 

selection. Although it is worth noting that while recent use of tetracycline antibiotics at 322 

our sites was not reported, we cannot rule out the possibility that this type of antibiotic 323 

was used in the past and this could also account for the increased abundance of tetO 324 

[54].  325 

 326 

In a lab-based experiment, the response of microbial respiration to additions of 327 

antibiotics (cephapirin, tetracycline, or erythromycin) was dependent on both the type of 328 

antibiotic (i.e. bacteriostatic or bactericidal) and whether the soil was exposed to dairy 329 

cattle manure. When tetracycline was added to soils, no difference in the respiratory 330 

response of microbial communities from the reference and exposed soils was noted 331 

(figure 1B; F1,10=4.7; P=0.06), even though the abundance of tetO was greater in soils 332 

exposed to manure. When erythromycin was added to soils, soils sourced from manure-333 

exposed sites exhibited a decreased respiratory response but soils sourced from 334 

reference sites exhibited no response to this antibiotic addition (figure 2B; F1,10=25.3; 335 

P<0.001). This may be due to erythromycin, and bacteriostatic antibiotics in general, 336 

having a disproportionate negative effect on metabolic activity in more active microbial 337 
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communities [9, 55]. We noted the most marked difference between soils sourced from 338 

different sites following cephapirin benzathine application to soils (figure 2B; F1,10=56.0; 339 

P<0.001). Addition of cephapirin benzathine resulted in an ~2 fold increase in the 340 

respiratory response of reference soils versus soils from manure-exposed sites. 341 

Together, the combination of greater ampC abundance and the less marked respiratory 342 

response to cephapirin benzathine additions suggests that communities from the 343 

manure-exposed versus reference sites exhibit more pronounced active resistance to 344 

cephapirin (figure 2). Together, with inputs of dairy cattle manure and associated 345 

antibiotics, we find that ampC is in greater abundance and that communities from these 346 

sites exhibit less of a response to experimental additions of cephapirin. While the co-347 

occurrence of manure and antibiotics makes parsing out the specific effect of each 348 

difficult, these results indicate that the history of antibiotic additions to these soils may be 349 

impacting microbial activity. For these reasons and ampC’s positive relationship with 350 

tetO, we focused on relationships between ampC and measures of microbial efficiency. 351 

 352 

(c) Implications of Manure Inputs and Increased ARG Abundance for Ecosystems 353 

Given that antibiotic resistance – specifically resistance associated with β-lactam 354 

antibiotics maintained via the production of β-lactamases – likely increases the 355 

maintenance demands of bacteria, thus decreasing microbial efficiency, we examined 356 

the stress response of soil microbial communities [qCO2; 56] from the reference and 357 

manure-exposed sites. We expected that with increasing ampC abundance (a 358 

representative β-lactamase gene), a parallel increase in qCO2 would be observed and 359 

that this relationship would be more pronounced in the manure-exposed sites, given that 360 

this gene is actively expressed (figure 2). We found no relationship between ampC 361 

abundance and qCO2 for reference soils (figure 3; F1,9=2.6; P=0.14; r2=0.22) but a 362 

positive relationship was observed for soils exposed to cattle manure inputs (figure 3; 363 
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F1,9=11.83; P<0.01; r2=0.57). This relationship between qCO2 and ampC abundance in 364 

the manure-exposed sites indicates that the maintenance of antibiotic resistance in 365 

these communities imposes higher metabolic maintenance costs for soil microbial 366 

communities.  367 

 368 

To investigate this physiological response further, we used multi-model inference [38] to 369 

assess the overall importance of ampC abundance compared to other potential 370 

independent variables likely to influence qCO2 (Supplementary Material). We found via 371 

model averaging that ampC abundance was the most important independent variable of 372 

interest followed by soil texture (table S2; table S3; figure S4). The significance of soil 373 

texture may be due to its relationship to soil moisture content, and other edaphic 374 

properties (table S3; figure S5). At reference sites ampC abundance is relatively 375 

unimportant. Instead, with fewer antibiotic additions in the reference sites, soil texture is 376 

a stronger predictor of qCO2 (F1,9 = 11.75; P<0.01; r2 = 0.57; figure S5). Thus, antibiotic 377 

inputs may supersede the importance of particular edaphic variables as they relate to 378 

ecosystem processes and microbial stress. One interpretation is that with manure inputs 379 

from cattle treated with cephapirin benzathine, bacteria up-regulate the production of β-380 

lactamases (figure 2). It is worth noting that for other types of antibiotics, particularly 381 

bacteriostatic antibiotics, this increased stress response may not occur. Yet for 382 

bactericidal antibiotics, such as β-lactams, this should result in greater maintenance 383 

costs for these communities and increased respiratory demand concomitant with active 384 

ampC abundance (figure 3). 385 

  386 

To determine the broader scale implications of this change in qCO2 we determined the 387 

cumulative amount of soil C respired per unit of microbial biomass (i.e. mass-specific 388 

respiration) from the manure-exposed and reference sites. On average the manure-389 
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exposed sites respired 2.1 times more C per unit microbial biomass, ranging from as 390 

great as a 5.8-fold increase to as low as a 1.1-fold increase (figure 4A – Water treatment 391 

–; F1,10=20.7; P<0.01). For reference soils, the change in mass-specific respiration was 392 

unrelated to ampC abundance (figure 4B; F1,11=1.8; P=0.21; r2=0.17) but for soils 393 

sourced from manure-exposed sites, mass-specific respiration and ampC abundance 394 

were positively correlated (figure 4B; F1,11=5.8; P<0.05; r2=0.39). This relationship was 395 

even stronger when considering total ARG abundance (i.e. the sum of the four ARGs 396 

measured; F1,9 = 10.02; P<0.05; r2 = 0.53; figure S6), which could indicate the more 397 

general effect of manure inputs on ARG abundance. This suggests that after accounting 398 

for the amount of active biomass, sites exposed to manure from cattle treated with 399 

cephapirin benzathine mineralize more C, and the magnitude of this increase is 400 

positively related to the abundance of ampC as well as total ARG abundance.  401 

 402 

Our data suggests that this relationship is likely driven by the maintenance of antibiotic 403 

resistance [9]. However, it cannot be overlooked that both manure and soil C were not 404 

controlled for as a part of this large-scale observational field study, and further 405 

investigation of their respective roles is merited. Elevated abundance of ARGs and 406 

antibiotic resistant bacteria have also been observed following amendments of manure 407 

from dairy cattle not treated with antibiotics [8]. More research directly comparing the 408 

effect of manure additions from cattle both treated and untreated with antibiotics will help 409 

clarify the mechanism leading to antibiotic resistance in soil microbial communities. Yet, 410 

while the specific mechanism may be in question (i.e. direct antibiotic effects vs. 411 

antibiotic mediated microbial competition), we observed greater ARG abundance, 412 

specifically ampC, in manure-exposed soils and change in ampC abundance was 413 

positively related to change in mass-specific respiration. Additionally, lab-based 414 

amendments of cephapirin benzathine elicited a similar increase in the mass-specific 415 
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respiration of the reference soils as was observed between the reference and manure-416 

exposed soils (figure 4A). This significant interaction (F1,30 = 4.17; P<0.05; figure 4A) 417 

between soil source (i.e. manure-exposed and reference) and antibiotic amendment (i.e. 418 

water and cephapirin benzathine) is likely indicative of a trade-off between antibiotic 419 

resistance and efficiency and highlights the influence active resistance has on microbial 420 

mass-specific respiration. Finally, we suggest that while total soil C, on average, was 421 

only 1.7 fold greater in the manure-exposed versus reference sites (table S1), ranging 422 

from a 0.9 fold decrease to a 4.1 fold increase, C in these systems is cycling more 423 

rapidly, possibly due to the maintenance of antibiotic resistance.  424 

 425 

Conclusion 426 

Using a large-scale assessment of 11 sites across the United States, we found evidence 427 

that exposure to manure from cattle treated with antibiotics drive changes in soil 428 

microbial community composition and ecosystem function. First, ampC, a β-lactamase, 429 

increased with inputs of manure from cattle treated with cephapirin benzathine. The 430 

direct addition of this antibiotic elicited less of a respiratory response in soils sourced 431 

from these manure-exposed sites indicating that this gene is active. Second, bacterial 432 

community composition at manure-exposed sites was dominated by Acinetobacter 433 

(class γ-Proteobacteria), a genus of bacteria known for its resistance to cephalosporins. 434 

Third, qCO2 and microbial mass-specific respiration were both positively related to ampC 435 

abundance in manure-exposed sites. Together, and not unlike the findings of Hammer et 436 

al. [17], our findings highlight that manure from cattle treated with antibiotics have the 437 

potential to markedly alter microbial community composition and the ecosystem 438 

processes that these communities regulate. While future research needs to clearly 439 

distinguish the relative contribution of manure and antibiotics on microbial processes, as 440 

well as whether bacteriostatic antibiotics elicit the same environmental effect, we find 441 
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that the manure from cattle treated with a bactericidal antibiotic may lead to significantly 442 

more microbial respiration of soil C. This suggests that the expected increase in manure 443 

inputs and/or agriculturally derived antibiotics due to intensifying livestock production not 444 

only has human health implications [57] but may also have substantial environmental 445 

impacts. 446 
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figure 1. Fungal and bacterial community composition of soils sourced from reference 650 

and manure-exposed (+manure) sites. A) Principal components analysis showing fungal 651 

community composition associated with reference and manure-exposure. Labels 652 

indicate the geographic location (i.e. Site) for each pair of samples. Permutational 653 

MANOVA indicated significant differences between reference and manure-exposed 654 

soils. B) Relative abundance of fungal classes at reference and manure-exposed sites. 655 

C) Principal components analysis showing bacterial community composition associated 656 

with reference and manure-exposure. Labels indicate the geographic location (i.e. Site) 657 

for each pair of samples. Permutational MANOVA indicated significant differences 658 

between reference and manure-exposed soils. D) Relative abundance of bacterial phyla 659 

and Proteobacterial classes at reference and manure-exposed sites. Note that the 660 

difference between site types was primarily due to an increase in the relative abundance 661 

of Firmicutes and γ -Proteobacteria. 662 

 663 

figure 2. Antibiotic resistance gene (ARG) abundance and the respiratory response to 664 

antibiotic additions of soils sourced from reference and manure-exposed (+manure) 665 
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sites. A) Abundance of ampC, tetO, tetW, and ermB ARGs from reference and manure-666 

exposed sites. ARGs were determined via qPCR. Note that abundance is represented 667 

as log gene copies. B) The natural log of the respiratory response ratio of soils, at 668 

reference and manure-exposed sites, exposed to cephapirin, tetracycline, or 669 

erythromycin. Values above zero indicate an increase in respiration versus a control soil 670 

(i.e. no antibiotic addition) and values less than zero indicate a decrease. 671 

 672 

figure 3. Relationship between ampC abundance and qCO2, an indicator of microbial 673 

stress. Grey circles indicate sites exposed to cattle manure (+manure) and open squares 674 

indicate reference sites. A significant relationship was observed for manure-exposed 675 

sites but not for reference sites. Additionally, multi-model inference indicates that ampC 676 

abundance is an independent variable of high importance when considering microbial 677 

stress (Supporting Information). 678 

 679 

figure 4. The effect of manure-exposure on respiration per unit microbial biomass 680 

compared to reference sites. A) Comparison of respiration per unit microbial biomass 681 

(i.e. mass-specific respiration) for manure-exposed and reference sites when amended 682 

with water or cephapirin benzathine for 60 days. Significant main effects were noted 683 

between manure-exposed and reference sites (F1,30 = 29.13; P<0.001), as well as, 684 

between water and cephapirin treatments (F1,30 = 15.60; P<0.001). We also found a 685 

significant interaction between manure exposure and antibiotic amendments (F1,30 = 686 

4.17; P<0.05). This interaction was due to no difference in mass-specific respiration 687 

between antibiotic treatments for the manure-exposed soils but an increase in mass-688 

specific respiration for the reference soil when treated with cephapirin. Notably the 689 

increase in mass-specific respiration from the control to cephapirin treatment we observe 690 

for the reference soil is equivalent to what we observe between the reference and 691 
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manure-exposed soils exposed to water. Letters denote significant pair-wise differences 692 

between treatments as determined via Tukey’s HSD. Shown are means ± 1S.E. B) 693 

Mass-specific respiration was positively related to ampC abundance under manure-694 

exposed but not for reference sites.  695 
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figure 1. Fungal and bacterial community composition of soils sourced from reference and manure-exposed 
(+manure) sites. A) Principal components analysis showing fungal community composition associated with 
reference and manure-exposure. Labels indicate the geographic location (i.e. Site) for each pair of samples. 

Permutational MANOVA indicated significant differences between reference and manure-exposed soils. B) 
Relative abundance of fungal classes at reference and manure-exposed sites. C) Principal components 

analysis showing bacterial community composition associated with reference and manure-exposure. Labels 
indicate the geographic location (i.e. Site) for each pair of samples. Permutational MANOVA indicated 

significant differences between reference and manure-exposed soils. D) Relative abundance of bacterial 
phyla and Proteobacterial classes at reference and manure-exposed sites. Note that the difference between 
site types was primarily due to an increase in the relative abundance of Firmicutes and γ -Proteobacteria.  

 
figure 1  

184x153mm (300 x 300 DPI)  

 

 

Page 29 of 32

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



  

 

 

figure 2. Antibiotic resistance gene (ARG) abundance and the respiratory response to antibiotic additions of 
soils sourced from reference and manure-exposed (+manure) sites. A) Abundance of ampC, tetO, tetW, and 

ermB ARGs from reference and manure-exposed sites. ARGs were determined via qPCR. Note that 
abundance is represented as log gene copies. B) The natural log of the respiratory response ratio of soils, at 

reference and manure-exposed sites, exposed to cephapirin, tetracycline, or erythromycin. Values above 
zero indicate an increase in respiration versus a control soil (i.e. no antibiotic addition) and values less than 

zero indicate a decrease.  
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figure 3. Relationship between ampC abundance and qCO2, an indicator of microbial stress. Grey circles 
indicate sites exposed to cattle manure (+manure) and open squares indicate reference sites. A significant 
relationship was observed for manure-exposed sites but not for reference sites. Additionally, multi-model 
inference indicates that ampC abundance is an independent variable of high importance when considering 

microbial stress (Supporting Information).  
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figure 4. The effect of manure-exposure on respiration per unit microbial biomass compared to reference 
sites. A) Comparison of respiration per unit microbial biomass (i.e. mass-specific respiration) for manure-
exposed and reference sites when amended with water or cephapirin benzathine for 60 days. Significant 
main effects were noted between manure-exposed and reference sites (F1,30 = 29.13; P<0.001), as well 
as, between water and cephapirin treatments (F1,30 = 15.60; P<0.001). We also found a significant 

interaction between manure exposure and antibiotic amendments (F1,30 = 4.17; P<0.05). This interaction 
was due to no difference in mass-specific respiration between antibiotic treatments for the manure-exposed 
soils but an increase in mass-specific respiration for the reference soil when treated with cephapirin. Notably 

the increase in mass-specific respiration from the control to cephapirin treatment we observe for the 
reference soil is equivalent to what we observe between the reference and manure-exposed soils exposed to 
water. Letters denote significant pair-wise differences between treatments as determined via Tukey’s HSD. 
Shown are means ± 1S.E. B) Mass-specific respiration was positively related to ampC abundance under 

manure-exposed but not for reference sites.  
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