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Electronic g Tensors in U(V) Complexes - A Computational Study 

Helen M. Moylan*[a] and Joseph J.W. McDouall[a]  

 

Abstract: The theory and computation of EPR parameters from first 

principles has seen a great deal of development over the past two 

decades. In particular, various techniques for the computation of the 

electronic g tensor have been implemented in many quantum 

chemistry packages. These methods have been successfully applied 

to paramagnetic organic species and transition metal systems. The 

situation is less well-understood and established in the case of 

actinide containing molecules and there is a dearth of experimental 

data available for validation of computations. In this study we have 

used quantum chemical techniques to evaluate the g tensor for U(V) 

complexes, for which experimental data are available for comparison. 

The g tensors were calculated using, relatively simple, state 

averaged CASSCF calculations. We show that this approach is 

capable of providing useful accuracy. We discuss aspects of the 

computations that should be refined to provide a more quantitative 

approach. The key features of the underlying electronic structure 

that influence the computed g values are delineated, providing a 

simple physical picture of these subtle molecular properties.  

Introduction 

Computational studies of the molecular chemistry of actinide 

containing systems have a long history. The inherent difficulties 

associated with experimental work involving the actinides has 

recently led to an increased interest in the use of computational 

studies to complement and enhance our fundamental 

understanding of f-element chemistry.[1] The range of 

applications is considerable and varies: from studies of 

geometrically simple systems where the intention is to 

understand the fundamental electronic structure and bonding in 

actinide molecules;[2] to the use of fluorescence spectroscopy to 

correlate between the molecular structure (ligand species and 

type) with the observed spectral lineshape;[3] to studying the 

potential for designing actinide molecular magnets;[4] to 

predicting and controlling the behaviour of actinide elements in 

solution.[5] Understanding the origin of actinide metal to ligand 

selectivity is key in developing nuclear waste reprocessing 

techniques that separate the lanthanides from the actinides and 

also in facilitating the design of new extractants. These aspects 

of fundamental actinide chemistry are crucial to keeping the 

nuclear energy option open. 

The theoretical description of the electronic structures of 

actinide molecules is intrinsically complex due to the presence of 

many subtle electronic effects that must be described reliably. 

For example, closely spaced valence orbital energy levels give 

rise to low-lying electronically excited states. Spin-orbit 

interactions are able to couple ground and excited states of 

different multiplicities, necessitating a multi-state approach to the 

electronic structure. Scalar relativistic contractions of the 

actinide core atomic orbitals, accompanied by the concomitant 

expansion of the d and f orbital manifolds, can produce profound 

changes in molecular properties. Additionally, many of the 

actinides in their most stable oxidation states have open shell 

electronic configurations creating paramagnetic character. 

These facets of the electronic structure present severe tests for 

current computational methods. 

Experimentally, electron paramagnetic resonance (EPR) and 

paramagnetic nuclear magnetic resonance (PNMR) 

spectroscopy are used to study the physical and chemical 

properties of open shell species. Of particular interest is the 

Zeeman effect that removes the 2S+1 degeneracy of spin 

energy levels in the presence of a magnetic field, B. The 

Zeeman interaction is usually discussed using the 

phenomenological spin hamiltonian in which the molecular g 

‘tensor’ parameterises the splitting of energy levels by the 

interaction between the magnetic field and the electronic spin:[6] 

 

𝐻Ẑ = 𝜇B𝐁 ∙ 𝐠 ∙ 𝐒        (1) 

 

(The matrix g is not a proper rank-2 tensor, but we shall refer to 

it by this commonly adopted name.) Experimentally the 𝑔 value 

measured for a magnetic field in a direction characterised by the 

unit vector x (relative to the laboratory frame) is: 

 

 

𝑔𝐱 = ±√𝐱 ∙ 𝐠𝐠𝐓 ∙ 𝐱       (2) 

 

In (2), the quantity 𝐠𝐠𝐓 is a rank-2 tensor. In molecules the shift 

from the free electron 𝑔 value (𝑔e ≈ 2.002319) is associated with 

the loss or gain of orbital angular momentum and is a source of 

information regarding the intrinsic electronic structure of the 

system. Interest in g spans the entire range of the periodic table: 

from organic radicals; to transition metals; to the f-elements. In 

organic radicals spin-orbit coupling is often very small and 

covalent bonding is strong. For the f-elements spin-orbit effects 

are large, low lying excited states are present and covalent 

bonding is relatively weak. Understanding the origin of the g 

shifts and the factors that govern the observed spectra can lead 

to an improved knowledge of the fundamental chemical and 

electronic structure in paramagnetic systems. 

Computations of g can aid the interpretation of observed 

EPR spectra, predict parameters that are difficult to determine 

experimentally and be used to explore where experiment cannot. 

There are a few examples of calculated g values for actinide 

molecules in the literature. Previous studies have largely  
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focused on highly symmetrical systems (AnX6
n-) with isotropic 𝑔 

values.[7–13] Other more complex examples have been 

studied,[14,15] however experimental data are lacking for 

comparison with these calculations. Since ab initio calculations 

of 𝑔 values in actinide containing compounds are relatively rare, 

and the computational procedure for their accurate calculation is 

far from routine, there is an essential need to benchmark this 

type of calculation against experimental data. In particular 

studies that focus on systems with lower symmetry (anisotropic 

𝑔 values) and/or multiple unpaired electrons are needed. This 

consideration, in part, determined the subjects of this study. 

Molecules 1-7,[16–18] shown in figure 1, provide a set of actinide 

complexes that have well defined EPR spectra for the (relatively) 

simple 5f1 actinide configuration, allowing us to assess our 

computational protocol for the calculation of g. Detailed 

experimental analysis of the EPR spectra of 1-7 have been 

carried out by Ephritikhine et al.[19,20]  

The computation of g tensors is quite well established for 

lighter elements, including transition metals, within the density 

functional theory (DFT) formalism. Linear response theory is 

used to include the effects of spin-orbit coupling as a first-order 

perturbation.[21–26] Such an approach can be successful provided 

the spin-orbit interaction is not too large and there are no low-

lying excited states. When applicable, the linear response 

treatment is more efficient than including the interaction with 

excited states through a direct summation. We cannot expect 

the linear response approach to work well in cases of orbital 

degeneracy, or near degeneracy, nor in cases where the 

underlying electronic structure of the ground state is 

multiconfigurational (a situation that we can anticipate generally 

in systems with multiple metal centres, not just actinides). In 

actinide systems, where ligand interaction with the valence 

metal orbitals is weak, at least some (near) degeneracy of the 5f 

manifold is preserved. The magnitude of the spin-orbit coupling 

is also large. Hence we can anticipate difficulties for the linear 

response approach. Bolvin and Autschbach[27] have recently 

reviewed computational approaches for obtaining the g tensor 

and conclude that in the case of strong spin-orbit coupling the 

methods used should include spin-orbit effects to high order or, 

preferably, variationally.  

 In this study we shall concentrate on U(V) containing 

complexes with a 5f1 electronic configuration. The energy levels 

of odd electron systems are subject to a Kramers degeneracy 

and this is exploited to obtain the g tensor. The method used 

was first formulated, in an ab initio context, by Bolvin.[28] The 

spin-orbit interaction is applied first of all to obtain the 

wavefunctions of the degenerate Kramers pair. The energy 

splitting, in the presence of a magnetic field, is then obtained by 

diagonalising the Zeeman operator in the basis of the Kramers 

pair. By this process it is possible to obtain the matrix  𝐠𝐠𝐓, from 

which the principal values of g are evaluated as the positive 

square roots of the eigenvalues of  𝐠𝐠𝐓. The sign of the product 

of the resulting g values can be obtained from the electronic 

magnetic moments, 𝜇𝑖 (where i refers to the components of the 

magnetic axes of the system), evaluated in the basis of the 

Kramers pair. This strategy can also be used for systems in 

which S ≠ ½, provided pairwise degeneracy of spin-orbit states is 

present. In such cases the concept of a pseudo-spin, 𝑆, is used 

such that 2𝑆 + 1 = 2.[29] Each degenerate pair, characterised by 

𝑆 ̃, may then be treated using Bolvin’s scheme. 

Results and Discussion 

Computational Methods: Geometries 

Crystal geometries are only available for some of the set of 

molecules, 1-7.[16–18] For a consistent treatment we chose to 

optimise all structures studied. The presence of the U(V) ion 

requires that the effects of relativity are included in any 

computational scheme. This is often dealt with through the use 

of relativistic effective core potentials (RECP). We have used an 

all electron approach throughout this work. A particularly simple 

scheme for including relativistic effects involves the use of the 

zeroth-order regular approximation (ZORA) in Filatov’s 

resolution of the identity formulation.[30] The necessary analytic 

integrals over basis functions, which are required to modify the 

kinetic energy in the one-electron hamiltonian, are easily 

obtained. To avoid issues related to gauge invariance and the 

evaluation of additional terms in the energy gradient and hessian, 

the modification of the one-electron hamiltonian is applied in 

atomic blocks following the suggestion of van Lenthe et al.[31] We 

refer to this scheme as ‘atomic’ ZORA (aZORA). This allows the 

use of the standard apparatus, available in any quantum 

chemistry code, to carry out all electron relativistic geometry 

optimisations at negligible extra cost compared to the non-

relativistic case. We have employed this aZORA scheme to 

obtain the optimised geometries for all molecules studied here. 

 For uranium we have used the segmented all electron 

relativistically contracted (SARC) basis set,[32] with all other 

atoms described by the Def2-SVP[33] basis set. The PBE0 

exchange-correlation functional was used throughout. All 

geometry optimisations were carried out using the Gaussian 

suite of programs.[34] Our implementation of the aZORA scheme 

calls the standard integral routines within Gaussian. 
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 In the supplementary information (SI) we have compared 

key geometric variables taken from the crystal structures with 

those obtained as described here. We find the aZORA scheme 

affords very reliable geometries at low computational cost. The 

coordinates of the optimised geometries of 1-7 are reported in 

the SI.  

 

Computational Methods: g tensors 

All g tensor calculations were carried out using the ORCA 

program[35] (version 3.0.3). (We note that the aZORA scheme 

described previously can also be carried out using ORCA.) 

Relativistic effects were included using the Douglas-Kroll-Hess 

transformation to second-order (DKH2).[36,37] Standard complete 

active space self-consistent field (CASSCF) calculations were 

performed with state averaging (SA-CASSCF) to yield a single 

set of orbitals to be used in the spin-orbit coupling treatment. It is 

possible to use state optimized orbitals and treat the resulting 

nonorthogonality problem via a transformation to biorthogonal 

orbitals,[38] but we have not done so in this study. The spin-orbit 

mean field operator, SOMF(1X) as described by Neese,[39] was 

used to include spin-orbit coupling via quasi-degenerate 

perturbation theory (QDPT) applied to the CASSCF states. 

Picture change transformation of the spin-orbit operator was 

included to second-order in the DKH scheme, and to first-order 

for the Zeeman operator.[40] Again the SARC basis set was used 

for uranium (contracted for the DKH method). All other atoms 

used the Def2-TZVP[33] basis set. Density fitting approximations 

were used to reduce the computational burden in calculating the 

spin-orbit integrals and also the integral transformation used in 

the CASSCF calculation. 

It should be noted that the g tensors have been calculated in 

the gas phase. The optimised geometries have also been 

obtained in the gas phase. In contrast the EPR experiments 

were conducted on frozen solutions. We have made no attempt 

to model the influences of the environment on the computed g 

tensors.  

 

Detailed Case Studies: [U(η
7
-C7H7)2]

–
, 1 

 

The bis(cycloheptatrienyl)uranium anion, 1, has been studied 

experimentally by Ephritikhine and coworkers.[18] EPR 

measurements, in frozen solution, of the g values and hyperfine 

coupling constants have been performed.[20] Our geometry 

optimisations were performed without any symmetry constraints. 

We obtained a structure in which the two cycloheptatrienyl rings 

are staggered with respect to each other and the molecule has 

axial symmetry (numerically). We note that the crystallographic 

geometry possesses C2h symmetry but consideration of the 

states of this molecule are better described in D7d, D7h or D7 

symmetry, as discussed by Li and Bursten.[41] The staggered 

conformation of the rings (D7d) with the single f electron 

occupying the uranium 5f𝑧3  orbital gives the ground electronic 

state as A2u.The experimentally measured g values show 

substantial shifts from ge, being 𝑔⊥ = 2.365 and 𝑔∥ = 1.244. 

 

To begin we investigated the performance of DFT with a 

range of exchange-correlation functionals. The g tensor was 

obtained with the linear response formalism,
[26] as implemented 

within the ORCA program, using large quadrature grids and tight 

convergence criteria. Table 1 lists the g values obtained. We 

found that DFT calculations on 1 often converged to a solution 

that did not correspond to the global energy minimum. This was 

checked for each functional, by swapping the singly-occupied f 

orbital, to ensure that the global minimum was obtained. The 

range of g values obtained varies unpredictably with the nature 

of the exchange-correlation functional used. All functionals 

studied here, with the exception of BHHLYP, predict the 

magnitudes of 𝑔⊥  and 𝑔∥ in the opposite order to experiment, 

with 𝑔∥ > 𝑔⊥. There appears to be a direct correlation between 

the quantity of exact exchange included in the hybrid functionals 

and the magnitude of 𝑔⊥ . However, the generalised-gradient 

functionals, with no exact exchange, appear to contradict this 

trend with 𝑔⊥  being predicted to be 0.071 (BP86) and 0.067 

(PBE). The computed values of 𝑔∥ are much less sensitive to the 

nature of the exchange-correlation functional, but mostly 𝑔∥ is 

predicted to be too large in magnitude. This poor description of 

the g tensor may be due to the linear response treatment of the 

spin-orbit coupling, rather than a specific failing of the DFT 

approach. A recent review of the computation of EPR 

parameters[27] concludes that higher-order treatment of spin-orbit 

coupling (beyond linear response) is essential for heavy 

elements. 

In actinide systems, the 5f orbitals are not significantly 

perturbed by the surrounding ligands, preserving the 

degeneracy of these orbitals to some extent and potentially 

leading to multiconfigurational character of the electronic 

structure. Since g is a property of the valence electrons, the poor 

treatment of non-dynamic electron correlation in single reference 

DFT could explain the inadequacy of this approach for 

accurately describing g in these systems. Another consideration 

here is that, as will be seen, there exist several low lying excited 

states which are key to a proper description of g in these 

systems. The DFT formalism optimises the description of the 

ground state. Accordingly, we have employed the state 

averaged CASSCF approach in our studies so that we may 

better describe both ground and excited states on a more equal 

footing.  

Table 1. g values obtained for 1 using various exchange-correlation 

functionals. Basis sets: U (SARC), all other atoms (Def2-TZVP). DKH2 

relativistic treatment with picture change transformations included. 

 % Exact 

Exchange 
𝑔⊥ 𝑔∥ 

Experiment
[20]

 – 2.365 1.244 

    

VWN
[42]

 0 1.84 2.00 

BP86
[43,44]

 0 0.071 0.23 

PBE
[45,46]

 0 0.067 0.19 

TPSSh
[47]

 10 0.059 1.99 

B3LYP
[42,48–50]

 20 1.12 1.98 

PBE0
[51]

 25 1.46 1.98 

BHHLYP
[48]

 50 2.71 1.92 
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Figure 2. SA-CASSCF(5,9) active space orbitals of 1 obtained with 15 states 

averaged. The natural orbital occupation numbers and orbital labels are shown 

below each orbital.  

 

The choice of active space must include, as a minimum, the 

full f orbital manifold of the U atom. There is no simple and 

reliable procedure for assessing which, if any, additional orbitals 

should be included in the active space.  The technique we have 

used to assess the potential participation of orbitals in the active 

space is based on the spin-unrestricted natural orbitals (UNO)[52] 

obtained from the Kohn-Sham density computed with the 

PBE0[51] exchange-correlation functional. For each system 

studied the active space was chosen after analysis of the natural 

orbitals and their occupation numbers. In particular we looked 

for orbitals where significant interaction between the ligands and 

the uranium f orbitals occurs. In the case of 1 the natural orbitals 

showed depopulation of two bonding orbitals, centred mainly on 

the ligands, into two antibonding orbitals that contained large 

components of uranium f orbital character. Including these two 

orbitals and their electrons in addition to the f orbitals on 

uranium leads to a five-electron, nine-orbital (5,9) active space. 

Since we must consider the role of excited states SA-

CASSCF(5,9) calculations were then performed, varying the 

number of states included in the state averaging process. The 

number of states included was explored empirically, by 

increasing the number of states until some convergence in the 

results was seen. The ground state is singly degenerate with the 

lowest excited states appearing as degenerate pairs. The 

number of roots included in the state averaged calculation 

therefore reflects this, to avoid separating any degenerate states. 

Figure 2 shows the SA-CASSCF(5,9) orbitals obtained when 15 

states are state averaged.  

The ground state wavefunction is dominated (75%) by a 

configuration in which the ring bond orbitals ((a) and (b) in figure 

2) are doubly occupied with one electron in the uranium fz3 

orbital ((c) in figure 2). The only other significant configurations 

correspond to two excitations from the ring bond orbitals to the 

uranium fz(x2−y2)  and fxyzorbitals ((h) and (i) in figure 2), each 

contributing 9%. These latter configurations persist in the 

wavefunctions of the lowest few excited states contributing 

between 7%-9% each. The leading contribution in each of these 

excited states corresponds to the single electron occupying 

different components of the f orbital manifold, namely the ligand 

field states of the metal ion. The eighth and ninth states are 

dominated (91%) by excitations from the ring bond orbitals to the 

uranium fx(x2−3y2) and fy(3x2−y2) orbitals ((d) and (e) in figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. SA-CASSCF(5,9) electronic states of 1 and the corresponding 

(QDPT) spin-orbit states. Spin free states are labelled according to a simple 

group description in D7d symmetry. 
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These states can be thought of as ligand to metal charge 

transfer states (LMCT).  

Considering now the g tensor, shifts from the free electron 𝑔 

value are caused by mixing of the molecular ground state with 

electronically excited states through spin-orbit coupling. The 

distribution of the lowest few spin free and spin-orbit states are 

shown in figure 3. The genealogy of the spin-orbit states is 

indicated and may be extracted from the eigenvectors of the 

QDPT spin-orbit hamiltonian. In figure 3, for both the spin free 

and the spin-orbit states, the highest energy degenerate pair of 

states shown correspond to LMCT states. All lower energy 

states shown are local ligand field states. The spin-orbit coupling 

operator will, in principle, couple states with ∆𝑆 = 0, ±1 . The 

molecules 1-7 contain the U(V) ion ( 𝑆 = 1 2⁄ ) , implying that 

doublet and quartet states will all interact. However a 

perturbation analysis of the 𝐠 tensor shows that states with spin 

different to that of the ground state do not contribute to the 𝐠 

tensor to second-order in perturbation theory.[53] In the technique 

used in the present study, the 𝐠 tensor elements are obtained 

from expressing the Zeeman operator in the basis of the 

Kramers pair. Thus the inclusion of quartet states can influence 

the outcome through the state averaging process, as this will 

affect the spectrum of electronic levels and the orbitals from 

which the states are built. However a priori we do not expect this  

effect to be large. Table 2 shows the dependence of the 

computed 𝑔 values on the number of states included in the state 

averaging process. 1 exhibits an axial g tensor giving 

experimental values of  𝑔⊥ = 2.37 and 𝑔∥ = 1.24.[20] We find that 

𝑔∥ is quite insensitive to the level of state averaging and gives a 

very small spread of values, 𝑔∥ = 1.22 − 1.27. For 𝑔⊥ the range 

of values,  𝑔⊥ =  2.35 −  2.65, is more dependent on the state 

averaging. Two local regions of convergence are seen; when 15 

or lower states are included 𝑔⊥ = 2.3 − 2.4 and when more than 

15 states are included, 𝑔⊥ = 2.5 − 2.6. In comparison with the 

experimental numbers the best agreement is obtained when 15 

states are averaged. The effect of including quartet states in the 

spin-orbit interaction step of the calculation was also assessed 

and it can be seen (table 2) that the consequences are 

numerically very small for the g values, as anticipated in the 

discussion above. 

The choice of active space is crucial to the accuracy of the g 

tensor calculation. Interactions between ligand and actinide 

orbitals are generally weak. Hence an active space solely 

containing the 5f manifold might be thought to be a sufficiently 

accurate approximation of the valence electronic structure. 

However, in the case of 1, carrying out such a SA-CASSCF(1,7) 

calculation including all seven doublet states yields the values 

𝑔⊥ = 1.69 and 𝑔∥ = 1.36. The shifts from the free electron value 

are both predicted to be negative, in contrast to the experimental 

evidence. The inclusion of the ring δ-bonding interaction 

between the rings and the metal (figure 2) appears essential for 

an accurate description of the electronic structure, and 

consequently the accurate prediction of g. As we have 

mentioned previously there is no panacea for the selection of 

active spaces but, in this case at least, the UNO approach 

appears to have been successful. 

To understand the dependence of the g values on the 

underlying electronic structure we performed small geometrical 

displacements of the molecular geometry and looked to see how 

the changes affected the computed g values and the underlying 

orbitals and electronic states. Denoting the centroids of the 

heptatrienyl rings as , we varied both U– distances 

simultaneously. Figure 4 shows how the g values vary as a 

function of the displacement of the U– distances from  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 4. Changes in g values and separation in energies of orbitals shown in 
figure 2(a) and 2(i) of 1

 
at the SA-CASSCF(5,9) level with respect to 

displacement of the U– distances from equilibrium (see text). 

Table 2. g values of 1 as a function of the number of states included in the 

state averaging process. Experimental values
20

 are shown in parentheses. 

No. States Averaged 𝑔⊥ 𝑔∥ 𝑔𝑎𝑣 

S = 1/2 S = 3/2 (2.37) (1.24) (1.99) 

5  2.38 1.26 2.01 

7  2.37 1.26 2.00 

9  2.39 1.26 2.01 

11  2.35 1.27 1.99 

11 11 2.35 1.24 1.98 

13  2.35 1.27 1.99 

15  2.36 1.26 1.99 

17  2.51 1.25 2.09 

19  2.53 1.24 2.10 

21  2.62 1.25 2.16 

31  2.64 1.23 2.17 

31 31 2.65 1.22 2.17 

41  2.58 1.24 2.13 

51  2.57 1.23 2.12 

51 51 2.59 1.23 2.14 

61  2.58 1.23 2.13 

71  2.57 1.23 2.12 

71 71 2.60 1.22 2.14 

81  2.55 1.24 2.11 

91  2.55 1.24 2.11 

101  2.54 1.25 2.11 
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Figure 5. Changes in the spectrum of spin-orbit states of 1

 
at the SA-

CASSCF(5,9) level with respect to displacement of the U– distances from 
equilibrium (see figure 3 and text).  

 
equilibrium. 𝑔∥  shows very little dependence on the U– 

distance but 𝑔⊥ changes significantly, increasing in value with a 

positive displacement of the rings. There is a strong correlation 

between the behaviour of the g values and the spread of orbital 

energies in the active space. Also plotted in figure 4 is the 

difference in energy between the highest and lowest orbital in 

the active space (red circles in figure 4). The lowest energy 

orbitals correspond to the ring bonding orbitals and the highest 

orbitals to their antibonding counterparts (mostly centred on U, 

as discussed above). As these orbitals move closer together in 

energy their interaction increases and so does the value of 𝑔⊥. 

The remaining uranium f orbitals do not show any significant 

change in their relative energies (red squares in figure 4) and 

echo the behaviour of 𝑔∥ with respect to changes in the U– 

distance. The strong dependence of 𝑔⊥ on the ring bond orbitals 

again argues for the importance of including them in the active 

space. This bonding/antibonding (covalent) interaction appears 

to be key in determining the value of 𝑔⊥. We can also analyse 

this effect at the level of the spectrum of state energies. A 

second-order perturbation analysis of the g tensor elements 

shows that the magnitude of the shifts depends inversely on the 

energy separation between spin-orbit coupled states. Figure 5 

shows the behaviour of the spin-orbit states as the U– 

distance is displaced by ± 0.05 Å. Broadly speaking we see a 

very gentle spread in the energies of the ligand field states, as 

the U– distance is increased, (ΔELF = 0.938 eV when ΔRU-

 = -

0.05 Å and ΔELF= 0.958 eV when ΔRU-

 = +0.05 Å) in 

correspondence with the small decrease observed in the 𝑔∥ 

values. These changes appear to be determined by the energy 

of the ligand field state at approximately 0.40 eV. We see a 

much stronger decrease in the energy of the LMCT states, as 

the U– distance is increased, and this parallels the more 

marked increase in the magnitude of 𝑔⊥. 

 

[U(η
5
-C5Me5)2(NEt2)2]

+
, 5 

The next example for detailed analysis is                               

[U(η5-C5Me5)2(NEt2)2]
+, 5. It was chosen to contrast with the 

previous example. The experimentally measured g values for 

this rhombic system are 𝑔1 = 0.99,  𝑔2 = 1.95,  𝑔3 = 2.46 .[19] 

Analysis of the UNO computed with the PBE0 functional showed 

no obvious orbitals for inclusion in the active space. The 

occupation numbers implied essentially doubly-occupied orbitals, 

followed by one singly-occupied f orbital and then the 

unoccupied space. Two weak bonding interactions between the 

uranium f orbitals and nitrogen atoms can be seen in the doubly-

occupied space. We attempted to include these two interactions 

in the active space alongside the seven f orbitals on uranium to 

create a (5,9) active space. However these two doubly-occupied 

orbitals do not exhibit partial occupancy unless large levels of 

state averaging are included to cause artificial depopulation from 

the doubly-occupied to the f orbital space. We also attempted to 

include the C5Me5 ring—U bond orbitals in the active space, but 

again found the CASSCF calculation showed no depopulation 

away from double occupancy. This leads to the well-known 

redundant coordinate problem that can plague CASSCF 

calculations. Hence we decided on a (1,7) active space and 

carried out the SA-CASSCF calculations state averaging over all 

seven ligand field states. Figure 6 shows the SA-CASSCF(1,7) 

orbitals obtained. 

The ground state wavefunction is dominated (57%) by an 

electronic configuration where the unpaired electron is in orbital 

(e) from figure 6. There are also significant contributions from 

configurations with the electron in orbital (d) (23%) and orbital 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. SA-CASSCF(1,7) active space orbitals of 5,

 
obtained with 7 states 

averaged (all orbitals have occupancy of 0.14). For clarity H atoms have been 
omitted and the structure drawn in wireframe. The orbital lobes that resides 
away from the central atom in (a), (d), (e) and (g) are all located on the N 
atoms.  
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 (b) (14%). A similar pattern is seen in the other SA-CASSCF 

states, each having one dominant electron configuration and two 

other configurations contributing significantly.  

The calculated g values for this system are g1 = 1.08,  g2 = 

1.33 and g3 = 2.25 which can be compared with the 

experimentally determined values noted above. We found that g1
 

and g3 exhibit good agreement with the experiment, but g2 is 

underestimated. In all three cases, the computed values predict 

the correct positive or negative shift from ge. Figure 7 shows the 

SA-CASSCF(1,7) electronic states of 5 along with the resulting 

spin-orbit states. Comparing with the situation in 1, (figure 3) it 

can be seen that the ligand field states in this case are much 

more closely spaced (an energy span of 0.73 eV in 5 versus 

1.45 eV in 1). 

As with 1, we conducted an analysis of the g values with 

respect to geometric perturbations. 5 is structurally more 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 7. SA-CASSCF(1,7) electronic states of 5

 
and the corresponding 

(QDPT) spin-orbit states. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Changes of (a) g values and (b) energies of the spin orbit states, of 
5 with respect to displacement of the U– distances from equilibrium. 
represents the centroid of the C5Me5 rings. 

 

complex than 1, as the molecule contains two amide and two 

C5Me5 ligands. To perform the analysis the pair of C5Me5 ring 

centroids or the pair of amide ligands were translated in steps of 

±0.01 Å from uranium. The g values were re-evaluated at the 

displacements and figures 8(a) and 9(a) show the results. 

We then looked for correlations between the geometric 

perturbations and the spin-orbit states. Figures 8(b) and 9(b) 

show the spin-orbit states at the equilibrium geometry and ±0.05 

Å for translation of the C5Me5 rings and the amide ligands 

respectively. Inspection of figure 8(a), shows that translation of 

the C5Me5 ligands has a very small effect on the calculated g 

values along all three principal axes. In each, the gradient is 

small and positive, specifically 𝑑𝑔1 𝑑∆𝑅⁄ = 0.11 , 𝑑𝑔2 𝑑∆𝑅⁄ =

0.06 and 𝑑𝑔3 𝑑∆𝑅⁄ = 0.52. Figure 8(b) shows that the energies of 

all the spin orbit states decrease in energy as the C5Me5 rings 

are translated away from uranium. The most notable change is 

for the highest spin orbit states; states 6 and 7. By focusing on 

the difference in energy of the spin orbit states, we note that 

ΔE7-6 decreases with positive displacement of the rings (ΔE7-6 = 

0.079 eV when ΔRU-

 = -0.05 Å and ΔE7-6 = 0.062 eV when ΔRU-


 = +0.05 Å). The change in ΔE5-4 is less pronounced (ΔE5-4 = 

0.164 eV when ΔRU-

 = -0.05 Å and ΔE5-4 = 0.156 eV when ΔRU-
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 = +0.05 Å) and ΔE3-2 even less so (ΔE5-4 = 0.125 eV when 

ΔRU-

 = -0.05 Å and ΔE5-4 = 0.115 eV when ΔRU-


 = +0.05 Å). 

Bearing in mind the different gradients of g value axes in figure 

8(a), it seems appropriate to associate the change in g3 with the  

changes in spin-orbit states 6 and 7, g2 with states 4 and 5 and 

g3 with states 2 and 3.  

A similar analysis can be done with the amide ligands. In 

figure 9(a), g1 and g2 exhibit an increase in magnitude as the 

amide ligands move away from the uranium centre and g3  

decreases. The change in g3 is in direct contrast to the effect 

caused by the C5Me5 ligands. When looking at the spin-orbit 

states in figure 9(b), we can see that similar to figure 8(b), the 

energies of all the spin-orbit states decrease as the ligands are 

displaced. However this time, there is an increase in ΔE7-6 with 

positive displacement from uranium (ΔE7-6 = 0.063 eV when 

ΔRU-

 = -0.05 Å and ΔE7-6 = 0.081 eV when ΔRU-


 = +0.05 Å). 

This interaction can once again be associated with g3. Lower in 

the manifold, ΔE5-4 decreases as the ligands are displaced (ΔE5-

4 = 0.19 eV when ΔRU-

 = -0.05 Å to ΔE5-4 = 0.14 eV when ΔRU-


 

= +0.05 Å) and can again be associated with g2 and the positive 

gradient of 2.5 shown in figure 2(a). ΔE3-2 again exhibits an 

increase in value as the amide ligands are displaced but is less     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 9. Changes of (a) g values and (b) energies of the spin orbit states, of 
5 with respect to displacement of the U–N distances from equilibrium. 

pronounced than the effects on ΔE5-4, mirroring the effects seen 

in g1. 

These perturbations show the effects of different ligand 

groups on the electronic structure and in determining the g 

values. The contrasting behaviour of g3 and the sixth and 

seventh pairs of spin-orbit states is indicative of this. These spin-

orbit states originate from a mixing of spin free states that are 

dominated by electron configurations where the unpaired 

electron is in orbital (a), (d) and (g) from figure 6. By visualising 

these orbitals we can see the appearance of a small, albeit 

important, nitrogen component.  

 

Summary of results for molecules 1-7 

Following the general approach outlined in the previous section 

for the cases of 1 and 5 we collate here the results obtained for 

all molecules, 1-7. The details for each molecule are provided in 

the SI. 

 Table 3 summarises our best estimate of all the g values. 

Figure 10 shows the level of agreement we obtained with  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 10. Correlation between the experimentally determined g values and 
the calculated g values for 1-7. 

Table 3. Best estimates of computed g values for 1-7, experimental values 

are shown in parentheses. 

Molecule 
Active Space / 

No. States 
g1 g2 g3 

1 (5,9) / 15 states 1.26  

(1.24) 

2.36  

(2.37) 

2.36 

 (2.37) 

2 (5,9) / 50 states 0.10  

(0.96) 

1.02  

(1.64) 

3.18  

(3.17) 

3 (1,7) / 7 states 0.16  

(<0.8) 

0.91  

(1.26) 

3.14  

(3.27) 

4 (5,9) / 50 states 0.94  

(1.36) 

1.24  

(1.82) 

1.62  

(2.31) 

5 (1,7) / 7 states 1.08  

(0.99) 

1.33  

(1.95) 

2.25  

(2.46) 

6 (5,9) / 50 states 0.14  

(0.90) 

1.63  

(1.46) 

2.66  

(2.16) 

7 (5,9) / 10 states 0.07  

(0.74) 

1.16  

(0.91) 

1.27  

(0.91) 
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Figure 11: Axes of the g tensor for molecules 1-7. The level of the calculation corresponds to that shown in table 3. 

 

 

respect to experiment and figure 11 shows the axes of the g 

tensors for 1-7 superimposed on their molecular structure.  

Overall a good agreement is found. It should be borne in 

mind when inspecting figure 10 that there are obvious limitations 

associated with the computed g values related to the omission of 

environmental factors inherent in the experiments. For example, 

the geometry of the molecules in a frozen solution used in the 

experiments versus the gas phase optimised structures used in 

the calculations. Additionally, the calculations have not included 

any treatment of the solvent environment, nor any effects of 

vibrational motion or temperature and the CASSCF calculations 

used here do not treat the dynamic electron correlation problem. 

The computational cost of a more extended treatment of 

electron correlation was deemed to be excessive in the context 

of this study. That said, we find a regression coefficient of R2 = 

0.81 and the line of best fit shows a gradient of 0.99. 

There are two main outliers evident in the results, g1 for 

molecules 2 and 6, both of which are significantly 

underestimated, implying an excessive computed g shift from 

the free electron value. Including a very large number of states 

in the in the state averaging process for 2 can improve the  

 

 

 

agreement of the g1 and g2 values, but this has a detrimental 

effect on the g3 value (see SI table S10). For 6, all g values are 

improved by including large numbers of states. We can only 

conclude that the subtleties of the electronic structure for these 

molecules are not sufficiently well described at the SA-

CASSCF(5,9) level of theory we have used here. Possibly a 

more extended treatment of the correlation problem, for example 

through the use of restricted active space (RAS) type methods, 

might remedy this. We note that if these outliers are removed 

from the dataset, the regression coefficient is only slightly 

improved to R2 = 0.84 (gradient = 0.98). 

Some care should be exercised in comparing with the 

available experimental data. We note that the experimental 

spectrum of 3 exhibits only two turning points.[19] The third is 

believed to appear at a field greater than 810 mT giving an 

upper limit for this g value of 0.8. Our calculated value is 0.16, 

which agrees with the implied limit, but it is difficult to say 

anything more precise about this value. The experimental 

spectrum of 7 shows one extremely broad peak at high field with 

the g values determined as g1 = 0.74, g2 = 0.91 and g3 = 0.91.[19] 

The average g value is 0.85. The calculations also predict a g 

tensor at high field with the individual g values all shifting to 
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lower than ge. Our calculated values are g1 = 0.07, g2 =1.16, g3 = 

1.27 and gav = 0.83. As the experimental spectrum of 7 is 

unresolved, it appears better to compare gav values in this case. 

Conclusions 

Geometries of 1-7 were optimised at the DFT level (PBE0 

functional) using all electron basis sets and one-centre 

approximations to the ZORA one-electron hamiltonian 

(“aZORA”). The experimental crystal geometries are well 

reproduced by this ground state DFT method. The spin 

dependent g tensor is poorly reproduced within the linear 

response DFT formalism and hence we have studied the g 

tensors using simple CASSCF methods. State averaging was 

used to yield a single set of orbitals to describe all electronic 

states. Spin-orbit coupling was included at the QDPT level, 

employing the SOMF(1X) operator. The electronic g tensors 

were calculated using the method of Bolvin.[28]  

Application of these techniques has shown generally good 

agreement with the available experimental g values. We have 

analysed the key features of the electronic structure upon which 

the g values depend by carrying out small geometric 

perturbations of the molecular structures. This allows us to relate 

the changes in electronic structure with the changes in the g 

values giving a simple intuitive interpretation of the effects. 

 The molecules, 1-7, are all S = ½ systems and as such are 

amenable to study of the g tensor using Bolvin’s method, which 

depends on the presence of a Kramers degeneracy. Extension 

of this type of study to systems with integer spin values will 

require an alternative approach,e.g.[54] unless accidental pair 

degenerate states appear in the spectrum of electronic states 

which allow the use of the current methodology (on pseudospin-

½ pairs of states). We are currently investigating some U(IV) 

systems and looking at available strategies for their treatment 

which we shall report in a subsequent study. 

 Recent reviews[27] have highlighted the need for higher-

order treatment of spin-orbit effects in the computations of EPR 

parameters for actinide systems. As such methods become 

more readily available, the study of molecules containing heavy 

elements will become more reliable and quantitative. That said, 

we have shown in this work that useful accuracy can be 

obtained for the g tensors of U(V) complexes using relatively 

simple and well-established computational methods. Equally 

importantly we can delineate the key features of the underlying 

structure that influence the computed values, providing a simple 

physical picture of these subtle molecular properties. However 

for further validation of computational techniques a more 

extended set of reliable experimental data is needed for 

comparison. 
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