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Abstract 

Although instructions often emphasize categories (e.g., odd number → left hand response) rather 

than specific stimuli (e.g., 3 → left hand response), learning is often interpreted in terms of 

stimulus-response (S-R) bindings or, less frequently, stimulus-classification (S-C) bindings with 

little attention being paid to the importance of category-response (C-R) bindings. In a training-

transfer paradigm designed to investigate the early stages of category learning, participants were 

required to classify stimuli according to the category templates presented prior to each block 

(Experiments 1-4). In some transfer blocks the stimuli, categories and/or responses could be novel 

or repeated from the preceding training phase. Learning was assessed by comparing the transfer-

training performance difference across conditions. Participants were able to rapidly transfer C-R 

associations to novel stimuli but evidence of S-C transfer was much weaker and S-R transfer was 

largely limited to conditions where the stimulus was classified under the same category. Thus, even 

though there was some evidence that learned S-R and S-C associations contributed to performance, 

learned C-R associations seemed to play a much more important role. In a final experiment 

(Experiment 5) the stimuli themselves were presented prior to each block, and the instructions did 

not mention the category structure. In this experiment, the evidence for S-R learning outweighed the 

evidence for C-R learning, indicating the importance of instructions in learning. The implications 

for these findings to the learning, cognitive control, and automaticity literatures are discussed. 

 

Keywords: instructed learning, S-R learning, automaticity, cognitive control, categorization 
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A remarkable feature of human performance is the ability to rapidly learn and perform novel tasks 

from simple instructions. Instructions usually specify particular stimulus-response (S-R) mappings 

(e.g., X → left index finger, O → right index finger in a simple two-choice task) or slightly more 

complex/abstract category-response (C-R) mappings (e.g., odd → left hand, even → right hand in a 

digit classification task; living → index finger, non-living → middle finger in an object 

classification task). According to Chein and Schneider’s (2012) triarchic theory of learning, a 

metacognitive system allows the rapid acquisition of such mappings by orchestrating (and then 

monitoring) the activity of a cognitive control system during the very early stages of learning. This 

is achieved by initiating (and terminating) the control routines that make successful initial 

performance possible and then monitoring their progress in order to enhance performance/learning 

by modifying any unsuccessful routines. The cognitive control system remains active throughout 

learning (under the guidance of the metacognitive system) and monitors, organizes, and alters the 

activity of a lower-level representation (associative learning) system to maximize efficient 

performance. More specifically, during the early stages of learning the cognitive control system is 

responsible for directing attention toward task-relevant information and away from distractions 

according to the current task goals. It is also responsible for selecting, updating and sequencing 

task-relevant actions and, as learning progresses, adjusting task parameters following suboptimal 

outcomes (under the direction of the metacognitive system). Thus, the early stages of learning can 

be characterized as the orchestration and monitoring of information processing towards the current 

goal and is largely under the guidance of the metacognitive and cognitive control systems. 

After sufficient practice, performance is mostly supported by the representation system 

(Chein & Schneider, 2012). Theories of automaticity assume that performance has become 

automatized when exposure to a stimulus directly elicits an associated response. Schneider and 

Shiffrin (1977) distinguished between consistent and varied mappings of stimuli onto responses. In 
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consistent mapping, the stimulus is consistently mapped onto the same response throughout 

practice, whereas in varied mapping, the stimulus is inconsistently mapped onto different responses 

throughout practice. In consistent mapping, associations between the stimulus and response are 

formed and automatic processing develops across practice. In varied mapping, inconsistent 

stimulus-response associations are formed, thereby preventing automatic processing (Shneider & 

Shiffrin, 1977). In a similar vein, Instance Theory (Logan, 1988, 1990) construed automaticity as a 

memory phenomenon. Initially, people would perform a task based on task rules (algorithmic 

processing). But after every stimulus encounter, they would store a new processing episode, which 

consists of a specific combination of the stimulus, the interpretation given to the stimulus, the 

response, and the task goal. When the stimulus is repeated, previous processing episodes are 

retrieved, facilitating performance when the mapping is consistent, but impairing performance when 

the mapping is inconsistent. Eventually, in consistent-mapping conditions, performance can rely 

entirely on memory retrieval (bypassing the cognitive control system) and is said to be ‘automatic’. 

Most work on learning and automatization has focused on the formation of specific 

associations between stimuli and responses (Hazeltine & Schumacher, 2016). However, some 

research has questioned the way a ‘stimulus’ and ‘response’ should be conceptualized (e.g., 

Henson, Eckstein, Waszak, Frings, & Horner, 2014) and the relative importance of S-R associations 

(e.g., Hazeltine & Schumacher, 2016; Logan, 1990). For example, Horner and Henson (2009, 2011) 

asked participants to classify pictures of everyday items in a study-test design in which the stimulus 

(picture vs. word), the action (left vs. right button press), the decision (yes vs. no) or the 

classification (e.g., larger than a shoe box vs. larger than a wheelie bin) could change between the 

study and test phases. They found that at least two levels of stimulus representation (specific 

stimulus vs. abstract/semantic representation) could independently become associated with at least 

three levels of response representation (action, decision, classification). In a similar vein, 
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Moutsopoulou, Yang, Desantis, and Waszak (2015; see also Moutsopoulou & Waszak, 2012, 2013; 

Waszak, Hommel, & Allport, 2004) have compared the formation and durability of stimulus-action 

and stimulus-category (S-C) associations. They also asked participants to classify pictures of 

everyday items and manipulated whether the classification and/or response (action) switched or 

repeated between prime and probe phases. Like Horner and Henson, Mousopoulou and colleagues 

confirmed that S-R and S-C associations are relatively independent (see also Dreisbach, 2012, for a 

review of recent research investigating the importance of task rules in modulating performance). 

Finally, Allenmark, Moutsopoulou, and Waszak (2015) have demonstrated that stimulus-action and 

stimulus-category associations do not depend on very low-level perceptual features (e.g., color), 

which led them to conclude that higher level representations (e.g., objects or semantic 

classifications) become associated with categories or actions (see also Frings, Moeller, & 

Rothermund, 2013, and Denkinger & Koutstaal, 2009; but for an example of evidence to the 

contrary, see Schnyer et al., 2007). Combined, these studies indicate that people can learn different 

types of associations when they perform a task. Learning different types of associations might even 

be the norm (e.g., Dreisbach, 2012; Hall, 2002; Verbruggen, Best, Bowditch, Stevens, & McLaren, 

2014). The research summarized above has investigated several such associations, but none has 

offered a direct comparison between C-R associations (independent of the stimulus), S-R 

associations (independent of the classification), and S-C associations (independent of the response). 

The aim of the present study was to compare the relative contribution of these types of associations 

to learning by assessing the extent to which they transferred to novel stimuli, classifications and 

responses (respectively). Of particular interest was the relative contribution of C-R associations to 

learning which has thus far been the subject of few experimental reports. 
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C-R associations in the control and learning literature 

C-R associations (e.g., odd → left hand response) are presumably an important part of rule-

based performance. But despite being regularly utilized when instructing people how to perform a 

task, C-R associations have received little attention in the automaticity and control literature. Where 

it has been investigated experimentally, research has largely been dominated by visual-search 

paradigms (e.g., Kramer, Strayer & Buckley, 1991; Neisser & Beller, 1965; Schneider & Fisk, 

1984) and/or the use of well-learned taxonomic categories such as letters, numbers, animals, colors, 

etc. (e.g., Neisser & Beller, 1965; Pashler & Baylis, 1991; Schneider & Fisk, 1984). Although these 

reports have been informative and largely indicate that learned C-R associations transfer to novel 

stimuli from the practiced categories, it is not possible to generalize their findings to more abstract 

category structures. Kramer, Strayer and Buckley (1990) note two particularly relevant reasons why 

the use of well-learned taxonomic categories is not ideal in this regard: (1) it is possible that a 

portion of the observed transfer effect could be due to extra-category associations (e.g., ‘cat’ and 

‘dog’ might be associated by the phrase ‘raining cats and dogs’) rather than the experimenter-

defined category structure (e.g., ‘animals’); (2) it is possible that the observed transfer effect is 

limited to those members of the category that have been learned prior to the experimental session 

and does not generalize to novel exemplars that adhere to the category rules but were not known 

prior to testing (e.g., ‘cat’ and ‘dog’ are well-known animals that are likely to benefit from transfer, 

but ‘caracal’1 is less well-known and is therefore less likely to benefit from transfer in experiments 

that use word stimuli despite also being a member of the category ‘animals’). Thus, a critical part of 

(instructed) learning is the ability to rapidly apply novel rules, but the use of well-learned 

taxonomic categories in research investigating C-R associations necessarily limits the extent to 

which the results can be generalized. 

                                                           
1 A caracal is a rare wild cat that lives in Africa. 
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In an attempt to address the above criticisms, Kramer et al. (1990) used ‘artificial’ rule-

based categories in two experiments investigating the development and transfer of automatic 

processes. The target stimuli were four concentric circles with two digits presented at random 

locations within their boundaries and the task was to determine whether the digit values and 

locations were consistent with rule-defined categories such as “1 ring apart, outer = inner” (i.e., are 

the digits presented one ring apart and are their values equal?). Kramer and colleagues observed 

effective transfer of learned C-R associations to novel exemplar stimuli, which is consistent with 

the notion that C-R associations make an important contribution to learning. However, their design 

does not allow for a clean measure of S-R learning independent of the classification because each 

stimulus could only be consistent with a single category (rule). Thus, a change of S-R mapping was 

necessarily confounded by a change of classification, making a direct comparison between S-R and 

C-R associations impossible. 

More recently, Cohen-Kdoshay and Meiran (2007, 2009) have demonstrated that the flanker 

congruency effect (i.e., better performance on trials in which irrelevant stimuli presented alongside 

the target stimulus afford the same response as the target relative to trials on which the irrelevant 

stimuli afford a different response to the target) can be observed on the first trial following some 

simple C-R instructions (e.g., letter from the first half of the alphabet → left hand response, letter 

from the last half of the alphabet → right hand response). Cohen-Kdoshay and Meiran framed their 

discussion in terms of S-R bindings, but their results suggest that all members of the instructed 

categories automatically activate the relevant responses, even when they should be ignored. 

However, because all of the relevant exemplar stimuli used in the subsequent block were presented 

during the instructions phase, it is not possible to make any strong claims regarding the extent to 

which participants activated C-R bindings independent of the specific stimuli they were presented 

with. 
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Cohen-Kdoshay and Meiran’s experiments have also initiated a recent interest in another 

relevant line of research investigating intention-based reflexivity – reflexive performance of an 

instructed S-R mapping even if the context is not appropriate (e.g., Meiran, Pereg, Kessler, Cole, & 

Braver, 2015a, 2015b; Liefooghe, De Houwer, & Wenke, 2013; Liefooghe, Wenke, & De Houwer, 

2012). For example, Liefooghe Wenke and De Houwer (2012) instructed participants in two S-R 

mappings (the ‘inducer’ task) which only became relevant after completion of a second 

(‘diagnostic’) task which used the same stimuli as the inducer task but their identity was irrelevant 

(the diagnostic task was to classify the stimuli based on their orientation). By comparing 

performance on trials in the diagnostic task where the required response was either compatible or 

incompatible with the responses for the inducer task Liefooghe and colleagues were able to 

demonstrate that performance is modulated by instructed S-R bindings even if the context is not 

relevant to the instructed task and before the instructions have been carried out (Meiran et al, 2015a, 

2015b, even found the effect on the first trial following the instructions). Interestingly, Liefooghe 

and colleagues also manipulated the specific effectors/modality used to respond in each task  (index 

fingers, middle fingers, vocal response) and found clear evidence of intention-based response 

congruency (better performance on diagnostic task trials in which the required response was the 

same as the equivalent response for the inducer task relative to when the required response was 

different) even when the tasks used different effectors (index fingers vs. middle fingers) or response 

modalities (manual response vs. vocal response). The latter finding suggests that the representation 

of the instructed S-R bindings is relatively abstract and include the concepts ‘left’ and ‘right’ rather 

than specific actions. 

Thus, of the few studies that focus on (or include) C-R effects, many used well-learned 

taxonomic categories and/or were not able to directly compare clean measures of S-R learning and 

C-R learning. The current experiments were designed to directly investigate the extent to which 
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instructions can influence how novel rules are represented and to allow the direct comparison of S-

R vs. C-R associations by independently manipulating repetitions of the stimulus, classification 

and/or response in a training-transfer design (details provided below). Finally, the research 

investigating intention-based reflexivity was expressly designed to investigate the formation of S-R 

(or C-R) associations through instruction alone (i.e., they did not investigate learning beyond the 

instructions phase), whereas the current experiments focused on the early stages of learning by 

investigating which associations transferred when one or more task components changed. 

 

C-R associations in the categorization literature 

C-R associations have also received some attention in the categorization literature (e.g., 

Ashby, Ell, & Waldron, 2003; Kruschke, 1996; Maddox, Glass, O’Brien, Filoteo, & Ashby, 2010; 

Nosofsky, Stanton, & Zaki, 2005; Wills, Noury, Moberly, & Newport, 2006). Most categorization 

studies have examined how stimuli are categorized and how categories are represented (for some 

reviews see Murphy, 2002; Pothos & Wills, 2011; Wills, 2013). Two theories have dominated the 

categorization field for a number of years. Prototype theories (e.g., Homa, Cross, Cornell, Goldman, 

& Shwartz, 1973; Reed, 1972; Smith & Minda, 1998, 2002) assume that novel stimuli are 

categorized by comparison to a prototype (a mental representation of the commonalities between 

category members or an idealized exemplar) from all likely categories. On the other hand, exemplar 

theories (e.g., Medin & Schaffer, 1978; Nosofsky, 1986; Nosofsky & Palmeri, 1997) assume that 

novel stimuli are compared to existing exemplars from all likely categories and assignment is based 

on similarity to the exemplars2. Although these theories are commonly contrasted with each other, 

many of their core ideas are shared. For instance, they both assume that categorization relies on 

                                                           
2 It should be noted that some of Nosofsky’s later work was, at least in part, inspired by Logan’s (1988) Instance Theory 

of automatization. Indeed, Nosofsky and Palmeri’s (1997) exemplar-based random walk model of speeded classification 

combines elements of Nosofsky’s (1986) generalized context model of categorization and Logan’s (1988) Instance 

Theory of automatization.  
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comparing novel stimuli to existing category information, and that membership is decided based on 

similarity. However, prototype theories must assume the existence of category-level representations 

whereas exemplar theories need not (although some do; see Kruschke, 1996). 

Much categorization work has focused on the representation issue. In other words, it has 

mostly focused on whether the memorial representation of categories includes the storage of 

specific examples, prototypes, or both. In other words, it has largely focused on S-C associations 

(e.g., is stimulus A represented under category X) and less on C-R associations (e.g., category X → 

left index finger response). The literature on cognitive control and learning described above 

suggests that categories are important for guiding performance (e.g., instructions often map 

categories onto responses without mentioning all exemplars), but it remains largely agnostic 

regarding the nature of the category representation. Addressing the representation issue (which is 

still debated in the categorization literature) is beyond the scope of the current report, but we will 

consider it when interpreting the results from the experiments. 

 

The present study 

 The present study consists of five experiments designed to investigate the relative 

contribution of C-R, S-R and S-C associations to instructed category learning. Experiments 1-3 

were designed to compare C-R and S-R learning and to determine the extent to which each kind of 

association transfers beyond the specific learning context (i.e., whether C-R associations transfer to 

novel stimuli from the same category and/or whether S-R associations transfer across 

classifications). To preempt the results, we found some evidence of both C-R and S-R learning. 

However, the evidence that C-R associations readily transfer to novel stimuli was much stronger 

than the evidence for transfer of S-R associations across classifications. Indeed, we even found 

some evidence that S-R learning suffered from interference when the classification changed. 
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Experiment 4 extended this comparison to stimulus-category (S-C) associations and found that, in 

the current paradigm, there was a bias toward C-R learning that outweighed the effect of both S-R 

and S-C learning. Finally, Experiment 5 reduced the C-R bias in the instructions by mentioning 

(and presenting) only the S-R bindings. This manipulation was enough to shift the performance bias 

away from C-R learning and toward S-R learning. 

 

Experiment 1 

We devised a task where individual perceptual stimuli (dot patterns) were classified 

according to their category membership by entering a 4-digit response ‘code’ (we used complex 

responses to guarantee that novel responses could be used in each task). Participants in 

categorization experiments are typically required to learn the categories over long sequences of 

trials accompanied by feedback, but without any formal instructions regarding the categories 

themselves (e.g., Wills et al., 2006; though for a notable exception see Allen & Brooks, 1991). In a 

similar vein, the automaticity experiments designed to investigate C-R associations described above 

required participants to learn the relevant C-R bindings over long training sessions (sometimes 

lasting several days, or even weeks; e.g., Kramer et al., 1990, 1991; Neisser & Beller, 1965). In the 

current experiments we were interested in the very early stages of instructed category learning so 

we presented participants with the main surface features of the task at the start of each block – i.e., 

participants were presented with the category templates (all templates can be found in the 

Appendix) and the correct response code for each category. We were thus able to examine what 

kinds of associations are learned over the first few trials of instructed (perceptual) category learning 

tasks that use novel stimuli and categories3. 

                                                           
3 We owe much of our experimental design to the recent interest in the investigation of rapid instructed task learning 

(e.g., Cole, Bagic, Kass, & Schneider, 2010; Ruge & Wolfensteller, 2010). In these studies participants perform 

multiple tasks that share a common structure but differ in their surface features and the data are collapsed across tasks. 
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The experimental session was divided into pairs of ‘training’ and ‘transfer’ blocks. Entirely 

novel stimuli, category templates and response codes were introduced at the beginning of each 

training block. Each training block was immediately followed by a transfer block. In half of the 

transfer blocks, the categories were repeated from the preceding training block; in the other half, 

novel categories were introduced. Whether the classifications changed or not, half of the transfer 

stimuli were novel and half were repeated from the preceding training block (i.e., stimulus and 

category repetitions were manipulated independently by using stimuli that equally resembled two 

category templates; see Figure 1 for an overview of the design and some example stimuli from each 

condition). In other words, we used a two (Stimulus: same vs. different) by two (Category: same vs. 

different) design. In one critical condition the stimuli were novel, but the categories and responses 

were repeated (i.e., the transfer phase used Different stimuli, but the Same categories and the Same 

responses as the preceding training phase; DsScSr4); this condition can be used as a clean measure 

of C-R learning (independent of S-R learning). In a second critical condition novel category 

templates were introduced at transfer, but the stimuli were repeated and they were mapped on the 

same responses as those used during training (SsDcSr); this condition can be used as a clean 

measure of S-R learning (independent of the classification). In the DsDcSr condition, both the 

stimuli and categories used at transfer differed from the ones used in training; this will be our 

baseline condition. Finally, everything remained the same in the SsScSr condition; thus, this 

condition included both S-R and C-R learning. 

We chose to manipulate category repetitions across blocks and stimulus repetitions within 

blocks primarily to ensure that the categories played an important role in the SsDcSr condition and 

to potentially allow C-R transfer in the DsScSr condition. If the SsDcSr condition was in a block of 

its own (without the DsDcSr condition) then it might have been much easier for participants to 

                                                           
4 The capital letters (and lower-case letters) indicate whether the stimuli (s), categories (c) and/or responses (r) of the 

transfer phase were the same (S) or different (D) from those used in the training phase. 
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ignore the introduction of novel category templates at transfer and instead rely entirely on S-R 

learning. If the DsScSr condition was in a block of its own (without the SsScSr condition) then 

participants might have been less likely to consider the novel stimuli as part of an existing category, 

despite the instructions. Thus, to ensure that participants processed the instructions presented at 

transfer, we used a mixed-block manipulation. Note that this manipulation also allowed more 

training-test pairs, increasing the number of observations and optimizing the signal to noise ratio. 

We could determine what was learned during training by comparing initial transfer 

performance from the various conditions. If participants were able to transfer learned S-R 

associations to novel classifications (in the absence of C-R learning) then initial performance at 

transfer should be comparable to performance at the end of training in conditions where the S-R 

bindings are repeated, whether the classifications were repeated or not (i.e., initial transfer 

performance for SsScSr ≈ SsDcSr < DsScSr ≈ DsDcSr). If participants were able to transfer learned 

C-R associations to novel stimuli from the same category (in the absence of S-R learning) then 

initial transfer performance should be comparable to performance at the end of training for 

conditions where the C-R bindings were repeated, whether the stimuli were repeated or not (i.e., 

initial transfer performance for SsScSr ≈ DsScSr < SsDcSr ≈ DsDcSr). If both S-R and C-R 

learning contributed to performance, then initial transfer performance should be comparable to 

performance at the end of training in the SsScSr condition, intermediate in the DsScSr and SsDcSr 

conditions, and worst in the DsDcSr condition (i.e. initial transfer performance for SsScSr < DsScSr 

≈ SsDcSr < DsDcSr). Finally, performance in all conditions should be comparable to baseline if 

subjects could not transfer S-R or C-R associations (i.e. SsScSr  ≈ DsScSr ≈ SsDcSr ≈ DsDcSr).   
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Method 

Participants. 40 students from the University of Exeter (37 female) with a mean age of 19.6 

years (SD = 2.0) participated for £7 or partial course credits. The target sample size and exclusion 

criteria were decided in advance of data collection (when N = 40, we could detect medium-sized 

differences). All experiments of the present study were approved by the local research ethics 

committee at the School of Psychology, University of Exeter. Written informed consent was 

obtained after the nature and possible consequences of the studies were explained. 

Apparatus, stimuli, and responses. Stimuli were presented on a 21.5-inch iMac using 

Psychtoolbox (Brainard, 1997). As shown in Figure 2, the stimuli consisted of patterns of five black 

dots (diameter = 0.5 cm) presented at a pseudo-random location in a larger array (18 x 18) of small 

gray dots (diameter = 0.25cm, distance between adjacent dots = 0.75 cm), which was itself 

surrounded by a black square (side = 15 cm, thickness = 0.1 cm). Randomizing the location of each 

stimulus ensured that the stimuli could not be classified according to their relative location on the 

screen, and therefore, encouraged comparison with the category templates.  

In each block, there were two categories (so two category templates, selected pseudo-

randomly), and eight stimuli (four exemplar stimuli per category). The category templates are 

shown in the Appendix. Each stimulus included five black dots. Three were positioned within the 

borders of the template and the remaining two were presented at adjacent locations (see Figure 1 for 

some examples). Thus, the category membership of a given dot-pattern was determined by its 

overall similarity to the category templates presented at the start of each block. On each trial the 

participant indicated to which category the stimulus belonged by entering the relevant four-digit 

response code with their preferred index finger (all participants used their right hand) using the 

numeric keypad on a standard keyboard. 
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Complex response codes were used so that novel responses could be associated with each 

category-pair presented throughout the experiment. The response codes all started and ended with 

‘5’ to ensure the index finger was in the optimal (central) position at the start of each trial. The 

intervening digits were always on adjacent keys (e.g., 5235, 5425) in order to equate the difficulty 

of entering each response code. Two different response codes were used for each training-transfer 

phase (one per category). The relevant codes used in each phase were selected pseudo-randomly to 

discourage re-classification according to a simple spatial rule and also to equate the difficulty of 

each phase (e.g., when used in the same block, the codes 5475 and 5415 could easily be reclassified 

as ‘up’ and ‘down’ respectively because the only difference between them is the digit following the 

4 – either an ‘upward’ or ‘downward’ motion with the index finger; therefore, they might be easier 

to memorize than 5235 and 5425). 

Procedure. At the beginning of the experiment, participants were informed that each block 

would start with an instruction screen (displaying the two category templates and relevant response 

codes for the block; see Figure 2) and end with a feedback screen (displaying their mean correct 

RT, number of errors, and proportion of correct responses). Both the instructions screen and 

feedback screen were displayed for 15 seconds each. Participants were instructed to respond as 

quickly as possible while minimizing errors. They were also informed that each response code 

would start and end with ‘5’ so they should place their index finger on that key before the 

experiment started. 

In each block, all trials started with a blank screen presented for 500 ms, followed by the 

target stimulus which was visible until the first digit of the response code was entered. There was no 

response deadline. The response code appeared on the screen as it was typed in. Immediate 

feedback, visible for 1000 ms, was presented after the final digit had been entered: the stimulus was 

displayed as it appeared during the trial with the category template presented behind (to confirm 
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category membership) in either green (correct) or red (error), and the correct response code was 

presented directly below in black Arial font (size 30, see Figure 2). 

Training and transfer blocks alternated throughout the experiment (i.e., training–transfer–

training–transfer–…). Each block used two categories assigned to one response each. There were 

four exemplar stimuli per category and each stimulus was presented ten times, resulting in 80 trials 

per block. During the training blocks all stimuli, category templates and response codes were novel. 

In the transfer blocks, the category templates could either be novel or repeated from the preceding 

training block. Whether the category templates were repeated or not, half of the stimuli used during 

transfer were novel and the other half were repeated from the preceding training block (the latter 

stimuli equally belonged to two categories – one category was always used during training, the 

other category was only used in transfer blocks where novel categories were introduced; all 

category templates from the training and transfer blocks are presented in the Appendix). When the 

category templates were repeated between training and transfer, the novel stimuli introduced at 

transfer were also based on the category templates used during training. When novel category 

templates were introduced at transfer, the novel stimuli were based on the novel category templates 

shown at the beginning of the transfer block (see Figure 1 for some example stimuli from the 

training and transfer blocks in each condition). The responses (e.g., 5235, 5425) were always 

repeated between training and transfer blocks. This two (Stimulus: same vs. different) by two 

(Category: same vs. different) design resulted in four conditions defined on the basis of whether the 

stimuli and/or categories5 used in the transfer block were the same or different to those used in the 

preceding training block: Different stimuli, Different categories, Same responses (DsDcSr); Same 

stimuli, Different categories, Same responses (SsDcSr); Different stimuli, Same categories, Same 

responses (DsScSr); Same stimuli, Same categories, Same responses (SsScSr). Note that each 

                                                           
5 Although the responses never changed between training and transfer in Experiments 1, 2, 3, and 5, response repetition 

was manipulated in Experiment 4. For consistency the condition codes indicate whether the responses used at transfer 

where the same or different to those used during training for all experiments. 
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transfer block consisted of two conditions: transfer blocks in which the categories changed, 

consisted of DsDcSr and SsDcSr trials; whereas transfer blocks in which the categories were 

repeated consisted of DsScSr and SsScSr trials. Whether the category templates used at transfer 

were the same or different to those used during training alternated through the experiment and the 

order was counterbalanced over participants. 

The experiment started with a practice session, which consisted of one training-transfer pair 

(80 trials per block). These blocks were omitted from all analyses. The experimental session 

consisted of 12 blocks of 80 trials each (3 training-transfer pairs where the categories changed, and 

3 training-transfer pairs where the categories were repeated). This resulted in a total of 120 training 

trials and 120 transfer trials available for analysis per condition (e.g., there were three transfer 

blocks in which the categories changed, and in each of these blocks, there were 40 DsDcSr trials 

and 40 SsDcSr trials). 

The participants were not informed that the first two blocks would be omitted from analysis 

or that the experiment used a training-transfer design. In addition to the 15-second breaks at the 

beginning (instruction screen) and end (feedback screen) of each block, a timed 2-minute break was 

enforced after block number 8 (half way through the experimental session). 

Analyses. All data processing and analyses were performed using R (R Development Core 

Team, 2015). Raw data files and R scripts from all experiments are deposited on Open Research 

Exeter data repository (http://hdl.handle.net/10871/27115). 

Trials with RT (first digit) <100 ms (0.05%) and trials with RT (last digit) >5000 ms 

(0.78%) were omitted from all analyses. Error trials were omitted from the RT analyses. Because 

the first digit in each response code was the same, it was possible for participants to execute the first 

digit before the stimulus was categorized. A more informative measure of performance was the 

http://hdl.handle.net/10871/27115
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latency of the final digit in the response code (i.e., the time at which the full response had been 

entered), so we used this for all response latency analyses. 

Performance from both categories used in each condition was pooled. Transfer performance 

was compared to training performance for the corresponding stimuli: for the transfer conditions in 

which the stimuli were repeated (i.e., SsScSr and SsDcSr), we compared transfer performance to the 

average training performance from the stimuli that were repeated at transfer; for the transfer 

conditions in which the stimuli changed (i.e., DsScSr and DsDcSr), we compared transfer 

performance for the novel stimuli with the average training performance for the stimuli that were 

replaced at transfer (see Figure 1). For the statistical analyses, we calculated three measures in each 

condition for every participant (see Figure 3; these measures are based on the measures used in 

Logan, 1990): (a) training learning (the averaged performance from the first three presentations of 

the relevant stimuli for the condition during the training blocks minus the averaged performance 

during the final three presentations of the relevant stimuli for the condition during the training 

blocks6); (b) transfer effect (the averaged performance from the first three presentations of the 

relevant stimuli for the condition during the transfer blocks minus the averaged performance from 

the final three presentations of the relevant stimuli for the condition during the training blocks); and 

(c) transfer learning (the averaged performance from the first three presentations of the relevant 

stimuli for the condition during the transfer blocks minus the averaged performance from the final 

three presentations of the relevant stimuli for the condition during the transfer blocks).7 The first 

and last of these measures quantify overall learning during the training and transfer blocks 

respectively. Any notable differences between conditions in the ‘training learning’ measure would 

                                                           
6 Mean correct RT was calculated by averaging the performance from the first/last three stimulus presentations in a 

given block after errors from these trials had been omitted. 
7 A potentially more informative method for such an analysis would be to perform nonlinear regression. We did perform 

such analyses on data from a pilot study in which we attempted to fit a power function and an exponential function 

(Logan, 1988) to the learning data. However, some of the conditions had quite flat learning curves which resulted in 

some extreme values being generated. For this reason we settled for the simpler analyses reported here. 
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suggest some intrinsic difference between the rates of learning in the various conditions; this would 

complicate the interpretation of both transfer measures. Our main measure of interest is the ‘transfer 

effect’ as it can show what was learned during training. For example, if participants were able to 

transfer learned C-R associations to novel stimuli then the ‘transfer effect’ in the DsScSr condition 

should be relatively small in comparison to the baseline (DsDcSr) condition. On the other hand, if 

participants were able to transfer learned S-R associations across classifications then the ‘transfer 

effect’ should be relatively small in the SsDcSr condition in comparison to baseline. Finally, for 

completeness, we also analyzed the ‘transfer learning’ measure. It could mirror the ‘transfer effect’ 

measure, as there is more opportunity to learn when the ‘transfer effect’ is also large. However, it is 

possible that the introduction of novel task elements at transfer might hinder learning as well as 

initial transfer performance (i.e. large ‘transfer effect’ and no learning in the transfer block).  

For each score and dependent variable (RT and error rate), we performed a separate 

Stimulus (same, different) by Category (same, different) ANOVA. We also report Bayes factors and 

effect sizes (generalized eta squared) for all relevant effects/interactions. Bayes factors were 

calculated with the BayesFactor package for the R Software environment (R Development Core 

Team, 2015), using the default JZS prior (.707; Morey, Rouder, & Jamil, 2015). To reduce the 

number of model comparisons, interactions were only allowed if all constituent sub-effects were 

also included (see Morey, Rouder, & Jamil, 2015). When this approach is used, Bayes factors less 

than 1 indicate that removing any effect/interaction from the full model is deleterious (i.e., a Bayes 

factor <1 indicates that the effect/interaction is a contributor to the fit of the full model). One-

sample t-tests were performed on the ‘training learning’ measure to confirm that learning had taken 

place in each condition during the training blocks. For visualization purposes, we used ‘rolling 

means’ to smooth the curves – each point in Figure 4 included the data from three stimulus 

repetitions, and the windows overlapped. 
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Results and Discussion 

Mean RTs and the proportion of errors made in the training and transfer blocks are plotted 

as a function of condition (DsDcSr, DsScSr, SsDcSr, SsScSr) and stimulus repetition in Figure 4. 

The mean ‘transfer effect’ for RTs and the proportion of errors are plotted as a function of condition 

in Figure 5. The results from the omnibus ANOVAs are reported in Table 1. 

‘Training learning’. As expected, none of the effects or interactions were reliable in the 

ANOVAs on the ‘training learning’ measure for either RTs (Fs<1; BFs>3.4) or the proportion of 

errors (Fs<1; BFs>3.5) indicating that learning was comparable in all conditions during training. 

The one-sample t-tests on the ‘training learning’ measure found that learning had taken place in all 

conditions during the training blocks (RTs: ts>8.4; accuracy: ts>4.7). 

‘Transfer effect’. The ANOVAs on the ‘transfer effect’ for RTs and the proportion of 

errors found that the decrement in performance between the end of training and the start of transfer 

was much larger when novel categories were introduced at transfer (RT difference = 133 ms; 

accuracy difference = 6.1%) relative to when the categories were repeated (RT difference = 4 ms; 

accuracy difference = 0.6%; main effect of Category for RTs: F=46.18, BF<0.001 ± 5.7%; main 

effect of Category for accuracy: F=18.17, BF<0.001 ± 20.0%). Neither the main effect of Stimulus 

nor the Stimulus by Category interaction reached significance for RTs (Fs<3.3, BFs>2.5) or the 

proportion of errors (Fs<2.0, BFs>1.7) indicating that, although initial transfer performance was 

strongly modulated by whether the categories were novel or repeated from training, initial transfer 

performance was not materially affected by the introduction of novel stimuli. 

‘Transfer learning’. The ANOVAs on the ‘transfer learning’ measure found that the 

improvement in performance through the transfer block was much larger when novel categories 

were introduced at transfer (RT improvement = 129 ms; accuracy improvement = 5.8%) relative to 
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when the categories were repeated (RT improvement = 37 ms; accuracy improvement = 1.6%; main 

effect of Category for RTs: F=14.30, BF<0.001 ± 14.0%; main effect of Category for accuracy: 

F=9.96, BF=0.003 ± 4.9%). Neither the main effect of Stimulus nor the Stimulus by Category 

interaction reached significance for RTs (Fs<1.4, BFs>2.6) or the proportion of errors (Fs<1, 

BFs>3.1) indicating that, although the amount learned during the transfer blocks was strongly 

modulated by whether the categories were novel or repeated from training, transfer learning was 

largely unaffected by the introduction of novel stimuli. 

Taken together, this pattern of results confirms our hypothesis that, in the current paradigm, 

learned C-R associations readily transfer to novel stimuli from the same category but learned S-R 

associations do not transfer across classifications quite so easily. 

 

Experiment 2 

The results from Experiment 1 indicate that participants are able to rapidly learn C-R 

associations and transfer them to novel stimuli, whereas the evidence for transfer of S-R 

associations across classifications is sparse. Experiment 2 was designed with two goals in mind: 

first, we wanted to confirm the results reported in Experiment 1; second, we wanted to confirm our 

interpretation of those results. If our interpretation is wrong and S-R associations do play an 

important role in the current design then increasing the number of exemplar stimuli per category 

should further increase the C-R learning bias because there are many more S-R associations to learn 

and exposure to each stimulus will be reduced. On the other hand, if our interpretation is correct and 

C-R associations drive performance, it should follow that increasing the number of exemplars per 

category will not materially alter the pattern of results because the number of category repetitions 

will remain the same (maintaining the strength of the C-R bindings). In order to test this conjecture 

in Experiment 2, we included the same transfer conditions as in Experiment 1, but each condition 
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was performed twice – once with 4 exemplar stimuli per category (as in Experiment 1) and once 

with 16. 

 

Method 

40 different students from the University of Exeter (36 female) with a mean age of 19.8 

years (SD = 1.5) participated for the same reimbursement as Experiment 1 (£7 or partial course 

credits). The target sample size and exclusion criteria were identical to Experiment 1 and written 

informed consent was obtained after the nature and possible consequences of the studies were 

explained. 

The apparatus, stimuli, responses and procedure were identical to Experiment 1 apart from 

the following critical difference: each condition from Experiment 1 was performed twice – once (as 

in Experiment 1) with four exemplar stimuli per category and once with 16 exemplar stimuli per 

category. The order of conditions was Latin-square balanced over participants. 

The current experiment also differed from Experiment 1 on a number of minor structural 

details. Each block was divided into two 64-trial miniblocks with a break between each miniblock 

(the break followed the same format as the break between blocks in Experiment 1: 15 seconds 

feedback followed by 15 seconds instructions). The practice session prior to the experimental 

session consisted of only one training block (two 64-trial miniblocks). There were 8 further 

experimental blocks (4 training, 4 transfer): two training blocks were followed by transfer blocks in 

which the categories were repeated (DsDcSr and SsDcSr conditions; one with 4 exemplar stimuli 

per category, one with 16 exemplar stimuli per category); two training blocks were followed by 

transfer blocks in which novel categories were introduced (DsScSr and SsScSr conditions; one with 

4 exemplar stimuli per condition, one with 16 exemplar stimuli per condition. A total of 18 

miniblocks (including the practice session) of 64 trials each made up the entire experiment (total 
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number of trials = 1152). Because of these changes to the structure of the experiment, the 2-minute 

break was after block number 10 (half way through the experimental session). 

As in Experiment 1, trials with RT (first digit) <100 ms (0.23%) and trials with RT (last 

digit) >5000 ms (0.59%) were omitted from all analyses. Error trials were omitted from RT 

analyses. The data from three participants were replaced because they had <50% of the maximum 

possible observations in at least one condition (excluding the practice blocks) following the above 

data cleaning procedures (the same exclusion criterion was applied in Experiment 1 but it was not 

necessary to replace any participants). As in Experiment 1, we used rolling means for visualization 

of the results, but because the maximum number of stimulus repetitions differed between conditions 

(16 exemplars = 4 stimulus repetitions per block; 4 exemplars = 16 stimulus repetitions per block) 

the rolling windows were based on category repetitions (per condition within a given block) rather 

than stimulus repetitions (see Figure 6 for the windows). Finally, every condition was performed 

only once by each participant. 

For each score and dependent variable (RT and error rate), we performed a separate 

ANOVA with the factors Stimulus (same, different), Category (same, different), and Exemplars (4, 

16). We also report Bayes factors and effect sizes (generalized eta squared) for all relevant 

effects/interactions (calculated in the same way as for Experiment 1). One-sample t-tests were 

performed on the ‘training learning’ measure to confirm that learning had taken place in each 

condition during the training blocks. We also performed several follow-up paired-samples t-tests in 

order to unpack the significant interactions from the omnibus ANOVAs. We also report Bayes 

factors and effect sizes (Hedges’s average g (gav); Lakens, 2013) for these comparisons. 



Instructed category-response associations 

24 

 

Results and Discussion 

Mean RTs and the proportion of errors made in the training and transfer blocks (separately 

for conditions where 4 or 16 exemplar stimuli were used per category) are plotted as a function of 

condition (DsDcSr, DsScSr, SsDcSr, SsScSr) and category repetition in Figure 6. The mean 

‘transfer effect’ for RTs and the proportion of errors are plotted as a function of condition in Figure 

5. The results from the omnibus ANOVAs are reported in Table 2. 

‘Training learning’. None of the effects or interactions were reliable in the ANOVA on the 

‘training learning’ measure for RTs (Fs<2.8; BFs>0.9). The ANOVA on the ‘training learning’ 

measure for the proportion of errors found that participants’ response accuracy improved slightly 

more when there were 4 exemplar stimuli per category (improvement = 11.3%) than when there 

were 16 (improvement = 8.0%; main effect of Exemplars: (F(1,39)=4.61, p=.038, η2=.015). 

However, the Bayesian analysis found only anecdotal8 evidence that removal of the main effect of 

Exemplars from the model would impair its fit (BF=0.954 ± 8.7%). None of the other effects or 

interactions approached significance (Fs<1.1, BFs>3.3). The one-sample t-tests on the ‘training 

learning’ measure found that learning had taken place in all conditions during the training blocks 

(RTs: ts>4.6; accuracy: ts>2.5). 

‘Transfer effect’. The ANOVAs on the ‘transfer effect’ for RTs and errors found that the 

decrement in performance between the end of training and the start of transfer was larger when 

novel category templates were introduced at transfer (RT difference = 82 ms; accuracy difference = 

7.3%) relative to when the category templates were repeated (RT difference: 4 ms; accuracy 

difference: 1.0%; main effect of Category for RTs: F=9.87, BF=0.016 ± 17.5%; main effect of 

Category for accuracy: F=18.44, BF<0.001 ± 7.0%). 

                                                           
8 We have adopted Wetzel et al.’s (2011) protocol for interpreting Bayes factors. 
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When novel category templates were introduced at transfer, the ‘transfer effect’ was smaller 

for altogether novel stimuli (DsDcSr RT difference = 50 ms; accuracy difference = 5.5%) than for 

those stimuli that had previously been classified under a different category (SsDcSr RT difference = 

115 ms; accuracy difference = 9.0%). On the other hand, when the category templates were 

repeated between training and transfer, there was a decrement in initial transfer performance for 

novel stimuli (DsScSr RT difference = 45 ms; accuracy difference = 1.4%) but a slight 

improvement in RTs (SsScSr RT difference = -37 ms) and a smaller decrement in accuracy (SsScSr 

accuracy difference = 0.7%) for those stimuli that had been classified during training. This 

interaction was reliable for RTs (Stimulus by Category interaction: F=13.53, BF=0.028 ± 15.5%), 

but did not reach significance for accuracy (Stimulus by Category interaction: F=3.42, BF=1.914 ± 

12.3%). 

Follow-up paired samples t-tests found that the RT ‘transfer effect’ was 64 ms smaller in the 

DsDcSr condition relative to the SsDcSr condition (t(39)=2.41, p=.021, gav=.355, BF=2.22) 

indicating that learned S-R associations suffered from considerable interference when they were 

performed under a novel classification (the 3.5% difference in accuracy between these conditions 

was not reliable: t=1.92, BF=0.90). Critically, the ‘transfer effect’ was significantly smaller in the 

DsScSr condition relative to the SsDcSr condition for accuracy (t=3.83, p<.001, gav=.873, 

BF=62.61) but not for RTs (t=1.87, BF=0.83). The latter results suggest that the C-R bias in the 

RTs can largely be explained by interference for learned S-R associations when classified under 

novel categories, whereas the bias in accuracy can largely be explained by the rapid transfer of 

learned C-R associations to novel stimuli from the same category. 

None of the other effects or interactions was reliable for RTs (Fs<1.3, BFs>3.2) or errors 

(Fs<3.0, BFs>1.5) indicating that, like in Experiment 1, initial transfer performance was modulated 

to a much greater extent by whether the transfer category templates were novel or repeated from 
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training relative to the modest effect of introducing novel stimuli at transfer. Finally, the ‘transfer 

effect’ was comparable whether each category included 4 or 16 exemplar stimuli confirming our 

hypothesis that increasing the number of exemplar stimuli per category (and decreasing the 

exposure to each stimulus during training) had little effect on learning. 

‘Transfer learning’. The ANOVAs on the ‘transfer learning’ measure for the proportion of 

errors found that the improvement in performance through the transfer block was much larger when 

novel categories were introduced at transfer (improvement = 7.0%) relative to when the categories 

were repeated (improvement = 1.8%; main effect of Category: F=12.24; BF=0.003 ± 14.4%). The 

improvements in RTs were also in the same direction (DsDcSr, SsDcSr average improvement = 130 

ms; DsScSr, SsScSr average improvement = 80 ms), however the effect was not reliable (F=2.32; 

BF=0.624 ± 9.1%). 

None of the other effects or interactions were reliable for RTs (Fs<3.2, BFs>2.4) or errors 

(Fs<3.2, BFs>0.8) indicating that, like in Experiment 1, transfer learning was modulated by 

whether the categories were novel or repeated from training, but not by the introduction of novel 

stimuli. Critically, the amount learned during transfer was comparable whether each category 

included 4 or 16 exemplar stimuli. 

Summary. Experiment 2 was designed to confirm the results of Experiment 1 and to test 

whether increasing the number of exemplar stimuli per category would further increase the C-R 

learning bias reported in Experiment 1. We were able to confirm our hypothesis that learning was 

largely dictated by whether the categories used at transfer were novel or repeated from training, 

whereas the effect of introducing novel stimuli at transfer was comparatively small. Critically, none 

of the effects or interactions involving the factor Exemplars provided conclusive evidence of a 

systematic modulation of learning/performance by the number of exemplar stimuli per category. 

That dramatically increasing the number of exemplar stimuli per category did not materially change 
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the pattern of results confirms our hypothesis that, at least in the current paradigm, C-R learning is a 

much stronger determinant of performance than S-R learning. 

However, in the current experiment the evidence that learned C-R associations rapidly 

transferred to novel stimuli was relatively weak (by comparison to Experiment 1) but the 

introduction of novel category templates at transfer significantly hindered performance for learned 

S-R associations. The latter finding is consistent with the notion that performance is modulated by 

learned S-C associations (the interference to S-R learning is likely due to conflict as a result of 

familiar S-R bindings being performed under a novel classification), but does not necessarily 

support our hypothesis that learned C-R associations rapidly transfer to novel stimuli. The relative 

contribution of C-R, S-R and S-C associations to learning are directly compared in Experiment 4, 

but first we tested if the C-R findings from Experiments 1-2 could be due to our feedback protocol. 

 

Experiment 3 

In Experiments 1 and 2 the feedback given on every trial consisted of a highly salient image 

of the correct category template coupled with the correct response code. It could be argued that this 

protocol undermines our conclusions regarding C-R associations because on every trial the correct 

response is reliably coupled with a highly salient stimulus (i.e., the category template) that is 

perceptually similar to each of the exemplar stimuli from the same category. In comparison, the 

individual exemplar stimuli presented on each trial are relatively non-salient. Thus, what we 

describe as C-R associations could equally be classified as S-R associations because both the 

stimulus (the category template) and the relevant response are reliably paired during feedback. This 

could explain why we found that performance/learning was modulated by whether the categories 

were novel or repeated from training: when the categories were repeated the association between 

the response and the template is highly practiced whereas when novel categories are introduced at 
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transfer the participant is required to learn novel S-R associations (i.e., an association between the 

new template and the response). 

Experiment 3 was designed to rule out this possibility by altering the feedback procedure. 

To this end we assigned a meaningful name to each category (listed with the category templates in 

the Appendix) and the feedback consisted of presenting the correct category name and the correct 

response in either green (correct) or red (error). By removing the (perceptual) category template 

from the feedback display we eliminated any incidental formation of an S-R association between 

the category template and the response (though for an example of S-R effects when the stimulus 

switches between a picture and a word, or vice-versa, see Horner & Henson, 2011). It is possible 

that the category names activated a mental representation of the category template, but because the 

name did not perceptually resemble the exemplar stimuli (or the template) from the relevant 

category, a simple S-R account would be difficult to accommodate without relying on a more 

abstract representation of the category template (a verbal ‘mediator’ or a prototype). 

 

Method 

 40 different students from the University of Exeter (29 female) with a mean age of 19.5 

years (SD = 1.1) participated for the same reimbursement as in Experiments 1 and 2 (£7 or partial 

course credits). The target sample size and exclusion criteria were identical to Experiments 1 and 2, 

and written informed consent was obtained after the nature and possible consequences of the studies 

were explained. 

 The apparatus, stimuli, responses and procedure were identical to Experiment 1 apart from 

one critical change: each category was assigned a meaningful name (e.g., the categories presented 

in the training block of Figure 1 were named ‘cross’ and ‘corner’; all category names are presented 

in the Appendix) so that feedback could be in the form of the correct category name and the correct 
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response code presented in either green (correct) or red (error). The response code appeared in the 

center of the screen as it was entered by the participant (whereas in Experiment 1 it appeared below 

the stimulus area). Both the correct response code and the category name were presented centrally 

during feedback with the category name positioned one line above the response code. The category 

names were also presented alongside the templates and correct response codes on the instructions 

screen at the start of each block (see Figure 2). 

 As in Experiment 1, trials with RT (first digit) <100 ms (0.03%) and trials with RT (last 

digit) >5000 ms (1.20%) were omitted from all analyses, and error trials were omitted from RT 

analyses. One participant’s data was replaced because they had <50% of the maximum possible 

observations in at least one condition (excluding the practice blocks) following the above data 

cleaning procedures. The analyses were identical to those performed in Experiment 1 except two 

additional paired-samples t-tests were performed in order to determine the relative contribution of 

C-R vs. S-R learning in the ‘transfer effect’ measure for the current experiment (these analyses were 

not necessary in Experiment 1 where the Stimulus by Category interaction did not approach 

significance in either of the omnibus ANOVAs). Bayes factors and effect sizes were also calculated 

in the same way as for Experiment 2 for these comparisons. 

 

Results and Discussion 

 Mean RTs and the proportion of errors made in the training and transfer blocks are plotted 

as a function of condition (DsDcSr, DsScSr, SsDcSr, SsScSr) and stimulus repetition in Figure 7. 

The mean ‘transfer effect’ for RTs and the proportion of errors are plotted as a function of condition 

in Figure 5. The results from the omnibus ANOVAs are reported in Table 3. 

‘Training learning’. The ANOVA on the ‘training learning’ measure for RTs found that 

the improvement in performance through training was slightly larger for the stimuli that equally 
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belonged to two categories (i.e., those that would subsequently be repeated at transfer whether the 

categories changed or not; SsDcSr, SsScSr average improvement = 308 ms) relative to the stimuli 

that belonged to a single category (i.e., those that would subsequently be replaced at transfer; 

DsDcSr, DsScSr average improvement = 264 ms; main effect of Stimulus: F=5.90). However, the 

Bayesian analysis found only anecdotal evidence that removal of the main effect of Stimulus from 

the model would impair its fit (BF=0.833 ± 10.4%). Neither the main effect of Category nor the 

Stimulus by Category interaction approached significance (Fs<1, BFs>4.0), nor did any of the 

effects or interactions in the ANOVA on the proportion of errors (Fs<1, BFs>4.0). Taken together 

these results indicate that the amount learned during training was broadly consistent across all four 

conditions. The one-sample t-tests on the ‘training learning’ measure found that learning had taken 

place in all conditions during the training blocks (RTs: ts>9.7; accuracy: ts>6.0). 

‘Transfer effect’. The ANOVAs on the ‘transfer effect’ for RTs and the proportion of 

errors found that the decrement in performance between the end of training and the start of transfer 

was much larger when novel categories were introduced at transfer (RT difference = 180 ms; 

accuracy difference = 7.5%) relative to when the categories were repeated (RT difference = 34 ms; 

accuracy difference = 2.4%; main effect of Category for RTs: F=28.61; BF<0.001 ± 2.7%; main 

effect of Category for accuracy: F=14.98, BF=0.002 ± 4.5%). The main effect of Stimulus did not 

reach significance for RTs (F=2.33, BF=2.976 ± 2.7%) but did for accuracy (F=5.27) suggesting 

that the ‘transfer effect’ for accuracy was larger for novel stimuli (difference = 6.3%) relative to 

those stimuli that were repeated from training (difference = 3.5%). However the Bayesian analysis 

found only anecdotal evidence that removal of the main effect of Stimulus from the model would 

impair its fit (BF=0.427 ± 4.3%). Nonetheless, stimulus repetition did not influence the ‘transfer 

effect’ much when novel categories were introduced at transfer (DsDcSr difference for RTs = 170 

ms, accuracy difference = 7.5%; SsDcSr difference for RTs = 189 ms, accuracy difference = 7.4%), 
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but it did have an effect when the categories were repeated from training (DsScSr difference for 

RTs = 69 ms, accuracy difference = 5.2%; SsScSr difference for RTs = -1 ms, accuracy difference = 

-0.4%). This pattern of results was confirmed by the significant Stimulus by Category interaction 

for both RTs (F=6.73) and the proportion of errors (F=5.62), although the Bayesian analyses both 

found only anecdotal evidence that removal of the interaction from the model would impair its fit 

(RT: BF=0.550 ± 2.4%; accuracy: BF=0.384 ± 4.4%). Follow-up paired samples t-tests found that 

the ‘transfer effect’ was significantly smaller in the DsScSr condition relative to the SsDcSr 

condition for RTs (t(39)=3.64, p<0.001, gav=.923, BF=37.68) but not the proportion of errors 

(t=1.24, BF=0.348) indicating that C-R associations transferred to novel stimuli much easier than S-

R associations transferred across classifications. 

Taken together, analysis of the ‘transfer effect’ measure provided strong evidence that 

learned C-R associations rapidly transfer to novel stimuli whereas the evidence for transfer of 

learned S-R associations across classifications was much weaker. Nonetheless, that the Stimulus by 

Category interaction was reliable for both RTs and errors (though the Bayesian analysis only 

provided anecdotal support for the interaction) suggests that both C-R and S-R learning had 

contributed to performance in the current experiment. 

‘Transfer learning’. The ANOVAs on the ‘transfer learning’ measure found that the 

improvement in performance through the transfer blocks was much larger when novel categories 

were introduced at transfer (RT improvement: 169 ms; accuracy improvement: 5.0%) relative to 

when the categories were repeated (RT improvement: 36 ms; accuracy improvement: 2.0%; main 

effect of Category for RTs: F=31.46, BF<0.001± 7.1%; main effect of Category for accuracy: 

F=5.23, BF=0.178 ± 4.2%). Neither the main effect of Stimulus nor the Stimulus by Category 

interaction reached significance for RTs (Fs<2.2, BFs>2.4) or the proportion of errors (Fs<3.9, 

BFs>0.61) indicating that, although learning through the transfer blocks was strongly modulated by 
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whether the category templates were novel or repeated from training, transfer learning was largely 

unaffected by the introduction of novel stimuli. 

 

Interim summary 

 Close inspection of the results from Experiments 1-3 indicates that, despite some minor 

statistical differences, the pattern of results is relatively consistent. In the (critical) ‘transfer effect’ 

measure, the main effect of Category was reliable in all experiments, but in Experiment 2 the 

Stimulus by Category interaction (RTs only) also reached significance and in Experiment 3 both the 

main effect of Stimulus (proportion of errors only) and the Stimulus by Category interaction (RTs 

and errors) reached significance. However, the Bayesian analyses provided only weak evidence for 

these effects. Thus, across all experiments, we found strong evidence that learned C-R associations 

readily transferred to novel stimuli from the same category, whereas the evidence for transfer of 

learned S-R associations across classifications was much less consistent. In order to determine 

which effects would withstand more rigorous scrutiny we merged the data from Experiments 1-3 

(only the data from the 4 exemplar stimuli conditions in Experiment 2 were included) and re-ran the 

analyses on the ‘transfer effect’. The results from the omnibus ANOVAs are reported in Table 4. 

 The ‘transfer effect’ was much larger when novel categories were introduced at transfer (RT 

= 131 ms, errors = 6.8%) relative to when the categories were repeated from training (RT difference 

= 17 ms, main effect of Category: F=47.01, BF<0.001 ± 2.7%; accuracy difference = 1.8%, main 

effect of Category: F=28.25, BF<0.001 ± 2.5%). The ‘transfer effect’ was also slightly larger for 

the novel stimuli introduced at transfer (RT difference = 87 ms, accuracy difference = 4.6%) 

relative to those stimuli that were repeated from training (RT difference = 61 ms, accuracy 

difference = 4.0%). However, the main effect of Stimulus only reached significance in the RTs 

(F=6.70) and not the proportion of errors (F<1), and the Bayesian analyses indicated that removal 



Instructed category-response associations 

33 

of the main effect of Stimulus from the model would not materially impair its fit (RT: BF=1.622 ± 

3.1%; errors: BF=8.327 ± 3.0%). Taken together these results indicate that whether the categories 

used at transfer were novel or repeated from training had a much larger impact on performance than 

whether the stimuli were novel or repeated from training. 

 When novel categories were introduced at transfer, the ‘transfer effect’ was slightly smaller 

for altogether novel stimuli (DsDcSr RT difference = 123 ms, accuracy difference = 5.7%) than for 

those stimuli that had been classified under a different category during training (SsDcSr RT 

difference = 139 ms, accuracy difference = 7.8%); by contrast, when the categories were repeated 

from training, the ‘transfer effect’ was larger for novel stimuli from the same category (DsScSr RT 

difference = 51 ms, accuracy difference = 3.4%) relative to those stimuli that had been classified 

under the same category during training (SsScSr RT difference = -17 ms, accuracy difference = 

0.1%). This pattern of results was confirmed by the reliable Stimulus by Category interaction for 

both RTs (F=12.71, BF=0.063 ± 3.1%) and the proportion of errors (F=13.11, BF=0.040 ± 2.6%). 

 We also performed several paired-samples t-tests in order to compare the ‘transfer effect’ in 

each condition more directly. The ‘transfer effect’ in the SsDcSr condition was not significantly 

larger than baseline (DsDcSr) for either RTs (t<1, BF=0.163) or errors (t=1.73, BF=0.429), 

indicating that the numerical interference effect due to classifying a familiar stimulus under a novel 

category was not reliable. Conversely, the ‘transfer effect’ in the DsScSr condition was significantly 

smaller than baseline for both RTs (t=3.62, p<0.001, gav=0.462, BF=45.04) and the proportion of 

errors (t=2.04, p=0.044, gav=0.256, BF=0.748), indicating that learned C-R associations readily 

transferred to novel stimuli from the same category. However, the ‘transfer effect’ in the DsScSr 

condition was also significantly larger than in the SsScSr condition for both RTs (t=4.61, p<0.001, 

gav=0.492, BF=1430.16) and errors (t=3.51, p<0.001, gav=0.409, BF=31.06) indicating that C-R 

transfer was less than perfect (i.e., when the categories were repeated between training and transfer, 
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novel stimuli were more difficult to classify than familiar stimuli). Critically, the ‘transfer effect’ 

was much larger in the SsDcSr condition relative to the DsScSr condition for both RTs (t=4.54, 

p<0.001, gav=0.538, BF=1109.44) and errors (t=3.36, p=0.001, gav=0.457, BF=19.80) indicating 

that C-R transfer to novel stimuli was much stronger than S-R transfer across classifications. 

 In summary, the data from Experiments 1-3 indicate that whether the transfer categories 

were novel or repeated from training had a much larger effect on performance than whether the 

transfer stimuli were novel or repeated from training. Nevertheless, when the categories were 

repeated between training and transfer, transfer of learned C-R associations to novel stimuli was 

less than perfect. This indicates that C-R bindings alone cannot explain all learning effects. 

Critically, transfer of learned C-R associations to novel stimuli from the same category was much 

stronger than transfer of learned S-R associations across classifications. 

 

Experiment 4 

 The purpose of Experiments 1-3 was to directly compare C-R learning independent of the 

stimulus and S-R learning independent of the classification. In all experiments we found strong 

evidence that learned C-R associations readily transfer to novel stimuli whereas the evidence for 

transfer of learned S-R associations across classifications was much weaker (learning in the SsDcSr 

condition was even numerically worse than baseline suggesting some carryover of S-C associations 

from training). That C-R transfer was less than perfect in Experiments 2 and 3 also suggests a 

possible role of S-C learning in the SsScSr condition where stimulus-category-response bindings 

were consistent between training and transfer (transfer performance was better when the S-C 

bindings were consistent between training and transfer relative to when they were inconsistent). 

 Despite S-C associations receiving considerable attention in the cognitive control and 

associative learning literature (e.g., Dreisbach, 2012; Horner & Henson, 2009, 2011; Mayr & 
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Bryck, 2005; Moutsopoulou et al., 2012, 2013, 2015), no researchers have yet directly compared the 

relative contribution of C-R, S-R and S-C associations to learning. By repeating the relevant 

responses between training and transfer in Experiments 1-3 it was not possible to take a direct 

measurement of S-C learning (independent of the response). Therefore, in Experiment 4, we also 

manipulated whether the relevant responses were repeated between training and transfer. This 

resulted in a 2 (Stimulus: same vs. different) by 2 (Category: same vs. different) by 2 (Response: 

same vs. different) design, which allowed us to directly compare the extent to which the various 

associations outlined above contribute to learning in the current paradigm. 

 If S-C associations make a valuable contribution to learning in the current paradigm then the 

benefits of repeating both the stimulus and its classification between training and transfer should 

expedite learning even if novel responses are introduced at transfer (i.e., the ‘transfer effect’ should 

be relatively small in the SsScDr condition by comparison to baseline). Experiment 4 therefore 

allows a direct comparison of learning across the three critical conditions that measure C-R learning 

independent of the stimulus (DsScSr), S-R learning independent of the classification (SsDcSr) and 

S-C learning independent of the response (SsScDr). 

 

Method 

 40 different students from the University of Exeter (32 female) with a mean age of 19.5 

years (SD = 2.6) participated for the same reimbursement as Experiments 1-3 (£7 or partial course 

credits). The target sample size and exclusion criteria were identical to Experiments 1-3, and written 

informed consent was obtained after the nature and possible consequences of the study was 

explained. 

 The apparatus, stimuli, responses and procedure were identical to Experiment 3 (see Figure 

2) apart from one critical change: in addition to manipulating whether the category templates were 
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novel or repeated between training and transfer, the relevant response codes used during the transfer 

blocks could also be novel or repeated from the preceding training block. This resulted in eight 

conditions in total (DsDcDr, SsDcDr, DsScDr, SsScDr, DsDcSr, SsDcSr, DsScSr, SsScSr). Several 

other minor changes were made in order to optimize the design of the experiment. As in Experiment 

3, the training blocks consisted of 80 trials (four stimuli from each category were presented ten 

times each), but the transfer blocks consisted of 48 trials (four stimuli from each category were 

presented six times each). Two training-transfer pairs (consisting of 128 trials each) used novel 

categories and novel responses at transfer (DsDcDr and SsDcDr conditions), two pairs repeated the 

categories but used novel responses at transfer (DsScDr and SsScDr conditions), two pairs used 

novel categories but repeated the responses at transfer (DsDcSr and SsDcSr conditions), and two 

pairs repeated both the categories and the responses at transfer (DsScSr and SsScSr conditions). 

This resulted in a maximum of 80 observations per condition during training blocks and 48 

observations per condition during transfer blocks (total number of experimental trials = 1024). As in 

Experiments 1-3, whether the transfer block used the same or different categories to those used 

during training alternated through the experiment (e.g., same categories, different categories, same 

categories, different categories...). Whether the transfer block used the same or different responses 

to those used during training changed on every second training-transfer pair (e.g., same responses, 

same response, different responses, different responses...). The order of conditions was Latin square 

balanced over participants. 

 There are 24 unique 4-digit response codes that start and end with 5 and where each 

intervening digit is on adjacent keys on the numeric keypad of a standard keyboard. All 24 response 

codes were used during the experimental session so it was necessary to use a different format for 

the practice session to avoid any unwanted transfer effects. The first practice block (categorization 

practice; 80 trials) was identical to a training block from the experimental session, apart from two 
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differences: (1) participants were required to identify category membership by pressing either the 

‘a’ or ‘l’ key on a standard keyboard with their left or right index finger respectively; (2) the 

response was not displayed on screen as it was entered, but immediate feedback was presented for 

1000 ms as soon as a response was made. Each trial in the second practice block (response practice; 

48 trials), started with a blank screen (500 ms) followed by a 4-digit response code presented 

centrally in black Ariel font size 30. Every possible code was presented twice through the block 

(order pseudo-radomized). The participant was then required to enter the code as quickly as 

possible while minimizing errors using their preferred index finger and the numeric keypad on a 

standard keyboard (all participants used their right hand). The response code appeared on the screen 

as it was entered and immediate feedback was given in the form of the correct response code 

presented in either green (correct) or red (error) for 1000 ms. Participants were informed that the 

practice blocks were distinct from the experimental session that followed. Each practice block was 

preceded by written instructions regarding their procedure presented on the screen and was initiated 

by pressing the space bar once the instructions had been read. The data from the practice session 

were not analyzed. 

 As in Experiments 1-3, trials with RT (first digit) <100 ms (0.06%) and trials with RT (last 

digit) >5000 ms (0.35%) were omitted from all analyses, and error trials were omitted from RT 

analyses. It was necessary to replace the data from four participants because they had <50% of the 

maximum possible observations in at least one condition (excluding the practice blocks) following 

the above data cleaning procedures. 

 For each score and dependent variable (RT and error rate), we performed a separate 

ANOVA with the factors Stimulus (same, different), Category (same, different), and Response 

(same, different). We also report Bayes factors and effect sizes (generalized eta squared) for all 

relevant effects/interactions (calculated in the same way as for Experiments 1-3). As in Experiments 
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1-3, one-sample t-tests were performed on the ‘training learning’ measure to confirm that learning 

had taken place in each condition during the training blocks. Several additional paired-samples t-

tests were performed to directly compare the relative contribution of C-R, S-R and S-C associations 

to learning. Bayes factors and effect sizes (gav) for these comparisons were calculated in the same 

way as for Experiments 2 and 3. 

 

Results and Discussion 

 Mean RTs and the proportion of errors made in the training and transfer blocks (separately 

for conditions where the responses used at transfer were novel or repeated from training) are plotted 

as a function of condition (DsDcDr, DsScDr, SsDcDr, SsScDr, DsDcSr, DsScSr, SsDcSr, SsScSr) 

and stimulus repetition in Figure 8. The mean ‘transfer effect’ for RTs and the proportion of errors 

are plotted as a function of condition in Figure 5. The results from the omnibus ANOVAs are 

reported in Table 5. 

 ‘Training learning’. The ANOVA on the ‘training learning’ measure for RTs found a 

reliable three-way interaction (F=6.05). However, the Bayesian analysis found only anecdotal 

evidence that removal of the interaction from the model would impair its fit (BF=0.468 ± 13.2%). 

None of the other effects or interactions approached significance (Fs<2.9, BFs>2.1), neither did any 

of the effects or interaction in the ANOVA on the proportion of errors (Fs<1, BFs>3.3). Taken 

together, these results indicate that there was no systematic modulation of the amount learned 

during training across the conditions. The one-sample t-tests on the ‘training learning’ measure 

found that learning had taken place in all conditions during the training blocks (RTs: ts>5.3; 

accuracy: ts>5.3). 
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‘Transfer effect’.  

Response times. The ANOVA on the ‘transfer effect’ for RTs found that the decrement in 

performance between the end of training and the start of transfer was much larger when novel 

categories were introduced at transfer (difference = 148 ms) relative to when the categories were 

repeated from training (difference = 50 ms; main effect of Category: F=10.33, BF<0.001 ± 4.7%). 

The ‘transfer effect’ was also larger when novel responses were introduced at transfer (difference = 

132 ms) relative to when they were repeated from training (difference = 66 ms; main effect of 

Response:  F=10.23, BF=0.025 ± 4.9%). The main effect of Stimulus did not approach significance 

(F=2.02, BF=7.90 ± 26.0%). Taken together these results indicate that transfer performance was 

strongly modulated by whether the categories and/or the responses used at transfer were novel or 

repeated from training, whereas the introduction of novel stimuli at transfer had little effect. 

When the categories changed at transfer, the ‘transfer effect’ was numerically smaller for 

altogether novel stimuli (DsDcSr, DsDcDr average difference = 133 ms) than for those stimuli that 

had previously been classified according to a different category (SsDcSr, SsDcDr average 

difference = 163 ms). On the other hand, when the category templates were repeated between 

training and transfer, the transfer effect was larger for novel stimuli (DsScSr, DsScDr average 

difference = 83 ms) than for those stimuli that had been previously classified under the same 

category (SsScSr, SsScDr average difference = 18 ms). This pattern of results was supported by a 

significant Stimulus by Category interaction (F=10.62, BF=0.338 ± 5.6%). A follow-up paired 

samples t-test found that the ‘transfer effect’ was significantly smaller novel stimuli classified under 

a familiar category (i.e., the DsScSr and DsScDr conditions) relative to familiar stimuli classified 

under a novel category (i.e., the SsDcSr and SsDcDr conditions; t=2.33, p=.025, gav=.533, 

BF=1.88) suggesting a bias toward transfer of learned C-R associations to novel stimuli over the 

transfer of learned S-R associations across classifications. 
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The omnibus ANOVA also found a reliable interaction between Stimulus and Response 

(F=4.26), but the Bayesian analysis found substantial evidence that removing the interaction from 

the model would not impair its fit (BF=3.217 ± 6.2%). Neither the Category by Response 

interaction (F=2.36, BF=1.604 ± 8.4%) nor the three-way interaction (F<1, BF= 4.367± 6.1%) 

approached significance. 

In order to determine the relative contribution of C-R, S-R and S-C associations to learning, 

the ‘transfer effect’ in each critical condition (DsScSr difference = 41 ms; SsDcSr difference = 131 

ms; SsScDr difference = 75 ms) was compared to baseline (DsDcDr difference = 135 ms). The 

‘transfer effect’ was reliably smaller than baseline in the DsScSr condition (t(39)=2.36, p=.023, 

gav=.552, BF=2.0), but not in either the SsDcSr condition (t=0.07, BF=0.17) or the SsScDr 

condition (t=1.59, BF=0.54) indicating that learned C-R associations readily transferred to novel 

stimuli whereas the evidence for transfer of learned S-R associations to novel classifications and S-

C associations to novel responses was much weaker. 

Accuracy. The ANOVA on the ‘transfer effect’ for the proportion of errors also found that 

the decrement in performance between the end of training and the start of transfer was larger when 

novel category templates were introduced (difference = 10.0%) relative to when the category 

templates were repeated (difference = 3.2%; main effect of Category: F=42.98, BF<0.001 ± 7.2%). 

The ‘transfer effect’ was also larger for novel stimuli (difference = 8.0%) relative to those stimuli 

that were repeated from training (difference = 5.3%; main effect of Stimulus: F=5.89). However, 

the Bayesian analysis found only anecdotal evidence that removal of the main effect of Stimulus 

from the model would impair its fit (BF=0.763 ± 5.7%). The main effect of Response did not 

approach significance (F=1.42, BF=3.136 ± 6.7%). Taken together these results provide further 

support for the notion that learning in the current paradigm is modulated by whether the category 
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templates used at transfer were novel or repeated from training, whereas the introduction of novel 

stimuli or responses had a smaller effect on performance. 

As in the RTs, the ‘transfer effect’ was numerically smaller for altogether novel stimuli  

(DsDcSr, DsDcDr average difference = 9.9%) than for those stimuli that had previously been 

classified according to a different category (SsDcSr, SsDcDr average difference = 10.1%). On the 

other hand, when the categories were repeated between training and transfer, the ‘transfer effect’ 

was larger for novel stimuli (DsScSr, DsScDr average difference = 6.0%) than for those stimuli that 

had previously been classified (SsScSr, SsScDr average difference = 0.4%). This pattern of results 

was supported by a significant Stimulus by Category interaction (F=6.44), although the Bayesian 

analysis found only anecdotal evidence that removal of the interaction from the model would impair 

its fit (BF=0.510 ± 12.7%). A follow-up paired samples t-test found that the ‘transfer effect’ was 

significantly smaller for novel stimuli classified under a familiar category (i.e., the DsScSr and 

DsScDr conditions) relative to familiar stimuli classified under a novel category (i.e., the SsDcSr 

and SsDcDr conditions; t(39)=2.32, p=.026, gav=.508, BF=1.84) further supporting the notion of a 

bias toward transfer of learned C-R associations to novel stimuli over the transfer of learned S-R 

associations across classifications. None of the other interactions approached significance (Fs<1, 

BFs>4.4). 

As with the RTs, several additional paired-samples t-tests were performed to determine the 

relative contribution of C-R, S-R and S-C associations to learning. The ‘transfer effect’ in each 

critical condition (DsScSr difference = 4.0%; SsDcSr difference = 10.2%; SsScDr difference = 

1.3%) was compared to the baseline condition (DsDcDr difference = 10.7%) to determine whether 

transfer performance was materially improved by each kind of learned association. The ‘transfer 

effect’ was reliably smaller than baseline in the DsScSr condition (t(39)=2.76, p=.009, gav=.639, 

BF=4.61) and the SsScDr condition (t(39)=4.06, p<.001, gav=.922, BF=115.20),  but not in the 
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SsDcSr condition (t=0.17, BF=0.17) indicating that learned C-R associations readily transferred to 

novel stimuli and learned S-C associations readily transferred to novel responses whereas the 

evidence for transfer of learned S-R associations to novel classifications was much weaker. 

‘Transfer Learning’. The ANOVAs on the ‘transfer learning’ measure found that the 

improvement in performance through the transfer block was much larger when novel categories 

were introduced at transfer (RT improvement = 131 ms, accuracy improvement = 6.8%) relative to 

when the categories were repeated (RT improvement = 68 ms, accuracy improvement = 3.3%; main 

effect of Category for RTs: F=10.46, BF=0.001 ± 13.3%; main effect of Category for accuracy: 

F=15.97. BF=0.029 ± 9.5%). The ‘transfer learning’ measure was also larger when novel responses 

were introduced at transfer (RT improvement = 139 ms, accuracy improvement =  6.6%) relative to 

when the responses were repeated from training (RT improvement = 60 ms, accuracy improvement 

= 3.5%; main effect of Response for RTs: F=19.68, BF<0.001 ± 10.2%; main effect of Response 

for accuracy: F=8.28, BF=0.098 ± 9.6%). The main effect of Stimulus did not approach 

significance for either RTs (F<1, BF=10.166 ± 40.1%) or errors (F<1, BF=8.619 ± 7.7%). 

The Stimulus by Category interaction was reliable for the proportion of errors (F=7.62, 

BF=0.190 ± 10.4%) mirroring the pattern of results in the ‘transfer effect’ measure; however, the 

interaction did not approach significance for RTs (F<1, BF>4.2). None of the other interactions 

were reliable for RTs (Fs<1.1, BFs>4.0) or the proportion of errors (Fs<1, BFs>4.1) indicating that 

transfer learning was modulated by whether the categories and/or responses were novel or repeated 

from training, but not by the introduction of novel stimuli. 

Summary. Experiment 4 was designed to directly compare the relative contribution of C-R, 

S-R and S-C associations to learning in the current paradigm. There was clear evidence that learned 

C-R associations transferred to novel stimuli from the same category, whereas the evidence for 

transfer of learned S-R associations across classifications was much weaker and the evidence for 
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transfer of learned S-C associations to novel responses was less consistent (the ‘transfer effect’ was 

reliably smaller than baseline in the proportion of errors but not in the RTs). That S-C transfer was 

evident (particularly in the accuracy data) suggests the importance of S-C learning in the current 

paradigm; however this effect is outweighed by the importance of C-R learning (which was evident 

in both dependent variables). Although it is possible that this pattern of results is dictated by some 

critical features of the current paradigm, that we report a situation where C-R associations make a 

substantial contribution to learning (above the contributions of both S-R and S-C associations) has 

potential implications far beyond the scope of this article (we return to this point in the General 

Discussion). 

 

Experiment 5 

As discussed in the Introduction, psychologists often instruct participants in the C-R 

bindings (e.g., odd number → left hand response, even number → right hand response; living → 

index finger, man-made → middle finger). Likewise ‘real life’ instructions also often focus on 

categories (e.g., edible fruit → eat, rotten fruit → discard; domesticated animal → approach, wild 

animal → avoid). Experiments 1-4 were designed to determine whether under such circumstances, 

the learning of C-R associations (independent of the specific stimulus) contribute to performance. 

Therefore, we mentioned the category structure in these experiments (i.e., participants were told 

that on each trial they would be presented with a dot-pattern and that they should decide which of 

the two relevant category templates the pattern most closely resembled before entering the correct 

code for the category) and the category templates were presented prior to each experimental block. 

Furthermore, immediate feedback consisted of the category template (Experiments 1 and 2) or the 

category name (Experiments 3 and 4) presented alongside the correct response code. Conversely, 

the stimuli themselves were not presented during the instructions, were overlaid by the (much more 
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salient) category template during immediate feedback in Experiments 1 and 2, and were not 

presented at all during immediate feedback in Experiments 3 and 4. Our results indicate that 

participants adopted a strategy that utilized the category structures imposed on them and were able 

to rapidly transfer learned C-R associations to novel stimuli from the same category, but found it 

relatively difficult to transfer learned S-R associations across classifications. 

Evidence of C-R learning under any conditions is noteworthy, simply because of its 

contribution to the growing bank of evidence that learning need not be strictly limited to S-R 

associations. Nonetheless, it seems important to determine whether the pattern of results reported in 

Experiments 1-4 are limited to situations where the instructions describe the C-R bindings and not 

the S-R bindings. 

To this end, in Experiment 5 we generated stimuli based on the category templates, but we 

omitted any reference to the categories in the general instructions, presented the stimuli (and not the 

category templates/names) alongside the correct response codes during the pre-block instructions, 

and immediate feedback consisted of only the correct response code presented in either green 

(correct) or red (error). The stimuli, category templates used to generate the stimuli, and the design 

of the experiment were the same as those used in Experiment 3 but we never showed the category 

templates to the participants. Thus, in Experiment 5, the only difference between conditions in 

which the categories were the same or different to the categories used during training was whether 

the novel stimuli introduced at transfer were perceptually similar to those observed during training 

(i.e., they were based on the same category template) or were perceptually distinct (i.e., they were 

based on a different category template). In other words, both the SsDcSr condition and the SsScSr 

condition used identical stimuli at transfer, but the former were accompanied by novel stimuli based 

on novel category templates (i.e., the DsDcSr condition) whereas the latter were accompanied by 

novel stimuli based on the same category templates used to draw the stimuli that they replaced (i.e., 
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the DsScSr condition). As can be seen in Figure 1, this implied that the overall similarity between 

training and transfer stimuli was higher for the SsScSr condition than the SsDcSr condition. 

If our observation that C-R associations are an important contributor to the early stages of 

learning can largely be explained by the instructions (and the features of the paradigm) which 

encouraged participants to associate responses to categories rather than stimuli, then changing the 

instructions (and eliminating those features) should also eliminate the relative benefits of C-R 

learning (i.e., transfer of C-R associations to novel stimuli). On the other hand, if changing the 

instructions does not eliminate the bias toward C-R learning then we can conclude that categories 

are an important contributor to learning, even when they are not overtly instructed or mentioned9. 

 

Method 

 40 different students from the University of Exeter (34 female) with a mean age of 20.4 

years (SD = 4.3) participated for the same reimbursement as Experiments 1-4 (£7 or partial course 

credits). The target sample size and exclusion criteria were identical to Experiments 1-4, and written 

informed consent was obtained after the nature and possible consequences of the studies were 

explained. 

 The apparatus, stimuli, responses and procedure were identical to Experiment 3 apart from 

two critical changes. First, the instructions screen at the start of each block displayed all eight 

stimuli in two rows of four stimuli each. The four stimuli that were derived from the same category 

template and that shared the same response were presented on either the left or right of the screen 

with the correct response code presented directly below each stimulus (see Figure 2). The relative 

location of each stimulus within the group was pseudo-randomly selected for each block. Second, 

                                                           
9 It should be noted that the categorization literature shows that participants will learn categories even when the 

templates are not shown (e.g., Wills et al., 2006), though this process can take a relatively long time by comparison to 

the rapid acquisition of categories in the current experiments. Furthermore, it could be argued that in many 

categorization studies participants are explicitly instructed to categorize stimuli which might encourage such a strategy 

from the outset. 
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immediate feedback on each trial consisted of only the correct response code presented centrally in 

either green (correct) or red (error). The general instructions at the start of the experimental session 

were also edited to reflect these changes to the procedure. 

 As in Experiments 1-4, trials with RT (first digit) <100 ms (0.20%) and trials with RT (last 

digit) >5000 ms (0.53%) were omitted from all analyses, and error trials were omitted from RT 

analyses. It was not necessary to replace the data from any participants due to poor performance. 

The analyses were identical to those performed in Experiment 1. 

 

Results and Discussion 

 Mean RTs and the proportion of errors made in the training and transfer blocks are plotted 

as a function of condition (DsDcSr, DsScSr, SsDcSr, SsScSr) and stimulus repetition in Figure 9. 

The mean ‘transfer effect’ for RTs and the proportion of errors are plotted as a function of condition 

in Figure 5. The results from the omnibus ANOVAs are reported in Table 6. 

‘Training learning’. None of the effects or interactions in the ANOVAs on the ‘training 

learning’ measure was reliable for RTs (Fs<1, BFs>3.6) or the proportion of errors (Fs<3.6, 

BFs>1.0) indicating that the improvement in performance through training was comparable in all 

conditions. The one-sample t-tests on the ‘training learning’ measure found that learning had taken 

place in all conditions during the training blocks (RTs: ts>7.7; accuracy: ts>5.8). 

‘Transfer effect’. The ANOVAs on the ‘transfer effect’ for RTs and the proportion of 

errors found that the decrement in performance between the end of training and the start of transfer 

was much larger for novel stimuli that were introduced at transfer (RT difference = 97 ms; accuracy 

difference = 5.6%) relative to those stimuli that were repeated from training (RT difference = 45 

ms, accuracy difference = 0.3%; main effect of Stimulus for RTs: F=14.44, BF=0.060 ± 2.7%; 

main effect of Stimulus for accuracy: F=20.10, BF=0.006 ± 3.2%). Neither the main effect of 
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Category nor the Stimulus by Category interaction reached significance for either RTs (Fs<2.8, 

BFs>0.7) or the proportion of errors (Fs<3.6, BFs>0.9) suggesting that learned S-R associations 

readily transferred to a novel context whereas the evidence for C-R learning was sparse. 

‘Transfer learning’. The ANOVAs on the ‘transfer learning’ measure found that the 

improvement in performance through the transfer blocks was larger for novel stimuli (RT 

improvement = 89 ms; accuracy improvement = 6.3%) relative to the stimuli that were repeated 

from training (RT improvement = 58 ms; accuracy improvement = 1.9%). The difference was 

reliable in the response accuracy data (main effect of Stimulus: F=19.65, BF=0.003 ± 3.1%), but 

not in the RTs (main effect of Stimulus: F=3.76, BF=1.163 ± 16.9%). Neither the main effect of 

Category nor the Stimulus by Category interaction approached significance for RTs (Fs<1.6, 

BFs>1.6) or the proportion of errors (Fs<2.5, BFs>1.6) indicating that, although learning through 

the transfer blocks was strongly modulated by whether the stimuli were novel or repeated from 

training, transfer learning was largely unaffected by the introduction of stimuli based on novel 

category templates. 

Summary. The results from Experiment 5 indicate the importance of instructions to 

learning. When the instructions emphasized the C-R bindings (as in Experiments 1-4) the evidence 

for transfer of learned C-R associations to novel stimuli outweighed the evidence for transfer of 

learned S-R associations across classifications, but when the instructions emphasized the S-R 

bindings the evidence for transfer of learned S-R associations to a novel context outweighed the 

evidence for C-R learning. It is doubtful that the participants were able to memorize all eight S-R 

bindings during the 15-second pre-block instructions phase. However, displaying all eight stimuli 

and the correct response associated with each at least provided participants with the opportunity to 

adopt one of two strategies: they might have attempted to memorize a subset of the S-R bindings 

and then used the immediate feedback to learn the rest; alternatively they might have attempted to 
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look for commonalities between the stimuli that shared a response (i.e., attempted to infer the 

categories). The absence of a main effect of category repetition in the transfer blocks, is inconsistent 

with the second explanation. Thus, we propose that participants primarily relied on an ‘exemplar’ 

strategy. That response accuracy was better than chance from the outset suggests that the 

participants were successful in memorizing at least some of the S-R bindings presented during the 

pre-block instructions phase. 

Intriguingly, the ‘transfer effect’ was numerically larger in the SsDcSr condition (RT 

difference = 66 ms; accuracy difference = 3.1%) relative to the SsScSr condition (RT difference = 

51 ms; accuracy difference = 1.7%). Paired-samples t-tests found that the difference did reach 

significance for the proportion of errors (t(39)=2.19, p=0.034, gav=0.557, BF=1.452), but not RTs 

(t=1.60, BF=0.552). We can only speculate that this surprising result could be due to the relative 

similarity between the novel stimuli introduced at transfer and the stimuli that they replaced – when 

the novel stimuli were based on a familiar category template, classification of the stimuli that were 

repeated from training was slightly improved relative to when the novel stimuli were based on a 

novel category template. That the Bayesian analyses found only anecdotal evidence in either 

direction indicates that additional research is necessary to further investigate this claim. 

Finally, it could be argued that the C-R bias observed in Experiments 1-4 is, at least in part, 

due to category (and response) novelty being manipulated between blocks (i.e., were consistent 

within a block) whereas stimulus novelty was manipulated within a block (some transfer stimuli 

were novel and some were repeated from training). However, this relationship was also true in 

Experiment 5, where the C-R bias was not found (indeed, evidence of C-R transfer at all was 

sparse). If the C-R bias reported in Experiments 1-4 was due to some procedural manipulation 

inherent in the design of the experiments then the same pattern of results should have been found in 
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Experiment 5, where the design was identical to Experiment 3 apart from the format of the pre-

block instructions. 

 

General discussion 

 The main aims of the current study were twofold: (1) we wanted to investigate the relative 

contribution of C-R associations (independent of the stimulus), S-R associations (independent of the 

classification) and S-C associations (independent of the response) to performance in an instructed 

category-learning paradigm; and (2) we wanted to determine the extent to which instructions can 

modulate the relative benefits of each type of association. Our findings are largely consistent with 

the recent interest in associations other than simple S-R learning within the cognitive control and 

associative learning literature (e.g., Hazeltine & Schumacher, 2016; Henson et al., 2014) and make 

a unique contribution by directly comparing the relative importance of C-R, S-R and S-C 

associations in categorization studies that use artificial stimuli/categories and complex responses. 

Furthermore, our findings contribute to the growing body of research concerned with instructed 

learning by highlighting the importance of framing instructions in such a way as to encourage 

learning (and transfer) of the desired content (associations). 

 In Experiment 1, we found strong evidence for C-R learning and transfer, but only weak 

evidence for S-R learning (independent of the classification). In Experiment 2, we contrasted a 4 

exemplar stimuli condition with a 16 exemplar stimuli condition. There was equal opportunity to 

learn the C-R associations in both conditions, but if S-R associations were important in the current 

design (when the instructions emphasized the C-R bindings) then dramatically increasing the 

number of S-R bindings to learn should have further extended the bias toward C-R learning. The 

absence of a meaningful difference between these two conditions in Experiment 2 suggests that C-R 

associations are central to learning in the current paradigm and are independent of the number of 
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exemplar stimuli per category. Experiment 3 ruled out the possibility that incidental associations 

were formed between the (perceptual) category template and the correct response presented during 

immediate feedback (a potential confound in Experiments 1 and 2). The relative contribution of C-

R, S-R and S-C associations to learning was directly examined in Experiment 4 by also 

manipulating whether the responses used at transfer were novel or repeated from training. Although 

there was some evidence that learned S-C associations transferred to novel responses (the ‘transfer 

effect’ was smaller in the SsScDr condition relative to baseline for response accuracy, but not RTs), 

it was outweighed by the evidence for transfer of learned C-R associations to novel stimuli (the 

‘transfer effect’ was reliably smaller in the DsScSr condition relative to baseline for both dependent 

variables). The current experiments therefore indicate the particular importance of C-R associations 

in learning and transfer and indicate that, at least when the instructions mention the categories, S-R 

associations rely on a consistent mapping between the stimulus, the category and the response (see 

also Moutsopoulou et al., 2012, 2013, 2015). 

Combined, the results from Experiments 1-4 provided strong evidence that, when the 

category templates are presented at the start of each experimental block, transfer of C-R 

associations to novel stimuli was much stronger than transfer of S-R associations across 

classifications or S-C associations to novel responses. However, C-R transfer was also found to be 

less than perfect (the ‘transfer effect’ was larger in the DsScSr condition than in the SsScSr 

condition) suggesting that consistent S-C bindings also expedite learning. Furthermore, that we 

observed a small (albeit unreliable) numerical performance cost in the ‘transfer effect’ measure for 

the SsDcSr condition relative to baseline in Experiments 2-4 is suggestive of interference when 

learned S-R associations are performed under a novel classification (though further research is 

necessary to confirm this). This could, at least in part, be due to carryover of the S-C associations 

formed during training, but Experiment 4 found that S-C transfer did not modulate performance to 



Instructed category-response associations 

51 

the same extent as transfer of C-R associations. This observation is also consistent with Mayr and 

Bryck’s (2005) finding that the performance benefits associated with learned S-R bindings are 

category (rule) specific in a task switching context (see also Moutopoulou et al, 2012, 2013, 2015; 

though, for an example of S-R effects independent of the category/rule in a go/no-go paradigm see 

Verbruggen & Logan, 2008). 

Experiment 5 provided evidence that the C-R learning bias observed in Experiments 1-4 was 

at least in part due to the framing of the instructions – a simple modulation of the instructions was 

enough to shift that bias towards S-R learning. The surprising observation that the ‘transfer effect’ 

was numerically larger in the SsDcSr condition relative to the SsScSr condition was likely due to 

the perceptual similarity between the training and test stimuli in these conditions (as discussed 

above). However, it should be noted that previous work indicates that participants might learn 

categories even without instructions. For example, categorization experiments commonly require 

the participants to infer the categories without being presented with the templates (e.g., Wills et al., 

2006) and sometimes without any feedback (e.g., Wills & McLaren, 1998), though it could be 

argued that instructing participants to categorize the stimuli is enough to direct their attention 

toward the category structures/rules used to draw the stimuli. Also, Collins and Frank (2013) 

suggest that participants spontaneously build task-set structure into learning problems even when 

not instructed to do so (see also Dreisbach, 2012). Presumably, searching for coherent and useful 

category structures and/or rules without any instruction will take considerably longer than the 

relatively short time participants took to learn the categories when presented with the templates as 

in the current Experiments 1-4. Further research is necessary to clarify whether inferring the 

underlying category structures used to produce groups of stimuli that require the same response is 

the norm and how long it takes to develop useful category structures in this manner that can direct 

performance. 
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Where other researchers interested in cognitive control, associative learning and/or 

automaticity have investigated C-R associations, they have tended to use well-learned taxonomic 

categories and/or extensive training regimes. The current findings extend this research to include 

artificial (i.e., altogether novel) categories rapidly acquired over a relatively short sequence of 

stimulus/category repetitions via instruction. This extension is critical in developing our 

understanding of how cognitive control (and metacognition, cf. Chein & Schneider, 2012) direct the 

early stages of instructed learning. Instructed rule-based learning relies on C-R associations that 

elicit reasonably accurate performance on the first trial in a run and which rapidly develop over the 

course of a few subsequent trials/instances. These associations easily transfer to novel stimuli 

thereby expediting subsequent learning. It is likely that extensive training with a limited set of 

stimuli would eventually speed specific S-R associations (cf. Logan’s, 1988, Instance Theory) as 

well as C-R associations (cf. Collins & Frank, 2013) by encouraging the direct retrieval of the 

relevant response for the stimulus (or category) from memory. However, our findings would 

suggest that such stimulus-specific speeding might be limited to S-R associations classified under 

the same category and such benefits would not necessarily transfer across classifications (see also 

Mousopoulou et al., 2012, 2013, 2015), whereas the speeding of responses due to learned C-R 

associations is likely to transfer to novel stimuli from the same category with ease – a view that is 

mirrored by the general consensus in the transfer literature that abstract knowledge readily transfers 

to novel tasks that share an underlying structure but which differ in their surface features, whereas 

an over-emphasis on surface features can sometimes hinder transfer (e.g., Day & Goldstone, 2012). 

Much of the research investigating various forms of learning mentioned in the introduction 

(e.g., Cohen-Kdoshay & Meiran, 2007, 2009; Horner & Henson, 2009, 2011; Liefooghe et al., 

2012, 2013; Meiran et al., 2015a, 2015b; Mousopoulou et al., 2012, 2013, 2015) used pictures of 

everyday items or letters/numbers as well as relatively common classifications and simple 
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responses. It is yet to be seen whether the C-R bias we report here would also be found in 

experiments with similarly familiar stimuli and/or simple responses. The motivation to use highly 

artificial dot-pattern stimuli and geometric category templates in the current experiments was 

twofold: first we intended to provide conditions under which C-R learning could be beneficial 

because the stimuli were relatively difficult to distinguish, but the categories were relatively easy to 

distinguish; second, we wanted to investigate the very early stages of learning without the potential 

interference of prior learning, so we had to create abstract patterns that were less likely to have prior 

representations/associations. Likewise, complex responses were used in order to minimize any 

potential interference formed by re-using the same response actions across multiple classifications. 

Although it is possible that the C-R bias reported in Experiments 1-4 is due to some/all of these 

features of the paradigm, that we found no such bias in Experiment 5 (which used an identical 

procedure and stimuli/categories/responses) suggests that the critical feature is the framing of the 

instructions rather than some feature of the paradigm per se. Although further research is necessary 

to determine whether the bias toward C-R learning generalizes beyond the artificial 

categories/stimuli used in the current experiments, some preliminary data collected in our lab 

suggest that rapid transfer of learned C-R associations to novel stimuli from the same category is 

also found in paradigms that use familiar stimuli/classifications (see also Cohen-Kdoshay & 

Meiran, 2007, 2009). 

The results from Experiment 5 indicate that the C-R bias is, at least in part, due to the 

framing of the instructions. The rapid transfer of learned C-R associations was present in all 

experiments in which the instructions explicitly emphasized the C-R bindings (Experiments 1-4) 

but when the instructions emphasized the S-R bindings (as in Experiment 5), the bias shifted to S-R 

learning. S-R instructions are often used in simple two-choice tasks (e.g., Cohen-Kdoshay & 

Meiran, 2007, 2009; Meiran et al., 2015a, 2015b; Horner & Henson, 2009, 2011; Liefooghe et al., 



Instructed category-response associations 

54 

2012, 2013; Mousopoulou et al., 2012, 2013, 2015), whereas C-R instructions are more regularly 

used in studies that require larger stimulus sets (e.g., task-switching studies). In everyday life, 

instructions can also emphasize S-R or C-R mappings. Our study indicates that how these 

instructions are framed, will influence learning (see also Pereg & Meiran, 2017, who concluded that 

instructions determined learning in a task-switching paradigm). 

It is also yet to be seen whether our observation that participants did not display strong 

performance benefits when applying learned S-R associations to stimuli classified under a different 

category in Experiments 1-4 will generalize to conditions with extensive training where there is 

more potential for specific S-R associations to be strengthened. However, it should be noted that 

extensive training would also provide more opportunity for C-R associations to form either via 

instruction (as in the current experiments) or spontaneously (e.g., Collins & Frank, 2013, Dreisbach, 

2012). Further research is necessary to clarify these points. 

 

Implications for the study of sequential effects in the control literature 

The cognitive control system can adjust or reconfigure lower-level systems between trials, 

and it is generally assumed that sequential effects in various cognitive control paradigms reflect 

such control adjustments. Researchers in this domain regularly control for S-R repetitions between 

trials (to control for learning confounds), but our findings indicate that C-R repetitions should also 

be considered. 

In interference tasks (such as the Stroop or flanker task), the congruency effect (i.e., the 

difference between incongruent and congruent trials) is usually smaller after an incongruent trial 

than after a congruent trial (e.g., Gratton, Coles, & Donchin, 1992). This decrease is usually 

attributed to increased control after stimulus- or response conflict. In task-switching experiments, 

performance is usually worse when the current task is different to that performed on the previous 
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trial relative to when the task repeats – the ‘switch cost’ (e.g., Kiesel et al., 2010; Monsell, 2003; 

Vandierendonck, Liefooghe, & Verbruggen, 2010). The switch cost is often interpreted as indexing 

active reconfiguration of the attentional or response settings. Finally, in the stop-signal paradigm 

(which measures response inhibition), response latencies are often longer after a stop-signal trial 

than after a no-signal trial, which could indicate that subjects strategically alter the balance between 

going and stopping after a stop-signal trial (e.g. Bissett & Logan, 2011). 

 However, some researchers have questioned whether such sequential effects are necessarily 

due to top-down control adjustments.  For example, congruency sequence effects (Duthoo, 

Abrahamse, Braem, Boehler, & Notebaert, 2014; Egner, 2008) and sequential effects in response-

inhibition paradigms (e.g. Verbruggen, Logan, Liefooghe, & Vandierendonck, 2008) are partly due 

to the retrieval of stimulus-specific associations from memory (e.g., stimulus-response or stimulus-

outcome associations). Stimulus- or cue repetition effects also play an important role when 

switching between tasks. For example, Logan and Bundesen (2003) argued that a portion of the 

‘task’ switch cost can be explained by a cue repetition benefit (if there is a 1:1 cue:task ratio then 

task repetitions/switches are perfectly confounded with cue repetitions/switches). Others have 

indicated the importance of stimulus-task associations (e.g., Allport & Wylie, 2000; Moutsopoulou 

et al., 2012, 2013, 2015; Waszak et al., 2003; Wylie & Allport, 2000). In an extension of this work, 

Schmidt and Liefooghe (2016) have recently demonstrated that a large portion of the switch cost 

can be explained by incidental transition effects (e.g., cue repetitions, stimulus repetitions and 

response repetitions).  

 To control for such ‘bottom-up’ effects, researchers typically exclude stimulus repetitions 

from their design or include ‘stimulus repetition’ as a factor in their analyses. However, the present 

study indicates that this may not be sufficient to separate ‘associative learning’ effects from ‘top-

down’ control effects. After all, we show that categories can also become associated with responses, 
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and that C-R associations can transfer well to novel stimuli. Consistent with this idea, Logan and 

colleagues have also advocated the notion that low-level priming effects in the task-switching 

literature are not necessarily limited to specific instances, but can be generalized to other, 

conceptually related, instances (e.g., Arrington & Logan, 2004; Arrington, Logan, & Schneider, 

2007; Logan & Bundesen, 2003; Logan & Schneider, 2006). 

Thus, the current findings suggest that researchers interested in cognitive control 

experiments should also consider learned C-R associations when interpreting their results. Like 

Schmidt and Liefooghe (2016), we do not wish to suggest that all processes traditionally labeled 

‘cognitive control’ can be explained by learning of various bindings. But we do urge researchers to 

acknowledge that a large part of the behavioral effects observed in traditional cognitive control 

experiments might represent learning of specific associations, including associations between more 

abstract (cue/stimulus/response category) representations. 

 

The nature of category representation 

The debate regarding the nature of category representation has been long and contentious 

and continues to this day (e.g., Pothos & Wills, 2011). Nonetheless, it is important to note that the 

current results cannot distinguish between generalization by incorporation of novel stimuli into the 

category (i.e., the formation of a category-level representation that becomes associated with a 

response) and generalization due to perceptual similarity between the stimuli (i.e., exemplar models 

of categorization). It may not be necessary to invoke an association between a category-level 

representation (which could be a perceptual prototype or a verbal mediator) and the response in 

order to explain the generalization of learning to novel stimuli from the same category in the current 

design. Because the novel stimuli introduced during transfer were perceptually similar to other 

members of the same category and perceptually distinct from members of the other category, 
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generalization from training to transfer could be explained by similarity to other exemplars from the 

same category. When a novel exemplar is very similar to the other members of the category, old S-

R associations might be retrieved, leading to a transfer benefit for the novel category items. Thus, 

categories become associated with responses via the formation of multiple S-R associations, rather 

than via the formation of an association between the response and a category 

prototype/template/mediator. 

We cannot distinguish between these options using the current design because exemplar 

stimuli from a given category are perceptually similar to both the category template and the other 

exemplars from the category. Although categorization researchers (e.g., Maddox et al., 2010; Wills 

et al., 2006) continue to attempt to distinguish these two possibilities, further research is necessary 

to clarify whether C-R generalization in the current experiments is due to the rapid incorporation of 

novel stimuli into the category structure or simply due to similarity between exemplars. 

Whether the rapid C-R transfer we report in conditions where the instructions emphasize the 

C-R bindings (Experiments 1-4) is due to perceptual similarity between exemplars or the formation 

of a category-level structure (such as a category prototype or a ‘mediator’), we would assume that 

the C-R bias reported in these experiments was likely the result of presenting the category templates 

during the pre-block instructions. Given that the category templates provided were highly effective 

in determining the category membership of each stimulus, the participants were offered precisely 

the relevant information needed to reduce processing/memory demands by adopting a more general 

rule-based approach to learning which made it easy for novel stimuli to be integrated into the 

instructed category structure (whether the stimuli were introduced during training or transfer). The 

instructions to participants even suggested that they should determine to which category the 

stimulus belonged and then enter the correct response code for that category. By contrast, without 

the category templates or instructions suggesting an inherent category structure to the stimuli (as in 
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Experiment 5), the participants would have been faced with two options: (1) attempt to discern the 

‘correct’ category template (which would have increased processing demands, but might have been 

worth pursuing if each classification task was performed over a longer duration); or (2) try to learn 

the S-R bindings (which would require greater memory demands, but may have resulted in better 

short-term outcomes). Either way, more emphasis would have been placed on the S-R bindings 

initially because that information was provided in the pre-block instructions whereas no information 

regarding the categories was provided at all10. 

 

Conclusion 

In conclusion, the current report has highlighted the importance of instruction in learning 

and the transfer of learned material to a novel context. The experiments reported here provide 

strong evidence that, as is typical in experimental psychology and in everyday life, when 

instructions emphasize the C-R bindings, C-R associations can be an important contributor to 

learning and the benefits of that learning can rapidly transfer to novel stimuli from the same 

category. Conversely, the evidence for rapid transfer of learned S-R associations across 

classifications and S-C associations to novel responses was relatively weak. However, when the 

instructions emphasize the S-R bindings, the bias is reversed resulting in rapid transfer of learned S-

R associations to a novel context but scant evidence of C-R learning. 
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Figure 1  

Overview of the experimental design and some example stimuli from each condition. Novel stimuli and categories were introduced for each training 

block. At transfer the categories could either be novel or repeated from training. Whether the transfer categories were novel or repeated, half of the 

transfer stimuli were novel and half were repeated from the preceding training block.



 

 

 
 

Figure 2 

Pre-block instructions screen and the timeline of a single trial for Experiments 1 and 2 (top), Experiments 3 and 4 (middle) and Experiment 5 (bottom). 

In all experiments the immediate feedback was presented in either green (correct) or red (error).
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Figure 3 

Graphical representation of the three measures used for statistical analysis: a = ‘training learning’; b 

= ‘transfer effect’; c = ‘transfer learning’ (see text for full description). 
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Figure 4 

Mean RTs (top) and errors (bottom) from the training and transfer blocks in Experiment 1 plotted as 

a function of condition and stimulus repetition. Error bars show the standard error of the mean. (See 

text for condition coding). 
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Figure 5 

Mean ‘transfer effect’ for RTs (left) and proportion of errors (right) from each experiment as a 

function of condition. Error bars show the standard error of the mean. (See text for condition 

coding).



 

 

 
Figure 6 

Mean RTs (top) and errors (bottom) from the training and transfer blocks in Experiment 2 where the categories included 4 (left) or 16 (right) exemplar 

stimuli plotted as a function of condition and category repetition. Error bars show the standard error of the mean. (See text for condition coding). 



 

 

 
Figure 7 

Mean RTs (top) and errors (bottom) from the training and transfer blocks in Experiment 3 

plotted as a function of condition and stimulus repetition. Error bars show the standard error 

of the mean. (See text for condition coding). 
 



 

 

 
Figure 8  
Mean RTs (top) and errors (bottom) from the training and transfer blocks in Experiment 4 where the responses used at transfer were the same as those 

used during training (left) or were novel (right) plotted as a function of condition and stimulus repetition. Error bars show the standard error of the 

mean. (See text for condition coding). 



 

 

 
 

Figure 9 

Mean RTs (top) and errors (bottom) from the training and transfer blocks in Experiment 5 

plotted as a function of condition and stimulus repetition. Error bars show the standard error 

of the mean. (See text for condition coding).
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Table 1: ANOVA Results from Experiment 1. Equivalent Bayes Factors are also Reported. 
 

 Training Learning 

 RT  Errors 

Effect DF MSE F p η2 BF  DF MSE F p η2 BF 

Stimulus (1, 39) 13857.39 0.45 0.506 0.004 4.556±5.2%  (1, 39) 62.02 0.98 0.327 0.008 3.543±4.7% 

Category (1, 39) 16176.88 0.87 0.356 0.009 3.480±5.2%  (1, 39) 59.75 0.61 0.439 0.005 4.279±4.6% 

Stimulus*Category (1, 39) 12188.24 0.13 0.720 0.001 3.896±5.3%  (1, 39) 66.91 0.12 0.734 0.001 3.920±4.2% 

              

 Transfer Effect 

 RT  Errors 

Effect DF MSE F p η2 BF  DF MSE F p η2 BF 

Stimulus (1, 39) 6420.92 3.26 0.079 0.015 2.526±4.6%  (1, 39) 51.20 1.96 0.169 0.016 1.733±19.8% 

Category (1, 39) 14264.07 46.18 <0.001 0.325 <0.001±5.7%  (1, 39) 67.38 18.17 <0.001 0.168 <0.001±20.0% 

Stimulus*Category (1, 39) 14424.68 0.14 0.709 0.001 5.142±16.7%  (1, 39) 36.90 1.49 0.230 0.009 2.026±19.8% 

              

 Transfer Learning 

 RT  Errors 

Effect DF MSE F p η2 BF  DF MSE F p η2 BF 

Stimulus (1, 39) 5323.67 0.03 0.854 <0.001 5.882±2.6%  (1, 39) 31.77 0.04 0.835 <0.001 8.434±28.0% 

Category (1, 39) 23899.84 14.30 0.001 0.175 <0.001±14.0%  (1, 39) 70.98 9.96 0.003 0.116 0.003±4.9% 

Stimulus*Category (1, 39) 12104.04 1.32 0.258 0.010 2.679±3.7%  (1, 39) 34.88 0.79 0.381 0.005 3.188±2.9% 

 

Note: Bayes factors indicate whether removal of the effect/interaction from the model would materially impair its fit. Thus Bayes factors<1 indicate 

that the effect/interaction is an important contributor to the model. 
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Table 2: ANOVA results from Experiment 2. Equivalent Bayes Factors are also Reported. 
 Training Learning 

 RT  Errors 

Effect DF MSE F p η2 BF  DF MSE F p η2 BF 
Stimulus (1, 39) 61586.84 0.14 0.711 0.001 4.925±40.6%  (1, 39) 135.39 1.09 0.303 0.003 5.721±10.5% 

Category (1, 39) 80079.47 2.71 0.108 0.013 0.967±40.8%  (1, 39) 338.71 0.24 0.628 0.001 6.142±8.5% 
Exemplar (1, 39) 100071.08 0.65 0.425 0.004 3.693±41.5%  (1, 39) 189.28 4.61 0.038 0.015 0.954±8.7% 

Stimulus*Category (1, 39) 37537.13 0.21 0.647 <0.001 3.423±40.7%  (1, 39) 219.16 0.70 0.408 0.003 4.055±9.2% 
Stimulus*Exemplar (1, 39) 31431.00 0.59 0.449 0.001 3.204±40.8%  (1, 39) 167.97 0.02 0.886 <0.001 5.619±8.5% 

Category*Exemplar (1, 39) 87094.37 0.29 0.594 0.001 3.247±41.1%  (1, 39) 213.99 0.95 0.335 0.004 3.365±8.5% 

Stimulus*Category*Exemplar (1, 39) 38804.74 1.64 0.208 0.004 1.694±40.8%  (1, 39) 187.12 0.29 0.597 0.001 3.648±9.1% 
  

 Transfer Effect 

 RT  Errors 
Effect DF MSE F p η2 BF  DF MSE F p η2 BF 

Stimulus (1, 39) 27333.30 0.23 0.635 0.001 6.299±15.0%  (1, 39) 88.10 1.70 0.200 0.004 5.416±18.3% 
Category (1, 39) 48991.39 9.87 0.003 0.044 0.016±17.5%  (1, 39) 168.92 18.44 <0.001 0.076 <0.001±7.0% 

Exemplar (1, 39) 71234.42 0.07 0.799 <0.001 6.706±15.0%  (1, 39) 204.10 0.28 0.599 0.002 6.590±8.4% 
Stimulus*Category (1, 39) 31474.12 13.53 0.001 0.039 0.028±15.5%  (1, 39) 103.69 3.42 0.072 0.009 1.914±12.3% 

Stimulus*Exemplar (1, 39) 24461.58 1.30 0.261 0.003 3.226±14.8%  (1, 39) 121.17 1.08 0.306 0.003 3.662±7.6% 
Category*Exemplar (1, 39) 51349.84 0.12 0.729 0.001 4.830±15.1%  (1, 39) 162.00 1.57 0.218 0.007 2.254±9.8% 

Stimulus*Category*Exemplar (1, 39) 15530.06 <0.01 0.970 <0.001 4.885±17.1%  (1, 39) 119.57 2.91 0.096 0.009 1.575±15.6% 

  
 Transfer Learning 

 RT  Errors 

Effect DF MSE F p η2 BF  DF MSE F p η2 BF 
Stimulus (1, 39) 27335.70 0.84 0.365 0.002 6.936±6.8%  (1, 39) 96.20 1.41 0.242 0.004 6.732±28.1% 

Category (1, 39) 84463.84 2.32 0.135 0.019 0.624±9.1%  (1, 39) 174.25 12.24 0.001 0.055 0.003±14.4% 
Exemplar (1, 39) 48962.17 0.01 0.929 <0.001 9.084±7.7%  (1, 39) 98.72 0.04 0.835 <0.001 7.712±6.0% 

Stimulus*Category (1, 39) 25617.60 3.18 0.082 0.008 2.460±9.4%  (1, 39) 144.33 <0.01 0.999 <0.001 6.225±8.3% 
Stimulus*Exemplar (1, 39) 23363.60 2.98 0.092 0.007 2.475±6.0%  (1, 39) 91.97 1.01 0.322 0.003 5.075±15.6% 

Category*Exemplar (1, 39) 40291.63 0.02 0.879 <0.001 6.367±6.1%  (1, 39) 178.24 0.95 0.336 0.005 3.345±12.1% 
Stimulus*Category*Exemplar (1, 39) 13722.35 0.05 0.829 <0.001 5.281±9.1%  (1, 39) 152.45 3.15 0.084 0.013 0.848±9.2% 

 

Note: Bayes factors indicate whether removal of the effect/interaction from the model would materially impair its fit. Thus Bayes factors<1 indicate 

that the effect/interaction is an important contributor to the model.
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Table 3: ANOVA Results from Experiment 3. Equivalent Bayes Factors are also Reported. 
 

 Training Learning 

 RT  Errors 

Effect DF MSE F p η2 BF  DF MSE F p η2 BF 

Stimulus (1, 39) 13444.58 5.90 0.020 0.035 0.833±10.4%  (1, 39) 34.55 0.24 0.626 0.001 5.402±9.2% 

Category (1, 39) 31951.33 0.01 0.937 <0.001 5.280±9.2%  (1, 39) 69.99 0.55 0.462 0.007 4.843±20.6% 

Stimulus*Category (1, 39) 11114.51 0.14 0.710 0.001 4.051±9.8%  (1, 39) 43.21 0.01 0.923 <0.001 4.008±8.1% 

              

 Transfer Effect 

 RT  Errors 

Effect DF MSE F p η2 BF  DF MSE F p η2 BF 

Stimulus (1, 39) 11455.78 2.33 0.135 0.013 2.976±2.7%  (1, 39) 60.36 5.27 0.027 0.042 0.427±4.3% 

Category (1, 39) 29659.01 28.61 <0.001 0.291 <0.001±2.7%  (1, 39) 69.30 14.98 <0.001 0.126 0.002±4.5% 

Stimulus*Category (1, 39) 11777.93 6.73 0.013 0.037 0.550±2.4%  (1, 39) 55.05 5.62 0.023 0.041 0.384±4.4% 

              

 Transfer Learning 

 RT  Errors 

Effect DF MSE F p η2 BF  DF MSE F p η2 BF 

Stimulus (1, 39) 13257.90 1.76 0.193 0.013 2.750±4.3%  (1, 39) 47.32 0.52 0.477 0.004 4.569±4.7% 

Category (1, 39) 22514.05 31.46 <0.001 0.291 <0.001±7.1%  (1, 39) 67.73 5.23 0.028 0.052 0.178±4.2% 

Stimulus*Category (1, 39) 8449.87 2.13 0.153 0.010 2.497±4.5%  (1, 39) 52.05 3.89 0.056 0.030 0.615±4.0% 

 

Note: Bayes factors indicate whether removal of the effect/interaction from the model would materially impair its fit. Thus Bayes factors<1 indicate 

that the effect/interaction is an important contributor to the model. 
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Table 4: ANOVA Results for the Merged Data from Experiments 1-3. Equivalent Bayes Factors are also Reported. 
 

 Transfer Effect 

 RT  Errors 

Effect DF MSE F p η2 BF  DF MSE F p η2 BF 

Stimulus (1, 119) 11954.14 6.70 0.011 0.011 1.622±3.1%  (1, 119) 76.62 0.54 0.464 0.001 8.327±3.0% 

Category (1, 119) 33342.45 47.01 <0.001 0.176 <0.001±2.7%  (1, 119) 107.41 28.25 <0.001 0.092 <0.001±2.5% 

Stimulus*Category (1, 119) 16427.82 12.71 0.001 0.028 0.063±3.1%  (1, 119) 67.45 13.11 <0.001 0.029 0.040±2.6% 

 

Note: Bayes factors indicate whether removal of the effect/interaction from the model would materially impair its fit. Thus Bayes factors<1 indicate 

that the effect/interaction is an important contributor to the model.
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Table 5: ANOVA Results from Experiment 4. Equivalent Bayes Factors are also Reported. 
 Training Learning 

 RT  Errors 

Effect DF MSE F p η2 BF  DF MSE F p η2 BF 
Stimulus (1, 39) 10082.54 0.18 0.674 <0.001 7.677±12.7%  (1, 39) 95.14 0.34 0.563 0.001 8.099±6.6% 

Category (1, 39) 28939.23 0.35 0.559 0.002 5.861±12.1%  (1, 39) 150.60 0.13 0.717 0.001 8.089±5.8% 
Response (1, 39) 42362.19 1.09 0.304 0.007 2.965±13.0%  (1, 39) 158.06 0.31 0.579 0.002 7.316±7.1% 

Stimulus*Category (1, 39) 18613.78 2.60 0.115 0.008 2.106±12.5%  (1, 39) 94.51 0.52 0.477 0.002 5.303±6.5% 
Stimulus*Response (1, 39) 13960.26 2.82 0.101 0.006 2.486±12.8%  (1, 39) 80.37 0.15 0.698 <0.001 6.717±9.1% 

Category*Response (1, 39) 25762.62 0.72 0.401 0.003 4.028±13.4%  (1, 39) 93.50 0.11 0.742 <0.001 6.035±5.7% 

Stimulus*Category*Response (1, 39) 18769.88 6.05 0.018 0.018 0.464±13.2%  (1, 39) 85.83 0.94 0.337 0.003 3.374±6.1% 
              

 Transfer Effect 

 RT  Errors 
Effect DF MSE F p η2 BF  DF MSE F p η2 BF 

Stimulus (1, 39) 11925.26 2.02 0.163 0.003 7.900±26.0%  (1, 39) 100.92 5.89 0.020 0.017 0.763±5.7% 
Category (1, 39) 74193.68 10.33 0.003 0.088 <0.001±4.7%  (1, 39) 85.58 42.98 <0.001 0.096 <0.001±7.2% 

Response (1, 39) 34404.26 10.23 0.003 0.042 0.025±4.9%  (1, 39) 181.09 1.42 0.241 0.007 3.136±6.7% 
Stimulus*Category (1, 39) 17013.67 10.62 0.002 0.022 0.338±5.6%  (1, 39) 103.72 6.44 0.015 0.019 0.510±12.7% 

Stimulus*Response (1, 39) 9812.24 4.26 0.046 0.005 3.217±6.2%  (1, 39) 168.43 0.52 0.474 0.003 4.630±7.1% 
Category*Response (1, 39) 37178.52 2.36 0.133 0.011 1.604±8.4%  (1, 39) 167.18 0.60 0.443 0.003 4.895±11.0% 

Stimulus*Category*Response (1, 39) 19696.23 0.23 0.637 0.001 4.367±6.1%  (1, 39) 78.05 0.02 0.900 <0.001 4.488±5.1% 

              
 Transfer Learning 

 RT  Errors 

Effect DF MSE F p η2 BF  DF MSE F p η2 BF 
Stimulus (1, 39) 10753.52 0.50 0.483 0.001 10.166±40.1%  (1, 39) 89.62 0.01 0.907 <0.001 8.619±7.7% 

Category (1, 39) 30415.30 10.46 0.002 0.067 0.001±13.3%  (1, 39) 60.12 15.97 <0.001 0.041 0.029±9.5% 
Response (1, 39) 25683.26 19.68 <0.001 0.102 <0.001±10.2%  (1, 39) 90.33 8.28 0.006 0.032 0.098±9.6% 

Stimulus*Category (1, 39) 12375.44 0.67 0.417 0.002 4.235±10.8%  (1, 39) 81.03 7.62 0.009 0.027 0.190±10.4% 
Stimulus*Response (1, 39) 8337.45 1.08 0.305 0.002 4.106±10.3%  (1, 39) 82.26 0.31 0.579 0.001 5.308±6.7% 

Category*Response (1, 39) 17291.04 0.16 0.696 0.001 5.855±18.2%  (1, 39) 81.64 0.05 0.827 <0.001 6.026±6.5% 
Stimulus*Category*Response (1, 39) 9224.45 0.39 0.534 0.001 4.085±13.4%  (1, 39) 94.50 0.12 0.731 0.001 4.180±6.1% 

 

Note: Bayes factors indicate whether removal of the effect/interaction from the model would materially impair its fit. Thus Bayes factors<1 indicate 

that the effect/interaction is an important contributor to the model.
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Table 6: ANOVA Results from Experiment 5. Equivalent Bayes Factors are also Reported. 
 

 Training Learning 

 RT  Errors 

Effect DF MSE F p η2 BF  DF MSE F p η2 BF 

Stimulus (1, 39) 12569.77 0.04 0.844 <0.001 6.005±4.8%  (1, 39) 58.68 0.04 0.839 <0.001 5.805±4.4% 

Category (1, 39) 17585.04 0.59 0.448 0.007 3.996±4.6%  (1, 39) 88.44 0.22 0.645 0.002 5.438±6.7% 

Stimulus*Category (1, 39) 9613.31 0.84 0.365 0.005 3.644±8.9%  (1, 39) 55.40 3.54 0.067 0.024 1.087±4.4% 

              

 Transfer Effect 

 RT  Errors 

Effect DF MSE F p η2 BF  DF MSE F p η2 BF 

Stimulus (1, 39) 7631.24 14.44 <0.001 0.076 0.060±2.7%  (1, 39) 54.25 20.10 <0.001 0.105 0.006±3.2% 

Category (1, 39) 17865.37 2.74 0.106 0.035 0.798±5.8%  (1, 39) 104.83 1.22 0.277 0.014 2.537±4.3% 

Stimulus*Category (1, 39) 8756.84 0.29 0.595 0.002 3.897±2.6%  (1, 39) 78.84 3.50 0.069 0.029 0.907±12.1% 

              

 Transfer Learning 

 RT  Errors 

Effect DF MSE F p η2 BF  DF MSE F p η2 BF 

Stimulus (1, 39) 9863.75 3.76 0.060 0.025 1.163±16.9%  (1, 39) 38.46 19.65 <0.001 0.128 0.003±3.1% 

Category (1, 39) 18593.30 1.52 0.225 0.019 1.640±16.9%  (1, 39) 53.80 0.53 0.472 0.005 4.773±7.1% 

Stimulus*Category (1, 39) 8449.07 0.56 0.459 0.003 2.996±16.9%  (1, 39) 40.15 2.49 0.123 0.019 1.694±4.6% 

 

Note: Bayes factors indicate whether removal of the effect/interaction from the model would materially impair its fit. Thus Bayes factors<1 

indicate that the effect/interaction is an important contributor to the model. 
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Appendix 

Templates and names for all categories used in the experiments reported in the manuscript. All 

categories were used in Experiment 4. Experiments 1, 3, and 5 used the first seven rows. 

Experiment 2 used only the first five rows. The category names were used to provide feedback to 

participants during Experiments 3 and 4. Each row in the figure shows the templates for the two 

categories used during a given training-transfer phase. Templates in the columns marked ‘training’ 

were used during the training phase and also the transfer phase for conditions where the categories 

were repeated (e.g., DsScSr, SsScSr). Templates in the columns marked ‘transfer’ were used during 

the transfer phase for conditions where the categories changed (e.g., SsDcSr, DsDcSr). 
 

 


