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Abstract

The Italian legislation on contaminated soils does not include the Ecological Risk

Assessment (ERA) and this deficiency has important consequences for the

sustainable management of agricultural soils. The present research compares the

results of two ERA procedures applied to agriculture (i) one based on the

“substance-based” approach and (ii) a second based on the “matrix-based”
approach. In the former the soil screening values (SVs) for individual substances

were derived according to institutional foreign guidelines. In the latter, the SVs

characterizing the whole-matrix were derived originally by the authors by means of

experimental activity.

The results indicate that the “matrix-based” approach can be efficiently

implemented in the Italian legislation for the ERA of agricultural soils. This
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method, if compared to the institutionalized “substance based” approach is (i)

comparable in economic terms and in testing time, (ii) is site specific and assesses

the real effect of the investigated soil on a battery of bioassays, (iii) accounts for

phenomena that may radically modify the exposure of the organisms to the totality

of contaminants and (iv) can be considered sufficiently conservative.

Keyword: Environmental science

1. Introduction

In 2013, almost 150 Italian public and private stakeholders (researchers, decision

and policy makers, entrepreneurs), working on contaminated sites, established a

committee called CTTC (Italian technical committee on contaminated sites) [1]. Its

aim was to develop a technical and scientific document that would be instrumental

to policy-makers engaged in renewing the legal-framework regarding the

remediation of contaminated sites. Among several issues concerning the

application of Ecological Risk Assessment (ERA) to agricultural soil, the CTTC

focused on inconsistency between the role of Risk Assessment (RA) procedures

assigned by the current law-framework [2] and its use to define soil Screening

Values (SVs).

Nowadays, SVs are used in screening ERAs to define a Level 2 risk. They identify

contaminants of potential concern and these are defined as the substance-specific

concentration values that if exceeded, trigger a further site-specific risk assessment

(trigger values). Therefore, they are not meant to serve as site-specific remediation

levels (target values) nor do they represent a sufficient condition to start

remediation activities (cut off values) (Fig. 1) [3]. Italian law [2] considers SVs

only for residential and industrial land-use and not for agricultural soil.

In recent years, several authors [4, 5] have discussed the similarities within the

guidelines for developing ecological soil SVs [6, 7, 8, 9]. The comparison is

reported in Table 1 and the main differences are related to:

[(Fig._1)TD$FIG]

Fig. 1. Screening values uses. Level 1. This level identifies long term negligible risk; Level 2. This

level indicates an intermediate (warning) risk, with the need of further assessments; Level 3. This level

reports a potentially unacceptable risk, which requires an action to decrease the intensity of the stress

factor(s) causing the unacceptable risk.
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Table 1. Comparison between national and international methodologies for the derivation of ecological soil Screening Values.

Derived soil
screening
value (SV)
name

Soil screening value extrapolation
method

Land Use
specific SV

Screening value protected
receptors

Soil specific normalization method Background
Concentration
accounting
method

NL Maximum Per-
mitted Concen-
tration for soil
compartment
(MPCsoil)

Where terrestrial toxicity data are available,
5%SSD is used, if 4 or more NOECs from at
least 4 taxa are present. If fewer terrestrial
toxicity data are available, the Assessment
Factors method is used, based on the lowest
available value.
In the case that no terrestrial toxicity data are
available, the Equilibrium Partitioning
method is used based on aquatic toxicity
data.

NO Where terrestrial toxicity data are
available, Primary producers (plants),
primary consumers (soil inverte-
brates) and decomposers (microor-
ganisms) are considered.
An MPC is calculated for the soil
microbial community and for the
other considered species separately.
The MPC is set equal to the lower
value obtained.

The standardized MPC (MPCsoil,std) is
equivalent to the experimentally derived
MPC (MPCsoil,exp) multiplied by the ratio
of a soil standardized organic matter content
(foc,std) and the soil experimental organic
matter content (foc,exp).
MPCsoil,std = MPCsoil,exp*(foc,std/foc,
exp)

Risk addition
method

TGD-EU Predicted No
Effect Concen-
tration for soil
compartment
(PNECsoil)

Where terrestrial toxicity data are available,
the Assessment Factors method is used based
on the lowest available value. If 10 NOECs
covering at least 8 taxa are available, the 5%
SSD is used divided by an assessment factor.
In the case that no terrestrial toxicity data are
available, the Equilibrium Partitioning
method is used based on aquatic toxicity
data.

NO Primary producers (plants), primary
consumers (soil invertebrates) and
decomposers (microorganisms) are
considered together.

The standardized PNEC (PNECsoil,std) is
equivalent to the experimentally derived
MPC (PNECsoil,exp) multiplied by the ratio
of a soil standardized organic matter content
(foc,std) and the soil experimental organic
matter content (foc,exp).
PNECsoil,std = PNECsoil,exp*(foc,std/foc,
exp)

Demanded to
further site spe-
cific ERA

CANADA Soil Quality
Guideline
(SQG)

Where at least ten chronic terrestrial toxicity
data from at least three studies are available,
a SQGi is derived from the 25%SSD divided
by an assessment factor. If less chronic
terrestrial toxicity data are available, the
Assessment Factor method is used based on
the lowest available NOEC. When only acute
terrestrial toxicity data are available, the
Assessment Factor method is used based on
the lowest available data.

Agricultural,
Residential,
Parkland,
Commercial
and Industrial

Soil dependent organisms (microor-
ganisms, plants and invertebrates) and
consumers (both livestock and wild-
life).

Demanded to further site specific ERA Demanded to
further site spe-
cific ERA

(Continued)
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Table 1. (Continued)

Derived soil
screening
value (SV)
name

Soil screening value extrapolation
method

Land Use
specific SV

Screening value protected
receptors

Soil specific normalization method Background
Concentration
accounting
method

Moreover, a modeled SQGi is derived for
each land-use identified exposure pathway:
• soil contact (1 pathway);
• microbial nutrient and energy cycle (1
pathway);
• food and soil ingestion (3 pathways);
• freshwater and groundwater ingestion and
contact (3 pathways)
The minimum SQGi is used as definitive
land-use specific SQG.

USEPA Ecological Soil
Screening Lev-
el (ECO-SSL)

First literature toxicological data are selected
based on a given score assigned to assess the
quality (e.g. chronic data are ranked higher
than acute data) and conservative conditions
of bioavailability.
Then EC20, EC10 and GMTA (which is the
geometric mean of NOAEC and LOAEC) are
listed from each high quality selected study.
Finally the geometric mean of the selected
values is finally used.

NO Plants, invertebrates, birds and mam-
mals.

NO Demanded to
further site spe-
cific ERA
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• the extrapolation methods (i.e. Species Sensitivity Distribution, Assessment

Factors, Equilibrium Partitioning Method or tailored modeling procedures as in

the case of Canadian guidelines).

• the receptors to be protected (soil organisms and/or wildlife).

• the specific soil features (as organic matter content) to be considered.

• the methods to account for the bioavailability of contaminants and the

background concentrations.

• the specific protections goals.

Guidelines differ on the assumptions made to understand and model the complexity

of soil medium and the behavior of single substances in the environment. In

addition, despite the wide range of magnitude characterizing the derived SV [4],

these differences lead to a variable level of conservatism, transparency and

accuracy. The totality of SVs derived by the guidelines can only be used within

screening ERA procedures using the so-called “substance-based” approach. This

approach is the simplest and it relies on well-established laboratory physicochemi-

cal analyses of single chemical concentrations and on institutionally recognized

ecotoxicological databases. Thus, it characterizes the risk of the single compound

independently. This approach does not take in account the bioavailability of the

assessed chemicals and implements a modeling approach (i.e. Concentration

addiction or Independent Action models) to predict the combined effects of a

mixture of pollutants [10, 11, 12, 13, 14, 15]. Also the effect of the specific soil

matrix in assessing the effective exposure of organisms to the chemicals are not

considered. Therefore, the results cannot be considered as being representative of

site-specific conditions leading to an unrealistic estimation of risk to the considered

ecosystems [16].

Conversely, the “matrix-based” approach may provide a methodology that is able

to overcome the defined drawbacks of the “substance-based” approach. In fact, it

assesses the effects to target receptors from the chemicals in mixture and within

their real matrix thereby considering the entire source of the chemicals as a whole.

It relies on conducting a battery of both mono-specific or multi-specific

(mesocosm, microcosm, etc.) bioassays testing different concentrations of the

matrix imposing defined biotic (i.e. feeding periods, previous breeding conditions,

etc.) and abiotic conditions (i.e. temperature, soil pH, light-dark cycles, etc.), which

are often standardized to allow easier comparison of results. Such tests determine

the concentration of the matrix causing an effect to representative target organisms

that are chosen to pertinently relate the results to the land-use specific risk

assessment. This approach is more complex but more realistic since it accounts for

phenomena that may radically modify the exposure of the organisms to the totality

of contaminants (e.g. exposure to minor pollutants not chosen to be assessed when
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formulating the problem, chemicals partially adsorbed on soil particles, interac-

tions between substances, etc.) [10, 17]. Thus, this approach avoid the necessity of

preliminarily identifying chemicals of concern.

Whilst risk thresholds for individual chemicals are set by tabular values, defined a

priori, in a substance-based approach, defining thresholds of environmental

acceptability for a matrix-based approach is still an incomplete task. In this respect,

the scientific community has not yet reached a consensus on which effect values

(and species) can be considered viable for being representative of the ecosystems

[18]. Similarly, the definition of an ecosystem “in danger” is still under debate [10,
19].

An agroecosystem is considered “healthy” when it can be perceived as being

sustainable, which means both stable and resilient [20]. It implies that a healthy

agroecosystem must be capable of maintaining constant levels of crop-productivity

indefinitely in spite of environmental stresses [21] thereby not needing increasing

anthropogenic inputs (such as pesticides, fertilizers, etc.). These system properties

refer not only to ecological aspects but also to socio-economic issues. They rely on

different parameters such as indexes of diversity or ecosystem services [20, 22, 23,

24, 25]. Instead, laboratory scale mono-specific bioassays with the assessment of

several common endpoints (such as growth, reproduction and mortality) are faster,

cheaper and more easily executable tests in order to obtain effects data. These

bioassays represent a more viable tool for risk characterization in an ERA

screening phase. However, the intrinsic simplicity of these tests leads to an

unknown degree of realistic ecological representativeness. These observations

should be taken into account (or “considered as suggestions”) when proposing

assumptions for the derivation of ecological soil SVs.

Italian law [2] provides an example of this kind of value when establishing the

maximum concentrations of an effluent discharged by a municipal wastewater

treatment plant. In detail, treated wastewater can be legally discharged into a

surface water stream if the results of an acute 24 hour-bioassay on crustaceans (e.g.

Daphnia magna) does not result in the immobilization of 50% of the individuals

tested. It is a concrete case of application of the principle known as “whole effluent
toxicity”, used in the field of risk assessment of wastewaters.

The main aim of this paper is to apply and discuss a scientific methodology based

on the Ecological Risk Assessment (ERA) for the derivation of agricultural soil

screening values (SVs). A case study is presented where a comparison was

performed between the results of two ERA procedures: the first, using a

“substance-based” approach to exploit soil SVs as proposed by institutional foreign
guidelines, and the second based on a “matrix-based” approach with the SVs

defined in the current paper.

Article No~e00284

6 http://dx.doi.org/10.1016/j.heliyon.2017.e00284

2405-8440/© 2017 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2017.e00284


The proposed “matrix-based” approach provides suggestions for possible solutions

for the limitations of the “substance-based” approach. The intention is not to define
a fully-comprehensive procedure to determine agricultural SVs, but rather to offer

a preliminary screening on this topic. The paper presents a scientific-based

discussion aimed at refining a complete methodology that will impact upon policy

and decision making in Italy and possibly other countries.

2. Materials and methods

2.1. General scheme of the procedure

The comparison between the results obtained by the ERAs following the

substance-based and the matrix-based approach was made possible by a stepwise

procedure, described schematically in Fig. 2. Both methodologies provided a risk

value expressed as the ratio between an exposure value and an effect value, which

was obtained differently according to the selected approaches.

[(Fig._2)TD$FIG]

Fig. 2. Scheme of the general procedure implemented for the comparison of the results obtained by the

substance-based and the matrix-based screening ERAs.
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2.2. Sampling campaign

The selected area for the application of ERA is agricultural soil located in the

province of Venice (Italy). The specific site is characterized by being a reclamation

land since the first decades of the 20th century. The sampling area measures 4.2 ha

and it is part of a larger farmland of about 50 ha, all cultivated conventionally as

vineyards.

According to the USDA geologic characterization, the site is constituted by a silty-

clayey soil specifically made by an Aquertic Eutrudepts fine, carbonatic and mesic

soil type. Small water ponds are visible and distributed throughout the whole

farmland [26].

The soil samples came from a farmland exploiting conventional methodologies for

vineyard cultivation, thus making use of a wide range of plant protection products

(PPPs). PPPs were applied by spraying machines exploiting anti-drift and recovery

nozzles in order to decrease the fraction of active substance reaching the soil thus

improving cost-effectiveness of the process. Table 2 describes the type and mass

load of pesticides applied on the sampling area (4.2 ha) during the year before the

soil sampling campaign was conducted. The load refers to the masses of active

ingredients only and does not refer to the amounts of coformulants used.

The sampling procedure followed the guidelines on contaminated soil proposed by

APAT (Italian Environmental Protection Agency) [27]. Soil samples were obtained

from a depth of 30 cm, after removal of the upper sward. The total mass (about 40

kg) of sampled soil was then mixed together in order to reduce possible physical-

Table 2. Loads of plant protection products applied on the sampling area the year

before the sampling campaign.

Active Substance Yearly load on sampling area (kg/(y*4.2 ha)

Mancozeb 15.8

Sulphur 188.2

Copper (Total) 34.7

Dimetomorf 21.0

Spiroxamine 32.8

Fluopicolide 1.1

Fosetyl-Aluminum 37.0

Metrafenone 0.5

Ciprodinil 1.3

Fludioxonil 0.8

Cyazofamid 0.5

Article No~e00284

8 http://dx.doi.org/10.1016/j.heliyon.2017.e00284

2405-8440/© 2017 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2017.e00284


chemical and spatial heterogeneities. Once mixed, soil samples were transferred

into 20 liter lockable plastic containers and stored at 4 °C before any test.

One sampling campaign was performed, about 30 days after the last pesticides

application. No temporal distributions were considered by this study, but rather an

instantaneous characterization of sampled soil during a period of absence of

pesticide application. Therefore, the toxicity of the sampled soil is assumed to be

representative of the residual soil toxicity of the sampling area.

2.3. Physical and chemical characterization the sampled agri-
cultural soil

The physical and chemical parameters of the sampled soil are presented in Table 3.

The list of chemicals is defined as “contaminants of concern” and it is integrated

with the PPPs specifically applied in the selected vineyard together with other

common chemical products used in vineyards in North-East Italy.

2.4. Ecotoxicological testing

APAT guidelines [27] suggest a set of ecotoxicological bioassays in order to

characterize a sampled matrix. Moreover, other guidelines [28, 29] were consulted

for other available tests. In general, the choice about which ecotoxicological

bioassay to be performed, and the endpoint to be assessed, was based on different

factors such as sensitivity and response time, cost-effectiveness, ease of

measurement and diagnostic ability.

Based on the above considerations, four different inhabiting soil invertebrates were

selected and analyzed: Eisenia fetida (Savigny 1826) (Annellida: Lumbricidae),

Folsomia candida Willem, 1902 (Collembola: Isotomidae), Caenorhabditis

elegans (Maupas, 1900) (Nematoda: Rhabditidae) and Steinernema carpocapsae

(Weiser, 1955) (Nematoda: Steinernematidae). The main features of the

ecotoxicological tests performed are presented in Table 4.

As suggested by USEPA [30], test concentrations were chosen following a

geometrical series having a ratio of 1.5. Therefore, eleven different concentrations

were defined for ecotoxicological tests: 0% (control), 2%, 3%, 5%, 7%, 10%, 20%,

30%, 50%, 70% and 100%. Both direct (i.e. direct exposure of test organism to

different concentrations of sampled soil) and indirect tests (i.e. exposure of

organism using an eluate) were performed on these eleven concentrations. In direct

tests, concentrations are expressed on a weight base (w/w referring to the dry

matter) while in indirect tests they are expressed on a volume base (v/v).

Direct ecotoxicological tests were performed using different mixtures of the

sampled agricultural soil and a standardized soil. This soil was artificially
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composed according to the specific guidelines [27, 28, 31]. The standardized soil

only was used as the control concentration.

Indirect ecotoxicological tests were performed using an eluate of the sampled

agricultural soil. The eluate was obtained according to the specific guidelines [32],

using a solid-to-liquid ratio of 1:10 (referring to the dry matter). Therefore, specific

Table 3. Physical and chemical properties of the sampled agricultural soil.

Substance Units Value RL Method Background
Concentration*

Humidity % 19 - IRSA-CNR Q64/84 vol. 2 n. 2 -

Dry matter % 81 - IRSA-CNR Q64/84 vol. 2 n. 2 -

pH - 6.99 - IRSA-CNR Q64/84 vol. 3 n. 1 -

Water Holding Capacity (WHC) % 113 - OECD 222/2004 Annex 2 -

TOC % dm 2.2 - UNI EN 13137 -

Aluminum mg/kg dm 24100 0.8 EPA 6010 D 2014 -

Antimony mg/kg dm <RL 0.4 EPA 6010 D 2015 1.06

Arsenic mg/kg dm 12.3 0.8 EPA 6010 D 2016 15.1

Barium mg/kg dm 103 0.8 EPA 6010 D 2017 -

Berillium mg/kg dm 1.41 0.4 EPA 6010 D 2018 1.07

Cadmium mg/kg dm <RL 0.4 EPA 6010 D 2019 0.47

Chrome (Total) mg/kg dm 39.9 0.8 EPA 6010 D 2020 49.9

Cobalt mg/kg dm 14.4 0.8 EPA 6010 D 2021 12.4

Copper (Total) mg/kg dm 80.4 0.8 EPA 6010 D 2022 -

Iron mg/kg dm 17.4 1.7 EPA 6010 D 2023 -

Sulfur mg/kg dm 290 20 UNI EN 15309:2007 -

Dieldrin mg/kg dm <RL 0.01 MP 1555 rev 1 2011 -

Dimetomorf mg/kg dm <RL 0.01 MP 1503 rev 1 2011 -

Spiroxamine mg/kg dm <RL 0.01 MP 1503 rev 1 2012 -

Fluopicolide mg/kg dm 0.041 0.01 MP 1503 rev 1 2013 -

Fosetyl-Aluminum (as etylfosfonic acid) mg/kg dm <RL 0.1 MP 0940 rev 10 2015 -

Metrafenone mg/kg dm <RL 0.01 MP 1503 rev 1 2013 -

Ciprodinil mg/kg dm <RL 0.01 MP 1503 rev 1 2014 -

Quinoxyfen mg/kg dm <RL 0.01 MP 1503 rev 1 2015 -

Cyazofamid mg/kg dm <RL 0.01 MP 1503 rev 1 2014 -

Pentachlorphenol mg/kg dm <RL 0.01 EPA 3550C 2007 + EPA 8082 A 2007 -

Sum of DDT/DDE/DDD mg/kg dm <RL 0.01 EPA 3550C 2007 + EPA 8270 D 2014 -

Sum of PAHs mg/kg dm <RL 0.025 MP 1555 rev 1 2012 -

Sum of PCBs mg/kg dm <RL 0.003 EPA 3550C 2007 + EPA 8082 A 2007 -

RL = detection limit.
* From Veneto Environmental Agency (ARPAV) [42].
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Table 4. Summary of ecotoxicological test performed.

Test Organism Number per
concentration

Replicates Media Dose Quantity
(dm) per
replicate

Duration Temperature L:D L(lux) WHC
(%)

Endpoint Method

Plant bioassays

Seed Germination Bio-
assay (SGB)

Lepidium sati-
vum

10 4 Soil (sand) Sampled
Soil

10 g 72 h 25 ± 2 0.02 - 100 Germination APAT,
2004

Seed Germination Elu-
ate Bioassay (SGB_E)

Lepidium sati-
vum

10 4 Solution (distilled
water)

Eluate
(1:10)

5 ml 72 h 25 ± 2 0.02 - - Germination APAT,
2004

Earthworm bioassays

Earthworm Chronic
Bioassay (ECB_a)

Eisenia fetida 10 4 Soil (OECD soil) Sampled
soil

500 g 28 d 20 ± 2 0.67 400–800 40 Survivor OECD 222/
2004

Earthworm Chronic
Bioassay (ECB_b)

Eisenia fetida 10 4 Soil (OECD soil) Sampled
soil

500 g 28 d 20 ± 2 0.67 400–800 40 Growth OECD 222/
2004

Collembola bioassay

Collembola Chronic
Bioassay (CCB)

Folsomia can-
dida

10 4 Soil (OECD soil)+
yeast

Sampled
soil

10 g 28 d 20 ± 2 0.67 400–800 - Survivor ISO 17512
guideline

Nematode bioassays 1

Nematode Bioassay 1
(NB1)

Caenorhabditis
elegans

10 4 Soil (OECD soil)
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test concentrations (v/v) were obtained by different dilutions of the eluate with

distilled water. The distilled water was used as the control concentration.

Plant bioassays involved phytotoxicity testing of the garden cress, Lepidium

sativum, through two different methodologies, following the guidelines proposed

by the Italian Environment Protection Agency (APAT) [27, 28].

The Seed Germination Bioassay (SGB) is a direct test. It was conducted by

measuring the elongation of the emerged roots of seeds previously placed on a 10 g

mixture of sampled soil and quartz sand.

The Seed Germination Eluate Bioassay (SGB_E) is an indirect test. It was

conducted by measuring the elongation of the emerged roots of seeds previously

placed on a dilution of distilled water and eluate of the sampled soil.

Both for SGB and for SGB_E, each concentration was tested in four replicates

resulting in 44 tested samples and 440 cress seeds assessed. Sample preparations

and test conditions for both the tests fully followed guideline prescriptions. The

ecotoxicological parameter for both tests is expressed in terms of the Germination

Index (GI in percentage respect the control) [27, 28].

Invertebrate bioassays explore the effect of direct exposure to the sampled

agriculture soil to different soil-inhabiting taxa (Table 4).

The Earthworm Chronic Bioassays consisted of monitoring survival (ECB_a) and

growth (ECB_b) of ten mature earthworms placed in 1.2L plastic containers filled

with a 500 ± 5 g mixture of agricultural soil and standardized soil. Each

concentration was tested in four replicates, thus resulting in 44 samples and 440

earthworms tested. The tests were performed according to the OECD 222/2004

[31] and the results were expressed as survival percentage (Su, %) and growth (Gr,

%), which is defined as the percentage of change in weight from the initially

inoculated earthworm weight.

Collembola Chronic bioassay (CCB) used the common springtail (F. candida)

according to the ISO 17512 guideline [33]; survival percentage (Su, %) was

considered as endpoint.

Nematode Bioassay 1 (NB1) investigated the exposure effect to the bacterial feeder

C. elegans. The test was carried out according to the ASTM guidelines E2172-01

[34] and to the principles of ISO 10872 [35]. Survival percentage (Su, %) was

considered as the endpoint.

Nematode Bioassay 2 (NB2) analyzed the direct exposure to the most used

entomopathogenic nematode (EPN) in biological control and one of the most

common species living in agricultural soil, S. carpocapsae. Monoxenic infective

juveniles (IJ) of S. carpocapsae culture (Becker Underwood, Ltd) were used for the
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bioassay. The toxicity test was carried out according to ASTM guidelines E2172-

01 [34] and to ISO 10872 [35]. The results were expressed as survival percentage

(Su, %).

2.5. Methods applied for the definition of ecological soil
screening values

Two methods were performed for the definition of ecological soil Screening

Values: the substance-based approach and the matrix-based approach.

When the first method was applied, Ecological soil SVs were individually assumed

equal to the Predicted Non-Effect Concentrations (PNECs), determined for each

individual chemical according to the “Technical Guidance Document on Risk

Assessment” (TGD_EU) [8]. The assessment of the effects of tested chemicals

relied upon literature data coming from four different institutionally acknowledged

databases [36, 37, 38, 39]. Collected data referred to the following endpoints:

growth, mortality and reproduction. Decomposers (microorganisms and earth-

worms), primary producers (plants), primary consumers (invertebrates) and crop-

pest antagonists (entomopathogenic nematodes) were at the trophic levels

considered within terrestrial toxicity data collected. Primary producers (algae),

primary consumers (i.e. crustaceans) and fish were instead considered for aquatic

toxicity, when no terrestrial data was available for the specific chemical.

Where terrestrial toxicity data was available, the PNECs for soil compartment were

derived by applying the assessment factor method to the lowest ecotoxicological

parameter collected, according to the following equation:

PNECSOIL ¼ Chosen Ecotoxicological Parameter
Assessment Factor

The use of the Assessment Factor (dimensionless) highlights the uncertainty of the

defined extrapolation method. The chosen value for the chemical-specific AF was

set according to the TGD_EU [8].

Where terrestrial toxicity data were not available (as for many metals) the

TGD_EU suggests exploiting the Equilibrium Partitioning Method based on

aquatic toxicity. In details, the PNEC relies on the following equation:

PNECSOIL ¼ KSOIL�WATER

RHOSOIL
� PNECWATER � 1000 mg

kg dm

� �

Where:

•
RHOSOIL is the bulk density of a specific soil constituting the standardized

environment as proposed by the TGD_EU [8];
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•
PNECWATER is obtained by applying the assessment factor method to the lowest

ecotoxicological parameter between the aquatic toxicity data collected. The chosen

value for the chemical-specific AF was set according to the TGD_EU [8].

•
KSOIL�WATER is the substance specific total soil-water partition coefficient,

calculated according to the same TGD_EU guideline [8].

Table 5 shows the derived PNECsoil values for the chemicals assumed as

representatives of the spraying activity of plant production products.

The values used to define SVs for the sum of Poly Aromatic Hydrocarbons (PAHs)

and sum of Polychloro-bifenils (PCBs) came from the soil screening values

characterizing the human health risk assessment for residential use as established

by the Italian Regulation about contaminated sites [2].

When the matrix-based method was applied, SVs for matrix-based approach were

expressed as effect values (i.e. percentages), corresponding to different endpoints,

considered as protective for the ecological functions under assessment (i.e. soil

functions). One of the priorities of this study was the definition of this threshold

value to be used within a screening ERA correspondent to a specific percentage of

sampled agricultural soil, on a dry weight base. Therefore, the proposed approach

was considered to be similar to the “whole effluent toxicity” as established by the

Italian regulation [2] about toxicity testing of effluents from wastewater treatment

plants, but applied to a soil screening ERA.

This study assumed that a soil matrix could be screened out from amore specific ERA

(i.e. the related risk can be considered “acceptable”) if a sample consisting of 100% on

a weight base does not cause a negative effect higher than 50% compared with the

control. In this context, the control is defined as a media where no perturbations occur

to the tested organisms. For example, if the Germination Index (GI, %) derived from

plant bioassays coming from the samples representing the 100% concentration of

tested soil resulted in equal or lower than 50% of the control, the assessed soil should

be assumed to be “risky” at the screening level. However, each ecotoxicological

bioassay tested 11 concentrations, thus leading to a series of eleven effect values.

Efforts should be made to justify the reason why values derived from increasing soil

concentrations do not show monotony. Equally the mode and the mechanism of

action for each active substance in the mixture should be better investigated. This

acceptable threshold had to be assessed for general endpoints of growth and survival,

specifically for the three trophic levels considered by this study.

2.6. Risk characterization

Risk for the substance-based approach was characterized by calculating the Hazard

Quotient (HQ) for single substances as the ratio between the Predicted
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Environmental Concentration (PEC) and the Predicted No Effect Concentration

(PNEC) for the soil compartment. The PEC was assessed by physical-chemical

laboratory analysis while the PNEC, defined equivalently as SV, was estimated

according to the TGD_EU [8]. Where the risk characterization of a single chemical

determines an HQ > 1, it entails the need of a further site-specific risk assessment

to better investigate the specific risk posed by the responsible compounds.

Risk for a matrix-based approach was assessed by the comparison of the effects

values, related to 100% (w/w dm) of the sampled soil and derived from the

performed ecotoxicological bioassays (see Section 2.4), with the SVs for matrix-

based approach as established in previous Section 2.5.

Table 5. Calculated Hazard Quotients (HQi) for the soil compartment.

Substance CAS Number PEC (mg/kg dm) PNECsoil = SV (mg/kg dm) HQ = PEC/SV

Aluminum 7429905 24,100 3.176 7,588.161

Antimony 7440360 0.400* 0.051 7.843

Arsenic 7440382 12.300 7.535 1.632

Barium 7440393 103.000 15.720 6.552

Berillium 7440417 1.410 0.530 2.660

Cadmium 7440439 0.400* 0.030 13.333

Chrome (Total) 7440473 39.900 0.005 7,980.000

Cobalt 7440484 14.400 6.000 2.400

Copper (Total) 7440508 80.400 0.105 765.714

Iron 7439896 17.400 0.002 8,700.000

Sulfur 7704349 290.000 0.976 297.131

Dieldrin 2004845 0.010* 0.003 3.333

Mancozeb 8018017 0.010 0.020 0.500

Dimetomorf 110488705 0.010* 0.600 0.016

Spiroxamine 118134308 0.010* 1.000 0.010

Fluopicolide 239110157 0.041 0.036 1.138

Fosetyl-Aluminum (as etylfosfonic acid) 39148284 0.100* 1.000 0.100

Metrafenone 220899036 0.010* 0.040 0.250

Ciprodinil 121552612 0.010* 0.267 0.037

Quinoxyfen 124495187 0.010* 0.106 0.094

Fludioxonil 13141861 0.010* 0.033 0.303

Cyazofamid 124495187 0.010* 0.106 0.094

Pentachlorphenol 87865 0.025* 0.064 0.390

Sum of DDT/DDE/DDD 50293/72559/72548 0.010* 0.061 0.163

Sum of PAHs − 0.010* 10.000 0.001

Sum of PCBs − 0.003* 0.060 0.050

* PEC assumed equal to the Detection Limit (RL).
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3. Results and discussion

3.1. Substance-based approach risk characterization

A HQ has been calculated for each tested chemical. Table 5 shows the estimated

substance specific HQs.

Exposure values for each chemical are set equal to the concentrations obtained

with the performed chemical analysis (PECi=Ci) (Table 3), while effect

concentrations are assumed equal to the derived substance-based screening values

(PNECsoil,i=SVi) (Table 5). Where concentration values have been detected under

the Quantification Limit (RL), the exposure values are assumed equal to the

specific Quantification Limits (if Ci < RLi, PECi=RLi), under a conservative

assumption.

As it can be seen, no PECs for applied PPPs can be derived, since the specific

concentrations are under the detection limits (<RL). This fact is probably a

consequence of the timing of the sampling campaign which occurred a month after

the last pesticide application. During the time that elapsed from the last application,

pesticides may be transformed, transported or transferred by environmental

dissipation processes such as degradation (photolysis, oxidation, biotransforma-

tion, etc.) or transport processes (rain-out, volatilization, transport with the matrix,

bioconcentration, etc.) [40]. Furthermore, not all tested products were applied

during the last pesticide application. Fluopicolide represents the unique exception,

since a concentration of this substance could be detected. In addition, the use of

high efficiency spraying machines exploiting anti-drift and recovery nozzles

minimizes the active substances reaching the soil during application.

In Table 5, the results show that the totality of derived HQs for inorganic

compounds is considered “risky” and in some cases (Aluminum, Chrome, Copper,

Iron and Sulfur) “very risky” since the derived HQs resulted in various orders of

magnitude higher than the unity. According to the assumptions of the substance-

based approach, these results lead to the need for further site-specific assessment of

each inorganic chemical considered. With the exception of Sulfur, the analyzed

inorganics are metals. The resulting soil SVs of Aluminum, Antimony, Arsenic,

Barium, Beryllium and Iron are derived, according to TGD_EU [8], by the

Equilibrium Partitioning method due to the lack of terrestrial toxicity data.

Moreover, no SVs for metals take into account the background concentrations

characterizing the sampled soil. These facts could have consequences as an

underestimation of the magnitude of the derived metallic soil SVs resulting in

“unrealistic” HQs. However, the derived HQ for Cu and S could be considered

realistic. In fact, high amounts of these chemicals were applied as plant protection

products (PPPs), as reported in Table 2, thus resulting in specific PECs values high

enough to justify the need of a further site-specific assessment. On the other hand,
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the concentrations of organic chemicals and PPPs do not show risk or need of

further assessments. This could be due to the very low concentrations detected or

assumed. The majority of the derived soil SVs for these chemicals was derived

through the Assessment Factor method, based on terrestrial toxicity data. The SV

for dieldrin was instead established through the Equilibrium Partitioning Method,

due to the absence of terrestrial toxicity data about this compound. Two exceptions

have been recognized. The first is the case of dieldrin, as its derived HQ was higher

than unity. This could be justified by the fact that the resultant SV was derived

through the Equilibrium Partitioning method, which could have overestimated the

value when extrapolating terrestrial sensitivity from freshwater toxicity data.

Otherwise, the derived PEC could be set to an unrealistic high value thus leading to

an overestimation of the specific HQ. The second exception is represented by the

HQ for fluopicolide, which presents a value higher than unity. In this case, the

specific PEC was only detected by the laboratory analysis and thus set at a more

realistic value.

3.2. Matrix-based approach risk characterization

Seed Germination Bioassay (SGB) and Seed Germination Eluate Bioassay

(SGB_E) showed that the analyzed soil cannot be considered as risky to a

screening phase according to the assumed criteria for risk acceptability using the

matrix-based approach. Both tests did not show germination index percentage (GI

%) lower than 50%. SGB tests showed values around 80% for soil concentrations

lower than 50% and higher than 100% for concentrations higher or equal to 50%.

SGB_E tests resulted in values ranging between 80% and 130% in the investigated

eluate concentration interval. It is worth mentioning that both series of results do

not show any monotony.

The results based on Earthworm bioassay indicated that the tested soil cannot be

considered as risky. No monotony can be detected in both series of measurements

(survival and growth percentages); thus no further assessment needs to be made.

Earthworm Chronic Bioassay (ECB_a) showed a survival percentage around 100%

in the whole soil concentration interval; the minimum value, 95%, were obtained

for concentrations of 2 and 3%. Earthworm Chronic Bioassay (ECB_b) showed a

growth percentage around 80% for soil concentrations lower than 10% and in the

remaining concentration range, the growth value were around 90–100%.

Collembola Bioassays and Nematode Bioassays 1 and 2 did not show any harm to

these animals and the results agree with the previous tests considering the tested

soil as not risky. In fact, there were no differences in the mortality and

development of the tested species in the tested soil compared to the individuals

living in the control soil. For all three species tested, percentage survival values

corresponding to an exposure of 100% w/w of sampled soil was not recorded below
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50%. The survival values remain approximately constant to 100% for all the

concentrations except the concentration of 100% where a survival percentage of

90% was recorded.

3.3. Comparison of the two approaches

The two procedures used to generate screening risk assessments exploiting have

generated conflicting results regarding the actions to be applied to the investigated

soil.

The screening ERA implementing the substance-based approach highlights the

need for a further site-specific assessment of two plant protection products

(dieldrin and fluopicolide) and for all the inorganic compounds (metals and sulfur).

This is probably due to the derived soil SVs which were characterized by a high

level of conservatism since they do not take in account background concentrations

of metals. The “Guidance Document on deriving Environmental Risk Limit”
(RIVM) [9] proposes a solution to overcome this problem. SVs for metals should

be derived as sums of the specific PNECs and the specific natural background

concentrations. Moreover, the majority of soil SVs for inorganic compounds were

derived according to the Equilibrium Partitioning Method based on aquatic toxicity

because of a lack in terrestrial toxicity data as established by TGD_EU [8]. The

extrapolation from aquatic toxicity to adverse toxic effects occurring in the soil

compartment could have led to a much higher level of conservatism. This fact

resulted in consequent need of a bigger terrestrial toxicity database about inorganic

compounds (mostly about metals). Therefore, the derived results could not be taken

as representative of site-specific conditions and thus they lead to an unrealistic

estimation of risk, mainly for metallic compounds. On the other hand, the

screening matrix-based ERA does not show the need for further level 2 risk

assessment on the sampled soil. The defined SVs for this kind of assessment could

probably be considered not conservative enough to preserve ecological functions of

the soil compartment. These values were originally proposed by the authors to

derive SVs “as much operative as possible”, i.e. easy to compare with results

coming from ecotoxicological tests characterized by being cost-effective and easily

implemented. However, despite a level of conservatism that could be criticized, the

derived results were considered more realistic and site-specific due to the inherent

properties of the approach (possibility of accounting for effective bioavailability,

interactions between substances, etc.). Furthermore, it was considered as a starting

point to deepen the scientific discussion about setting a soil SV for matrix-based

ERAs that effectively protects the environment.

The two approaches can be considered comparable from an economic and time

point of view. The chemical analysis for the “substance-based” approach can

require 2–3 weeks with costs around 1,000 Euro, while the ecotoxicological tests
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for the “matrix-based” approach can be completed within 4 weeks with costs around

800 Euro. Both approaches need to better address both temporal and spatial

variability of the sampled soil to be tested. This means that derived soil ecological

SVs should take in account appropriate exposure time for the toxicity test data. In fact,

even if a good sampling design addresses spatial heterogeneity, temporal variations in

concentrations represent a major challenge for ERAs. This is particularly important

when assessing risk to the ecosystem characterized by frequent chemical inputs (as

the case of the agroecosystems). For instance, exposures to PPPs are not dependent on

constant but on pulsed concentrations, the peak and duration of which depend on the

interactions between the PPPs and the soil [40, 41]. The current study removed the

upper sward before collecting the soil to test, according to the proposed guidelines.

However, this practice could have removed some sources of adverse effects to

ecosystems, i.e. herbicide applied on vineyard upper soil. Moreover, vertical

migration is a way of maintaining a balance between the possible mortality in upper

layers (drought, predation) and reduced reproductive output resulting from less

favorable feeding conditions in the lower layers [29]. Thus, upper soil and vertical

movements especially directed to the soil upper layers should be accounted for when

characterizing the ecotoxicologically relevant type of exposure concentration for in-

soil organisms. Therefore, the characterization of the removed sward should be

significantly addressed by future studies.

4. Conclusions

This study aimed to fill the gap in Italian legislation about contaminated soils and

the use of a scientifically based procedure for deriving soil Screening Values (SVs)

to be applied to Ecological Risk Assessments (ERA), especially for agricultural

land-use. Two approaches were compared (i) the substance-based approach and (ii)

the matrix-based approach. For the former, soil SVs were derived for single

individual substances according to the methodology proposed by TGD_EU while

for the latter, SVs were derived by the authors using a scientific approach that

considered the whole-matrix. The derived screening values were then used to

compare results coming from two screening ERAs applying the two approaches

using a case study assessing agricultural soil sampled in a North-Eastern Italian

area (in the province of Venice). The resulting screening risk assessments lead to

results that are in contrast and show that the substance-based approach is much

more conservative. Finally, it is possible to state that the “matrix-based approach”
differentiates intrinsically from the institutionalized “substance-based approach”,
since the latter can be defined as a “tabular-based” approach while the former can

be defined as a “performance-based” approach.

Operatively, the substance-based approach characterizes the risk by just assessing a

comparison between each derived PEC and a specific threshold (SV) that refers to

a tabulated value established “a priori”. It means that no site-specific effect is
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assessed. On the other hand, the matrix-based approach determines the risk by

assessing the specific performance of the tested matrix which relies on causing a

defined real (site-specific) effect. In conclusion, this work suggests the idea that the

“matrix-based” approach can be efficiently implemented in Italian legislation for

the ecological risk assessment of agriculture soils.

This method, if compared to the institutionalized “substance-based” approach:

- is comparable from an economic and time consumption point of view;

- is more site specific, assessing the real effect of the investigated soil to a battery

of bioassays;

- accounts for phenomena that may radically modify the exposure of the organisms

to the totality of contaminants (e.g. exposure to minor pollutants, chemicals

partially adsorbed on soil particles, interactions between substances, etc.);

- can be considered sufficiently conservative for the environmental protection.

However, future developments could involve the need of ecotoxicological tests

able of screening more trophic levels, interactions and different endpoints, in order

to increase ecological significance and consider more ecosystem services. In this

context, specific soil SVs could be derived for endpoints characterizing

microorganism functions.
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