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Comparison and Allowing for Nonlinearity
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Abstract

Financial instability and its destructive effects on the economy can lead to financial crises

due to its contagion or spillover effects to other parts of the economy. Having an accurate mea-

sure of systemic risk gives central banks and policy makers the ability to take proper policies in

order to stabilize financial markets. Much work is currently being undertaken on the feasibility

of identifying and measuring systemic risk. In principle, there are two main schemes to measure

interlinkages between financial institutions. One might wish to construct a mathematical model

of financial market participant relations as a network/graph by using a combination of infor-

mation extracted from financial statements like the market value of liabilities of counterparties,

or an econometric model to estimate those relations based on financial series. In this paper,

we develop a data-driven econometric framework that promotes an understanding of the rela-

tionship between financial institutions using a nonlinearly modified Granger-causality network.

Unlike existing literature, it is not focused on a linear pairwise estimation. The method allows

for nonlinearity and has predictive power over future economic activity through a time-varying

network of relationships. Moreover, it can quantify the interlinkages between financial institu-

tions. We also show how the model improve the measurement of systemic risk and explain the

link between Granger-causality network and generalized variance decompositions network. We

apply the method to the monthly returns of U.S. financial Institutions including banks, broker

and insurance companies to identify the level of systemic risk in the financial sector and the

contribution of each financial institution.
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I. Introduction

Understanding the interconnection between the financial institutions is of great importance.

In principle, there are two main approaches to measure such interconnections between financial

institutions in the literature. One is based on a mathematical model of financial market participant

relations as a graph using a combination of information extracted from financial statements like

the market value of liabilities of counterparties, and the other one that is also the approach of this

work is based on statistical analysis of financial series.

Most of the existing approaches in the literature are built on pairwise comparison or assuming

linear relationship between the time series. For instance the authors in Billio et al. (2012) pro-

pose several measures of systemic risk to capture the connections between the monthly returns

of different financial institutions (hedge funds, banks, brokers, and insurance companies) based on

Granger-causality tests. They propose a definition of systemic risk as “any set of circumstances that

threatens the stability of or public confidence in the financial system”. This definition implies that

the risk of such events is unlikely to be captured by any single metric that ignores the connections

between the financial institutions. Billio et al. (2012) uses principle component analysis to estimate

the number and importance of common factors driving the returns of financial institutions, and

it uses pairwise Granger-causality tests to identify the network of Granger-causal relations among

those institutions.

Another related work is Diebold and Yılmaz (2014). In this work, the authors propose a con-

nectedness measure based on generalized variance decomposition (GVD) and consequently, define

a weighted, directed network. However, the measure introduced in this work is limited to linear

dynamical systems, more precisely, data-generating processes (DGPs). Moreover, as we will discuss

later in Section III.B, their measure suffers from disregarding the entire network akin to pairwise

analysis commonly used in the literature.

In Barigozzi and Hallin (2016), the authors focus on one particular network structure: the long-

run variance decomposition network (LVDN). Similar to Diebold and Yılmaz (2014), the LVDN

defines a weighted and directed graph where the weight that is associated with edge (i, j) represents

the proportion of h-step-ahead forecast error variance of variable i which is accounted for by the

innovations in variable j. LVDNs are characterized by the infinite vector moving average (VMA)

that limits them to linear systems.

Connectedness measures based on correlation remain widespread, however, they measure only

pairwise association and are mainly used for linear Gaussian dynamics. This makes them of lim-

ited value in financial-market contexts. Different approaches have been developed to relax these

conditions. For example, equi-correlation approach in Engle and Kelly (2012) uses average corre-

lations across all pairs. The CoVaR approach of Adrian and Brunnermeier (2008) measures the

value-at-risk (VaR) of financial institutions conditional on other institutions experiencing financial

distressand. The marginal expected shortfall (MES) approach of Acharya et al. (2010) measures

the expected loss to each financial institution conditional on the entire set of institutions poor

performance. Although these measures rely less on linear Gaussian methods and are certainly of
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interest, they measure different things, and a general framework that can be used to capture the

connectedness in different networks remains elusive. Introducing such measure is the main purpose

of this work.

In this work, we develop a method that allows for nonlinearity of the data and does not depend

on pairwise relationships among time series. We also show how the model improve the measurement

of systemic risk and explain the connection between Granger-causality and variance decompositions

method.

A. Organization

The rest of the paper is organized as follows. In Section II, we review the literature on graphical

models, Granger causality, and introduce directed information graphs. In Section III, we study the

causal network of linear models. Section IV studies the causal network of non-linear models. In

Section V, we apply our non-linear method to learn the causal network of set of financial institutions

and compare it with the linear regression method in the literature. Finally, we conclude in Section

VI.

II. Causal Network

In order to investigating the dynamic of systemic risk, it is important to measure the causal

relationship between financial institutions. In this section, we propose a statistical approach to

learn such causal interconnections using Granger causality Granger (1969).

A. Graphical Models and Granger Causality

Researchers from different fields have developed various graphical models suitable for their

application of interest to encode interconnections among variables or processes. Markov Networks,

Bayesian networks (BNs), and Dynamic Bayesian networks (DBNs) are three example of such

graphical models that have been used extensively in the literature. In these particular graphical

models, nodes represent random variables Koller and Friedman (2009); Murphy (2002).

Markov networks are undirected graphs that represent the conditional independence between

the variables. On the other hand BNs and DBNs are directed acyclic graphs (DAGs) that encode

conditional dependencies in a reduced factorization of the joint distribution.

Since the size of such graphical models depends on the time-homogeneity and the Markov order

of the random processes. Therefore, in general, the graphs can grow with time. As an example,

the DBN graph of a vector autoregressive (VAR) with m processes each of order L requires mL

nodes Dahlhaus and Eichler (2003). As such they are not suitable for succinct visualization of

relationships between the time series such as systemic risks.

In this work, we use directed information graphs (DIGs) to represent interconnections among the

financial institutions in which each node represents a time series Quinn et al. (2015); Massey (1990).

Below, we formally introduce this type of graphical models. We use an information-theoretical
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generalization of the notion of Granger causality to determine the interconnection between time

series. The basic idea in this framework was originally introduced by Wiener Wiener (1956), and

later formalized by Granger Granger (1969). The idea reads as follows: “we say that X is causing Y

if we are better able to predict the future of Y using all available information than if the information

apart from the past of X had been used.”

Granger formulated this framework for practical implementation using multivariate autoregres-

sive (MVAR) models and linear regression. This version has been widely adopted in econometrics

and other disciplines Granger (1963); Dufour and Taamouti (2010). More precisely, in order to

identify the influence of Xt on Yt in a MVAR comprises of three time series {X,Y, Z}, Granger’s

idea is to compare the performance of two linear regressions: the first predictor is non-nested

that is it predicts Yt given {Xt−1, Y t−1, Zt−1}, where Xt−1 denotes the time series X up to time

t − 1 and the second predictor is nested that is it predicts Yt given {Y t−1, Zt−1}. Clearly, the

performance of the second predictor is bounded by the first predictor and if they have the same

performance, then we say X does not cause Y . In this framework, since the dynamic between time

series is linear, linear regression has been chosen. Next, we introduce directed information (DI),

an information-theoretical measure that generalized Granger causality beyond linear models Quinn

et al. (2011a).

DI has been used in many applications to infer causal relationships. For example, it has been

used for analyzing neuroscience data Quinn et al. (2011b); Kim et al. (2011) and market data

Etesami and Kiyavash.

B. Directed Information Graphs (DIGs)

In the rest of this section, we describe how the DI can capture the interconnections in causal1

dynamical systems (linear or non-linear) and formally define DIGs.

Consider a dynamical system comprised of three time series {X,Y, Z}. To answer whether X

has influence on Y or not over time horizon [1, T ], we compare the average performance of two

particular predictors with predictions p and q over this time horizon. The first predictor uses the

history of all three time series while the second one uses the history of all processes excluding process

X. On average, the performance of the predictor with less information (the second one) is upper

bounded by the performance of the predictor with more information (the first one). However, when

the prediction of both predictors, i.e., p and q are close over time horizon [1, T ], then we declare

that X does not cause Y in this time horizon; otherwise, X causes Y .

In order to measure the performance of a predictor, we consider a nonnegative loss function,

�(p, y), which defines the quality of the prediction. This loss function increases as the prediction

p deviates more from the true outcome y. Although there are many candidate loss functions, e.g.

the squared error loss, absolute loss, etc, for the purpose of this work we consider the logarithmic

loss.

Moreover, in our setting, the prediction p lies in the space of probability measures over y. More

precisely, we denote the past of all processes up to time t1 by F t−1 that is the σ-algebra generated
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by {Xt−1, Y t−1, Zt−1}, where Xt−1 represents the time series X up to time t − 1, and denote the

past of all processes excluding process X, up to time t− 1 by F t−1
−X .

The prediction of the first predictor that is non-nested at time t is given by pt := P (Y (t)|F t−1)

that is the conditional distribution of Y (t) given the past of all processes and the second predictor

which is nested is given by qt := P (Yt|F t−1
−X ).

Given a prediction p for an outcome y ∈ Y, the log loss is defined as �(p, y) := − log p(y).

This loss function has meaningful information-theoretical interpretations. The log loss is the Shan-

non code length, i.e., the number of bits required to efficiently represent a symbol y drawn from

distribution p. Thus, it may be thought of the description length of y.

When the outcome yt is revealed for Yt, the two predictors incur losses �(pt, yt) and �(qt, yt),

respectively. The reduction in the loss (description length of yt), known as regret is defined as

rt := �(qt, yt)− �(pt, yt) = log
pt
qt

= log
P (Yt = yt|F t−1)

P (Yt = yt|F t−1
−X )

≥ 0.

Note that the regrets are non-negative. The average regret over the time horizon [1, T ] given by
1
T

∑T
t=1 E[rt], where the expectation is taken over the joint distribution of X, Y , and Z is called

directed information (DI). This will be our measure of causation and its value determines the

strength of influence. If this quantity is close to zero, it indicates that the past values of time series

X contain no significant information that would help in predicting the future of time series Y given

the history of Y and Z. This definition may be generalized to more than 3 processes as follows,

Definition 1: Consider a network of m time series R := {R1, ..., Rm}. We declare Ri influences Rj

over time horizon [1, T ], if and only if

I(Ri → Rj ||R−{i,j}) :=
1

T

T∑
t=1

E

[
log

P (Rj,t|F t−1)

P (Rj,t|F t−1
−{i})

]
> 0, (1)

where R−{i,j} := R\{Ri, Rj}. F t−1 denotes the sigma algebra generated by Rt−1 := {Rt−1
1 , ..., Rt−1

m },
and F t−1

−{i} denotes the sigma algebra generated by {Rt−1
1 , ..., Rt−1

m } \ {Rt−1
i }.

Definition 2: Directed information graph (DIG) of a set of m processes R = {R1, ..., Rm} is a

weighted directed graph G = (V,E,W ), where nodes represent processes (V = R) and arrow

(Ri, Rj) ∈ E denotes that Ri influences Rj with weight I(Ri → Rj ||R−{i,j}). Consequently,

(Ri, Rj) /∈ E if and only if its corresponding weight is zero.

Remark 1: Pairwise comparison has been applied in the literature to identify the causal structure

of time series Billio et al. (2012, 2010); Allen et al. (2010). Such comparison is not correct in

general and fails to capture the true underlying network as we will see in the next example. For

more details please see Quinn et al. (2015).

Example 1: As an example, consider a network of three times series {X,Y, Z} with the following
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linear model:
Xt = a1Xt−1 + a2Zt−1 + εxt

,

Zt = a3Zt−1 + εzt ,

Yt = a4Yt−1 + a5Zt−1 + εyt
,

(2)

where εx, εy, and εz are three independent white noise processes, and {a1, ..., a5} are non-zero

coefficients of the model. Due to the functional relationships between these time series, we have

that the causal network of this model is X ← Z → Y , i.e., there is an arrow from Z to X and Z to

Y because Xt and Yt depend on Zt−1, respectively. This can also be inferred using the DIs in (1),

it is straight forward to show that

I(X → Y ||Z) = 0, I(X → Z||Y ) = 0,

I(Y → X||Z) = 0, I(Y → Z||X) = 0,

I(Z → Y ||X) > 0, I(Z → X||Y ) > 0.

Notice that none of the above DIs are pairwise as they have conditioned on the remaining time

series. However, considering the pairwise causal relationships, for instance between X and Y will

give us

I(X → Y ) =
1

T

T∑
t=1

E

[
log

P (Yt|Y t−1, Xt−1)

P (Yt|Y t−1)

]
> 0.

Hence, looking into pairwise causal relationships, we obtain that X directly causes Y that is not

the case in this example.

A causal model allows a factorization of the joint distribution in some specific ways. It was

shown in (Quinn et al., 2015) that under a mild assumption, the joint distribution of a causal

discrete-time dynamical system with m time series can be factorized as follows,

PR =
m∏
i=1

PRi||RBi
, (3)

where Bi ⊆ −{i} := {1, ...,m} \ {i} is the minimal2 set of processes that causes process Ri, i.e.,

parent set of node i in the corresponding DIG. Such factorization of the joint distribution is called

minimal generative model. In Equation (3), P (·||·) is called causal conditioning and defined as

follows

PRi||RBi
:=

T∏
t=1

PRi,t|Ft−1
Bi∪{i}

,

and F t−1
Bi∪{i} = σ{Rt−1

Bi∪{i}}.
It is important to emphasize that learning the causal network using DI does not require any

specific model for the system. There are different methods that can estimate (1) given i.i.d. samples

of the time series such as plug-in empirical estimator, k-nearest neighbor estimator, etc Jiao et al.

(2013); Frenzel and Pompe (2007); Kraskov et al. (2004).

In general, estimating DI in (1) is a complicated task and has high sample complexity. However,
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Figure 1. Corresponding DIG of the system in (4).

knowing some side information about the system can simplify the learning task. In the following

section, we describe learning the causal network of linear systems. Later in Section IV, we discuss

generalization to non-linear models.

C. Quantifying Causal Relationships

The purpose of this section is to justify that the DI introduced in (1) also quantifies the causal

relationships in a network. We do so using a simple linear model and then generalize it to nonlinear

systems.

Consider a network of three time series �Xt = (X1,t, X2,t, X3,t)
T with the following dynamic

�Xt =

⎛⎜⎝0 0.1 0.3

0 0 −0.2

0 0 0

⎞⎟⎠ �Xt−1 + �εt, (4)

where �εt denotes a vector of exogenous noises that has normal distribution with mean zero and

covariance matrix I. Figure 1 shows the corresponding DIG of this network. Note that in this

particular example that the relationships are linear, the support of the coefficient matrix also

encodes the corresponding DIG of the network.

In order to compare the strength of causal relationships X2 → X1 and X3 → X1 over a

time horizon [1, T ], we compare the performance of two linear predictors of X1,t over that time

horizon. The first predictor (L1) predicts X1,t using {Xt−1
1 , Xt−1

3 } and the other predictor (L2)

uses {Xt−1
1 , Xt−1

2 }. If L1 shows better performance compared to L2, it implies that X3 contains

more relevant information about X1 compared to X2. In other words, X3 has stronger influence on

X1 compared to X2. To compare the performance of L1 and L2, we consider their mean squared

errors over the time horizon [1, T ].

L1 : e1 :=
1

T

T∑
t=1

min
yt∈At

E||X1,t − yt||2, where At := span{Xt−1
1 , Xt−1

3 },

L2 : e2 :=
1

T

T∑
t=1

min
zt∈Bt

E||X1,t − zt||2, where Bt := span{Xt−1
1 , Xt−1

2 }.

It is easy to show that e1 = 1+0.12 and e2 = 1+0.32. Since e1 < e2, we infer that X3 has stronger

influence on X1 compared to X2.

Analogous to the directed information graphs, we can generalize the above framework to non-

linear systems. Consider a network of m time series R = {R1, ..., Rm} with corresponding DIG
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G = (V,E,W ). Suppose (Ri, Rj) and (Rk, Rj) belong to E, i.e., Ri and Rk both are parents of Rj .

We say Ri has stronger influence on Rj compared to Rk over a time horizon [1, T ] if P (Rj,t|F t−1
−{k})

is a better predictor for Rj,t compared to P (Rj,t|F t−1
−{i}) over that time horizon. In other words, Ri

has stronger influence on Rj compared to Rk, if

1

T

T∑
t=1

E

[
log

P (Rj,t|F t−1
−{k})

P (Rj,t|F t−1
−{i})

]
> 0.

The above inequality holds if and only if I(Ri → Rj ||R−{i,j}) > I(Rk → Rj ||R−{k,j}). Thus, the

DI in (1) can quantify the causal relationships in a network. For instance, looking again at the

system in (4), we obtain

I(X2 → X1||X3) =
1

2
log(1 + 0.12) <

1

2
log(1 + 0.32) = I(X3 → X1||X2).

III. DIG of Linear Models

Herein, we study the causal network of linear systems. Consider a set of m stationary time

series, and for simplicity assume they have zero mean, such that their relationships are captured

by the following model:

�Rt =

p∑
k=1

Ak
�Rt−k + �εt, (5)

where �Rt = (R1,t, ..., Rm,t)
T , and Aks are m×m matrices. Moreover, we assume that the exogenous

noises, i.e., εi,ts are independent and also independent from {Rj,t}. For simplicity, we assume that

the {εi,t} have mean zero. For the model in (5), it was shown in Etesami and Kiyavash that

I(Ri → Rj ||R−{i,j}) > 0,

if and only if
∑p

k=1 |(Ak)j,i| > 0, where (Ak)j,i is the (j, i)th entry of matrix Ak. Thus, to learn

the corresponding causal network (DIG) of this model, instead of estimating the DIs in (1), we

can check whether the corresponding coefficients are zero or not. To do so, we use the Bayesian

information criterion (BIC) as the model-selection criterion to learn the parameter p Schwarz et al.

(1978), and use F-tests to check the null hypotheses that the coefficients are zero Lomax and

Hahs-Vaughn (2013).

Wiener filtering is another alternative approach that can estimate the coefficients and conse-

quently learn the DIG Materassi and Salapaka (2012). The idea of this approach is to find the

coefficients by solving the following optimization problem,

{Â1, ..., Âp} = arg min
B1,...,Bp

E

[
1

T

T∑
t=1

||�Rt −
p∑

k=1

Bk
�Rt−k||2

]
.

8



This leads to a set of Yule-Walker equations that can be solved efficiently by Levinson-Durbin

algorithm Musicus (1988).

A. DIG of GARCH models

The relationship between the coefficients of the linear model and the corresponding DIG can

easily be extended to the financial data in which the variance of {εi,t}Tt=1 are no longer independent

of {Ri,t} but due to the heteroskedasticity, they are F t−1
i -measurable. More precisely, in financial

data, the returns are modeled by GARCH that is given by

Ri,t|F t−1 ∼ N (μi,t, σ
2
i,t),

σ2
i,t = α0 +

q∑
k=1

αk(Ri,t−k − μi,t)
2 +

s∑
l=1

βlσ
2
i,t−l,

(6)

where αks and βls are nonnegative constants.

PROPOSITION 1: Consider a network of time series whose dynamic is given by (6). In this case,

there is no arrow from Rj to Ri in its corresponding DIG, i.e., Rj does not cause Ri if and only if

E[Ri,t|F t−1] = E[Ri,t|F t−1
−{j}], ∀t. (7)

Proof. See Appendix .A.

Multivariate GARCH models are a a generalization of (6) in which the variance of ei,t is F t−1-

measurable. In this case, not only μi,t but also σ2
i,t capture the interactions between the returns.

More precisely, in multivariate GARCH, we have

�Rt|F t−1 ∼ N (�μt,Ht),

vech[Ht] = Ω0 +

q∑
k=1

Ωkvech[�εt−k�ε
T
t−k] +

p∑
l=1

Γlvech[Ht−l],

where �μt is an m × 1 array, Ht is an m × m symmetric positive definite and F t−1-measurable

matrix, and �εt = �Rt − �μt. Note that vech denotes the vector-half operator, which stacks the lower

triangular elements of an m×m matrix as an (m(m+ 1)/2)× 1 array.

PROPOSITION 2: Consider a network of time series whose dynamic is captured by a multivariate

GARCH model. In this case, there is no arrow from Rj to Ri in its corresponding DIG, i.e., Rj

does not influence Ri if and only if both the condition in Proposition 1 and the following condition

hold

E[(Ri,t − μi,t)
2|F t−1] = E[(Ri,t − μi,t)

2|F t−1
−{j}], ∀t. (8)

Proof. See Appendix .B.
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Next example demonstrates the connection between the DIG of a multivariate GARCH and its

corresponding parameters.

Example 2: Consider the following multivariate GARCH(1,1) model(
R1,t

R2,t

)
=

(
0.2 0.3

0 0.2

)(
R1,t−1

R2,t−1

)
+

(
ε1,t

ε2,t

)
,⎛⎜⎝σ2

1,t

ρt

σ2
2,t

⎞⎟⎠ =

⎛⎜⎝ 0

0.3

0.1

⎞⎟⎠+

⎛⎜⎝0.2 0 0.3

0 0.2 0.7

0.1 0.4 0

⎞⎟⎠
⎛⎜⎝ ε21,t−1

ε1,t−1ε2,t−1

ε22,t−1

⎞⎟⎠+

⎛⎜⎝0.3 0.5 0

0.1 0.2 0

0 0 0.4

⎞⎟⎠
⎛⎜⎝σ2

1,t−1

ρt−1

σ2
2,t−1

⎞⎟⎠ , (9)

where ρt = E[ε1,tε2,t]. The corresponding DIG of this model is R1 ↔ R2. This is because R2

influences R1 through the mean and variance and R1 influences R2 only through the variance.

Remark 2: Recall that as we mentioned in Remark 1 and Example 1, the pairwise Granger-causality

calculation, in general, fails to identify the true causal network. It was proposed in Billio et al.

(2012) that the returns of the ith institution linearly depend on the past returns of the jth institution,

when

E[Ri,t|F t−1] = E
[
Ri,t|Rj,t−1, Ri,t−1, {Rj,τ − μj,τ}t−2

τ=−∞, {Ri,τ − μi,τ}t−2
τ=−∞

]
.

This test is obtained based on pairwise Granger-causality calculation and does not consider non-

linear causation through the variance of {εi}. For instance, if the returns of two institutions Rj

and Rk cause the returns of the ith institution, then the above equality does not hold, because Rk

cannot be removed from the conditioning.

B. DIG of Moving-Average (MA) Models

The model in (5) may be represented as an infinite moving average (MA) or data-generating

process (GDP), as long as �R(t) is covariance-stationary, i.e., all the roots of |I −∑p
k=1Akz

k| fall
outside the unit circle Pesaran and Shin (1998):

�Rt =
∞∑
k=0

Wk�εt−k, (10)

where Wk = 0 for k < 0, W0 = I, and Wk =
∑p

l=1Wk−lAl. In this representation, {εi}s are called
shocks and if they are independent, they are also called orthogonal Diebold and Yılmaz (2014).

In this section, we study the causal structure of a MA model of finite order p. Consider a

moving average model with orthogonal shocks given by

�Rt =

p∑
k=0

Wk�εt−k, (11)

where Wis are m×m matrices such that W0 is non-singular with nonzero diagonals and without

loss of generality, we can assume that diag(W0) is the identity matrix. Equation (11) can be

10



written as �Rt = W0�εt + P(L)�εt−1, where P(L) :=
∑p

k=1WkL
k−1. Subsequently, we have

W−1
0

�Rt = �εt +

∞∑
k=1

(−1)k−1
(
W−1

0 P(L)
)k

W−1
0

�Rt−k. (12)

This representation is equivalent to an infinite AR model. Hence using the result in Etesami and

Kiyavash, we can conclude the following corollary.

COROLLARY 1: Consider a MA model described by (11) with orthogonal shocks such that W0 is

non-singular and diagonal. In this case, Rj does not influence Ri if and only if the corresponding

coefficients of {Rj,t−k}k>0 in Ri’s equation are zero.

In the interest of simplicity and space, we do not present the explicit form of these coefficients,

but we show the importance of this result using a simple example.

Example 3: Consider a MA(1) with dimension three such that W0 = I, and

W1 =

⎛⎜⎝0.3 0 0.5

0.1 0.2 0.5

0 0.4 0.1

⎞⎟⎠ , W2
1 =

⎛⎜⎝0.09 0.2 0.2

0.05 0.24 0.2

0.04 0.12 0.21

⎞⎟⎠ ,

Using the expression in (12), we have �Rt = �εt +
∑∞

k=1(−1)k−1Wk
1
�Rt−k. Because, W2

1 has no

nonzero entry, the causal network (DIG) of this model is a complete graph.

We studied the DIG of a MA model with orthogonal shocks. However, the shocks are rarely

orthogonal in practice. To identify the causal structure of such systems, we can apply the whitening

transformation to transform the shocks into a set of uncorrelated variables. More precisely, suppose

E[�εt�ε
T
t ] = Σ, where the Cholesky decomposition of Σ is VVT Horn and Johnson (2012). Hence,

V−1�εt is a vector of uncorrelated shocks. Using this fact, we can transform (11) with correlated

shocks into

�Rt =

p∑
k=0

W̃k
�̃εt−k, (13)

with uncorrelated shocks, where �̃εt := V−1�εt and W̃k := WkV.

Remark 3: The authors in Diebold and Yılmaz (2014) applied the generalized variance decomposi-

tion (GVD) method to identify the population connectedness or in another word the causal structure

of a MA model with correlated shocks. Using this method, they monitor and characterize the net-

work of major U.S. financial institutions during 2007-2008 financial crisis. In this method, the

weight of Rj’s influence on Ri in (11) was defined to be proportional to

di,j =

p∑
k=0

(
(WkΣ)i,j

)2
, (14)

where (A)i,j denotes the (i, j)-th entry of matrix A. Recall that E[�εt�ε
T
t ] = Σ. Applying the GVD
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method to Example 3, where Σ = I, we obtain that d1,2 = d3,1 = 0. That is R2 does not influence R1

and R1 does not influence R3. This result is not consistent with the Granger-causality concept since

the corresponding causal network (DIG) of this example is a complete graph, i.e., every node has

influence on any other node. Thus, GVD analysis of Diebold and Yılmaz (2014) is also seems to

suffer from disregarding the entire network akin to pairwise analysis commonly used in traditional

application of the Granger-causality.

IV. DIG of Non-linear Models

DIG as defined in Definition 2 does not require any linearity assumptions on the model. But,

similar to Billio et al. (2010), side information about the model class can simplify computation of

(1). For instance, let us assume that R is a first-order Markov chain with transition probabilities:

P (Y t|Rt−1) = P (Rt|Rt−1).

In this setup, I(Ri → Rj ||R−{i,j}) = 0 if and only if

P (Rj,t|Rt−1) = P (Rj,t|R−{i},t−1), ∀t.

Recall that R−{i},t−1 denotes {R1,t−1, ..., Rm,t−1} \ {Ri,t−1}. Furthermore, suppose that the transi-

tion probabilities are represented through a logistic function again as in Billio et al. (2010). More

specifically, for any subset of processes S := {Ri1 , ..., Ris} ⊆ R, we have

P (Rj,t|Ri1,t−1, ..., Ris,t−1) :=
exp(�αT

S �US)
1 + exp(�αT

S �US)
,

where �UT
S :=

⊗
i∈S(1, Ri,t−1) = (1, Ri1,t−1)⊗(1, Ri2,t−1)⊗· · ·⊗(1, Ris,t−1), ⊗ denotes the Kronecker

product, and �αS is a vector of dimension 2s × 1. Under these assumptions, the causal discovery

in the network reduces to the following statement: Ri does not influence Rj if and only if all the

terms of �UR depending on Ri are equal to zero. More precisely:

�UR = �UR−{i} ⊗ (1, Ri,t−1) = (�UR−{i} ,
�UR−{i}Ri,t−1).

Let �αT
R = (�αT

1 , �α
T
2 ), where �α1 and �α2 are the vectors of coefficients corresponding to �UR−{i} and

�UR−{i}Ri,t−1, respectively. Then Ri �→ Rj if and only if �α2 = 0.

Another such non-linear models are Multiple chain Markov switching models (MCMS)-VAR

Billio and Di Sanzo (2015), in which the relationship between time series Y t is given by

Yi,t = μi(Si,t) +

p∑
k=1

m∑
j=1

(Bk(Si,t))i,jYj,t−k + εi,t, for i ∈ {1, ...,m}, (15)

12



and �εt := (ε1,t, ..., εm,t) ∼ N (0,Σ(�St)), where the mean, the lag matrices, and the covariance matrix

of the error terms all depend on a latent random vector �St known as the state of the system. Si,t

represents the state variable associated with Yi,t that can take values from a finite set S. The

random sequence {�St} is assumed to be a time-homogenous first-order Markov process with one-

step ahead transition probability P (�St|St−1, Y t−1) = P (�St|St−1). Furthermore, we assume that

given the past of the states, their presents are independent, i.e.,

P (�St|St−1) =
∏
j

P (Sj,t|St−1).

Next result stresses a set of conditions under which by observing the time series Y t, we are able to

identify the causal relationships between them.

PROPOSITION 3: Consider a MCMS-VAR in which Σ(�St) is diagonal for all �St. In this case,

I(Yj → Yi||Y −{i,j}) = 0 if

• (Bk(si,t))i,j = 0 for all realizations si,t,

• (Σ(�St))i,i = (Σ(Si,t))i,i,

• P (Sk,t|St−1, S−{k},t) = P (Sk,t|Sk,t−1) for every k.

Proof. See Appendix .C.

Note that the third condition in this proposition seems strong compared to the condition in Billio

and Di Sanzo (2015). But notice that Billio and Di Sanzo (2015) studies the causal relationships

between the time series given the state variables, which is not realistic as they are hidden. Below,

we show a simple example in which Y1 does not functionally depend on Y2 and S1 is statistically

independent of S2. However, in this example, observing the states leads to Y2 has no influence on

Y1, but without observing the states we infer differently.

Example 4: Consider a bivariate MCMS-VAR {Y1, Y2} in which the states only take binary values

and

Y1,t = b1,1(S1,t)Y1,t−1 + 0.1ε1,t,

Y2,t = μ2(S2,t) + 0.5Y1,t−1 + 0.1ε2,t,

where (ε1,t, ε2,t) ∼ N (0, I), μ2(0) = 10, μ2(1) = −5, b1,1(0) = 0.5, and b1,1(1) = −0.5. Moreover,

the transition probabilities of the states are P (S1,t|S1,t−1, S2,t−1) = P (S1,t|S1,t−1) = 0.8 whenever

S1,t = S1,t−1, and S2,t equals to S1,t−1 with probability 0.9. Based on Billio and Di Sanzo (2015),

in this setup, Y2,t−1 does not Granger-cause Y1,t given Y1,t−1, S1,t−1, i.e.,

P (Y1,t|Y2,t−1, Y1,t−1, S1,t−1) = P (Y1,t|Y1,t−1, S1,t−1).

Note that in this example, P (Y1,t|Y2,t−1, Y1,t−1) �= P (Y1,t|Y1,t−1). This is because, Y2,t−1 has

information about S2,t−1 which contains information about S1,t−2.
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V. Experimental Result

In we have introduced tools for identifying the causal structure in a network of time series. In

this section, we put those tools to work and use them to identify and monitor the evolution of

connectedness among major financial institutions during 2006-2016.

A. Data

We obtained the data for individual banks, broker/dealers, and insurers from ???, from which

we selected the daily returns of all companies listed in Table I.

Banks

1 FNMA US 16 BNS US

2 AXP US 17 STI US

3 FMCC US 18 C US

4 BAC US 19 MS US

5 WFC UN 20 SLM US

6 JPM US 21 BBT US

7 DB US 22 USB US

8 NTRS US 23 TD US

9 RY US 24 HSBC US

10 PNC US 25 BCS US

11 STT US 26 GS US

12 COF US 27 MS US

13 BMO US 28 CS US

14 CM US

15 RF UN

Insurances

1 MET US 16 PFG US

2 ANTM US 17 LNC US

3 AET US 18 AON US

4 CNA US 19 HUM US

5 XL US 20 MMC US

6 SLF US 21 HIG US

7 MFC US 22 CI US

8 GNW US 23 ALL US

9 PRU US 24 BRK/B US

10 AIG US 25 CPYYY US

11 PGR US 26 AHL US

12 CB US

13 BRK/A US

14 UNH US

15 AFL US

Brokers

1 MS US 16 WDR US

2 GS US 17 EV US

3 BEN US 18 ITG UN

4 MORN US 19 JNS US

5 LAZ US 20 SCHW US

6 ICE US 21 ETFC US

7 AINV US 22 AMTD US

8 SEIC US

9 FII US

10 RDN US

11 TROW US

12 AMP US

13 GHL US

14 AMG US

15 RJF US

Table I. List of companies in our experiment.

We calculated the causal network for different time periods that will be considered in the

empirical analysis: 2006-2008, 2009-2011, 2011-2013, and 2013-2016.

B. Non-linearity Test

In this section, we applied a non-linearity test on the data to determine whether the underlying

structure within the recorded data is linear or nonlinear. The non-linearity test applied in this

section is based on nonlinear principle component analysis (PCA) Kruger et al. (2008). This test

is based on two principles: the range of recorded data is divided into smaller disjunct regions; and

accuracy bounds are determined for the sum of the discarded eigenvalues of each region. If this

sum is within the accuracy bounds for each region, the process is assumed to be linear. Conversely,

if at least one of these sums is outside, the process is assumed to be nonlinear.

More precisely, the second principle in this test requires computation of the correlation matrix

for each of the disjunct regions. Since the elements of this matrix are obtained using a finite dataset,

applying t-distribution and χ2-distribution establish confidence bounds for both estimated mean
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and variance, respectively. Subsequently, these confidence bounds can be utilized to determine

thresholds for each element in the correlation matrix. Using these thresholds, the test calculates

maximum and minimum eigenvalues relating to the discarded score variables, which in turn allows

the determination of both a minimum and a maximum accuracy bound for the variance of the

prediction error of the PCA model. This is because the variance of the prediction error is equal to

the sum of the discarded eigenvalues. If this sum lies inside the accuracy bounds for each disjunct

region, a linear PCA model is then appropriate over the entire region. Alternatively, if at least

one of these sums is outside the accuracy bounds, the error variance of the PCA model residuals

then differs significantly for this disjunct region and hence, a nonlinear model is required. For more

details see Kruger et al. (2008).

We divided the operating region into 3 disjunct regions. The accuracy bounds for each disjuct

region and also sum of the discarded eigenvalues were computed. These bounds were based on

thresholds for each element of the correlation matrix corresponding to confidence level of 95%.

Note that the processes were normalized with respect to the mean and variance of the regions for

which the accuracy bounds were computed. Figure 2 shows the accuracy bounds and the sum

of the discarded eigenvalues. As figures 2-(a) and 2-(b) illustrate, the recorded financial data is

nonlinear.

0 0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

40

50

60

(a) Region 1.
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Figure 2. Benchmarking of the residual variances against accuracy bounds of each disjunct region.

C. Estimating the DIs

As we mentioned earlier, there are different methods that can be used to estimate (1) given

i.i.d. samples of the time series. Plug-in empirical estimator and k-nearest neighbor estimator are

such two methods Jiao et al. (2013); Frenzel and Pompe (2007); Kraskov et al. (2004). For our

experimental results, we used k-nearest method to estimate the DIs since it shows relatively better

performance compared to the other non-parametric estimators. To do so, we used the fact that

I(Ri → Rj ||R−{i,j}) =
1

T

T∑
t=1

I(Rj,t;R
t−1
i |Rt−1

−{i,j}, R
t−1
j ),
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where I(X;Y |Z) denotes conditional mutual information between X and Y given Z Cover and

Thomas (2012). Then, we estimated each of the above conditional mutual information using k-

nearest method in Sricharan et al. (2011). Below, we describe the steps of k-nearest method to

estimate I(X;Y |Z).

Suppose that N + M i.i.d. realizations {X1, ...,XN+M} are available from PX,Y,Z , where Xi

denotes the ith realization of (X,Y, Z). The data sample is randomly divided into two subsets S1

and S2 of N and M points, respectively. In the first stage, an k-nearest density estimator P̂X,Y,Z

at the N points of S1 is estimated using the M realizations of S2 as follows: Let d(x,y) denote

the Euclidean distance between points x and y and dk(x) denotes the Euclidean distance between

a point x and its k-th nearest neighbor among S2. The k-nearest region is Sk(x) := {y : d(x,y) ≤
dk(x)} and the volume of this region is Vk(x) :=

∫
Sk(x)

dn. The standard k-nearest density estimator

Sricharan et al. (2011) is defined as

P̂X,Y,Z(x) :=
k − 1

MVk(x)
.

Similarly, we obtain k-nearest density estimators P̂X,Z , P̂Y,Z , and P̂Z . Subsequently, the N samples

of S1 is used to approximate the conditional mutual information:

Î(X;Y |Z) :=
1

N

∑
i∈S1

log P̂X,Y,Z(Xi) + log P̂Z(Xi)− log P̂X,Z(Xi)− log P̂Y,Z(Xi).

For more details corresponding this estimator including its bias, variance, and confidence, please

see Sricharan et al. (2011); Loftsgaarden et al. (1965).

D. DIG of the Financial Market

In this section, we learned the DIG of the aforementioned financial institutions by estimating

the directed information quantities in (1). To do so, we divided the data into four sectors each of

length almost 36 months, 2006-2008, 2009-2011, 2011-2013, and 2013-2016. We assumed that the

DIG of the network did not change over each of these time periods. Furthermore, the data collected

per working day are assumed to be i.i.d.. Hence, in this experiment the length of each time series

was almost 36 and for each time instance we had nearly 19 independent realizations.

As we discussed in Section II.B, in order to identify the influence from node i on node j, we need

to estimate I(Ri → Rj ||R−{i,j}), which in this experiment, required estimating a joint distribution

of dimension 76. In general, without any knowledge about the underlying distribution, estimating

such object requires a large amount of independent samples. Unfortunately, in this experiment,

we had limited number of independent samples. Thus, we reduced the dimension by instead of

conditioning on R−{i,j} that is a set of size 74, we conditioned on a smaller subset Ki,j of R−{i,j}
with size 7. This set contained only those institutions with highest correlation with Rj . In another

words, we ordered the institutions in R−{i,j} based on their correlation value with Rj , and picked

the first 7 of them. Afterward, we estimated I(Ri → Rj ||Ki,j) to identify the connection between

Ri and Rj .
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Figures 3 and 4 show the resulting graphs. Note that the type of institution causing the

relationship is indicated by color: green for brokers, red for insurers, and blue for banks.
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(b) January 2009 to December 2011

Figure 3. Recovered DIG of the daily returns of the financial companies in Table I. The type of
institution causing the relationship is indicated by color: green for brokers, red for insurers, and
blue for banks.

In order to compare our results with other methods in the literature, we also learned the causal

network of these financial institutions by assuming linear relationships between the institutions and

applying linear regression. Similarly, we reduced the dimension of the regressions by bounding the

number of incoming arrows of each node to be a subset of size 20. More precisely, we picked 20

most correlated institutions with node i, let say {Rj1 , ..., Rj18} and obtained the parents of i by

solving minaj
∑

t |Ri,t −
∑18

k=1 akRjk,t−1|2 The resulting graphs are depicted in Figures 5 and 6.

From these networks, we constructed the following network-based measures of systemic risk.

We calculated the fraction of statistically significant Granger causality relationships among all pairs

of financial institutions. This is known as the degree of Granger causality (DGC) and it is a measure

of the risk of a system event Billio et al. (2012). Table II presents the DGC values and total number

of connections of the DIGs and the networks obtain by linear regression.

DIGs

2006-2008 0.1225 698

2009-2011 0.1114 635

2011-2013 0.1065 607

2013-2016 0.0930 530

Linear Models

2006-2008 0.1453 828

2009-2011 0.1288 734

2011-2013 0.1174 669

2013-2016 0.1216 693

Table II. DGC values and total number of connections.
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(a) January 2011 to December 2013
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(b) January 2013 to June 2016

Figure 4. Recovered DIG of the daily returns of the financial companies in Table I. The type of
institution causing the relationship is indicated by color: green for brokers, red for insurers, and
blue for banks.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11
12

13
14

15
16

17181920212223
24

25
26

27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49
50

51
52

53
54

55 56 57 58 59 60 61
62

63
64

65
66

67

68

69

70

71

72

73

74

75

76

(a) January 2006 to December 2008

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11
12

13
14

15
16

17181920212223
24

25
26

27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49
50

51
52

53
54

55 56 57 58 59 60 61
62

63
64

65
66

67

68

69

70

71

72

73

74

75

76

(b) January 2009 to December 2011

Figure 5. Recovered network of the daily returns of the financial companies in Table I using linear
regression. The type of institution causing the relationship is indicated by color: green for brokers,
red for insurers, and blue for banks.

In order to assess the systemic importance of single institutions, we computed the number of

financial institutions that are caused by institution i and also the number of financial institutions
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(b) January 2013 to June 2016

Figure 6. Recovered network of the daily returns of the financial companies in Table I using linear
regression. The type of institution causing the relationship is indicated by color: green for brokers,
red for insurers, and blue for banks.

that are causing institution i. Figure 7 demonstrates the average number of out-degree and in-

degree distributions of the DIGs. Correspondingly, Figure 8 shows these quantities for the networks

obtain by linear regression.

Tables III and IV represent the average number of connections between the sectors e.g., 0.1719

fraction of connections are from Banks to Insurances during 2006-2008 in the DIG.

2006-2008 2009-2011 2011-2013 2013-2016

Ins. Ba. Br. Ins. Ba. Br. Ins. Ba. Br. Ins. Ba. Br.

Insurance .1390 .1719 .1074 .1291 .1575 .1213 .1054 .1301 .1104 .1075 .1151 .1340

Bank .1361 .1332 .0702 .0866 .1402 .1039 .1417 .1631 .1021 .0774 .1830 .1302

Broker .0774 .1017 .0630 .0740 .929 .0945 .0906 .0873 .0692 .0774 .0774 .0981

Table III. Average number of connections between different sectors in the DIGs.

2006-2008 2009-2011 2011-2013 2013-2016

Ins. Ba. Br. Ins. Ba. Br. Ins. Ba. Br. Ins. Ba. Br.

Insurance .1896 .0688 .0737 .1785 .1076 .0640 .2033 .0792 .1016 .2107 .0851 .0678

Bank .0906 .1872 .0809 .1322 .1431 .0899 .1136 .1226 .1001 .1010 .1515 .1053

Broker .0857 .1063 .1171 .0790 .0708 .1349 .1226 .0673 .0897 .1082 .0895 .0808

Table IV. Average number of connections between different sectors in the networks obtained using
regression.
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Figure 7. Out and In degree distributions of the DIGs obtained in Section V.D.
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Figure 8. Out and In degree distributions of the networks obtained using linear regression.

VI. Conclusion

In this work, we developed a data-driven econometric framework to understand the relationship

between financial institutions using a non-linearly modified Granger-causality. Unlike existing

literature, it is not focused on a linear pairwise estimation. The proposed method allows for

nonlinearity and it does not suffer from pairwise comparison to identify the causal relationships
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between financial institutions. We also show how the model improve the measurement of systemic

risk and explain the link between Granger-causality and variance decomposition. We apply the

model to the monthly returns of U.S. financial Institutions including banks, broker, and insurance

companies to identify the level of systemic risk in the financial sector and the contribution of each

financial institution.

Appendix A. Proof of Proposition 1

Note that in this model, since the variance of each ei,t is F t−1
i -measurable, the only term that

contains the effect of the other returns on the i-th return is μi,t. Hence, if (7) holds, then μi,t is

independent of Rj . This implies the result. Moreover, when μi,t =
∑p

k=1

∑m
l=1 a

(k)
i,l Rl,t−k, using the

result in Etesami and Kiyavash, we declare Rj affects Ri if and only if
∑p

k=1

∑m
l=1 |a(k)i,l | > 0, where

a
(k)
i,l denotes the (j, l)-th entry of matrix Ak in (5).

Appendix B. Proof of Proposition 2

First, we need to show that if there is no arrow from Rj to Ri in the corresponding DIG, then

(7) and (8) hold. This case is straight forward, since when I(Rj → Ri||R−{i,j}) = 0, then for all t,

Ri,t is independent of Rj given F t−1
−{j}. This concludes both (7) and (8).

To show the converse, we use the fact that in multivariate GARCH model, �Rt|F t−1 is a mul-

tivariate Gaussian random process. Thus, if the corresponding mean and variance of Ri,t do not

contain any influence of Rt−1
j given the rest of the network, then Ri,t is independent of R

t−1
j given

Rt−1
−{j}. This holds if both conditions in (7) and (8) that are corresponding to the mean and the

variance, respectively, are satisfied.

Appendix C. Proof of Proposition 3

Suppose the conditions in Proposition 3 hold. We show that I(Yj → Yi||Y −{i,j}) = 0.

P (Yi,t|Y t−1) =
∑
Si,t

P (Yi,t|Y t−1, Si,t)P (Si,t|Y t−1)

=
∑
Si,t

P (Yi,t|Y t−1
−{j}, Si,t)P (Si,t|Y t−1).

The second equality holds because given Si,t, Yi,t is a linear function of (μi(Si,t), �Yt−p, ..., �Yt−1) plus

the error term εi,t. From the first and second conditions in Proposition 3, we have the coefficients

corresponding to Yj are zero and also the error term is independent of Yj . Thus, Yi,t is independent

of Y t−1
j given Y t−1

−{j}, Si,t.

If we show P (Si,t|Y t−1) = P (Si,t|Y t−1
−{j}), using the above equality, we obtain that P (Yi,t|Y t−1) =
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P (Yi,t|Y t−1
−{j}) for all t. This implies I(Yj → Yi||Y −{i,j}) = 0. To do so, we have

P (Si,t|Y t−1) =
∑

Si,t−1

P (Si,t|Y t−1, Si,t−1)P (Si,t−1|Y t−1)

=
∑

Si,t−1

P (Si,t|Y t−1
−{j}, Si,t−1)P (Si,t−1|Y t−1)

=
∑

Si,t−1

P (Si,t|Y t−1
−{j}, Si,t−1)P (Si,t−1|Y t−1

−{j}) = P (Si,t|Y t−1
−{j}).

The second equality is due to condition three and the fact that �St is conditionally independent of

Y t−1 given St−1. The third equality is due to the following

P (Si,t−1|Y t−1) = P
(
Si,t−1|Y t−2, Yi,t−1, Y −{i,j},t−1, Yj,t−1

)
= P

(
Si,t−1|Y t−2, Fi(Y

t−2
−{j}, Si,t−1), Y −{i,j},t−1, Fj(Y

t−2, Sj,t−1)
)

= P
(
Si,t−1|Y t−2, Fi(Y

t−2
−{j}, Si,t−1), Y −{i,j},t−1

)
,

where Fjs represent the functional dependency between time series given in (15), i.e., Ym,t−1 :=

Fm(Y t−2, Sm,t−1). The above equality holds due to the third condition that states are mutually

independent and the fact that all the Yj ’s coefficients are zero in Yi’s equation. Same reasoning

implies

P
(
Si,t−1|Y t−2, Fi(Y

t−2
−{j}, Si,t−1), Y −{i,j},t−1

)
= P

(
Si,t−1|Y t−3, Fi(Y

t−2
−{j}, Si,t−1), Yi,t−2, Y

t−1
−{i,j},t−2, Yj,t−2

)
= P

(
Si,t−1|Y t−3, Fi(Y

t−2
−{j}, Si,t−1), Fi(Y

t−3
−{j}, Si,t−2), Y

t−1
−{i,j},t−2, Fj(Y

t−3, Sj,t−2)
)

= P
(
Si,t−1|Y t−3, Fi(Y

t−2
−{j}, Si,t−1), Fi(Y

t−3
−{j}, Si,t−2), Y

t−1
−{i,j},t−2

)
...

= P
(
Si,t−1|Fi(Y

t−2
−{j}, Si,t−1), Fi(Y

t−3
−{j}, Si,t−2), ..., Y

t−1
−{i,j}

)
= P

(
Si,t−1|Y t−1

−{j}
)
.

Recall that Y t
K,t′ denotes the time series with index set K from time t′ up to time t.
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