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Pathways towards instability in financial networks
Marco Bardoscia1,2, Stefano Battiston1, Fabio Caccioli3,4 & Guido Caldarelli2,5,6

Following the financial crisis of 2007–2008, a deep analogy between the origins of instability

in financial systems and complex ecosystems has been pointed out: in both cases, topological

features of network structures influence how easily distress can spread within the system.

However, in financial network models, the details of how financial institutions interact

typically play a decisive role, and a general understanding of precisely how network topology

creates instability remains lacking. Here we show how processes that are widely believed to

stabilize the financial system, that is, market integration and diversification, can actually drive

it towards instability, as they contribute to create cyclical structures which tend to amplify

financial distress, thereby undermining systemic stability and making large crises more likely.

This result holds irrespective of the details of how institutions interact, showing that policy-

relevant analysis of the factors affecting financial stability can be carried out while abstracting

away from such details.
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U
ntil the 1970s, ecologists widely believed that the stability
of an ecosystem was generally enhanced by increasing
complexity, as reflected in the presence of a large number

of interactions between species. Yet seminal work by
May1 showed that complexity can actually undermine stability.
His analysis of a class of network models indicated that networks
with a larger number of interactions (at fixed interaction
strengths) were less stable, inspiring ecologists to begin
searching for possible new sources of stability in specific
topological motifs within food webs. In the wake of the
financial crisis of 2007–2008, Haldane and May argued2 for the
relevance of this insight to the stability of financial systems as
well. Indeed, while the pre-crisis literature in economics
and finance mostly viewed network complexity as helpful for
stability, the application of network theory to finance3 has made
it clear that complexity can destabilize the financial system4–7.

However, a precise understanding of how network complexity
undermines stability has remained elusive. A growing body of
work8–15 carries out stress tests on the financial system by
computing the distribution of losses conditional upon a given
pattern of shocks. To this end, one must rely on specific
assumptions on the nature of the financial contracts and the
distress propagation mechanisms. Following16,17, here we take
a different approach: Rather than trying to compute the
distribution of losses, we simply identify the conditions
under which the system amplifies shocks. This allows to
abstract from details on the nature of financial contracts.

In this paper we point out the existence of two general
mechanisms that strongly influence the stability of financial
networks. In particular, we show that two processes that increase
the interaction between banks—market integration, which
enlarges the number of banks participating in the financial
system, and diversification, which leads to a proliferation
of contracts—may lead to instability. Moreover, we show how
such instability is associated with the emergence in the network
of specific cyclic structures, which amplify financial distress.
There are different types of connections between financial
institutions, both direct such as interbank loans and
indirect such as exposures to common assets17–19. Our results
are derived in the context of systemic risk emerging
from networks of direct exposures between financial institutions
(in the following, ‘banks’ for brevity), which are modelled
as directed weighted networks20–23 and which pose significant
scientific challenges and comes with prominent policy and
societal implications24.

Results
Interbank network. While many factors drive systemic risk,
the literature has identified two main channels for the propaga-
tion of financial distress through direct exposures. The first is
known as illiquidity contagion: If banks anticipate that
their counterparties may incur losses, they will try to withdraw
their liquid funds from them25,26, inducing them, in turn, to
withdraw their funds from their own counterparties. Therefore,
distress propagates from lenders to borrowers as their liquidity
decreases. The second channel is the deterioration of interbank
assets: lenders may reassess the value of their claims towards
their borrowers under distress by taking into account the
possibility that borrowers might default, and therefore might
not be able to meet their obligations. This impacts the balance
sheet of the lender, in which assets corresponding to interbank
loans will decrease in value. Such accounting practice, called
marking-to-market, is enforced by regulatory authorities
for certain classes of interbank obligations. In this context,
the devaluation of assets effectively generates losses for lenders,

which can in turn be transmitted to their creditors11,27,28. Since
the process of illiquidity contagion is essentially driven by
the anticipation of the potential interbank asset deterioration,
here we focus on the latter mechanism only, in line with most
of the previous literature21,22,27.

Notice that most works based on the pioneering model of
Eisenberg-Noe27 conclude that contagion through the network of
interbank exposures would be empirically very small18,29.
However, it has been shown that two assumptions in the
modelling framework of Eisenberg-Noe imply by construction
that interbank contagion has to be very small30: the fact that
only the event of default affects the value of the obligation and
the fact that all remaining assets of defaulting banks are recovered
fully and immediately. Indeed, two reasons for why networks
of direct exposures can still be important have been discussed in
the literature. The first is the fact that counterparty default
risk can amplify the so-called ‘balance-sheet contagion’31 due
to overlapping portfolios32. The second reason is that ‘declines in
credit quality can propagate losses well before any node
has failed’29, as indeed modelled in a growing strand
of work11,13,14,33. This argument finds empirical support in
ref. 34, in which it is estimated that two thirds of the losses related
to counterparty risk are due to mark-to-market devaluation of
assets and one-third to defaults.

The equity E of a bank, that is, the difference between its
total assets and liabilities, is an important variable in determining
the financial health of a bank. In the literature on financial
contagion11,27,28, a bank defaults as soon as its equity
becomes negative, as it is unlikely that it will be able to repay
its debts in full. The ratio between total assets and equity is
called leverage and it is a coarse estimate of the riskiness
of a bank, as it is related to the maximum loss on the assets
that can be absorbed by the equity of the bank. While leverage is
usually understood as a single number for each bank, the notion
has been recently extended into the concept of leverage matrix13,
whereby leverage is computed with respect to each specific
asset class or counterparty. In particular, for a system of n banks
here we consider the n� n interbank leverage matrix L,
whose elements Lij are equal to the ratio between the nominal
exposure of bank i towards bank j and the equity of bank i.
The total interbank leverage of bank i is simply equal to
‘i¼

P
j Lij. In fact, we will consider an adjusted interbank

leverage matrix L̂ij¼Lijð1�rjÞ, where rj is the recovery rate
of bank j, that is, the fraction of its interbank assets recovered
by creditors in case of default. Finally, let us denote the relative
equity loss of bank i at time t as hi(t)¼ (Ei(0)�Ei(t))/Ei(0).

Starting from basic principles of financial accounting
and under mild assumptions on the type of financial contracts
among banks, we show that the relative equity loss of bank i can
be written as a function of the relative equity loss of
its counterparties and of the leverage matrix Lij, according to
the following dynamics: hiðtþ 1Þ¼hið1Þþ

P
j L̂ijpðhjðtÞÞ, where

p is the default probability of counterparty j as a function of
its relative equity loss (see Supplementary Methods for
the details). We now briefly argue that it is reasonable to assume
that default probabilities are convex functions of the relative
equity loss. In fact, the probability of default will be barely
affected by small equity losses (as those due to daily fluctuations),
while when a bank is close to default, even a small increment
in equity losses can make a huge difference. This additional
assumption allows us to characterize the stability of the
system in terms of l̂max and ~lmax, the largest eigenvalues of
the matrices L̂ and ~L, where ~Lij¼L̂ijp0jð0Þ. Since ~lmax � l̂max, we
have three possible regimes: if l̂maxo1 the system is stable, if
1o~lmax the system is unstable, while if ~lmaxo1ol̂max the system
could be either stable or unstable (see Supplementary Methods
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for a full proof). We note that the instability criterion depends
on default probabilities, while the stability criterion does
not, which is in accordance with the following intuition: it is
always possible to make a financial system stable by
having probabilities of default that increase slowly enough as
equity losses increase.

Despite the considerable body of work on financial contagion,
since there is no simple relationship between the topology
of a network and lmax, the study of stability has been seldom
carried out in this context. Notable exceptions are ref. 16,
in which the stability analysis of the Furfine algorithm28 applied
to the US CDS market has been conducted, and ref. 17, in
which the stability of bipartite networks of overlapping portfolios
has been probed through a mapping of the contagion dynamics
onto a branching process. By building on these previous analyses,
here we quantify the importance of cycles, and we highlight
the existence of general mechanisms that might lead to
the emergence of instability in the network of mutual exposures
between banks.

Our starting point is the definition of pathway towards
instability as a sequence of networks (represented here by
their weighted adjacency matrices) L(0), L(1), y, L(k) such
that (i) the dynamics corresponding to L(0) is stable for all
choices of probabilities of default, (ii) there exist at least one
choice of probabilities of default such that the dynamics
corresponding to L(k) is unstable, and (iii) the average interbank
leverage is the same for all the networks in the sequence. That
the average interbank leverage does not change rules out trivial
pathways towards instability; in fact, in the absence of such
constraint, it would be easy to build sequences of interbank
leverage matrices with larger and larger weights. The aforemen-
tioned stability criteria provide a simple way to check if
a sequence of networks is a pathway towards instability: it
will suffice to check that the largest eigenvalue of L̂ð0Þ is smaller
than one and that the largest eigenvalue of L̂ðkÞ is larger than
one. Based on the definition of pathway towards instability, here
we show two important effects pertaining to financial instability
that had remained uncovered so far and could have profound
policy implications. First, even if the individual leverage of banks
does not increase, a financial system can turn from stable
to unstable as the number of banks increases (that is, the number
of nodes in the network grows larger) like during a process
of market integration. Second, even if the individual leverage of
banks does not increase, a financial system can become unstable
as the number of contracts among banks increases (that is,
the number of edges in the network increases) like during a
process of risk diversification. Notably, in both cases instability
appears despite the fact that the assessment that each bank makes
of its own risk profile does not change, because individual
leverage levels remain constant. This means that market
integration and risk diversification can make the system as a
whole unstable. These results do not imply that such processes are
detrimental per se, but that financial policies focusing only on
individual banks, also known as micro-prudential policies,
can have the opposite effect of increasing financial instability if
they do not consider the system as a whole. As it will be
clear further below, the origin of instability lies in the fact that in
both processes banks get increasingly involved in multiple
cycles (that is, closed chains) of contracts. Our results
suggest to include the eigenvalue analysis of the leverage
matrix among the tools to monitor financial stability.

Emergence of instability. In order to keep the notation agile,
in the remainder of the paper we set recovery rates equal to zero,
so that L¼L̂. If recovery rates are strictly larger than zero one

simply has to compute l̂max instead of lmax. The relation between
lmax and interbank leverage across banks becomes simple
if all banks have the same interbank leverage or if the interbank
network is a large Erd+os-Rényi graph35. In the first case, via
the Perron-Frobenius theorem, lmax is bounded by the smallest
and largest sum over the columns of the interbank leverage
matrix, that is, precisely by the smallest and largest interbank
leverages. Hence, if all banks have the same interbank leverage ‘,
it must be also equal to lmax. The second case is similar
to the May-Wigner theorem about the instability of model
ecosystems1 in which species interact through a large Erd+os-Rényi
graph. The main difference is that in our case interactions
between banks are described by the leverage matrix L, which is
non-negative, while the interactions between species in
ecosystems are described by a matrix whose elements can
have unspecified sign. In the Supplementary Methods we prove
that, for n-N, in this case lmax ! ‘¼

P
i ‘i=n¼

P
i;j Lij=n,

the average interbank leverage across banks. Therefore, in both
cases the system is unstable whenever ‘41.

When relaxing either of the two assumptions (homogeneity of
leverage, or large size together with randomness of the graph),
finer details of the network structure become important.
For instance, because the theorem only holds in the limit of
large size graphs, there exist small Erd+os-Renyi graphs that are
stable although they have ‘41. An example of a small
size network that is extremely important for policy is the network
of the Global Systemically Important Banks36, comprising
about 30 banks. Let us start from a small and stable
Erd+os-Renyi graph with ‘41 and to connect more banks to the
network (by keeping ‘ and the number of contracts per bank
constant). Eventually, the system will grow large enough to
become unstable because the theorem will have to hold in the
limit of large graphs (see Supplementary Fig. 1 for an example).
This is an example of a previously unreported phenomenon
that we call pathways to instability, that is, the existence of
trajectories in the space of graphs along which financial networks
turn from stable to unstable, although at each point along
the trajectory the system satisfies a global constraint on the
average interbank leverage. While the theorem above guarantees
the existence of pathways towards instability only for Erd+os-Rényi
graphs, one can perform numerical experiments to investigate
additional topologies as well37–39. In analogy with Erd+os-Rényi
graphs, one starts with stable graphs with ‘41, increases
the number of banks by keeping both the topology and the
average interbank leverage constant, and checks if at the end of
the process the graphs become unstable. In Supplementary
Figs 2–4 we show that pathways towards instability exist also for
regular random graphs, scale-free graphs and core-periphery
graphs. The last example is especially relevant, as empirical
studies40,41 have found real interbank networks to be compatible
with the core-periphery topology. Therefore, we build
realistic models of interbank networks by generating
random core-periphery graphs using the parameters in ref. 41.
However, interbank exposures are confidential and usually
available only to regulators. The information that is publicly
available is, for each bank, the total amount of interbank assets
and the total amount of interbank liabilities. In order to cope with
this problem, several techniques that allow to reconstruct
exposures based on the limited publicly available information
have been developed42–44. In particular, we reconstruct interbank
exposures using the RAS algorithm45, which assigns exposures
so that, for each bank, the total interbank assets and the total
interbank liabilities match the values reported in their balance
sheets (see Supplementary Methods for additional details).

In general, the system is unstable if and only if there exists an
unstable strongly connected component (that is, a directed
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subgraph in which each node is reachable indirectly by
any other). The Perron-Frobenius theorem only guarantees
that the largest eigenvalue of a strongly connected component
is between the minimum and the maximum interbank leverage
across banks. Hence, a sufficient condition for instability
(stability) is that the interbank leverage of all banks is
larger (smaller) than one. However, for the years from 2008 to
2013, the smallest interbank leverage of European banks is very
close to zero, while the 95th percentile of its distribution is
between 2.5 and 6, meaning that the Perron-Frobenius bounds
are not informative enough on the largest eigenvalue, and
we need to look more closely at the topology of the network.
For instance, for graphs without cycles (that is, directed acyclic
graphs, DAGs) lmax is always equal to zero, implying that
the presence of cycles is a necessary condition for instability
(although not sufficient). Intuitively, a cycle amplifies distress
propagation if the product of the weights of its edges is larger
than one (we refer to this as an individually unstable cycle).
Interestingly, a policy recommendation included in Basel III
Accords46 encourages banks to have the largest single exposure
smaller than a fraction of their equity, so that Lijo1 for all i, j.
The policy is thus effective in avoiding this source of instability.

However, the presence of individually unstable cycles, although
sufficient, is not necessary for instability. Consider the two
examples in Fig. 1. In particular, the second is a simple case of
core-periphery network architecture, a frequently observed

pattern in empirical interbank data40. In both cases, not
only the largest single exposure policy is implemented, but
(depending on the value of the parameter w) the average
interbank leverage can be smaller than one. These two conditions
could intuitively suggest that the system is stable. Yet, lmax is
larger than one and the system is unstable. The reason is that
there are banks involved in multiple cycles. More precisely,
a sufficient condition for having lmax41 is that there exist
two integers i, k such that (Lk)ii41, that is, that there exists
a bank i such that the sum, over all the cycles of length k from i to
itself, of the products of the elements of the interbank leverage
matrix along each of such cycles is larger than one (we refer to
this as a combined unstable cycle). For instance, in the first
example of Fig. 1, (L3)11 is larger than one for o42� 1/3, and
thus there is a range of values where the system is unstable even if
the largest single exposure policy is implemented and the average
interbank leverage is smaller than 1.

The sufficient condition for instability stated above has
important consequences for regulations intended to promote
financial stability. Take the case of a bank having a given
interbank leverage and at least one exposure larger than its equity.
If now the bank is required to implement the largest single
exposure policy and it wants to keep its interbank leverage
unchanged, it might have to increase the number of its
counterparties. On the one hand, this is beneficial because
it reduces the exposures towards individual counterparties.

1

2

3

4

5

�

Butterfly networka

1 2

3 4

5

�
6

7

8

9

10

11

12

Core–periphery networkb

Low interbank leverage

A
ve

ra
ge

 in
te

rb
an

k 
le

ve
ra

ge

A
ve

ra
ge

 in
te

rb
an

k 
le

ve
ra

ge

Unstable

Single largest exposure smaller than equity

2−1/3 5
6

1

�

0.5

1.0

� m
ax

� m
ax

c

Unstable

1

�

0

1

d

Low interbank leverage

Single largest exposure smaller than equity

1
3

3
5

Figure 1 | Illustrative stability analysis of two paradigmatic interbank network architectures. The example in a is a ‘butterfly’ graph, while the example in

b has a core-periphery topology: nodes 1, 2, 3 and 4 form a complete core, with the remaining nodes having either only incoming or outgoing edges to the

core. For simplicity we set all non-zero elements of the interbank leverage matrix equal to o, implying that the largest single exposure policy is implemented

whenever oo1. In c and d we plot the average interbank leverage (blue line) and lmax, the largest eigenvalue of the interbank leverage matrix (red line)

corresponding to a and b respectively, as functions of the parameter w. The blue region corresponds to an average interbank leverage smaller than one, the

yellow region to the largest single exposure smaller than the corresponding equity, while the unstable region is highlighted in red. In both cases there exists

a region (shadowed in the figure) in which the following three properties hold: the average interbank leverage is larger than one, the largest single exposure

is smaller than the corresponding equity, and yet the network is unstable. Slight modifications of the above examples can also account for tighter

constraints on the largest single exposure. For example, even requiring that the largest single exposure is smaller than 15% of the equity (as requested in

ref. 46) is not enough to avoid instability in a core-periphery topology with eight nodes in the core.
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On the other hand, it might be detrimental as it could contribute
to the creation of new cycles that, even though might
be individually stable, are part of a combined unstable
cycle. Therefore, a recommendation that targets stability in
terms of individual banks can actually lead to instability because
it neglects the systemic effect of cycles.

More in general, increasing the number of contracts in the
system is the source of a second type of pathway towards
instability. As an empirical illustration of this phenomenon, we
consider the balance sheets of the top 50 listed banks in the
European Union obtained from the Bankscope data set. We
simulate a process in which banks gradually increase the degree of
risk diversification by gradually creating exposures towards
additional counterparties. We start from an interbank network
whose topology is a DAG, which is stable. Exposures are assigned
using the RAS algorithm45, which ensures that exposures are
consistent with balance sheets, that is, that the total interbank assets
and the total interbank liabilities of each bank are equal to the
values reported in their balance sheets. We then create a new
interbank exposure by randomly adding one edge to the graph.
After the new edge has been added, interbank exposures are
redistributed using the RAS algorithm so that the network is always
consistent with the original balance sheets and interbank leverages
of all banks do not change. Hence, even though the total amount of
interbank exposures of each bank remains constant, as the
networks grows denser such exposures are spread across more
and more counterparties. As a consequence, the degree of
diversification progressively increases. By iterating the steps above
we build trajectories in the space of interbank networks whose
initial configuration is a random DAG (hence stable) and whose
final configuration is a complete graph. We find that, not only the
banking system is unstable in this final configuration (that is, once
its graph is complete), but actually that the instability kicks in much
earlier, when the fraction of existing contracts over all the possible
ones is as low as 3% (see Fig. 2 for 2013 balance sheets, and
Supplementary Fig. 5 for other years). Moreover, from Fig. 2 we see
that trajectories of lmax cannot be monotonic and that the critical
line can be crossed multiple times, meaning that the system sways
between stability and instability, before finally settling into an
unstable state. We note that, while the definition of pathways
towards instability requires the average interbank leverage to be
constant, along the trajectories displayed in Fig. 2 all interbank
leverages are constant. Therefore, the transitions from stability to
instability should be interpreted in an even stronger sense.

In Fig. 3 we provide a stylized example that helps to connect
such changes in the stability of the system to changes in the
topology of the network. We start from a DAG, initially setting all
non-zero elements of the interbank leverage matrix equal to
w. We then add one edge at a time, always distributing the
interbank leverage of each bank uniformly among the neighbour-
ing (borrowing) banks. lmax increases every time a new cycle
appears in the system. In contrast, lmax decreases whenever a new
edge does not lead to the appearance of a new cycle. Intuitively,
this behaviour can be explained in the following way. On the one
hand, whenever a new cycle appears the possibility for the system
to amplify shocks increases. On the other hand, whenever the
addition of a new edge does not lead to the creation of a new
cycle, the weights of those edges that are part of existing cycles
become smaller because interbank leverages are constantly
re-balanced, decreasing the ability of those cycles to amplify
shocks.

Discussion
By providing a simple and rigorous mathematical explanation of
how network effects arise, our results shed new light on the

tension between the two main approaches to financial stability:
the so-called microprudential one, focused on ensuring
the stability of individual banks, and the macroprudential
ones, targeted to the stability of the whole financial system.

We provide examples of sufficient conditions for the onset
of instability: when banks establish contracts among each
other without taking into account what their counterparties
do, they will eventually become even unintentionally part of
multiple cycles of contracts, which altogether amplify the effects
of shocks. The recovery rate plays an important role, as it impacts
directly the critical value of the largest eigenvalue. In turn, the
recovery rate can be at least in part controlled with certain
financial and monetary policies since it depends on both the
quality of the collateral (in the case of secured lending) and on
the liquidity of the asset markets. Overall, our findings suggest
that financial stability policies need to carefully consider network
effects. This can be achieved by computing the largest eigenvalue
of the interbank leverage matrix and by comparing it with
estimates of the recovery rate.

More specifically, we show the existence of two processes
that define trajectories in the space of network configurations
which drive financial networks from a stable to an unstable
regime. The former consists of implementing processes of market
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Figure 2 | Stability of the network of the top 50 European banks using

data from their 2013 balance sheets. We start from a random DAG, that is,

a network with no cycles, which is therefore stable. Interbank exposures are

assigned with the RAS algorithm so that, for each bank, the total interbank

assets and the total interbank liabilities match the value in the balance

sheets. We then progressively create new interbank exposures (that is, we

randomly add new edges to the interbank network), until all possible

exposures have been created (that is, until the interbank network is

a complete graph). Every time a new edge is added, we re-balance the

interbank exposures so that, for each bank, the total interbank assets and

the total interbank liabilities do not change. As a consequence, the degree

of diversification in the banking system gradually increases and all interbank

leverages do not change. The stability of the network is constantly

monitored by re-computing the largest eigenvalue of the interbank leverage

matrix every time a new edge is added. We repeat the whole procedure

100 times. We show the contour of all trajectories and highlight a few of

them. The first crossing region (in semi-transparent blue) spans the interval

of densities of edges across which the networks become unstable for the

first time, meaning that combined unstable cycles appear. We can see that

densities as low as 3% are sufficient to reach instability. We also plot the

average interbank leverage (dashed blue line) for reference. Balance sheet

data from the Bankscope database have been initially used in ref. 13.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14416 ARTICLE

NATURE COMMUNICATIONS | 8:14416 | DOI: 10.1038/ncomms14416 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


integration (that is, increasing the number of financial
institutions) in a growing interbank network with interbank
leverage larger than one. The latter consists of increasing the
number of contracts among financial institutions. In both cases
the risk profile of individual banks (measured by the interbank
leverage) does not change, and therefore the emergence of
instability is purely related to the structure of the network. This
suggests that policies targeted at ensuring financial stability by
lowering the risk of individual banks without taking into account
the network effects can in fact lead to a higher systemic risk.

Currently the stability of the financial system is assessed by
regulatory authorities through stress tests, which are long
procedures that last months and are typically run once per year.
Stress tests are based on detailed econometric models that require
a large number of inputs and the continued cooperation of banks.
Even though increasingly sophisticated, usually stress tests
consider financial institutions as isolated and neglect the
consequences of distress propagation across the network of
contracts established among them. Our approach is much more
agile, as it allows to gauge the stability of the financial system only
through the knowledge of the matrix L̂. The information required
to construct such matrix is: mutual exposures between banks
(which regulatory authorities often have access to), equities
(which are public) and recovery rates. Recovery rates are
not directly measurable, but can be estimated47. Moreover,
since the largest eigenvalue of the matrix L̂ is quickly computed,
regulatory authorities can easily analyse a plurality of scenarios

corresponding to different potential recovery rates. Finally,
while our framework is currently focused on distress
propagation due to mark-to-market revaluation of contracts, it
is suitable for extensions to additional channels of contagion,
such as liquidity shortage due to funds withdrawal. In this
case, on the layer corresponding to deterioration of interbank
assets the contagion would proceed from borrowers to lenders;
on the layer corresponding to liquidity shortages it would
proceed from lenders to borrowers. Typically, since relationships
between banks might differ from channel to channel, one would
construct a multilayered network48 with as many layers as
the number of channels of contagion. All the layers would be
coupled by a single dynamics whose stability could be studied.
However, multi-layered networks often exhibit less resilience
than single-layered networks32,49; therefore, as more contagion
channels are taken into account, we expect the system to
transition more easily to the unstable regime.

Data availability. All the relevant data are available from the
authors on request. Raw data for banks’ balance sheet data come
from the Bureau van Dijk Bankscope’s database.
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