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Abstract The large majority of risk-sharing transactions involve few agents, each
of whom can heavily influence the structure and the prices of securities. In this pa-
per, we propose a game where agents’ strategic sets consist of all possible sharing
securities and pricing kernels that are consistent with Arrow–Debreu sharing rules.
First, it is shown that agents’ best response problems have unique solutions. The
risk-sharing Nash equilibrium admits a finite-dimensional characterisation, and it is
proved to exist for an arbitrary number of agents and to be unique in the two-agent
game. In equilibrium, agents declare beliefs on future random outcomes different
from their actual probability assessments, and the risk-sharing securities are endoge-
nously bounded, implying (among other things) loss of efficiency. In addition, an
analysis regarding extremely risk-tolerant agents indicates that they profit more from
the Nash risk-sharing equilibrium than compared to the Arrow–Debreu one.
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1 Introduction

The structure of securities that optimally allocate risky positions under heterogeneous
beliefs of agents has been a subject of ongoing research. Starting from the seminal
works of [10, 5, 13, 12], the existence and characterisation of welfare risk sharing
of random positions in a variety of models has been extensively studied—see, among
others, [7, 19, 1, 16]. On the other hand, discrepancies amongst agents regarding their
assessments on the probability of future random outcomes reinforce the existence of
mutually beneficial trading opportunities (see e.g. [28, 29, 8]). However, market im-
perfections, such as asymmetric information, transaction costs and oligopolies, spur
agents to act strategically and prevent markets from reaching maximum efficiency. In
the financial risk-sharing literature, the impact of asymmetric or private information
has been addressed under both static and dynamic models (see, among others, [6, 21,
22, 23, 31]). The importance of frictions like transaction costs has been highlighted
in [3]; see also [14].

The present work aims to contribute to the risk-sharing literature by focusing on
how over-the-counter (OTC) transactions with a small number of agents motivate
strategic behaviour. The vast majority of real-world sharing instances involve only
a few participants, each of whom may influence the way heterogeneous risks and
beliefs are going to be allocated. (The seminal papers [20] and [30] highlight such
transactions.) As an example, two financial institutions with possibly different be-
liefs, and in possession of portfolios with random future payoffs, may negotiate and
design innovative asset-backed securities that mutually share their defaultable assets.
Broader discussion on risk-sharing innovative securities is given in the classical ref-
erence [4] and in [27]; a list of widely used such securities is provided in [17].

As has been extensively pointed out in the literature (see e.g. [29] and [26]), it is
reasonable, and perhaps even necessary, to assume that agents have heterogeneous be-
liefs, which we identify with subjective probability measures on the considered state
space. In fact, differences in subjective beliefs do not necessarily stem from asym-
metric information; agents usually apply different tools or models for the analysis
and interpretation of common sets of information.

Formally, a risk-sharing transaction consists of security payoffs and their prices,
and since only few institutions (typically, two) are involved, it is natural to assume
that no social planner for the transaction exists and that the equilibrium valuation and
payoffs will result as the outcome of a symmetric game played among the participat-
ing institutions. Since institutions’ portfolios are (at least approximately) known, the
main ingredient of risk-sharing transactions leaving room for strategic behaviour is
the beliefs that each institution reports for the sharing. We propose a novel way of
modelling such strategic actions where the agents’ strategic set consists of the beliefs
that each one chooses to declare (as opposed to their actual one) aiming to maximise
individual utility, and the induced game leads to an equilibrium sharing. Our main
insights are summarised below.

1.1 Main contributions

The payoff and valuation of the risk-sharing securities are endogenously derived as an
outcome of agents’ strategic behaviour under constant absolute risk-aversion (CARA)
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preferences. To the best of our knowledge, this work is the first instance that models
the way agents choose the beliefs on future uncertain events that they are going to
declare to their counterparties and studies whether such strategic behaviour results in
equilibrium. Our results demonstrate how the game leads to risk-sharing inefficiency
and security mispricing, both of which are quantitatively characterised in analytic
forms. More importantly, it is shown that equilibrium securities have endogenous lim-
ited liability, a feature that, while usually suboptimal, is in fact observed in practice.

Although the agents’ set of strategic choices is infinite-dimensional, one of our
main contributions is to show that a Nash equilibrium admits a finite-dimensional
characterisation with the dimensionality being one less than the number of partici-
pating agents. Not only does our characterisation provide a concrete algorithm for
calculating the equilibrium transaction, it also allows us to prove the existence of
Nash equilibrium for an arbitrary number of players. In the important case of two
participating agents, we even show that a Nash equilibrium is unique. It has to be
pointed out that the aforementioned results are obtained under complete generality
on the probability space and the involved random payoffs—no extra assumption ex-
cept from CARA preferences is imposed. Whereas a certain qualitative analysis could
be potentially carried out without the latter assumption on the entropic form of agent
utilities, the advantage of CARA preferences utilised in the present paper is that they
also allow a substantial quantitative analysis, as workable expressions are obtained
for Nash equilibrium.

Our notion of Nash risk-sharing equilibrium highlights the importance of agents’
risk-tolerance level. More precisely, one of the main findings of this work is that
agents with sufficiently low risk-aversion will prefer the risk-sharing game rather
than the outcome of an Arrow–Debreu equilibrium that would have resulted from
absence of strategic behaviour. Interestingly, the result is valid irrespective of their
actual risky position or their subjective beliefs. It follows that even risk-averse agents,
as long as their risk-aversion is sufficiently low, will prefer risk-sharing markets that
are thin (i.e., where participating agents are few and have the power to influence the
transaction), resulting in aggregate loss of risk-sharing welfare.

1.2 Discussion

Our model is introduced in Sect. 2 and consists of a two-period financial econ-
omy with uncertainty, containing possibly infinitely many states of the world. Such
infinite-dimensionality is essential in our framework since in general the risks that
agents encounter do not have a priori bounds, and we do not wish to enforce any
restrictive assumption on the shape of the probability distribution or the support of
agents’ positions. Let us also note that even if the analysis was carried out in the sim-
pler setup of a finite state space, there would not be any significant simplification in
the mathematical treatment.

In our economy, we consider a finite number of agents, each of whom has sub-
jective beliefs (probability measure) about the events at the time of uncertainty res-
olution. We also allow agents to be endowed with a (cumulative, up to the point of
uncertainty resolution) random endowment.

Agents seek to increase their expected utilities through trading securities that al-
locate the discrepancies of their beliefs and risky exposures in an optimal way. The
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possible disagreement on agents’ beliefs is assumed on the whole probability space,
and not only on the laws of the to-be-shared risky positions. Such potential disagree-
ment is important: it alone can give rise to mutually beneficial trading opportunities,
even if agents have no risky endowments to share, by actually designing securities
with payoffs written on the events where probability assessments are different.

Each sharing rule consists of the security payoff that each agent is going to obtain
and a valuation measure under which all imaginable securities are priced. The sharing
rules that efficiently allocate any submitted discrepancy of beliefs and risky exposures
are the ones stemming from an Arrow–Debreu equilibrium. (Under CARA prefer-
ences, the optimal sharing rules have been extensively studied; see e.g. [10, 13, 7].)
In principle, participating agents would opt for the highest possible aggregate bene-
fit from the risk-sharing transaction, as this would increase their chance for personal
gain. However, in the absence of a social planner that could potentially impose a
truth-telling mechanism, it is reasonable to assume that agents do not negotiate the
rules that will allocate the submitted endowments and beliefs. In fact, we assume that
agents adapt the specific sharing rules that are consistent with the ones resulting from
an Arrow–Debreu equilibrium, treating reported beliefs as actual ones, since these
sharing rules are the most natural and universally regarded as efficient.

Agreement on the structure of risk-sharing securities is also consistent with what
is observed in many OTC transactions involving security design, where the contracts
signed by institutions are standardised and adjusted according to required inputs (in
this case, the agents’ reported beliefs). Such pre-agreement on sharing rules reduces
negotiation time and hence also the related transaction costs. Examples are asset-
backed securities, whose payoffs are backed by issuers’ random incomes, traded
among banks and investors in a standardised form, as well as credit derivatives,
where portfolios of defaultable assets are allocated among financial institutions and
investors.

Combinations of strategic and competitive stages are widely used in the litera-
ture of financial innovation and risk-sharing under a variety of different guises. The
majority of this literature distinguishes participants among designers (or issuers) of
securities and investors who trade them. In [15], a security-design game is played
among exchanges, each aiming to maximise internal transaction volume; while se-
curity design throughout exchanges is the outcome of non-competitive equilibrium,
investors trade securities in a competitive manner. Similarly, in [9], a Nash equilib-
rium determines not only the designed securities among financial intermediaries, but
also the bid-ask spread that price-taking investors have to face in the second (perfect
competition) stage of market equilibrium. In [14], it is entrepreneurs who strategi-
cally design securities that investors with non-securitised hedging need competitively
trade. In [24], the role of security-designers is played by arbitrageurs who issue inno-
vated securities in segmented markets. A mixture of strategic and competitive stages
has also been used in models with asymmetric information. For instance, in [11],
a two-stage equilibrium game is used to model security design among agents with
private information regarding their effort. In a first stage, agents strategically issue
novel financial securities; in the second stage, equilibrium on the issued securities is
formed competitively.

Our framework models oligopolistic OTC security design, where participants are
not distinguished regarding their information or ability to influence market equilib-
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rium. Agents mutually agree to apply Arrow–Debreu sharing rules since these op-
timally allocate whatever is submitted for sharing, and also strategically choose the
inputs of the sharing rules (their beliefs, in particular).

Given the agreed-upon rules, agents propose accordingly consistent securities and
valuation measures, aiming to maximise their own expected utility. As explicitly ex-
plained in the text, proposing risk-sharing securities and a valuation kernel is in fact
equivalent to agents reporting beliefs to be considered for sharing. Knowledge of
the probability assessments of the counterparties may result in a readjustment of the
probability measure an agent is going to report for the transaction. In effect, agents
form a game by responding to other agents’ submitted probability measures; the fixed
point of this game (if it exists) is called a Nash risk-sharing equilibrium.

The first step of analysing Nash risk-sharing equilibria is to address the well-
posedness of an agent’s best response problem, which is the purpose of Sect. 3.
Agents have motive to exploit other agents’ reported beliefs and hedging needs and
drive the sharing transaction to maximise their own utility. Each agent’s strategic
choice set consists of all possible probability measures (equivalent to a baseline mea-
sure), and the optimal one is called the best probability response. Although this is
a highly nontrivial infinite-dimensional maximisation problem, we use a bare-hands
approach to establish that it admits a unique solution. It is shown that the beliefs
that an agent declares coincide with the actual ones only in the special case where
the agent’s position cannot be improved by any transaction with other agents. By re-
sorting to examples, one may gain more intuition on how future risk appears under
the lens of agents’ reported beliefs. Consider for instance two financial institutions
adapting distinct models for estimating the likelihood of the involved risks. The shar-
ing contract designed by the institutions will result from individual estimation of the
joint distribution of the to-be-shared risky portfolios. According to the best probabil-
ity response procedure, each institution tends to use a less favourable assessment for
its own portfolio than the one based on its actual beliefs, and understates the down-
side risk of its counterparty’s portfolio. Example 3.8 contains an illustration of such
a case.

An important consequence of applying the best probability response is that the
corresponding security that the agent wishes to acquire has bounded liability. If only
one agent applies the proposed strategic behaviour, then the received security payoff
is bounded below (but not necessarily bounded above). In fact, the arguments and
results of the best response problem receive extra attention and discussion in the paper
since they demonstrate in particular the value of the proposed strategic behaviour in
terms of utility increase. This situation applies to markets where one large institution
trades with a number of small agents, each of whom has negligible market power.

A Nash-type game occurs when all agents apply the best probability response
strategy. In Sect. 4, we characterise a Nash equilibrium as the solution of a certain
finite-dimensional problem. Based on this characterisation, we establish the existence
of a Nash risk-sharing equilibrium for an arbitrary (finite) number of agents. In the
special case of two-agent games, the Nash equilibrium is shown to be unique. The
finite-dimensional characterisation of Nash equilibria also provides an algorithm that
can be used to approximate the Nash equilibrium transaction by standard numerical
procedures, such as Monte Carlo simulation.
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Having characterised Nash equilibria, we are able to further perform a joint qual-
itative and quantitative analysis. Not only do we verify the expected fact that in any
nontrivial case, Nash risk-sharing securities are different from the Arrow–Debreu
ones, but we also provide analytic formulas for their shapes. Since the securities that
correspond to the best probability response are bounded from below, the application
of such a strategy from all agents yields that the Nash risk-sharing market-clearing se-
curities are also bounded from above. This comes in stark contrast to Arrow–Debreu
equilibrium and implies in particular an important loss of efficiency. We measure
the risk-sharing inefficiency that is caused by the game via the difference between
the aggregate monetary utilities at Arrow–Debreu and Nash equilibria and provide
an analytic expression for it. (Note that inefficient allocation of risk in symmetric-
information thin market models may also occur when securities are exogenously
given; see e.g. [25]. When securities are endogenously designed, [14] highlights that
imperfect competition among issuers results in risk-sharing inefficiency, even if se-
curities are traded among perfectly competitive investors.)

One may wonder whether the revealed agents’ subjective beliefs in a Nash equi-
librium are far from their actual subjective probability measures, which would be
unappealing from a modelling viewpoint. Extreme departures from actual beliefs are
endogenously excluded in our model, as the distance of the truth from reported be-
liefs in a Nash equilibrium admits a priori bounds. Even though agents are free to
choose any probability measure that supposedly represents their beliefs in a risk-
sharing transaction and they do indeed end up choosing probability measures differ-
ent from their actual ones, this departure cannot be arbitrarily large if the market is to
reach equilibrium.

Turning our attention to Nash-equilibrium valuation, we show that the pricing
probability measure can be written as a convex combination of the individual agents’
marginal indifference valuation measures. The weights of this convex combination
depend on agents’ relative risk-tolerance coefficients, and as it turns out, the Nash-
equilibrium valuation measure is closer to the marginal valuation measure of the more
risk-averse agents. This fact highlights the importance of risk-tolerance coefficients
in assessing the gain or loss of utility for individual agents in a Nash risk-sharing
equilibrium; in fact, it implies that more risk-tolerant agents tend to get better cash
compensation as a result of the Nash game than what they would get in an Arrow–
Debreu equilibrium.

Inspired by the involvement of the risk-tolerance coefficients in the agents’ utility
gain or loss, in Sect. 5, we focus on induced Arrow–Debreu and Nash equilibria of
two-agent games when one of the agents’ preferences approaches risk-neutrality. We
first establish that both equilibria converge to well-defined limits. Notably, it is shown
that an extremely risk-tolerant agent drives the market to the same equilibrium regard-
less of whether the other agent acts strategically or plainly submits true subjective be-
liefs. In other words, extremely risk-tolerant agents tend to dominate the risk-sharing
transaction. The study of limiting equilibria indicates that although there is a loss of
aggregate utility when agents act strategically, there is always a utility gain in the
Nash transaction compared to an Arrow–Debreu equilibrium for the extremely risk-
tolerant agent, regardless of the risk-tolerance level and subjective beliefs of the other
agent. Extremely risk-tolerant agents are willing to undertake more risk in exchange
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for better cash compensation; under the risk-sharing game, they respond to the risk-
averse agent’s hedging needs and beliefs by driving the market to a higher price for
the security they short. This implies that agents with sufficiently high risk-tolerance—
although still not risk-neutral—will prefer thin markets. The case where both acting
agents uniformly approach risk-neutrality is also treated, where it is shown that the
limiting Nash equilibrium securities equal half of the limiting Arrow–Debreu equilib-
rium securities, hinting towards the fact that a Nash risk-sharing equilibrium results
in loss of trading volume.

For convenience of reading, all the proofs of the paper are placed in the Appendix.

2 Optimal sharing of risk

2.1 Notation

The symbols N and R are used to denote the sets of all natural and real numbers,
respectively. We have chosen to use the symbol R to denote (reported, or revealed)
probabilities.

In all that follows, random variables are defined on a probability space (�, F , P).
We stress that no finiteness restriction is enforced on the state space �. We use P
for the class of all probabilities that are equivalent to the baseline probability P. For
Q ∈ P , we use EQ to denote the expectation under Q. The space L

0 consists of
all (equivalence classes, modulo almost sure equality) finite-valued random variables
with the topology of convergence in probability. This topology does not depend on the
representative probability from P , and L

0 may be infinite-dimensional. For Q ∈ P ,
L

1(Q) consists of all X ∈ L
0 with EQ [|X|] < ∞. We use L

∞ for the subset of L0

consisting of essentially bounded random variables.
Whenever Q1 ∈ P and Q2 ∈ P , dQ2/dQ1 denotes the (strictly positive) density

of Q2 with respect to Q1. The relative entropy of Q2 ∈ P with respect to Q1 ∈ P is
defined as

H(Q2 |Q1) := EQ1

[
dQ2

dQ1
log

dQ2

dQ1

]
= EQ2

[
log

dQ2

dQ1

]
∈ [0,∞].

For X ∈ L
0 and Y ∈ L

0, we write X ∼ Y when there exists c ∈ R such that
Y = X + c. In particular, this notion of equivalence will ease notation on proba-
bility densities: for Q1 ∈ P and Q2 ∈ P , we write log (dQ2/dQ1) ∼ � to mean that
exp(�) ∈ L

1(Q1) and dQ2/dQ1 = (EQ1 [exp(�)])−1 exp(�).

2.2 Agents and preferences

We consider a market with a single future period, at which point all uncertainty is
resolved. In this market, there are n + 1 economic agents, where n ∈ N; for con-
creteness, define the index set I = {0, . . . , n}. Agents derive utility only from the
consumption of a numéraire in the future, and all considered security payoffs are ex-
pressed in units of this numéraire. In particular, future deterministic amounts have
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the same present value for the agents. The preference structure of agent i ∈ I over fu-
ture random outcomes is numerically represented via the concave exponential utility
functional

L
0 � X �→Ui (X) := −δi logEPi

[exp (−X/δi)] ∈ [−∞,∞), (2.1)

where δi ∈ (0,∞) is the agent’s risk-tolerance, and Pi ∈ P represents the agent’s
subjective beliefs. For any X ∈ L

0, agent i ∈ I is indifferent between the cash amount
Ui (X) and the corresponding risky position X; in other words, Ui (X) is the certainty
equivalent of X ∈ L

0 for agent i ∈ I . The functional −Ui is an entropic risk measure
in the terminology of convex risk measure literature; see, for example, [18, Chap. 4].

Define the aggregate risk-tolerance δ := ∑
i∈I δi and the relative risk-tolerance

λi := δi/δ for all i ∈ I . Note that
∑

i∈I λi = 1. Finally, set δ−i := δ − δi and
λ−i := 1 − λi for all i ∈ I .

2.3 Subjective probabilities and endowments

Preference structures that are numerically represented via (2.1) are rich enough to
include the possibility of already existing portfolios of random positions for act-
ing agents. To wit, suppose that P̃i ∈ P are the actual subjective beliefs of agent
i ∈ I , who also carries a risky future payoff in units of the numéraire. Following
standard terminology, we call this cumulative (up to the point of resolution of un-
certainty) payoff random endowment and denote it by Ei ∈ L

0. In this setup, adding
on top of Ei a payoff X ∈ L

0 for agent i ∈ I results in a numerical utility equal to
Ũi (X) := −δi logEP̃i

[exp(−(X + Ei)/δi]). Assume that Ũi (0) > −∞, that is, that

exp(−Ei/δi) ∈ L
1(̃Pi ). Defining Pi ∈P via log(dPi/dP̃i ) ∼ −Ei/δi and Ui by (2.1),

we have that Ui (X) = Ũi (X) − Ũi (0) for all X ∈ L
0. Hence, hereafter, the probabil-

ity Pi is understood to incorporate any possible random endowment of agent i ∈ I ,
and the utility is measured in relative terms as the difference from the baseline level
Ũi (0).

Taking the above discussion into account, we stress that agents are completely
characterised by their risk-tolerance level and (endowment-modified) subjective be-
liefs, that is, by the collection of pairs (δi,Pi )i∈I . In other aspects, and unless oth-
erwise noted, agents are considered symmetric (regarding information, bargaining
power, cost of risk-sharing participation, etc.).

2.4 Geometric-mean probability

We introduce a method that produces a geometric mean of probabilities, which will
play a central role in our discussion. Fix (Ri )i∈I ∈ PI . In view of Hölder’s in-
equality, we have

∏
i∈I (dRi/dP)λi ∈ L

1(P). Therefore, we may define Q ∈ P via
log (dQ/dP) ∼ ∑

i∈I λi log (dRi/dP). Since
∑

i∈I λi log (dRi/dQ) ∼ 0, we are al-
lowed to formally write

log dQ ∼
∑
i∈I

λi log dRi . (2.2)
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The fact that dRi/dQ ∈ L
1(Q) implies log+ (dRi/dQ) ∈ L

1(Q) and Jensen’s in-
equality give EQ[log (dRi/dQ)] ≤ 0 for all i ∈ I . Note that (2.2) implies the ex-
istence of c ∈ R such that

∑
i∈I λi log (dRi/dQ) = c; therefore, we in fact have

EQ[log (dRi/dQ)] ∈ (−∞,0] for all i ∈ I . In particular, log (dRi/dQ) ∈ L
1(Q) for

all i ∈ I , and

H(Q |Ri ) = −EQ[log (dRi/dQ)] < ∞, ∀i ∈ I.

2.5 Securities and valuation

Discrepancies amongst agents’ preferences provide incentive to design securities, the
trading of which could be mutually beneficial in terms of risk reduction. In princi-
ple, the ability to design and trade securities in any desirable way essentially leads to
a complete market. In such a market, transactions amongst agents are characterised
by a valuation measure (that assigns prices to all imaginable securities) and a collec-
tion of securities that will actually be traded. Since all future payoffs are measured
under the same numéraire, (no-arbitrage) valuation corresponds to taking expecta-
tions with respect to probabilities in P . Given a valuation measure, agents agree on
a collection (Ci)i∈I ∈ (L0)I of zero-value securities satisfying the market clearing
condition

∑
i∈I Ci = 0. The security that agent i ∈ I takes a long position in as part

of the transaction is Ci .
As mentioned in the introductory section, our model can find applications in OTC

markets. For instance, the design of asset-backed securities involves only a small
number of financial institutions; in this case, Pi stands for the subjective beliefs of
each institution i ∈ I and, in view of the discussion of Sect. 2.3, further incorporates
any existing portfolios that back the security payoffs. In order to share their risky
positions, the institutions agree on prices of future random payoffs and on the secu-
rities they are going to exchange. Other examples are the market of innovated credit
derivatives or the market of asset swaps that involve exchanging a random payoff and
a fixed payment.

2.6 Arrow–Debreu equilibrium

In the absence of any kind of strategic behaviour in designing securities, the agreed-
upon transaction amongst agents will actually form an Arrow–Debreu equilibrium.
The valuation measure will determine both trading and indifference prices, and secu-
rities will be constructed in a way that maximises each agent’s respective utility.

Definition 2.1 (Q∗, (C∗
i )i∈I ) ∈P × (L0)I is called an Arrow–Debreu equilibrium if

1.
∑

i∈I C∗
i = 0, and C∗

i ∈ L
1(Q∗) and EQ∗ [C∗

i ] = 0 for all i ∈ I ; and
2. for all C ∈ L

1(Q∗) with EQ∗ [C] ≤ 0, Ui (C) ≤ Ui (C
∗
i ) for all i ∈ I .

Under risk preferences modelled by (2.1), a unique Arrow–Debreu equilibrium
can be explicitly obtained. In other guises, Theorem 2.2 that follows has appeared in
many works; see, for instance, [10, 13, 12]. Its proof is based on standard arguments;
however, for reasons of completeness, we provide a short argument in Sect. A.1.
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Theorem 2.2 In the above setting, there exists a unique Arrow–Debreu equilibrium
(Q∗, (C∗

i )i∈I ). In fact, the valuation measure Q
∗ ∈P is such that

log dQ∗ ∼
∑
i∈I

λi log dPi , (2.3)

and the equilibrium market-clearing securities (C∗
i )i∈I ∈ (L0)I are given by

C∗
i := δi log(dPi/dQ∗) + δiH(Q∗ |Pi ), ∀i ∈ I, (2.4)

where the fact that H(Q∗ |Pi ) < ∞ for all i ∈ I follows from Sect. 2.4.

The securities that agents obtain at an Arrow–Debreu equilibrium described in
(2.4) provide higher payoffs on events where their individual subjective probabili-
ties are higher than the “geometric mean” probability Q

∗ of (2.3). In other words,
discrepancies in beliefs result in allocations where agents receive higher payoffs on
their corresponding relatively more likely events.

Let us note an interesting decomposition for the securities traded at an Arrow–
Debreu equilibrium. To wit, in view of the string of equalities

Ui

(
δi log(dPi/dQ∗)

) = −δi logEPi
[dQ∗/dPi] = 0 = Ui (0),

agent i is indifferent between no trading and the first “random” part δi log(dPi/dQ∗)
of the security C∗

i . The second “cash” part δiH(Q∗ |Pi ) of C∗
i is always nonnega-

tive and represents the monetary gain of agent i resulting from the Arrow–Debreu
transaction. After this transaction, the position of agent i has certainty equivalent

u∗
i := Ui (C

∗
i ) = δiH(Q∗ |Pi ), ∀i ∈ I. (2.5)

The aggregate monetary value resulting from the Arrow–Debreu transaction equals

u∗ :=
∑
i∈I

u∗
i =

∑
i∈I

δiH(Q∗ |Pi ). (2.6)

Remark 2.3 In the setting and notation of Sect. 2.3, let (Ei)i∈I be the collec-
tion of agents’ random endowments. Furthermore, suppose that agents share com-
mon subjective beliefs; for concreteness, assume that P̃i = P for all i ∈ I . In this
case, setting E := ∑

i∈I Ei , the equilibrium valuation measure from (2.3) satis-
fies log (dQ∗/dP) ∼ −E/δ, and the equilibrium securities from (2.4) are given by
C∗

i = λiE − Ei −EQ∗ [λiE − Ei] for all i ∈ I . In particular, note the well-known
fact that the payoff of each shared security is a linear combination of the agents’
random endowments.

Remark 2.4 Since C∗
i /δi ∼ − log(dQ∗/dPi ), it is straightforward to compute

Ui (Ci) −Ui (C
∗
i ) = −δi logEQ∗

[
exp

(
−Ci − C∗

i

δi

)]
, ∀Ci ∈ L

0,∀i ∈ I. (2.7)
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In particular, for Ci ∈ L
1(Q∗), an application of Jensen’s inequality gives

Ui (Ci) −Ui (C
∗
i ) ≤ EQ∗ [Ci − C∗

i ] = EQ∗ [Ci]

with equality if and only if Ci ∼ C∗
i . The last inequality shows that C∗

i is indeed the
optimally designed security for agent i ∈ I under the valuation measure Q

∗. Further-
more, for any collection (Ci)i∈I with

∑
i∈I Ci = 0 and Ci ∈ L

1(Q∗) for all i ∈ I ,
it follows that

∑
i∈I Ui (Ci) ≤ ∑

i∈I Ui (C
∗
i ) = u∗. A standard argument using the

monotone convergence theorem extends the previous inequality to

∑
i∈I

Ui (Ci) ≤
∑
i∈I

Ui (C
∗
i ), ∀(Ci)i∈I ∈ (L0)I with

∑
i∈I

Ci = 0,

with equality if and only if Ci ∼ C∗
i for all i ∈ I . Therefore, (C∗

i )i∈I is a maximiser
of the functional

∑
i∈I Ui (Ci) over all (Ci)i∈I ∈ (L0)I with

∑
i∈I Ci = 0. In fact,

the collection of all such maximisers is (zi + C∗
i )i∈I , where (zi)i∈I ∈ RI is such that∑

i∈I zi = 0. It can be shown that all Pareto-optimal securities are exactly of this
form; see e.g. [19, Thm. 3.1] for a more general result. Because of this Pareto opti-
mality, the collection (Q∗, (C∗

i )i∈I ) usually comes under the appellation of (welfare)
optimal securities and valuation measure, respectively.

Of course, not every Pareto-optimal allocation (zi +C∗
i )i∈I , where (zi)i∈I is such

that
∑

i∈I zi = 0, is economically reasonable. A minimal “fairness” requirement that
has to be imposed is that the position of each agent after the transaction is at least as
good as the initial state. Since the utility comes only at the terminal time, we obtain
the requirement zi ≥ −u∗

i for all i ∈ I . Whereas there may be many choices satisfying
the latter requirement in general, the choice zi = 0 of Theorem 2.2 has the cleanest
economic interpretation in terms of a complete financial market equilibrium.

Remark 2.5 If we ignore potential transaction costs, the cases where an agent has no
motive to enter a risk-sharing transaction are extremely rare. Indeed, agent i will not
take part in the Arrow–Debreu transaction if and only if Ci = 0, which happens when
Pi = Q

∗. In particular, agents will already be in an Arrow–Debreu equilibrium, and
no transaction will take place if and only if they all share the same subjective beliefs.

3 Agents’ best probability response

3.1 Strategic behaviour in risk sharing

In the Arrow–Debreu setting, the resulting equilibrium is based on the assumption
that agents do not apply any kind of strategic behaviour. However, in the majority
of practical risk-sharing situations, the modelling assumption of absence of agents’
strategic behaviour is unreasonable, resulting amongst other things in overestima-
tion of market efficiency. When securities are negotiated among agents, their design
and valuation depend not only on their existing risky portfolios, but also on the be-
liefs about the future outcomes they report for sharing. In general, agents have an
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incentive to report subjective beliefs that may differ from their true views about fu-
ture uncertainty; in fact, these also depend on subjective beliefs reported by the other
parties.

As discussed in Sect. 2.6, for a given set of agents’ subjective beliefs, the optimal
sharing rules are governed by the mechanism resulting in an Arrow–Debreu equilib-
rium, as these are the rules that efficiently allocate discrepancies of risks and beliefs
among agents. It is then reasonable to assume that in the absence of a social planner,
agents adapt this sharing mechanism for any collection (Ri )i∈I ∈ PI of subjective
probabilities they choose to report; see also the related discussion in the introductory
section. More precisely, in accordance to (2.3) and (2.4), the agreed-upon valuation
measure Q ∈P is such that log dQ ∼ ∑

i∈I λi log dRi , and the collection of securities
that agents will trade are Ci := δi log(dRi/dQ) + δiH(Q |Ri ), i ∈ I .

Given the sharing rules consistent with an Arrow–Debreu equilibrium, agents re-
spond to subjective beliefs that other agents have reported, with the goal to maximise
their individual utility. In this way, a game is formed with the probability family P be-
ing the agents’ set of strategic choices. The subject of the present Sect. 3 is to analyse
the behaviour of individual agents, establish their best response problem, and show
its well-posedness. The definition and analysis of the Nash risk-sharing equilibrium
is taken up in Sect. 4.

3.2 Best response

We now describe how agents respond to the reported subjective probability assess-
ments from their counterparties. For the purposes of Sect. 3.2, we fix an agent i ∈ I

and a collection R−i := (Rj )j∈I\{i} ∈ PI\{i} of reported probabilities of the remain-
ing agents and seek the subjective probability that is going to be submitted by agent
i ∈ I . According to the rules described in Sect. 3.1, a reported probability Ri ∈ P
from agent i ∈ I leads to entering a long position on the security with payoff

Ci := δi log(dRi/dQ(R−i ,Ri )) + δiH(Q(R−i ,Ri ) |Ri ),

where Q
(R−i ,Ri ) ∈P is such that

log dQ(R−i ,Ri ) ∼ λi log dRi +
∑

j∈I\{i}
λj log dRj .

By reporting subjective beliefs Ri ∈ P , agent i ∈ I also indirectly affects the
geometric-mean valuation probability Q

(R−i ,Ri ), resulting in a highly nonlinear over-
all effect on the security Ci . With the above understanding, and given R−i ∈ PI\{i},
the response function of agent i ∈ I is defined to be

P � Ri �→ Vi (Ri;R−i ) := Ui

(
δi log(dRi/dQ(R−i ,Ri )) + δiH(Q(R−i ,Ri ) |Ri )

)

= −δi logEPi

[
dQ(R−i ,Ri )

dRi

]
+ δiH(Q(R−i ,Ri ) |Ri ),

where H(Q(R−i ,Ri ) |Ri ) < ∞ follows from the discussion of Sect. 2.4. The problem
of agent i is to report the subjective probability that maximises the certainty equiv-
alent of the resulting position after the transaction, that is, to identify R

r
i ∈ P such
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that

Vi (R
r
i;R−i ) = sup

Ri∈P
Vi (Ri;R−i ). (3.1)

Any R
r
i ∈ P satisfying (3.1) is called a best probability response.

In contrast to the majority of the related literature, the agent’s strategic set of
choices in our model may be of infinite dimension. This generalisation is important
from a methodological viewpoint; for example, in the setting of Sect. 2.3, it allows
for random endowments with infinite support, like ones with a Gaussian distribution
or arbitrarily fat tails, a substantial feature in the modelling of risk.

Remark 3.1 The best response problem (3.1) imposes no constrains on the shape of
the agent’s reported subjective probability as long as it belongs to P . In principle, it
is possible for agents to report subjective views that are far from their actual ones.
Such severe departures may be deemed unrealistic and are undesirable from a mod-
elling point of view. However, as will be argued in Sect. 4.3.2, extreme responses are
endogenously excluded in our setup.

We show in the sequel (Theorem 3.7) that best responses in (3.1) exist and are
unique. We start with a result that gives necessary and sufficient conditions for a best
probability response.

Proposition 3.2 Fix i ∈ I and R−i ∈ PI\{i}. Then R
r
i ∈ P is a best probability re-

sponse for agent i given R−i if and only if the random variable

Cr
i := δi log(dRr

i/dQ(R−i ,R
r
i )) + δiH(Q(R−i ,R

r
i ) |Rr

i )

satisfies the bound Cr
i > −δ−i and

Cr
i

δi

+ λ−i log

(
1 + Cr

i

δ−i

)
∼ −

∑
j∈I\{i}

λj log
dRj

dPi

. (3.2)

The proof of Proposition 3.2 is given in Sect. A.2. The necessity of the stated
conditions for a best response follows from the first-order optimality conditions. Es-
tablishing the sufficiency of the stated conditions is nontrivial due to the fact that it is
far from clear (and in fact not known to us) whether the response function is concave.

Remark 3.3 In the context of Proposition 3.2, rewriting (3.2), we obtain that

Cr
i

δi

+ λ−i log

(
1 + Cr

i

δ−i

)
∼ − log

dQ(R−i ,R
r
i )

dPi

+ λi log
dRr

i

dPi

. (3.3)

Using also the fact that Cr
i /δi ∼ log(dRr

i/dQ(R−i ,R
r
i )), it follows that

log
dRr

i

dPi

∼ − log

(
1 + Cr

i

δ−i

)
. (3.4)
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Hence Rr
i = Pi if and only if log(1 +Cr

i /δ−i ) ∼ 0, which holds if and only if Cr
i = 0.

(Note that Cr
i ∼ 0 implies Cr

i = 0 since the expectation of Cr
i under Q(R−i ,R

r
i ) equals

zero.) In words, the best probability response and actual subjective probability of
an agent agree if and only if the agent has no incentive to participate in the risk-
sharing transaction, given the reported subjective beliefs of other agents. Hence, in
any nontrivial cases, agents’ strategic behaviour implies a departure from reporting
their true beliefs.

Plugging (3.4) back to (3.3) and using also (3.2), we obtain

log
dQ(R−i ,R

r
i )

dPi

∼ −Cr
i

δi

− log

(
1 + Cr

i

δ−i

)

∼ −λi log

(
1 + Cr

i

δ−i

)
+

∑
j∈I\{i}

λj

dRj

dPi

, (3.5)

providing directly the valuation measure Q
(R−i ,R

r
i ) in terms of the security Cr

i .

Remark 3.4 A message from (3.4) is that according to their best response process,
agents report beliefs that understate (resp. overstate) the probability of their payoff
being high (resp. low) relatively to their true beliefs. Such behaviour is clearly driven
by a desired post-transaction utility increase.

More importantly and in sharp contrast to the securities (C∗
i )i∈I formed in an

Arrow–Debreu equilibrium, the security that agent i ∈ I wishes to enter, after taking
into account the aggregate reported beliefs of the rest and declaring subjective prob-
ability R

r
i , has limited liability as it is bounded from below by the constant −δ−i .

Remark 3.5 Additional insight regarding best probability responses may be obtained
by resorting to the discussion of Sect. 2.3, where Pi incorporates the random en-
dowment Ei ∈ L

0 of agent i ∈ I in the sense that log(dPi/dP̃i ) ∼ −Ei/δi , where P̃i

denotes the subjective probability of agent i. It follows from (3.4) that

log(dRr
i/dP̃i ) ∼ −Ei/δi − log(1 + Cr

i /δ−i ).

It then becomes apparent that when agents share their risky endowment, they tend
to put more weight on the probability of the downside of their risky exposure rather
than the upside. For an illustrative situation, see Example 3.8 later on.

Remark 3.6 In the course of the proof of Proposition 3.2, the constant in the equiv-
alence (3.2) is explicitly computed; see (A.3). This constant has a particularly nice
economic interpretation in the case of two agents. To wit, let I = {0,1} and suppose
that R1 ∈ P is given. Then from the vantage point of agent 0, (3.2) becomes

Cr
0

δ0
+ λ1 log

(
1 + Cr

0

δ1

)
= ζ0 − λ1 log

dR1

dP0
,

where the constant ζ0 ∈ R is such that

ζ0 = − logEP0

[
exp

(
−Cr

0

δ0

)]
+ logER1

[
exp

(
Cr

0

δ1

)]
= U0(C

r
0)

δ0
− U1(−Cr

0;R1)

δ1
,
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where U1(·;R1) denotes the utility functional of a “fictitious” agent with represen-
tative pair (δ1,R1). In words, ζ0 is the post-transaction difference, denominated in
units of risk-tolerance, of the utility of agent 0 from the utility of agent 1 (who
obtains the security −Cr

0), provided that the latter utility is measured with re-
spect to the reported, as opposed to subjective, beliefs of agent 1. In particular,
when agent 1 does not behave strategically, in which case R1 = P1, it holds that
ζ0 = U0(C

r
0)/δ0 −U1(−Cr

0)/δ1.

Proposition 3.2 sets a roadmap for proving the existence and uniqueness in the best
response problem via a one-dimensional parameterisation. Indeed, in accordance to
(3.2), to find a best response, we consider for each zi ∈ R the unique random variable
Ci(zi) that satisfies the equation

Ci(zi)

δi

+ λ−i log

(
1 + Ci(zi)

δ−i

)
= λ−izi −

∑
j∈I\{i}

λj log
dRj

dPi

.

Then, upon defining Qi (zi) via

log
dQi (zi)

dPi

∼ −λi log

(
1 + Ci(zi)

δ−i

)
+

∑
j∈I\{i}

λj log
dRj

dPi

in accordance to (3.5), we seek ẑi ∈ R such that Ci(̂zi) ∈ L
1(Qi (̂zi)) and

EQi (̂zi ) [Ci(̂zi)] = 0. It turns out that there is a unique such choice; once found, we
simply define R

r
i via log(dRr

i/dPi ) ∼ − log (1 + Ci(̂zi)/δ−i ), in accordance to (3.4),
to obtain the unique best response of agent i ∈ I given R−i . The technical details of
the proof of Theorem 3.7 below are given in Sect. A.3.

Theorem 3.7 For i ∈ I and R−i ∈ PI\{i}, there exists a unique R
r
i ∈ P such that

Vi (R
r
i;R−i ) = supRi∈P Vi (Ri;R−i ).

3.3 The value of strategic behaviour

The increase in agents’ utility caused by following the best probability response pro-
cedure can be regarded as a measure for the value of the strategic behaviour induced
by problem (3.1). Consider, for example, the case where only a single agent (say)
0 ∈ I applies the best probability response strategy and the rest of the agents report
their true beliefs, that is, Rj = Pj for j ∈ I \ {0}. As mentioned in the introductory
section, this is a potential model of a transaction where only agent 0 possesses mean-
ingful market power. Based on the results of Sect. 3.2, we may calculate the gains,
relative to the Arrow–Debreu transaction, that agent 0 obtains by incorporating such
strategic behaviour (which, among others, implies limited liability of the security the
agent takes a long position in). The main insights are illustrated in the following
two-agent example.

Example 3.8 Suppose that I = {0,1} and δ0 = 1 = δ1. We use the setup of Sect. 2.3,
where for simplicity it is assumed that agents have the same subjective probability



M. Anthropelos, C. Kardaras

Fig. 1 The solid black line is the pdf of endowments E0 and E1 under the agents’ common subjective
probability measure, whereas the other curves illustrate the pdf of E0 (dashed blue) and E1 (dotted red)
under the best probability response of agent 0. In this example, σ 2 = 1 and ρ = −0.5

Fig. 2 The solid black line is the pdf of the initial position E0, the dashed blue line illustrates the pdf of
the position E0 + C∗

0 , and the dotted red line is the pdf of the position E0 + Cr
0, all under the common

subjective probability measure. In this example, σ 2 = 1 and ρ = −0.5

measure. The agents are exposed to random endowments E0 and E1 that (under the
common probability measure) have Gaussian laws with mean zero and common vari-
ance σ 2 > 0, whereas ρ ∈ [−1,1] denotes the correlation coefficient of E0 and E1.
In this case, it is straightforward to check that C∗

0 = (E1 − E0)/2; therefore, after the
Arrow–Debreu transaction, the position of agent 0 is E0 +C∗

0 = (E0 +E1)/2. On the
other hand, if agent 1 reports true beliefs, then by (3.2) the security Cr

0 corresponding
to the best probability response of agent 0 should satisfy 2Cr

0 + log(1+Cr
0) = ζ0 +E1

for an appropriate ζ0 ∈ R that is coupled with Cr
0. For σ 2 = 1 and ρ = −0.5, straight-

forward Monte Carlo simulation allows the numerical approximation of the proba-
bility density function (pdf) of E0 and E1 under the best response probability R

r
0,

illustrated in Fig. 1. As is apparent, the best probability response drives agent 0 to
overstate the downside risk of E0 and understate the downside risk of E1.

The effect of following such a strategic behaviour is depicted in Fig. 2, where we
compare the probability density functions of the positions of agent 0 under (i) no
trading, (ii) the Arrow–Debreu transaction, and (iii) the transaction following the
application of best response strategic behaviour. Compared to the Arrow–Debreu po-
sition, the lower bound of the security Cr

0 guarantees a heavier right tail of the agent’s
position after the best response transaction.
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4 Nash risk-sharing equilibrium

We now consider the situation where every single agent follows the same strategic
behaviour indicated by the best response problem of Sect. 3. As previously men-
tioned, sharing securities are designed following the sharing rules determined by
Theorem 2.2 for any collection of reported subjective views. With the well-posedness
of the best response problem established, we are now ready to examine whether the
game among agents has an equilibrium point. In view of the analysis of Sect. 3, in-
dividual agents have a motive to declare subjective beliefs different from the actual
ones. (In particular, in the setting of Sect. 2.3, agents tend to overstate the probability
of their random endowments taking low values.) Each agent acts according to the best
response mechanism as in (3.1), given what other agents have reported as subjective
beliefs. In a sense, the best response mechanism indicates a negotiation scheme, the
fixed point (if one exists) of which produces the Nash equilibrium valuation measure
and risk-sharing securities.

Let us emphasise that the actual subjective beliefs of individual players are not
necessarily assumed to be private knowledge; rather, it is assumed here that agents
have agreed upon the rules that associate any reported subjective beliefs to securities
and prices, even if the reported beliefs are not the actual ones. In fact, even if subjec-
tive beliefs constitute private knowledge initially, some information about them will
necessarily be revealed in the negotiation process that leads to a Nash equilibrium.

There are two relevant points to consider here. Firstly, it is unreasonable for par-
ticipants to attempt to invalidate the negotiation process based on the claim that other
parties do not report their true beliefs, as the latter is after all a subjective matter. This
particular point is reinforced from the a posteriori fact that reported subjective beliefs
in a Nash equilibrium do not deviate far from the true ones, as was pointed out in
Remark 3.1 and is further elaborated in Sect. 4.3.2. Secondly, it is exactly the limited
number of participants, rather than private or asymmetric information, that gives rise
to strategic behaviour: agents recognise their ability to influence the market since se-
curities and valuation become output of collective reported beliefs. Even under the
appreciation that other agents will not report true beliefs and the negotiation will not
produce an Arrow–Debreu equilibrium, agents still want to reach a Nash equilibrium
as they will improve their initial position. In fact, transactions with a limited num-
ber of participants typically equilibrate far from their competitive equivalents, as has
been also highlighted in other models of thin financial markets with symmetric infor-
mation structure like the ones in [14] and [25]; see also the related discussion in the
introductory section.

4.1 Revealed subjective beliefs

Considering the model from a more pragmatic point of view, we may argue that
agents do not actually report subjective beliefs, but rather agree on a valuation mea-
sure Q ∈ P and zero-price sharing securities (Ci)i∈I that clear the market. How-
ever, there is a one-to-one correspondence between reporting subjective beliefs and
proposing a valuation measure and securities, as we describe below.

From the discussion of Sect. 3.1, a collection of subjective probabilities (Ri )i∈I

gives rise to a valuation measure Q ∈ P such that log dQ ∼ ∑
i∈I λi log dRi and a
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collection (Ci)i∈I of securities such that Ci = δi log(dRi/dQ) + δiH(Q |Ri ) for all
i ∈ I . Of course,

∑
i∈I Ci = 0 and EQ [Ci] = 0 for all i ∈ I . A further technical ob-

servation is that exp(Ci/δi) ∈ L
1(Q) for all i ∈ I , which is then a necessary condition

that an arbitrary collection of market-clearing securities (Ci)i∈I must satisfy with re-
spect to an arbitrary valuation probability Q ∈ P in order to be consistent with the
aforementioned risk-sharing mechanism. The previous observations lead to a defini-
tion: for Q ∈ P , we define the class CQ of securities that clear the market and are
consistent with the valuation measure Q via

CQ :=
{
(Ci)i∈I ∈ (L0)I : exp

Ci

δi

∈ L
1(Q), EQ [Ci] = 0, ∀i ∈ I,

∑
i∈I

Ci = 0

}
.

Note that all expectations of Ci under Q in the definition of CQ above are well de-
fined. Indeed, the fact that exp(Ci/δi) ∈ L

1(Q) in the definition of CQ implies that
C+

i ∈ L
1(Q) for all i ∈ I . From

∑
i∈I Ci = 0 we obtain

∑
i∈I |Ci | = 2

∑
i∈I C+

i , and
hence Ci ∈ L

1(Q) for all i ∈ I .
Given a valuation measure Q ∈ P and securities (Ci)i∈I ∈ CQ, we may define a

collection (Ri )i∈I ∈ PI via log(dRi/dQ) ∼ Ci/δi for i ∈ I and note that this is the
unique collection in PI that results in the valuation probability Q ∈ PI and securi-
ties (Ci)i∈I ∈ CQ. In this way, the probabilities (Ri )i∈I ∈ PI can be considered as
revealed by the valuation measure Q ∈P and securities (Ci)i∈I ∈ CQ. Hence, agents
proposing risk-sharing securities and a valuation measure is equivalent to them re-
porting probability beliefs in the transaction. This viewpoint justifies and underlies
Definition 4.1 that follows: the objects of a Nash equilibrium are the valuation mea-
sure and designed securities, in consistency with the definition of an Arrow–Debreu
equilibrium.

4.2 Nash equilibrium and its characterisation

Following classic literature, we give the formal definition of a Nash risk-sharing equi-
librium.

Definition 4.1 The collection (Q�, (C�
i )i∈I ) ∈ P × (L0)I is called a Nash equilib-

rium if (C�
i )i∈I ∈ CQ� and, with log(dR�

i /dQ�) ∼ C�
i /δi for all i ∈ I denoting the

corresponding revealed subjective beliefs, it holds that

Vi (R
�
i ;R�

−i ) = sup
Ri∈P

Vi (Ri;R�
−i ), ∀i ∈ I.

A use of Proposition 3.2 results in the characterisation Theorem 4.2, the proof
of which is given in Sect. A.4. For this, we need to introduce the n-dimensional
Euclidean space

	I =
{
z ∈ RI :

∑
i∈I

zi = 0

}
. (4.1)

Theorem 4.2 The collection (Q�, (C�
i )i∈I ) ∈P × (L0)I is a Nash equilibrium if and

only if the following three conditions hold:
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(N1) C�
i > −δ−i for all i ∈ I , and there exists z� = (z�

i )i∈I ∈ 	I such that

C�
i + δi log

(
1 + C�

i

δ−i

)
= z�

i +C∗
i + δi

∑
j∈I

λj log

(
1+ C�

j

δ−j

)
, ∀i ∈ I ; (4.2)

(N2) with Q
∗ ∈ P as in (2.3), that is, such that log dQ∗ ∼ ∑

i∈I λi log dPi , it holds
that

log
dQ�

dQ∗ ∼ −
∑
j∈I

λj log

(
1 + C�

j

δ−j

)
; (4.3)

(N3) EQ� [C�
i ] = 0 for all i ∈ I .

Remark 4.3 Suppose that the agents’ preferences and risk exposures are such that
no trade occurs in an Arrow–Debreu equilibrium, which happens when all Pi are the
same (and equal to, say, P); see Remark 2.5. In this case, Q∗ = P and C∗

i = 0 for
all i ∈ I . It is then straightforward from Theorem 4.2 to see that a Nash equilibrium
is also given by Q

� = P and C�
i = 0 (and z�

i = 0) for all i ∈ I . In fact, as argued in
Sect. 4.3.4, this is the unique Nash equilibrium in this case. Conversely, suppose that
a Nash equilibrium is given by Q

� = P and C�
i = 0 for all i ∈ I . Then (4.3) shows

that Q∗ = Q
� = P and (4.2) implies that C∗

i ∼ −z�
i ∼ 0, which means that C∗

i = 0
for all i ∈ I . In words, the Nash risk-sharing equilibrium involves no risk transfer if
and only if the agents are already in a Pareto-optimal situation.

In the important case of two acting agents, since C�
0 = −C�

1 , applying simple
algebra in (4.2), we obtain that a Nash equilibrium risk-sharing security C�

0 is such
that −δ1 < C�

0 < δ0 and satisfies

C�
0 + δ0δ1

δ
log

1 + C�
0 /δ1

1 − C�
0 /δ0

= z�
0 + C∗

0 . (4.4)

In Theorem 4.7, the existence of a unique Nash equilibrium for the two-agent case
will be shown. Furthermore, a one-dimensional root-finding algorithm presented in
Sect. 4.4 allows us to calculate the Nash equilibrium and further calculate and com-
pare the final position of each individual agent. Consider, for instance, Example 3.8
and its symmetric situation illustrated in Fig. 2, where the limited liability of the se-
curity Cr

0 implies less variability and a flatter right tail for the agent’s position. Under
the Nash equilibrium, as argued in Sect. 4.3.1, the security C�

0 is further bounded
from above, which implies that the probability density function of the agent’s final
position is shifted to the left. This fact, in the setting of Example 3.8, is illustrated in
Fig. 3.

Despite the above symmetric case, it is not necessarily true that all agents suffer
a loss of utility at the Nash equilibrium risk sharing. As we shall see in Sect. 5, for
agents with sufficiently large risk-tolerance, the negotiation game results in higher
utility compared to the one gained through an Arrow–Debreu equilibrium.
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Fig. 3 The solid green line is the pdf of the position E0 + C�
0 , the dashed blue line illustrates the pdf of

the position E0 + C∗
0 , and the dotted red line is the pdf of the position E0 + Cr

0, all under the common
subjective probability measure. In this example, σ0 = σ1 = 1 and ρ = −0.5

4.3 Within equilibrium

According to Theorem 4.7, Nash equilibria in the sense of Definition 4.1 always
exist. Throughout Sect. 4.3, we assume that (Q�, (C�

i )i∈I ) is a Nash equilibrium
and provide a discussion on certain of its aspects, based on the characterisation in
Theorem 4.2.

4.3.1 Endogenous bounds on traded securities

As pointed out in Remark 3.4, the security that each agent enters resulting from the
best response procedure is bounded below. When all participating agents follow the
same strategic behaviour, Nash equilibrium securities are bounded from above as
well. Indeed, since the market clears, the security that agents take a long position in
is shorted by the rest of the agents, who similarly intend to bound their liabilities.
Mathematically, since C�

i > −δ−i for all i ∈ I and
∑

i∈I C�
i = 0, it also follows that

C�
i = −∑

j∈I\{i} C�
j <

∑
j∈I\{i} δ−j = (n − 1)δ + δi for all i ∈ I . Therefore, a con-

sequence of the agents’ strategic behaviour is that Nash risk-sharing securities are
endogenously bounded. This fact is in sharp contrast with the Arrow–Debreu equilib-
rium of (2.4), where the risk transfer may involve securities with unbounded payoffs.
An immediate consequence of the bounds on the securities is that the potential gain
from the Nash risk-sharing transaction is also endogenously bounded. Naturally, the
resulting endogenous bounds are an indication of how the game among agents re-
stricts the risk-sharing transaction, which in turn may be a source of a large loss of
efficiency. The next example is an illustration of such an inefficiency in a simple sym-
metric setting. In Fig. 3, the loss of utility in the two-agent Example 3.8 is visualised.

Example 4.4 Let X ∈ L
0 have the standard (zero mean, unit standard deviation)

Gaussian law under the baseline probability P. For β ∈ R, define P
β ∈ P via

log(dPβ/dP) ∼ βX; under Pβ , X has a Gaussian law with mean β and unit standard
deviation. Fix β > 0 and set P0 := P

β and P1 := P
−β . In this case, it is straightfor-

ward to compute that C∗
0 = βX = −C∗

1 . It also follows that u∗
0 = β2/2 = u∗

1. If β

is large, then the discrepancy between the agents’ beliefs results in large monetary
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profits to both after the Arrow–Debreu transaction. On the other hand, as established
in Theorem 4.7, in the case of two agents, there exists a unique Nash equilibrium. In
fact, in this symmetric case, we have −1 < C�

0 < 1, and it can be checked that (see
also (4.4) later)

C�
0 + 1

2
log

1 + C�
0

1 − C�
0

= βX.

The loss of efficiency caused by the game becomes greater with increasing values
of β > 0. In fact, if β converges to infinity, then it can be shown that C�

0 converges
to sign(X) = I{X>0} − I{X<0}; furthermore, both U0(C

�
0 ) and U1(C

�
1 ) converge to 1,

which demonstrates the tremendous inefficiency of the Nash equilibrium transaction
compared to the Arrow–Debreu one.

Note that the endogenous bounds −δ−i < C�
i < (n − 1)δ + δi depend only on the

risk-tolerance profile of the agents and not on their actual beliefs (or risk exposures).
In addition, these bounds become stricter in games where quite risk-averse agents are
playing, as they become increasingly hesitant towards undertaking risk.

4.3.2 If trading, you never reveal your true beliefs

As discussed in Remark 3.3, agents’ best probability responses differ from their ac-
tual subjective beliefs in any situation where risk transfer is involved. This result
becomes more pronounced when we consider the Nash risk-sharing equilibrium. To
wit, if (R�

i )i∈I are revealed subjective beliefs corresponding to a Nash equilibrium,
then it is a consequence of Theorem 4.2 (see also (3.4)) that

log
dR�

i

dPi

∼ − log

(
1 + C�

i

δ−i

)
, ∀i ∈ I. (4.5)

Note that R�
i = Pi if and only if C�

i = 0 for any fixed i ∈ I ; therefore, whenever
agents take part (by actually trading) in a Nash equilibrium, their reported subjective
beliefs are never the same as their actual ones.

Even though in any nontrivial trading situation, agents report different subjective
beliefs from their actual ones, we argue below that (4.5) imposes endogenous con-
straints on the magnitude of the possible discrepancy; the discussion that follows
expands on Remark 3.1. Start by writing (4.5) as

log(dPi/dR�
i ) = −κ�

i + log(1 + C�
i /δ−i ), where κ�

i := logER�
i
[1 + C�

i /δ−i],

and note that ER�
i
[C�

i ] ≥ −δi logER�
i
[exp(−C�

i /δi)] ≥ 0, where we have used
Jensen’s inequality and the fact that (Q�, (C�

i )i∈I ) is an Arrow–Debreu equilib-
rium for the fictitious agents’ preference pairs (δi,R

�
i )i∈I . It follows that κ�

i ≥ 0,
which implies that dPi/dR�

i ≤ 1 + C�
i /δ−i for all i ∈ I . Defining weights (αi)i∈I

as αi := δ−i/nδ = λ−i/n for all i ∈ I (noting that 0 < αi < 1/n for all i ∈ I

and that
∑

i∈I αi = 1), the market clearing condition
∑

i∈I C�
i = 0 gives∑

i∈I αi(dPi/dR�
i ) ≤ 1. We can obtain a corresponding lower bound. Indeed, us-

ing the endogenous bounds C�
i ≤ (n − 1)δ + δi , it follows that κ�

i ≤ − logαi for
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all i ∈ I , which gives dPi/dR�
i ≥ αi(1 + C�

i /δ−i ) = αi + C�
i /(nδ). Using again the

market clearing condition
∑

i∈I C�
i = 0, it follows that

∑
i∈I (dPi/dR�

i ) ≥ 1. To re-
capitulate,

∑
i∈I

αi

dPi

dR�
i

≤ 1 ≤
∑
i∈I

dPi

dR�
i

,

which imposes considerable a priori restrictions on the likelihood ratios dPi/dR�
i for

all i ∈ I . (For example, there are no events for which all agents will overstate or
understate their likelihood compared to their actual subjective beliefs.) In particular,
since 1/αi = n/λ−i , we obtain that

dPi

dR�
i

≤ n

λ−i

, ∀i ∈ I. (4.6)

The above upper bound on the likelihood of Pi with respect to R
�
i only depends

on the number of remaining agents n and the relative risk-tolerance coefficient of
the agents; it depends neither on the aggregate risk-tolerance level δ nor on the ac-
tual subjective beliefs of other agents. Furthermore, note also that (4.6) implies that
H(Pi |R�

i ) = EPi
[log(dPi/dR�

i )] ≤ log(n/λ−i ). The latter gives an a priori endoge-
nous estimate on the distance of the truth from the reported beliefs in a Nash equilib-
rium.

4.3.3 Loss of efficiency

As already mentioned, agents’ strategic behaviour results in risk-sharing inefficiency,
which, since utilities (Ui )i∈I are numerically represented by certainty equivalents,
can be measured through the difference of the aggregate monetary utility under the
Arrow–Debreu transaction and the aggregate monetary utility under the Nash equi-
librium risk-sharing transaction. Note that similar measures of inefficiency have been
used in the risk-sharing literature; see, for example, [30] or [2]. Mathematically, the
loss of efficiency equals u∗ − u� = ∑

i∈I u∗
i − ∑

i∈I u�
i , where (u∗

i )i∈I and u∗ are
defined in (2.5) and (2.6), whereas

u�
i := Ui (C

�
i ), ∀i ∈ I, and u� :=

∑
i∈I

u�
i .

From (2.7), (4.2) and (4.3) it follows that

u�
i − u∗

i = −δi logEQ∗
[

exp

(
− C�

i − C∗
i

δi

)]

= z�
i − δi logEQ∗

[(
1 + C�

i

δ−i

)∏
j∈I

(
1 + C�

j

δ−j

)−λj
]

= z�
i − δi logEQ�

[
1 + C�

i

δ−i

]
− δi logEQ∗

[∏
j∈I

(
1 + C�

j

δ−j

)−λj
]
, i ∈ I.
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Recalling that EQ� [C�
i ] = 0 for all i ∈ I and noting the equality

EQ∗
[∏

j∈I

(
1 + C�

j

δ−j

)−λj
]

= EQ�
[∏

j∈I

(
1 + C�

j

δ−j

)λj
]−1

,

which holds in view of (4.3), we obtain

u�
i − u∗

i = z�
i + λiδ logEQ�

[∏
j∈I

(
1 + C�

j

δ−j

)λj
]
, ∀i ∈ I. (4.7)

Adding up (4.7) over i ∈ I and using the fact that
∑

i∈I z�
i = 0, we obtain an analytic

expression of the loss of efficiency caused by the game, namely,

u� − u∗ = δ logEQ�
[∏

i∈I

(
1 + C�

i

δ−i

)λi
]
. (4.8)

Since
∏

i∈I (1 + C�
i /δ−i )

λi ≤ ∑
i∈I λi(1 + C�

i /δ−i ) = 1 + ∑
i∈I λiC

�
i /δ−i and

EQ� [C�
i ] = 0 for all i ∈ I , we indeed have u� ≤ u∗ (which was anyway known from

Remark 2.4); furthermore, u� = u∗ if and only if C�
i = 0 for all i, which happens if

and only if C∗
i = 0 for all i; see Remark 4.3. In other words, the Nash risk-sharing

equilibrium always implies a strict loss of efficiency, except for the case where there
is no trading within a Nash equilibrium (which is equivalent to the case where there
is no trading within an Arrow–Debreu equilibrium as well).

4.3.4 A priori information on z�

From (4.7) and (4.8), we obtain

u�
i − u∗

i = z�
i + λi(u

� − u∗), ∀i ∈ I. (4.9)

This gives an economic interpretation for the quantities z�
i = λi(u

∗ −u�)+(u�
i −u∗

i ),
i ∈ I . Indeed, λi(u

∗ −u�) is the fraction corresponding to agent i ∈ I of the aggregate
loss of utility caused by forming a Nash instead of an Arrow–Debreu equilibrium; on
the other hand, u�

i − u∗
i is the difference between the utility that agent i ∈ I acquires

in a Nash from the one in an Arrow–Debreu equilibrium.
Although the aggregate utility u� in Nash equilibrium risk sharing can never be

higher than the Arrow–Debreu aggregate utility u∗, it may happen that some agents
benefit from the game in the sense that their individual utility after the negotiation
game is higher when compared to the utility gain of the Arrow–Debreu equilibrium.
We address such cases in Sect. 5.

Equation (4.9) is useful in obtaining tight bounds on z� = (z�
i )i∈I . Since u�

i ≥ 0
for all i ∈ I and u� ≤ u∗, from (4.9) it follows that

z�
i ≥ −u∗

i , ∀i ∈ I. (4.10)

Combined with
∑

i∈I z�
i = 0, the previous a priori bounds imply that z� has to live

in a compact simplex on 	I . The bounds in (4.10) are indeed sharp: in the no-trade
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setting of Remark 4.3, it follows that u∗
i = 0 for all i ∈ I , which implies that z�

i ≥ 0
for all i ∈ I ; since z� ∈ 	I , it follows that z�

i = 0 for all i ∈ I . This also shows that
the trivial Nash equilibrium obtained in Remark 4.3 is unique.

4.3.5 Individual marginal indifference valuation

In view of (4.8) and the subsequent discussion, recalling Remark 2.4, it follows that
the allocation in a Nash equilibrium fails to be Pareto-optimal (except in the trivial
no-trade case). Another way to demonstrate the inefficiency of a Nash equilibrium is
through the disagreement between the individual agent’s marginal (utility) indiffer-
ence valuation measures after the Nash risk-sharing transaction.

Recall that given a position Gi ∈ L
0 with Ui (Gi) > −∞, the marginal indiffer-

ence valuation measure Qi = Qi (Gi) of agent i ∈ I has the property that the function
R � q �→ Ui (Gi + q(X − EQi

[X])) is maximised at q = 0 for all X ∈ L
∞; in other

words, if prices are given by expectations under Qi , agent i ∈ I has no incentive to
take any position other than Gi . Using the first-order conditions, it is straightforward
to show that log (dQi/dPi ) ∼ −Gi/δi .

In an Arrow–Debreu equilibrium, the collection (Q∗
i )i∈I ∈ PI with the property

log(dQ∗
i /dPi ) ∼ −C∗

i /δi for i ∈ I , which are the individual marginal indifference
valuation measures associated with positions (C∗

i )i∈I after the Arrow–Debreu risk-
sharing transaction, satisfies Q∗

i = Q
∗ for all i ∈ I : all agents’ marginal indifference

valuation measures agree. Now denote the individual agent’s marginal indifference
valuation measures after the Nash risk-sharing transaction by (Q�

i )i∈I , for which
we have log(dQ�

i /dPi ) ∼ −C�
i /δi for all i ∈ I . In view of log (dPi/dQ∗) ∼ C∗

i /δi ,
(4.2) and (4.3), it follows that log(dQ�

i /dQ�) ∼ log(1 + C�
i /δ−i ). Since

EQ� [1 + C�
i /δ−i] = 1, it follows that

dQ�
i

dQ� = 1 + C�
i

δ−i

, ∀i ∈ I. (4.11)

Pareto optimality would require all (Q�
i )i∈I to agree, which is possible only if C�

i = 0
for all i ∈ I , that is, exactly when no trade occurs.

All Nash securities (C�
i )i∈I have zero value under Q�. For each individual agent

i ∈ I , we can measure the marginal indifference value of C�
i via

EQ�
i
[C�

i ] = EQ�
[(

1 + C�
i

δ−i

)
C�

i

]
= 1

δ−i

VarQ�(C�
i ), ∀i ∈ I. (4.12)

In particular, note that EQ�
i
[C�

i ] ≥ 0, with strict inequality if C�
i is non-zero, for all

i ∈ I . This observation implies that (except in trivial situations of no trading) all
agents would be better off if they would take a larger position in their individual
securities; for all a ∈ R+, the collection (aC�

i )i∈I of securities clears the market, and
for some a > 1, this collection of securities would result in higher utility for each
agent than using the securities (C�

i )i∈I . Of course, what prevents agents from doing
so is that they would find themselves in a (Nash) disequilibrium. The fact that agents
will not agree on market-clearing collections (aC�

i )i∈I that for some a > 1 would
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be individually (and therefore, also collectively) preferable also indicates that trading
volume within a Nash equilibrium tends to be reduced.

The individual marginal indifference valuation measures (Q�
i )i ∈ I allow an inter-

esting expression of the Nash valuation measure Q
�. To wit, recall from Sect. 4.3.2

the weights αi = δ−i/nδ for all i ∈ I ; then from (4.11) and the market clearing con-
dition

∑
i∈I Ci = 0, it follows that

Q
� =

∑
i∈I

αiQ
�
i . (4.13)

In words, the Nash valuation measure Q
� is a convex combination of the individ-

ual agents’ marginal indifference valuation measures assigning weight αi to agent
i ∈ I . Note also that more risk-averse agents carry more weight; however, since
maxi∈I αi < 1/n, Q� is almost equal to the equally weighted average of (Q�

i )i∈I

for large numbers of agents.
Relation (4.13) highlights the importance of risk-tolerance levels regarding the

gain or loss of utility for individual agents in a Nash equilibrium. Consider, for in-
stance, the situation of two interacting agents, with one of them being considerably
more risk-tolerant than the other. In this case, Q� will be very close to the risk-averse
agent’s marginal utility-based valuation measure, which will agree with the quoted
prices. On the other hand, the possible discrepancy of Q

� from the risk-tolerant
agent’s marginal utility-based valuation is beneficial to this agent, as it gives the op-
portunity to purchase a positive-value security for zero price. A limiting instructive
scenario along these lines is treated in Sect. 5.

The marginal indifference valuation measures (Q�
i )i∈I of (4.11) can be used to

provide interesting formulas for the utility gain in a Nash equilibrium and the utility
difference between the Nash and Arrow–Debreu transactions. Note first that (4.3) and
(4.8) give

log
dQ∗

dQ� =
∑
j∈I

λj log

(
1 + C�

j

δ−j

)
+ u∗ − u�

δ
,

which, combined with (4.9) and the fact that C∗
i = δi log (dPi/dQ∗) + u∗

i , implies
that

C�
i + δi log

(
1 + C�

i

δ−i

)
= z�

i + C∗
i + δi

∑
j∈I

λj log

(
1 + C�

j

δ−j

)

= u�
i + δi log

dPi

dQ� . (4.14)

Using further (4.11) and taking expectation with respect to Q
� in (4.14), we obtain

u�
i = δiH(Q� |Pi ) − δiH(Q� |Q�

i ), i ∈ I.

The last equality has to be compared with (2.5). As in an Arrow–Debreu equilibrium,
agents in a Nash equilibrium benefit from the distance of the resulting valuation mea-
sure from their subjective views; however, unlike the Pareto-optimal efficiency of the
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Arrow–Debreu transaction, agents in the Nash transaction suffer a loss from the dis-
tance of the valuation measure from their respective marginal indifference valuation
measures.

From (4.14) and (4.11), it follows that C�
i = −δi log(dQ�

i /dPi ) + Ui (Ci); com-
bining this with the fact that C∗

i = δi log(dPi/dQ∗) + u∗
i , we obtain the equality

C�
i + δi log(dQ�

i /dQ∗) = C∗
i + (u�

i − u∗
i ) for all i ∈ I . Taking expectations with re-

spect to Q
∗, it follows that

u�
i − u∗

i = EQ∗ [C�
i ] − δiH(Q∗ |Q�

i ), ∀i ∈ I. (4.15)

The difference of individual agents’ utilities in the two equilibria comes from two dis-
tinct sources. The first stems from the discrepancy (measured via the relative entropy)
of the Arrow–Debreu valuation from the individual marginal indifference valuation
of agent i ∈ I in a Nash equilibrium. When the agent’s marginal indifference valua-
tion measure in a Nash equilibrium is close to the Arrow–Debreu measure, his loss
of utility caused by the Nash game is lower. In a sense, this is the part of aggregate
loss of utility that is “paid” by agent i ∈ I (see also (4.16) below). The other term
on the right-hand side of (4.15) regards the price under the Arrow–Debreu valuation
measure Q∗ of the actual security that agent i ∈ I buys at a Nash equilibrium. Recall-
ing that Nash equilibrium prices of the Nash securities (C�

i )i∈I are zero, positivity
of EQ∗ [C�

i ] implies that the security C�
i is undervalued in a Nash equilibrium trans-

action. Again, note that if Q�
i is close to Q

∗, then the valuation EQ∗ [C�
i ] tends to be

positive since EQ�
i
[C�

i ] is always nonnegative (see (4.12)). To recapitulate the previ-
ous discussion: agents whose marginal indifference valuation measure is close to the
Arrow–Debreu one tend to benefit from the Nash game. As we shall see in Sect. 5,
this happens, for example, when agent i ∈ I is sufficiently risk-tolerant.

Due to the market clearing condition
∑

i∈I C�
i = 0, the aggregate loss takes into

account only the aggregate discrepancy of individual marginal measures from the
Arrow–Debreu optimal one: under-valuation of certain securities is balanced by over-
valuation of others. Indeed, adding up (4.15) over all i ∈ I gives

u∗ − u� =
∑
i∈I

δiH(Q∗ |Q�
i ), (4.16)

which measures Nash inefficiency as aggregate discrepancy from optimal valuation
of the individual agents’ marginal indifference valuation in a Nash equilibrium. Equa-
tion (4.16) is the counterpart of (2.6), where the inefficiency of complete absence of
trading as compared to Arrow–Debreu risk sharing is considered.

4.4 Existence and uniqueness of Nash equilibrium via finite-dimensional root
finding

Theorem 4.2 is used as a guide in order to search for an equilibrium, parameteris-
ing candidates for optimal securities using the n-dimensional space 	I introduced in
(4.1). Proposition 4.5 that follows, and whose proof is the content of Sect. A.5, en-
ables us to reduce the search of a Nash equilibrium, an inherently infinite-dimensional
problem in our setting, to a finite-dimensional one. The latter problem gives the nec-
essary tools for numerical approximations of Nash equilibria (see also Example 4.8).
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Proposition 4.5 For all z ∈ 	I , there exists a unique (Ci(z))i∈I ∈ (L0)I with
Ci(z) > −δ−i and

Ci(z) + δi log

(
1 + Ci(z)

δ−i

)
= zi + C∗

i + δi

∑
j∈I

λj log

(
1 + Cj(z)

δ−j

)
, ∀i ∈ I.

(4.17)
(Note that necessarily,

∑
i∈I Ci(z) = 0 for all z ∈ 	I .) Furthermore,

EQ∗
[∏

j∈I

(
1 + Cj (z)

δ−j

)−λj
]

< ∞. (4.18)

In the notation of Proposition 4.5, for each z ∈ 	I , define the probability Q(z) via

log
dQ(z)

dQ∗ ∼ −
∑
j∈I

λj log

(
1 + Cj (z)

δ−j

)
. (4.19)

The uniform bounds −δ−i < Ci(z) < (n− 1)δ + δi follow as in Sect. 4.3.1 and imply
exp(Ci(z)/δi) ∈ L

1(Q(z)) for all i ∈ I and z ∈ 	I . In particular, (Ci(z))i∈I ∈ CQ(z)

for all z ∈ 	I . In view of Theorem 4.2, Nash equilibria amount to finding z ∈ 	I such
that EQ(z) [Ci(z)] = 0 for all i ∈ I . We can in fact define a function  : 	I → R+ that
gives a “distance from equilibrium” by the formula

(z) = −
∑
i∈I

δ−i log

(
1 + EQ(z) [Ci(z)]

δ−i

)
, ∀z ∈ 	I .

Since Ci(z) > −δ−i for all z ∈ 	I ,  is well defined. Furthermore, the inequality
logx ≤ x − 1, valid for x ∈ (0,∞), gives

(z) ≥ −
∑
i∈I

δ−i

EQ(z) [Ci(z)]

δ−i

= −EQ(z)

[∑
i∈I

Ci(z)

]
= 0, ∀z ∈ 	I ,

in view of the fact that
∑

i∈I Ci(z) = 0 for all z ∈ 	I , which shows that  is indeed
R+-valued. Furthermore, since logx < x − 1 for x ∈ (0,∞) \ {1}, it follows for any
z ∈ 	I that (z) = 0 is equivalent to EQ(z) [Ci(z)] = 0 for all i ∈ I .

The following result summarises the above discussion.

Proposition 4.6 With the previous notation, the following are true:

– Assume that (Q�, (C�
i )i∈I ) is a Nash equilibrium, and let z� ≡ (z�

i )i∈I ∈ 	I be as
in (4.2). Then (z�) = 0.

– Assume that there exists z� ∈	I with (z�)=0. Then the pair (Q(z�), (Ci(z
�))i∈I )

defined as in (4.17) and (4.19) is a Nash equilibrium.

Proposition 4.6 provides a one-to-one correspondence between Nash equilibria
and roots of . Recalling the discussion in Sect. 4.3.4, any root of  belongs to the
compact subset of 	I consisting of (zi)i∈I ∈ 	I with zi ≥ −u∗

i for all i. This allows
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Fig. 4 The function  for different values of z, corresponding to Example 4.8

numerical approximations of Nash equilibria, for example, by Monte Carlo simula-
tion.

Its practical usefulness notwithstanding, Proposition 4.6 does not answer the ques-
tion of actual existence of Nash equilibria nor, in case of existence, the uniqueness.
These issues are settled in Theorem 4.7, whose proof is the subject of Sect. A.6.

Theorem 4.7 A Nash risk-sharing equilibrium always exists. When we additionally
have I = {0,1}, a Nash risk-sharing equilibrium is necessarily unique.

The question of uniqueness for three or more agents remains open and is signif-
icantly more challenging from a mathematical perspective. In all cases of numeri-
cal simulation that were carried out, we observed the (existence and) uniqueness of
a Nash equilibrium. The next example is representative.

Example 4.8 Consider a three-agent game with δ0 = δ1 = δ2 = 1. Here, we have
log(dPi/dP) ∼ Xi for i ∈ {0,1,2}, where (X0,X1,X2) under P has a mean-zero nor-
mal distribution with σ(X0) = 0.4, σ(X1) = 2.7, σ(X2) = 1.1, ρ(X0,X1) = −0.9,
ρ(X0,X2) = 0.7 and ρ(X1,X2) = −0.3. In Fig. 4, we plot the function  for differ-
ent values of (z1, z2) in the bounded region specified by the inequalities z1 ≥ −u∗

1,
z2 ≥ −u∗

2 and z1 +z2 ≤ u∗
0, where we recall that z1 +z2 = −z0. As can be seen, there

is a unique root of  approximately at the vector

z� = (z�
0 , z�

1 , z�
2) = (0.14,−0.7,0.56).

5 Extreme risk-tolerance

As discussed in Sect. 4.3.5, risk-tolerance coefficients are crucial factors in the gain or
loss caused by the game in each agent’s utility. In this section, we investigate this issue
more closely by studying and comparing the Arrow–Debreu and Nash risk-sharing
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equilibria when agents’ risk preferences approach risk-neutrality in the sense that
risk-tolerance approaches infinity. In order to focus on the economic interpretation of
the results, we consider the simplified (but representative) case of two agents.

The analysis that follows examines two cases: firstly, when only one agent be-
comes extremely risk-tolerant, and secondly, when both agents’ risk-tolerance coef-
ficients uniformly approach infinity. Besides the interest of this analysis in its own
right, it also allows us to substantiate the claim that highly risk-tolerant agents are the
ones who in fact benefit from the risk-sharing game.

5.1 One extremely risk-tolerant agent

We start with the two-agent case I = {0,1}, where the risk-aversion of only one
agent approaches zero. We keep the risk-tolerance δ1 and subjective probability P1
of agent 1 fixed. On the other hand, for agent 0, we consider a sequence of risk-
tolerance coefficients (δm

0 )m∈N with limm→∞ δm
0 = ∞ and a fixed subjective proba-

bility P0. In this setup, Theorems 2.2 and 4.7 state that for each m ∈ N, there exist a
unique Arrow–Debreu equilibrium (Qm,∗, (Cm,∗

i )i∈I ) and a unique Nash equilibrium
(Qm,�, (Cm,�

i )i∈I ). We use agent 0 as the baseline and focus on the securities C
m,∗
0

and C
m,�
0 since C

m,∗
1 = −C

m,∗
0 and C

m,�
1 = −C

m,�
0 .

We first examine the limiting behaviour of the valuation rule and the securities
in the Arrow–Debreu equilibrium transaction. For each m ∈ N, we obtain from (2.3)
that Qm,∗ ∈P has log(dQm,∗/dP0) ∼ λm

1 log(dP1/dP0). More precisely, we have

dQm,∗

dP0
= EP0

[(
dP1

dP0

)λm
1
]−1(dP1

dP0

)λm
1

. (5.1)

Given that limm→∞ λm
1 = 0, L

0- limm→∞ (dQm,∗/dP0) = 1 readily follows from
the dominated convergence theorem—in fact, with | · |TV denoting the total-variation
norm, Scheffé’s lemma implies that limm→∞ |Qm,∗ − P0|TV = 0. Since

C
m,∗
0 = −C

m,∗
1 = δ1 log(dQm,∗/dP1) − δ1H(Qm,∗ |P1)

for all m ∈ N and (Qm,∗)m∈N converges to P0, we expect the limiting relationship
L

0- limm→∞ C
m,∗
0 = δ1 log(dP0/dP1) − δ1H(P0 |P1). Clearly, for the previous limit

to be valid, the following (technical) assumption is necessary.

Assumption 5.1 H(P0 |P1) < ∞.

In Sect. A.7, it is shown that the latter assumption is also sufficient for the validity
of Proposition 5.2, giving the limiting valuation and security in an Arrow–Debreu
equilibrium and the limiting gains of both agents.

Proposition 5.2 Under Assumption 5.1, the following limiting relations hold:

C
∞,∗
0 := L

0- lim
m→∞C

m,∗
0 = δ1 log(dP0/dP1) − δ1H(P0 |P1),

limm→∞ u
m,∗
0 = 0 and limm→∞ u

m,∗
1 = δ1H(P0 |P1).
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It is indeed expected that the utility gain of a nearly risk-neutral agent is almost
zero. To see this, compare the limiting valuation measure P0 with the limiting utility
of agent 0, which is the linear expectation with respect to P0. On the other hand, the
only case where there is no limiting utility gain for agent 1 is when the two agents’
subjective beliefs coincide.

We now turn to a Nash risk-sharing equilibrium. From (4.4), we obtain

C
m,�
0 + δ1λ

m
0 log

1 + C
m,�
0 /δ1

1 − C
m,�
0 /δm

0

= z
m,�
0 + C

m,∗
0 , ∀m ∈ N.

Accepting that the sequence (z
m,�
0 )m∈N converges in R and (C

m,�
0 )m∈N converges

in L
0 (these conjectures actually have to be proved as part of Theorem 5.4 below),

and given that limm→∞ δm
0 = ∞, limm→∞ λm

0 = 1 and L
0- limm→∞ C

m,∗
0 = C

∞,∗
0 ,

the limiting security C
∞,�
0 := L

0- limm→∞ C
m,�
0 should satisfy

C
∞,�
0 + δ1 log(1 + C

m,�
0 /δ1) = z

∞,�
0 + C

∞,∗
0 ,

where we set z
∞,�
0 := limm→∞ z

m,�
0 . This heuristic discussion gives a method to com-

pute the limit. For z ∈ R, define the random variable C∞
0 (z) by the equation

C∞
0 (z) + δ1 log

(
1 + C∞

0 (z)

δ1

)
= z + C

∞,∗
0 . (5.2)

Since the function (−1,∞) � x �→ x + log (1 + x) is strictly increasing and
continuous and maps (−1,∞) to (−∞,∞), it follows that C∞

0 (z) is a well-
defined (−δ1,∞)-valued random variable for all z ∈ R. So we should have
C

∞,�
0 = C∞

0 (z
∞,�
0 ). Although z

∞,�
0 is given as the limit of (z

m,�
0 )m∈N, we may actu-

ally identify a priori what its value will be. To make headway, note that from (4.3),

log
dQm,�

dQm,∗ ∼ −λm
0 log

(
1 + C

m,�
0

δ1

)
− λm

1 log

(
1 − C

m,�
0

δm
0

)
, ∀m ∈ N,

and the fact that limm→∞ |Qm,∗ − P0|TV = 0, the limiting Nash valuation proba-
bility Q

∞,� should have log(dQ∞,�/dP0) ∼ − log(1 + C
∞,�
0 /δ1); since we expect

EQ∞,� [C∞,�
0 ] = 0, we actually obtain that the equality EP0 [(1 + C

∞,�
0 /δ1)

−1] = 1
should be satisfied. The next result, whose proof is given in Sect. A.8, ensures that
a unique such candidate z

∞,�
0 ∈ R exists.

Lemma 5.3 In the notation of (5.2), there exists a unique z
∞,�
0 ∈ R satisfying the

equality EP0 [(1 + C∞
0 (z

∞,�
0 )/δ1)

−1] = 1.

Before we state our main result on the limiting behaviour of a Nash equilibrium,
we make a final observation. Note that in view of (4.5), for all m ∈ N, we have
log(dRm,�

1 /dP1) ∼ − log(1 − C
m,�
0 /δm

0 ). Since limm→∞ δm
0 = ∞ and, as it turns out,

(C
m,�
0 )m∈N is convergent, the revealed subjective probability R

m,�
1 of agent 1 when

m is large is close to the actual P1. (There is an alternative way to obtain the same in-
tuition. From (4.6), note that dRm,�

1 /dP1 ≥ λm
0 for all m ∈ N. Since limm→∞ λm

0 = 1
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and (dRm,�
1 /dP1)m∈N has constant expectation 1 under P1, (R

m,�
1 )m∈N must con-

verge to P1.) This suggests the same asymptotic behaviour as in the case discussed
in Sect. 3.3, where only agent 0 acts strategically as indicated by the best probability
response, whereas agent 1 reports true subjective beliefs P1. Indeed, the following
result, whose proof is given in Sect. A.9, implies that the limiting security structure is
the same, regardless of whether the risk-averse agent 1 enters the game or simply re-
ports true subjective beliefs (in which case only the approximately risk-neutral agent
behaves strategically).

Theorem 5.4 With the previous notation (in particular, of Lemma 5.3), we have

C
∞,�
0 := L

0- lim
m→∞C

m,�
0 = C∞

0 (z
∞,�
0 ) = L

0- lim
m→∞C

m,r
0 .

The equality of the limits of (C
m,�
0 )m∈N and (C

m,r
0 )m∈N implies that the strategic

behaviour of a risk-neutral agent dominates the risk-sharing transaction. Intuitively,
agents with high risk-tolerance are willing to undertake more risk at the sharing trans-
action in return for a higher cash compensation. Thus, at the limit, the risk-neutral
agent satisfies the reported hedging needs of other agents but achieves better prices
by applying the best response strategy. On the other hand, for the risk-averse agent,
the risk reduction is more important than a higher price to be paid. As a result, at equi-
librium, the risk-averse agent prefers to submit true beliefs even though this results in
a higher price to be paid to the risk-neutral agent. The situation is totally different in
an Arrow–Debreu equilibrium transaction, where agents act basically as price takers
and the securities and prices are determined by the efficiency of the transaction.

We argued in Sect. 4.3 that in any risk-transfer situation, the Nash equilibrium
incurs some loss of efficiency. Although the aggregate utility is reduced in a Nash
equilibrium when compared with the Arrow–Debreu one, certain agents may obtain
a higher utility gain in risk-sharing games. In particular, Proposition 5.5 (whose proof
is given in Sect. A.10) demonstrates that an agent with sufficiently high risk-tolerance
enjoys a higher utility at a Nash equilibrium transaction than the utility at the Arrow–
Debreu equilibrium sharing.

Proposition 5.5 Define Q
∞,� ∈P with dQ∞,�/dP0 = (1 + C

∞,�
0 /δ1)

−1. Then:

lim
m→∞(u

m,�
0 − u

m,∗
0 ) = 1

δ1
VarQ∞,�(C∞,�

0 ),

lim
m→∞(u

m,�
1 − u

m,∗
1 ) = − 1

δ1
VarQ∞,�(C∞,�

0 ) − δ1H(P0 |Q∞,�).

The limiting loss for the risk-averse agent comes from two sides. The first is
(1/δ1)VarQ∞,�(C∞,�

0 ), which is the limiting gain of agent 0. The remaining quantity
δ1H(Q∞,∗|Q∞,�) is in fact the loss from the applied strategic behaviour as opposed
to sharing in a Pareto-optimal way. Both terms are strictly positive as long as C

∞,�
0

is not identically equal to zero.
The message of Proposition 5.5 is clear. The introduction of strategic behaviour

allows agents with high risk-tolerance to achieve better prices that the more risk-
averse agents are willing to pay in order to achieve risk reduction. In contrast to the
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Arrow–Debreu equilibrium where prices are given by the optimal sharing measure,
agents with sufficiently high risk-tolerance are willing to accept more risk in the Nash
game since their strategy drives the market to better cash compensation for them.
In fact, a more risk-averse agent not only tends to undertake all the efficiency loss
caused by the game, but also fuels the utility gain of the (sufficiently) risk-tolerant
counterparty.

Recalling the discussion and notation of Sect. 4.3.5, we may offer some more
detailed comments. From (4.11) and Proposition 5.5, it follows that the marginal val-
uation measure of agent 0 approaches the limiting optimal valuation measure Q

∞,∗.
In turn, this implies that for large enough m ∈ N, the security that agent 0 gets in a
Nash equilibrium is undervalued—indeed, note that

EQ∞,∗ [C∞,�
0 ] = EQ∞,� [C∞,�

0 (1 + C
∞,�
0 /δ1)] = (1/δ1)VarQ∞,�(C∞,�

0 ).

According to (4.15) and the discussion that follows, we readily get that the utility of
agent 0 is increased. For the risk-averse agent, the situation is different. From (4.13),
it follows that Qm,�

1 is close to Q
m,� for large m ∈ N, which in turn is close to Q

∞,�.
Hence, for large enough m ∈ N, the security received by agent 1 in a Nash equilibrium
is overvalued; on top of this, agent 1 also carries all the risk-sharing inefficiency of
a Nash equilibrium.

5.2 Both agents being extremely risk-tolerant

We have seen before that the strategic behaviour of a highly risk-tolerant agent dom-
inates the Nash game and drives the market to his preferred transaction, regardless
of the actions of the other agent. Here, we examine what happens to the equilibria
when both agents approach risk-neutrality at the same speed. More precisely, we fix
λ0 ∈ (0,1) and λ1 ∈ (0,1) with λ0 + λ1 = 1 and consider a nondecreasing sequence
(δm)m∈N with limm→∞ δm = ∞. Define δm

i := λiδ
m for all m ∈ N and i ∈ {0,1}. In

contrast to the setup of Sect. 5.1, here the subjective beliefs of the agents have to
depend on m ∈ N. To obtain intuition on why and how the subjective probabilities
must behave, note that according to Theorem 2.2, the security C

m,∗
0 is for all m ∈ N

given as a multiple by δm
0 of a random variable whose dependence on risk-tolerance

comes only through λ0 and λ1. Since the latter weights are fixed for each m ∈ N, to
guarantee that the securities in an Arrow–Debreu equilibrium have a well-behaved
limit, we make the following assumption.

Assumption 5.6 For i ∈ {0,1}, there exists ξi ∈ L
∞ such that EP [ξi] = 0 and

log
dPm

i

dP
∼ ξi

δm
i

, i ∈ {0,1} ,m ∈ N.

Note that the condition EP [ξi] = 0 for i ∈ {0,1} appearing in Assumption 5.6 is
just a normalisation and does not constitute any loss of generality.

Theorem 5.7 In the above setup and under Assumption 5.6, the two sequences
(C

m,∗
0 )m∈N and (C

m,�
0 )m∈N converge in L

0 to limiting securities C
∞,∗
0 and C

∞,�
0 ,
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where

C
∞,∗
0 = λ1ξ0 − λ0ξ1, C

∞,�
0 = λ1

2
ξ0 − λ0

2
ξ1 = C

∞,∗
0

2
.

The proof of Theorem 5.7 is given in Sect. A.11. Interestingly, the risk-neutrality
of both agents drives the Nash equilibrium to half of the Arrow–Debreu securities,
which is evidence of the market inefficiency caused by the strategic behaviour of
risk-neutral agents. The result of Theorem 5.7 is another manifestation of the claim
(initially made in Sect. 4.3.5) that the trading volume in a Nash equilibrium tends to
be lower than the Pareto-optimal allocations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Proofs

A.1 Proof of Theorem 2.2

Suppose that (Q∗, (C∗
i )i∈I ) is an Arrow–Debreu equilibrium. We show the ne-

cessity of (2.3) and (2.4). For all i ∈ I , note that Ui (C
∗
i ) ≥ Ui (0) = 0, which

implies that exp(−C∗
i /δi) ∈ L

1(Pi ). Fix X ∈ L
∞ with EQ∗ [X] = 0 and i ∈ I .

Since the function R � ε �→ Ui (C
∗
i + εX) ∈ R has a maximum at ε = 0, the

first-order conditions and the dominated convergence theorem, using the fact that
exp(−C∗

i /δi) ∈ L
1(Pi ), imply that EPi

[exp(−C∗
i /δi)X] = 0. The latter equality

holds for all X ∈ L
∞ with EQ∗ [X] = 0 and all i ∈ I ; therefore, C∗

i ∼ δi log(dPi/dQ∗)
for all i ∈ I . Since EQ∗ [C∗

i ] = 0, (2.4) follows. Furthermore,
∑

i∈I C∗
i = 0 gives∑

i∈I δi log(dPi/dQ∗) ∼ 0, from which (2.3) follows.
Assume now that (Q∗, (C∗

i )i∈I ) is given by (2.3) and (2.4). By definition,
EQ∗ [C∗

i ] = 0 for all i ∈ I . Furthermore, (2.3) and (2.4) give

∑
i∈I

C∗
i ∼

∑
i∈I

δi log(dPi/dQ∗) ∼ δ
∑
i∈I

λi log(dPi/dQ∗) ∼ 0.

Together with EQ∗ [C∗
i ] = 0 for all i ∈ I , this implies

∑
i∈I C∗

i = 0. The fact that C∗
i

is optimal for agent i ∈ I under the valuation measure Q
∗ is argued in Remark 2.4.

We have shown that (Q∗, (C∗
i )i∈I ) given by (2.3) and (2.4) is an Arrow–Debreu equi-

librium. The necessity of (2.3) and (2.4) for an Arrow–Debreu equilibrium proved in
the previous paragraph establishes its uniqueness. �

A.2 Proof of Proposition 3.2

To ease the reading, in the course of the proof of Proposition 3.2, we denote Q(R−i ,R
r
i )

by Q
r
i .
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A.2.1 First-order conditions

We prove here the necessity of the stated conditions for a best response. Fix i ∈ I

and R
r
i ∈ P such that Vi (R

r
i;R−i ) = supRi∈P Vi (Ri;R−i ). For R0

i ∈ P defined via
log dR0

i ∼ (1/λ−i )
∑

j∈I\{i} λj log dRj , it is straightforward to check that the result-
ing contract for agent i ∈ I would be zero; therefore,

Ui (C
r
i ) = Vi (R

r
i;R−i ) ≥ Vi (R

0
i ;R−i ) = 0.

In particular, we have exp(−Cr
i /δi) ∈ L

1(Pi ), a fact that will be useful in several
places for applying the dominated convergence theorem in the sequel.

Fix X ∈ L
∞. For any ε ∈ R, let Ri (ε) ∈P be defined via the recipe

log
(
dRi (ε)/dRr

i

) ∼ −εX/(λ−iδi).

Letting Q(ε) := Q
(R−i ,Ri (ε)) for ε ∈ R, log(dQ(ε)/dQr

i ) ∼ −εX/δ−i follows. In ac-
cordance with Cr

i , for ε∈R, define Ci(ε)= δi log(dRi (ε)/dQ(ε))+ δiH(Q(ε) |Ri (ε))

and then Ci(0) = Cr
i . Noting that

δi log
dRi (ε)

dQ(ε)
= δi log

dRi (ε)

dRr
i

+ δi log
dRr

i

dQr
i

+ δi log
dQr

i

dQ(ε)
∼ Cr

i − εX,

it follows that Ci(ε) = Cr
i − εX −EQ(ε)[Cr

i − εX], where the constant in the equiva-
lence was cancelled by the definition of Ci(ε). The dominated convergence theorem
and simple differentiation, using also that EQr

i
[Cr

i ] = 0, imply that

C′
i (0) = ∂Ci(ε)

∂ε

∣∣∣∣
ε=0

= −X +EQr
i

[(
1 + Cr

i

δ−i

)
X

]
.

Since Vi (R(ε);R−i ) = Ui (Ci(ε)) for all ε ∈ R, another application of the dominated
convergence theorem gives

∂Vi (R(ε);R−i )

∂ε

∣∣∣∣
ε=0

= EPi
[exp(−Cr

i /δi)C
′
i (0)]

EPi
[exp(−Cr

i /δi)] .

Since R � ε �→Vi (R(ε);R−i ) is maximised at ε = 0, the first-order conditions give

0 = EPi
[exp(−Cr

i /δi)C
′
i (0)]

EPi
[exp(−Cr

i /δi)]

= −EPi
[exp(−Cr

i /δi)X]
EPi

[exp(−Cr
i /δi)] +EQr

i

[(
1 + Cr

i

δ−i

)
X

]
. (A.1)

Noting that
∑

j∈I\{i} λj log(dRj /dPi ) ∼ log(dQr
i/dPi ) − λi log(dRr

i/dPi ) implies

λ−i log
dQr

i

dPi

−
∑

j∈I\{i}
λj log

dRj

dPi

∼ λi log
dRr

i

dQr
i

,
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it follows from Cr
i ∼ δi log(dRr

i/dQr
i ) that

log
dQr

i

dPi

∼ Cr
i

δ−i

+ 1

λ−i

∑
j∈I\{i}

λj log
dRj

dPi

.

The last equivalence relation allows us to write (A.1) as

EQr
i

[(
− exp

(
ζi − Cr

i

λ−iδi

− 1

λ−i

∑
j∈I\{i}

λj log
dRj

dPi

)
+ 1 + Cr

i

δ−i

)
X

]
= 0, (A.2)

where

ζi = − logEPi

[
exp

(
− Cr

i

δi

)]
+ logEPi

[
exp

(
Cr

i

δ−i

) ∏
j∈I\{i}

(
dRj

dPi

)λj /λ−i
]
. (A.3)

Up to now, X ∈ L
∞ was fixed but arbitrary. Varying X over L∞ in (A.2) gives

exp

(
ζi − Cr

i

λ−iδi

− 1

λ−i

∑
j∈I\{i}

λj log
dRj

dPi

)
= 1 + Cr

i

δ−i

. (A.4)

Necessarily, Cr
i > −δ−i should hold. Taking logarithms and rearranging (A.4) gives

(3.2).

A.2.2 Optimality of candidates for best response

We now proceed to showing that the necessary conditions for a best response are also
sufficient. (As mentioned in the discussion following Theorem 3.7, we have not been
able to show whether Vi (·;R−i ) is concave; therefore, the first-order conditions do
not immediately imply optimality.) Fixing R ∈P and assuming the stated conditions,
we further show that Vi (R;R−i ) ≤ Vi (R

r
i;R−i ).

Define X := λi log(dR/dRr
i ). Similarly to the arguments in Sect. A.2.1, the con-

tract that agent i ∈ I would obtain by the response R ∈ P would be

CX
i := Cr

i + δ−iX −EQX [Cr
i + δ−iX],

where Q
X ∈P is such that log(dQX/dQr

i ) ∼ X. It follows that

Vi (R;R−i ) −Vi (R
r
i;R−i ) = Ui (C

X
i ) −Ui (C

r
i )

= Ui (C
r
i + δ−iX) −Ui (C

r
i )

− EQr
i
[exp (X) (Cr

i + δ−iX)]
EQr

i
[exp (X)] . (A.5)

Remark A.1 If EQr
i
[exp(X+)X+] = ∞ was true (equivalently, since exp(X)X is

bounded below if EQr
i
[exp(X)X] = ∞ was true), we would necessarily have that

EQr
i
[exp(X)Cr

i ] = −∞, which is clearly impossible in view of Cr
i > −δ−i and

EQr
i
[exp(X)] < ∞. It follows that EQr

i
[exp(X+)X+] < ∞.
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Since Cr
i > −δ−i , the (0,∞)-valued random variable Dr

i := 1 + Cr
i /δ−i is

well defined. From (3.5), it follows that −Cr
i /δi ∼ log(dQr

i/dPi ) + logDr
i ; since

EQr
i
[Dr

i ] = 1, we have that exp(−Cr
i /δi) = EPi

[exp(−Cr
i /δi)](dQr

i/dPi )D
r
i . There-

fore, we obtain

Ui (C
r
i + δ−iX) −Ui (C

r
i ) = −δi logEPi

[
exp

(
−Cr

i + Xδ−i

δi

)]

+ δi logEPi

[
exp

(
−Cr

i

δi

)]

= −δi logEQr
i

[
Dr

i exp

(
−δ−i

δi

X

)]
.

Combining the previous, including (A.5) and Remark A.1, it suffices to show that

−δi logEQr
i
[Dr

i exp (−δ−iX/δi)] ≤ EQr
i
[exp (X) (Cr

i + δ−iX)]
EQr

i
[exp (X)]

whenever X ∈ L
0 satisfies EQr

i
[exp(X+)X+] < ∞. Since Dr

i > 0 and EQr
i
[Dr

i ] = 1,
applying Jensen’s inequality under the probability having density Dr

i with respect to
Q

r
i gives −δi logEQr

i
[Dr

i exp(−δ−iX/δi)] ≤ δ−iEQr
i
[Dr

iX]. (In particular, we obtain
EQr

i
[Dr

iX
−] < ∞.) On the other hand, defining χ := logEQr

i
[exp(X)] ∈ R gives

EQr
i
[exp (X)Cr

i ]
EQr

i
[exp (X)] = EQr

i
[exp (X − χ)Cr

i ] = δ−iEQr
i

[
Dr

i

(
exp(X − χ) − 1

)]
,

where the last equality uses EQr
i
[exp(X − χ)] = 1 = EQr

i
[Dr

i ] and Cr
i = δ−i (D

r
i − 1).

Using the inequality exp(x) ≥ 1 + x for x ∈ R, we obtain

EQr
i
[exp (X)Cr

i ]
EQr

i
[exp (X)] ≥ δ−iEQr

i
[Dr

i (X − χ)] = δ−iEQr
i
[Dr

iX] − δ−i logEQr
i
[exp(X)].

(In particular, EQr
i
[Dr

iX
+] < ∞, which implies EQ[Dr

iX] ∈ R.) Putting everything

together, it follows that it suffices to show for X ∈ L
0 with EQr

i
[exp(X+)X+] < ∞

that logEQr
i
[exp(X)] ≤ EQr

i
[exp(X)X]/EQr

i
[exp(X)]. This follows from Jensen’s

inequality applied to the convex function (0,∞) � z �→ φ(z) = z log z; then
φ(EQr

i
[exp(X)]) ≤ EQr

i
[φ(exp(X))], which is exactly what was required. �

A.3 Proof of Theorem 3.7

Define R−i := (1/λ−i )
∑

j∈I\{i} λj log(dRj /dPi ) and note that Hölder’s inequal-

ity gives exp(R−i ) ∈ L
1(Pi ). For zi ∈ R, implicitly define Ci(zi) ∈ L

0 as the
(−δ−i ,∞)-valued random variable satisfying the equation

(1/λ−i )Ci(zi)/δi + log
(
1 + Ci(zi)/δ−i

) = zi − R−i .
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Note that the existence and uniqueness of the solution Ci(zi) for each zi ∈ R follows
from the fact that the function (−1,∞) � y �→ (δ/δi)y + log(1 + y) is strictly in-
creasing from −∞ to ∞. For zi ∈ R, define also the (0,∞)-valued random variable
Di(zi) := 1 + Ci(zi)/δ−i and note that it is the unique solution to the equation

Di(zi) − 1

λi

+ logDi(zi) = zi − R−i . (A.6)

Observe that Di (and hence Ci ) is increasing as a function of zi . It is also straightfor-
ward to check that L0- limzi→−∞ Di(zi) = 0 and L

0- limzi→∞ Di(zi) = ∞.

Lemma A.2 For all zi ∈ R, we have

1 ∧ exp(zi − R−i ) ≤ Di(zi) ≤ 1 ∨ exp(zi − R−i ). (A.7)

In particular, both Di(zi)
−λi exp(λ−iR−i ) and Di(zi)

λ−i exp(λ−iR−i ) are in L
1(Pi ).

Proof Fix zi ∈ R. By (A.6), logDi(zi) ≥ zi − R−i on {Di(zi) < 1}, whereas
logDi(zi) ≤ zi − R−i on {Di(zi) ≥ 1}. These observations verify inequalities
(A.7). Since Di(zi)

−1 ≤ 1 ∨ exp(−zi + R−i ) and exp(R−i ) ∈ L
1(Pi ),

Di(zi)
−1 ∈ L

1(Pi ) follows; then, in view of Hölder’s inequality, we obtain that
Di(zi)

−λi exp(λ−iR−i ) ∈ L
1(Pi ). Furthermore, we have the estimate

Di(zi)
λ−i exp(λ−iR−i ) ≤ exp(λ−izi) ∨ exp(λ−iR−i ),

which implies that Di(zi)
λ−i exp(λ−iR−i ) ∈ L

1(Pi ) since exp(R−i ) ∈ L
1(Pi ). �

In view of Lemma A.2, for each zi ∈ R, we may define Qi (zi) ∈ P via

log
(
dQi (zi)/dPi

) ∼ −λi logDi(zi) + λ−iR−i ∼ Di(zi) + R−i;
in other words,

log
dQi (zi)

dPi

∼ −λi log

(
1 + Ci(zi)

δ−i

)
+

∑
j∈I\{i}

λj log
dRj

dPi

.

Furthermore, for every zi ∈ R, Lemma A.2 and in particular the fact that we have
Di(zi)

λ−i exp(λ−iR−i ) ∈ L
1(Pi ) imply Di(zi)(dQi (zi)/dPi ) ∈ L

1(Pi ), which in turn
implies that Di(zi) ∈ L

1(Qi (zi)).
As mentioned in the discussion following Proposition 3.2, to establish Theo-

rem 3.7, we need to show that there exists a unique ζi ∈ R with EQi (ζi )[Di(ζi)] = 1.
Define fi : R → (0,∞] via fi(zi) = EQi (zi )[Di(zi)]. Since Di(zi) ∈ L

1(Qi (zi)) for
all zi ∈ R, it follows that fi(zi) < ∞ for all zi ∈ R. It is straightforward to check that
fi is continuous by the dominated convergence theorem and Lemma A.2.

Let Pi be the probability measure in P such that log(dPi/dPi ) ∼ R−i . Then,
thanks to the equivalence relation log(dQi (zi)/dPi ) ∼ Di(zi) + R−i , we have that

fi(zi) = EPi
[exp(Di(zi))Di(zi)]
EPi

[exp(Di(zi))] (A.8)



M. Anthropelos, C. Kardaras

for all zi ∈ R. In fact, since the covariance of exp(Di(zi)) and Di(zi) is nonnegative
under any probability, we have fi(zi) ≥ EPi

[Di(zi)] for all zi ∈ R. Using monotone
convergence and (A.8), limzi→∞ fi(zi) = ∞ follows from limzi→∞ Di(zi) = ∞.
Furthermore, limzi→−∞ Di(zi) = 0 and monotone convergence imply that we have
limzi→−∞ EPi

[exp(Di(zi))] = 1 and limzi→−∞ EPi
[exp(Di(zi))Di(zi)] = 0, from

which we obtain limzi→−∞ fi(zi) = 0. It follows that there exists at least one ζi ∈ R
with fi(ζi) = 1. We claim that fi is strictly increasing, which implies that ζi is indeed
unique. In preparation, note that differentiating (A.6) with respect to zi and rearrang-
ing give D′

i (zi) = qi(Di(zi)), where (0,∞) � y �→ qi(y) := λiy/(λi + y). In partic-
ular, since qi is an increasing function, the covariance between D′

i (zi) and Di(zi) is
nonnegative for all zi ∈ R under any probability. Straightforward computations using
the definition of Qi (zi) give that the derivative of fi satisfies

f ′
i (zi) = EQi (zi )[D′

i (zi) + Di(zi)D
′
i (zi)] −EQi (zi )[Di(zi)]EQi (zi )[D′

i (zi)]
for zi ∈ R. Rearranging, f ′

i (zi) = EQi (zi )[D′
i (zi)] + CovQi (zi )(Di(zi),D

′
i (zi)) for

zi ∈ R. Since D′
i (zi) > 0 and CovQi (zi )(Di(zi),D

′
i (zi)) ≥ 0 for all zi ∈ R, Theo-

rem 3.7 has been proved. �

A.4 Proof of Theorem 4.2

Suppose that (Q�, (C�
i )i∈I ) is a Nash equilibrium and let (R�

i )i∈I ∈ PI be the asso-
ciated revealed subjective beliefs. We first prove relationship (4.3). In view of Propo-
sition 3.2, since C�

i /δi ∼ log(dR�
i /dQ�) and

∑
j∈I\{i}

λj log(dR�
j /dPi ) = log(dQ�/dPi ) − λi log(dR�

i /dPi ),

(3.2) gives

−λ−i log

(
1 + Cr

i

δ−i

)
∼ C�

i

δi

+
∑

j∈I\{i}
λj log

dR�
j

dPi

∼ λ−i log
dR�

i

dPi

,

that is, log(dR�
i /dPi ) ∼ − log(1 + C�

i /δ−i ) for all i ∈ I , which is (4.5). Since
log(dPi/dQ∗) ∼ C∗

i /δi for all i ∈ I in view of Eq. (2.4), it follows that

λi log(dR�
i /dQ∗) ∼ −λi log(1 + Cr

i /δ−i ) + C∗
i /δ

for all i ∈ I . In turn, since
∑

j∈I C∗
j = 0, the latter gives

log(dQ�/dQ∗) ∼
∑
j∈I

λj log(dR�
j /dQ∗),

which in view of (4.5) is exactly (4.3).
To prove (4.2), we add λi log(1+C�

i /δ−i ) ∼ −λi log(dR�
i /dPi ) to (3.2) and obtain

C�
i

δi

+ log

(
1 + C�

i

δ−i

)
∼ −

∑
j∈I

λj log
dR�

j

dPi

∼ log
dPi

dQ� ∼ C∗
i

δi

− log
dQ�

dQ∗ .
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Combined with (4.3), this gives (4.2) for an appropriate tuple z� := (z�
i )i∈I ∈ RI .

The market clearing conditions
∑

i∈I C�
i = 0 = ∑

i∈I C∗
i show that

∑
i∈I z�

i = 0,
that is, z� ∈ 	I . Finally, the fact that EQ� [C�

i ] = 0 for all i ∈ I results directly from
(C�

i )i∈I ∈ CQ� .
For the proof of the converse implication, assume that conditions (N1)–(N3) hold

for (Q�, (C�
i )i∈I ) and fix i ∈ I . Define the associated revealed beliefs (R�

i )i∈I ∈ PI

via log(dR�
i /dQ�) ∼ C�

i /δi . Since C∗
i /δi ∼ log(dPi/dQ∗), a combination of (4.2)

and (4.3) gives that log(1 +C�
i /δ−i ) ∼ − log(dR�

i /dPi ). Using again (4.2) and (4.3),
we have

C�
i

δi

+ λ−i log

(
1 + C�

i

δ−i

)
∼ C∗

i

δi

− log
dQ�

dQ∗ − λi log

(
1 + C�

i

δ−i

)

∼ − log
dQ�

dPi

+ λi log
dR�

i

dPi

∼ −
∑

j∈I\{i}
λj log

dR�
j

dPi

.

It follows that the sufficient conditions for optimality of Proposition 3.2 are satis-
fied for each i ∈ I . To show that (Q�, (C�

i )i∈I ) is a Nash equilibrium, it is left
to verify that (C�

i )i∈I ∈ CQ� . Indeed, summing (4.2) with respect to i implies that∑
i∈I C�

i = 0 since z� is assumed to belong in 	I . This fact, together with the
requirement C�

i > −δ−i , implies the uniform boundedness of C�
i ; in particular,

exp(C�
i /δi) ∈ L

1(Q�) for all i ∈ I . Taking also (N3) into account, we conclude that
(C�

i )i∈I ∈ CQ� , which completes the proof. �

A.5 Proof of Proposition 4.5

Fix z ∈ 	I . Suppose for the moment that a solution to (4.17) exists, and set

L(z) :=
∑
i∈I

λi log

(
1 + Ci(z)

δ−i

)
. (A.9)

Then, with ηi : (0,∞) → R defined via ηi(x) = δ−i (x − 1) + δi logx, (4.17) im-
plies that ηi(1 + Ci(z)/δ−i ) = zi + C∗

i + δiL(z) for all i ∈ I . With θi : R → (0,∞)

denoting the inverse of ηi for all i ∈ I , it follows that

Ci(z) = δ−i

(
θi

(
zi + C∗

i + δiL(z)
) − 1

)
, ∀i ∈ I. (A.10)

Plugging back into the definition of L(z) in (A.9), we obtain that

L(z) =
∑
i∈I

λi log θi

(
zi + C∗

i + δiL(z)
)

(A.11)

should be satisfied.
We now proceed backwards by showing that (A.11) has a unique solution. In

what follows, fix z ∈ 	I and define the function w : � × R → R via the recipe
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w(y) = y − ∑
i∈I λi log θi(zi + C∗

i + δiy) for y ∈ R, where the dependence of w on
ω ∈ � is suppressed. The derivative of w with respect to the spatial coordinate is

w′(y) = 1 −
∑
i∈I

λi

1 + (δ−i/δi)θi(zi + C∗
i + δiy)

=
∑
i∈I

λ−iθi(zi + C∗
i + δiy)

1 + (δ−i/δi)θi(zi + C∗
i + δiy)

> 0, y ∈ R.

Since θi(y) behaves sublinearly as y → ∞, limy↑∞ w(y) = ∞ follows in a straight-
forward way. Furthermore, by the definition of θi , for all x ∈ (−∞,0) and i ∈ I , we
have x < δi log θi(x). This implies w(y) < y − ∑

i∈I (1/δ)(zi + C∗
i + δiy) = 0 on

the event {y < −∨
j∈I ((zj + C∗

j )/δj )}, showing at the same time that the equation
w(L(z)) = 0 has a unique solution and

−L(z) ≤
∨
j∈I

C∗
j + zj

δj

≤
∨
j∈I

zj

δj

+
∨
j∈I

C∗
j

δj

. (A.12)

Given the existence of a unique L(z) solving (A.11), Ci(z) is specified for all i ∈ I

via (A.10).
Since exp(C∗

i /δi) ∈ L
1(Q∗) for all i, it is clear that exp(

∨
i∈I C∗

i /δi) ∈ L
1(Q∗).

Thus combining (A.12) and the equality
∏

j∈I (1 + Cj (z)/δ−j )
−λj = exp(−L(z))

implies the validity of (4.18), which concludes the proof. �

A.6 Proof of Theorem 4.7

We first establish the general existence result and then tackle uniqueness in the two-
agent case.

A.6.1 Proof of existence of a Nash equilibrium

We use the notation from Proposition 4.5 and the discussion following it. For all
z ∈ 	I and i ∈ I , define ui(z) := Ui (Ci(z)). Furthermore, for each z ∈ 	I , define
u(z) := ∑

i∈I u(z) and

	I � z �→ φi(z) = ui(z) − u∗
i + λi

(
u∗ − u(z)

)
, i ∈ I, z ∈ 	I .

Note that
∑

i∈I φi(z) = 0 for all z ∈ 	I , so that φ := (φi)i∈I is 	I -valued. The
obvious continuity of 	I � z �→ L(z) from (A.11) and the domination relation given
by (A.12) allow the application of the dominated convergence theorem to establish
that φ : 	I → 	I is a continuous function.

Lemma A.3 z� ∈ 	I corresponds to a Nash equilibrium if and only if it is a fixed
point of φ.

Proof In view of the discussion in Sect. 4.3.4, if z� ∈ 	I corresponds to a Nash
equilibrium, then z� is a fixed point of φ. Conversely, we show that any fixed point
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of φ corresponds to a Nash equilibrium. With L(z) as in (A.9) and recalling (4.17),
start by observing that

Ci(z) − zi − u∗
i = δi log

dPi

dQ∗ + δiL(z) − δi log

(
1 + Ci(z)

δ−i

)
, i ∈ I, z ∈ 	I .

From the last equality, it follows that

ui(z) − zi − u∗
i = −δi logEQ∗

[
exp

( − L(z)
)(

1 + Ci(z)

δ−i

)]
, i ∈ I, z ∈ 	I .

Adding up the previous equality over all agents, we obtain

u(z) − u∗ = −δ
∑
j∈I

λj logEQ∗
[

exp
( − L(z)

)(
1 + Cj(z)

δ−j

)]
, z ∈ 	I .

Since log(dQ(z)/dQ∗) = −L(z) + λ(z) for appropriate λ(z) ∈ R and the equality
φi(z)− zi = ui(z)− zi −u∗

i −λi(u(z)−u∗) holds for all i ∈ I and z ∈ 	I , it follows
that for all i ∈ I and z ∈ 	I ,

φi(z) − zi = −δi logEQ(z)

[
1 + Ci(z)

δ−i

]
+ δi

∑
j∈I

λj logEQ(z)

[
1 + Cj (z)

δ−j

]
,

where we note that the quantity λ(z) cancels in this equation. Now suppose that
z� ∈ 	I is a fixed point of φ. From the last equality, it follows that the quantities
EQ(z�)[1 + Ci(z

�)/δ−i] have the same value, which we call x(z�), for all i ∈ I . In
other words, EQ(z�)[Ci(z

�)] = δ−i (x(z�) − 1) for all i ∈ I . Since
∑

i∈I Ci(z
�) = 0,

we obtain that x(z�) = 1, which implies that EQ(z�)[Ci(z
�)] = 0 for all i ∈ I , in turn

implying that z� corresponds to a Nash equilibrium. �

In view of Lemma A.3, the existence of a Nash equilibrium follows if we can
show that φ has at least one fixed point. For any z ∈ 	I and i ∈ I , the strong bound
Ci(z) > −δ−i implies ui(z) ≥ −δ−i . Furthermore, u(z) ≤ u∗ for all z ∈ 	I by ag-
gregate optimality of an Arrow–Debreu equilibrium. Therefore, it follows that

φi(z) = ui(z) − u∗
i + λi

(
u∗ − u(z)

) ≥ −δ−i − u∗
i , i ∈ I, z ∈ 	I .

Define the set K := {z ∈ 	I | zi ≥ −δ−i − u∗
i , ∀i ∈ I } and note that K is a compact

and convex subset of 	I . Since φ is continuous and maps K to K , Brouwer’s fixed
point theorem implies that φ has at least one fixed point on K , which establishes
the claim. (In fact, according to the discussion in Sect. 4.3.4, any fixed point must
actually lie in the smaller set {z ∈ 	I | zi ≥ −u∗

i , ∀i ∈ I }.) �

A.6.2 Proof of uniqueness in the two-agent case

Note that (z0, z1) ∈ 	I if and only if z0 = −z1. In the course of the proof, we identify
R and 	I via R � z ↔ (z,−z) ∈ 	I , that is, by considering only the “zero” coordi-
nate. Correspondingly, for z ∈ R, we write Ci(z) instead of Ci((z,−z)) for i ∈ {0,1};
similarly, for z ∈ R, we write L(z) instead of L(z,−z) in (A.9).
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In view of Proposition 4.6 and the equality C1(z) = −C0(z) for all z ∈ R, we need
to prove the existence of a unique z� ∈ R such that EQ(z�)[C0(z

�)] = 0; since the
existence was already established, we only focus on the uniqueness here. Define the
continuous function R � z �→ f0(z) = EQ(z)[C0(z)]; then, it suffices to show that f0
is strictly increasing.

Recall that C1(z) = −C0(z) for all z ∈ R and rewrite (4.17) as

C0(z) + δ0δ1

δ
log

1 + C0(z)/δ1

1 − C0(z)/δ0
= z + C∗

0 , ∀z ∈ R. (A.13)

Differentiating with respect to z ∈ R, we obtain after some algebra that

C′
0(z) = (δ1 + C0(z))(δ0 − C0(z))

δ0δ1 + (δ1 + C0(z))(δ0 − C0(z))
, ∀z ∈ R.

Since −δ1 < C0(z) < δ0, C′
0(z) is clearly a (0,∞)-valued random variable for all

z ∈ R. Furthermore, since L(z) = λ0 log(1 + C0(z)/δ1) + λ1 log(1 − C0(z)/δ0) for
z ∈ R, differentiation and simple algebra give

L′(z) = (δ0 − δ1) − C0(z)

(δ1 + C0(z))(δ0 − C0(z))
C′

0(z)

= (δ0 − δ1) − C0(z)

δ0δ1 + (δ1 + C0(z))(δ0 − C0(z))
, ∀z ∈ R.

In other words, upon defining q(x) = (x + δ1 − δ0)/(δ0δ1 + (δ1 + x)(δ0 − x)) for
x ∈ (−δ1, δ0), L′(z) = −q(C0(z)) for all z ∈ R. Since

q ′(x) = (
2δ0δ1 + (x + δ1 − δ0)

2)/(δ0δ1 + (δ1 + x)(δ0 − x)
)2

> 0

for all x ∈ (−δ1, δ0), the covariance between C0(z) and −L′(z) is nonnegative under
any probability for all z ∈ R. Continuing, if we take into account that

log
(
dQ(z)/dPi

) ∼ log
(
dQ(z)/dQ∗) + log(dQ∗/dPi ) ∼ −L(z) − C∗

i /δi

for all i ∈ I , it is straightforward to compute that for all z ∈ R, we have

f ′
0(z) = EQ(z)[C′

0(z)] − CovQ(z)

(
C0(z),L

′(z)
)
.

Since C′
0(z) is a (0,∞)-valued random variable and CovQ(z)(C0(z),L

′(z)) ≤ 0 for
all z ∈ R, the claim is proved. �

A.7 Proof of Proposition 5.2

For the remainder of the Appendix, we define δm := δm
0 + δ1, λm

0 := δm
0 /δm and

λm
1 := δ1/δ

m = 1 − λm
0 for all m ∈ N. In view of Theorem 2.2 and the fact that we

have L
0- limm→∞(dQm,∗/dP0) = 1, we need to focus on the limit of the sequence

(H(Qm,∗ |P1))m∈N. For each m ∈ N, similarly to (5.1), we have

dQm,∗

dP1
= EP1

[(
dP0

dP1

)λm
0
]−1(dP0

dP1

)λm
0

.
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Therefore, with Z := dP0/dP1 and φ(x) = x logx, we have

H(Qm,∗ |P1) = EP1[φ(Zλm
0 )] − φ(EP1 [Zλm

0 ])
EP1[Zλm

0 ] .

Under Assumption 5.1, the fact that limm→∞ λm
0 = 1 and the dominated convergence

theorem give that limm→∞ H(Qm,∗ |P1) = EP1 [φ(Z)] = H(P0 |P1). Since

C
m,∗
0 = −C

m,∗
1 = δ1 log(dQm,∗/dP1) − δ1H(Qm,∗ |P1),

the limiting relationship C
∞,∗
0 = δ1 log(dP0/dP1) − δ1H(P0 |P1) readily follows.

Continuing, for m ∈ N, note that u
m,∗
0 = U0(C

m,∗
0 ) ≤ EP0 [Cm,∗

0 ]. Note that there
exists c > 0 such that supm∈N |Cm,∗

0 | ≤ c(1 + |log(dP0/dP1)|). Under Assump-
tion 5.1, we have log(dP0/dP1) ∈ L

1(P0), which means that the dominated conver-
gence theorem can be applied and gives lim supm→∞ u

m,∗
0 ≤ EP0 [C∞,∗

0 ] = 0. Since
0 ≤ u

m,∗
0 for all m ∈ N, limm→∞ u

m,∗
0 = 0 follows.

Moving on to agent 1, the fact that u
m,∗
1 = δ1H(Qm,∗ |P1) for all m ∈ N and the

previous discussion give limm→∞ u
m,∗
1 = δ1H(P0 |P1). The proof is complete. �

A.8 Proof of Lemma 5.3

Since (−1,∞) � x �→ x + log(1 + x) is strictly increasing and continuous and
maps (−1,∞) to (−∞,∞), it follows that L

0- limz→−∞ C∞
0 (z) = −δ1 and

L
0- limz→∞ C∞

0 (z) = ∞. Let D∞
0 (z) := 1 + C∞

0 (z)/δ1 for all z ∈ R. On
{C∞

0 (z) > 0}, we have 1/D∞
0 (z) ≤ 1. On {C∞

0 (z) ≤ 0}, we have

δ1 logD∞
0 (z) ≥ C∞

0 (z) + δ1 logD∞
0 (z) = z + C

∞,∗
0 ,

which implies that

1/D∞
0 (z) ≤ exp

( − (z + C
∞,∗
0 )/δ1

) = exp
(
H(P0 |P1) − z/δ1

)
(dP1/dP0).

Since 1/D∞
0 (z) ≤ 1∨exp(H(P0 |P1)−z/δ1)(dP1/dP0) everywhere, Assumption 5.1

implies that the function

R � z �→ EP0

[
1

D∞
0 (z)

]
= EP0

[
1

1 + C∞
0 (z)/δ1

]

is (0,∞)-valued, continuous, strictly decreasing and, in view of the limiting be-
haviour of R � z �→ C∞

0 (z) and the monotone convergence theorem, maps R to
(0,∞). Therefore, the result follows. �

A.9 Proof of Theorem 5.4

To ease the reading, throughout the proof, for all m ∈ N, define the (0,1/λm
1 )-valued

random variable D
m,�
0 := 1 + C

m,�
0 /δ1 and the (0,∞)-valued random variable
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D
m,r
0 := 1 + C

m,r
0 /δ1. We use the obvious notation Q

m,� ∈ P for m ∈ N. As in (3.5),
let Qm,r

0 ∈P be defined via

log
dQm,r

0

dP0
∼ −λm

0 log

(
1 + C

m,r
0

δ1

)
+ λm

1 log
dP1

dP0
,

and recall that EQ
m,r
0

[Cm,r
0 ] = 0 for all m ∈ N, as follows from Proposition 3.2.

For each m ∈ N, define wm : (0,∞) → R and φm : (0,1/λm
1 ) → R by

wm(x) = δ1 (x − 1) + λm
0 δ1 log(x), x ∈ (0,∞), (A.14)

φm(x) = δ1 (x − 1) + λm
0 δ1 log

λm
0 x

1 − λm
1 x

, x ∈ (0,1/λm
1 ). (A.15)

By the equivalence C
m,∗
0 ∼ δm

0 log(dP0/dQm,∗) ∼ δm
0 λm

1 log(dP0/dP1), (3.2) and
(4.4), note that

wm(D
m,r
0 ) = z

m,r
0 + C

m,∗
0 , φm(D

m,�
0 ) = z

m,�
0 + C

m,∗
0 , ∀m ∈ N, (A.16)

for an appropriate sequence (z
m,r
0 )m∈N from Theorem 3.7 and the sequence (z

m,�
0 )m∈N

from Theorem 4.2. The next two lemmas show in particular that (z
m,�
0 )m∈N and

(z
m,r
0 )m∈N are bounded.

Lemma A.4 The sequence (z
m,�
0 )m∈N is bounded, and there exists a ∈ R such that

log(1/D
m,�
0 ) ≤ a + log (dP1/dP0) holds on {Dm,�

0 ≤ 1}, ∀m ∈ N. (A.17)

Proof Note that EQm,� [Cm,�
0 ] = 0 is equivalent to EQm,� [Dm,�

0 ] = 1 for all m ∈ N.
Applying (4.2) for i = 1 and using the fact that C

m,∗
1 /δ1 ∼ log(dP1/dQm,∗) and

(4.3), it follows that

C
m,�
1

δ1
+ log

(
1 + C

m,�
1

δm
0

)
∼ C

m,∗
1

δ1
+ log

dQm,∗

dQm,� ∼ log
dP1

dQm,� .

Coupling the last equivalence with C
m,�
1 /δ1 = −C

m,�
0 /δ1 = 1 − D

m,�
0 , after some

algebra, we obtain log(dQm,�/dP1) ∼ D
m,�
0 − log(1 − λm

1 D
m,�
0 ). Therefore, for all

m ∈ N,

1 = EQm,� [Dm,�
0 ] = EP1[exp(D

m,�
0 )D

m,�
0 /(1 − λm

1 D
m,�
0 )]

EP1[exp(D
m,�
0 )/(1 − λm

1 D
m,�
0 )] ≥ EP1[Dm,�

0 ],

where the inequality CovP1(exp(D
m,�
0 )/(1 − λm

1 D
m,�
0 ),D

m,�
0 ) ≥ 0, valid for all

m ∈ N in view of comonotonicity, was used. Since EP1[Dm,�
0 ] ≤ 1 for all m ∈ N,

(D
m,�
0 )m∈N is L0-bounded.
Similarly, applying (4.2) (for i = 0), we obtain

C
m,�
0

δm
0

+ log

(
1 + C

m,�
0

δ1

)
∼ C

m,∗
0

δm
0

+ log
dQm,∗

dQm,� ∼ log
dP0

dQm,�
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or, equivalently, log(dQm,�/dP0) ∼ −δ1D
m,�
0 /δm

0 − logD
m,�
0 . For m ∈ N, it follows

that

1 = 1

EQm,� [Dm,�
0 ] = EP0 [(1/D

m,�
0 ) exp(−δ1D

m,�
0 /δm

0 )]
EP0[exp(−δ1D

m,�
0 /δm

0 )] ≥ EP0[1/D
m,�
0 ],

where the last inequality follows since CovP0(exp(−δ1D
m,�
0 /δm

0 ),1/D
m,�
0 ) ≥ 0 for

all m ∈ N. The fact that EP0[1/D
m,�
0 ] ≤ 1 for all m ∈ N implies that (1/D

m,�
0 )m∈N is

L
0-bounded.

We then obtain that (logD
m,�
0 )m∈N is bounded in L

0, from which it follows that
the family {φm(D

m,�
0 ) : m ∈ N} is bounded in L

0. As (C
m,∗
0 )m∈N converges in L

0,
(A.16) implies that the family {zm,�

0 : m ∈ N} is bounded (in R).
Continuing, since x ∈ (0,1) implies φm(x) ≤ λm

0 δ1 logx, it follows that

logD
m,�
0 ≥ (1/λm

0 δ1)φ
m(D

m,�
0 ) = (1/λm

0 δ1)(z
m,� + C

m,∗
0 )

on the event {Dm,�
0 ≤ 1}. A combination of C

m,∗
0 = δm

0 log(dP0/dQm,∗) + u
m,∗
0 and

(5.1) gives

C
m,∗
0

λm
0 δ1

= − log
dP1

dP0
+ 1

λm
1

logEP0

[(
dP1

dP0

)λm
1
]

+ u
m,∗
0

λm
0 δ1

, ∀m ∈ N. (A.18)

The second and third terms of the right-hand side of (A.18) converge (to −H(P0 |P1)

and zero, respectively), and the sequence (zm,�/λm
0 )m∈N is bounded in R; therefore,

the existence of a ∈ R such that (A.17) holds readily follows. �

Lemma A.5 The sequence (z
m,r
0 )m∈N is bounded, and there exists c ∈ R such that

log(1/D
m,r
0 ) ≤ c + log (dP1/dP0) on {Dm,r

0 ≤ 1}, ∀m ∈ N. (A.19)

logD
m,r
0 ≤ c − log (dP1/dP0) on {Dm,r

0 > 1}, ∀m ∈ N. (A.20)

Proof Recall that EQ
m,r
0

[Dm,r
0 ] = 1 for all m ∈ N. In view of (3.2), we obtain

logD
m,r
0 ∼ − log

dP1

dP0
− D

m,r
0

λm
0

, ∀m ∈ N.

Further, log(dQm,r
0 /dP0) ∼ −λm

0 logD
m,r
0 + λm

1 log(dP1/dP0) due to (3.5). The last
two facts give log(dQm,r

0 /dP1) ∼ D
m,r
0 . Therefore, for m ∈ N,

1 = EQ
m,r
0

[Dm,r
0 ] = EP1 [exp(D

m,r
0 )D

m,r
0 ]/EP1 [exp(D

m,r
0 )] ≥ EP1[Dm,r

0 ],

where the last inequality follows from CovP1(exp(D
m,r
0 ),D

m,r
0 ) ≥ 0 for all m ∈ N.

It follows that EP1[Dm,r
0 ] ≤ 1 for all m ∈ N, which implies that (D

m,r
0 )m∈N is

L
0-bounded. Hence, the family {(wm(D

m,x
0 ))+ : m ∈ N} is also bounded in L

0. Since
(C

m,∗
0 ) converges in L

0, (A.16) implies that (z
m,r
0 )m∈N is bounded from above (in R).

By way of contradiction, suppose that (z
m,r
0 )m∈N is not bounded from below. Pass-

ing to a subsequence if necessary, we may assume that (z
m,r
0 )m∈N is a sequence
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of negative numbers with limm→∞ z
m,r
0 = −∞. Hence, again by (A.16), we get

limm→∞ D
m,r
0 = 0. Since x + logx ≤ 1/λm

0 + (1/λm
0 δ1)w

m(x) for all x ≥ 1 and
z
m,r
0 ≤ 0 for all m ∈ N, we get that for all m, D

m,r
0 + logD

m,r
0 ≤ 1/λm

0 + C
m,∗
0 /λm

0 δ1
on {Dm,r

0 > 1}. Given (A.18), we conclude the existence of κ ∈ R such that for all
m ∈ N, D

m,r
0 + logD

m,r
0 ≤ κ + log(dP0/dP1) on {Dm,r

0 > 1}. It follows that we
can use the dominated convergence theorem on the right-hand side of the equal-
ity EQ

m,r
0

[Dm,r
0 ] = EP1[exp(D

m,r
0 )D

m,r
0 ]/EP1 [exp(D

m,r
0 )] for all m ∈ N and obtain

limm→∞ EQ
m,r
0

[Dm,r
0 ] = 0, which contradicts the fact that EQ

m,r
0

[Dm,r
0 ] = 1 for all

m ∈ N. We conclude that (z
m,r
0 )m∈N is also bounded from below.

To show (A.19), note that wm(x) ≤ λm
0 δ1 logx for 0 < x ≤ 1; hence,

logD
m,r
0 ≥ (z

m,r
0 + C

m,∗
0 )/(λm

0 δ1) on {Dm,r
0 ≤ 1} for all m ∈ N. From (A.18), we

obtain that for all m ∈ N,

log
1

D
m,r
0

− log
dP1

dP0
≤ − 1

λm
1

logEP0

[(
dP1

dP0

)λm
1
]

− z
m,r
0 + u

m,∗
0

λm
0 δ1

.

The right-hand side of this inequality is bounded in R; therefore, (A.19) follows.
Similarly, since λm

0 δ1 logx ≤ wm(x) for x > 1, we obtain for all m ∈ N that
logD

m,r
0 ≤ (z

m,r
0 + C

m,∗
0 )/(λm

0 δ1) on {Dm,r
0 > 1}. Using the same estimates from

(A.18) that were used to establish (A.19), (A.20) follows. �

Lemma A.6 Take z
∞,�
0 as in Lemma 5.3. If (z

mk,�
0 )k∈N is any convergent subse-

quence of (zm,�
0 )m∈N, then limk→∞z

mk,�
0 = z

∞,�
0 and L

0- limk→∞C
mk,�
0 =C∞

0 (z
∞,�
0 ).

Similarly, we have limk→∞ z
mk,r
0 = z

∞,�
0 and L

0- limk→∞ C
mk,r
0 = C∞

0 (z
∞,�
0 ) when-

ever (z
mk,r
0 )k∈N is a convergent subsequence of (z

m,r
0 )m∈N.

Proof Set ẑ∞
0 := limk→∞ z

mk,�
0 and z̃∞

0 := limk→∞ z
mk,r
0 . Define the function

(0,∞) � x �→ φ(x) = δ1(x − 1) + δ1 logx and note that both (φm)m∈N of (A.15)
and (wm)m∈N of (A.14) converge uniformly to φ on compact subsets of (0,∞).
This fact, combined with (A.16) and Lemmas A.4 and A.5, implies that (D

mk,�
0 )k∈N

has a (0,∞)-valued L
0-limit D̂∞

0 = 1 + Ĉ∞
0 /δ1 and (D

mk,r
0 )k∈N has a

(0,∞)-valued L
0-limit D̃∞

0 = 1 + C̃∞
0 /δ1, satisfying φ(D̂∞

0 ) = ẑ∞
0 + C

∞,∗
0 and

φ(D̃∞
0 ) = z̃∞

0 + C
∞,∗
0 .

We first tackle the Nash equilibrium case. In the proof of Lemma A.4, the equality

EP0 [(1/D
mk,�
0 ) exp(−δ1D

mk,�
0 /δ

mk

0 )]
EP0 [exp(−δ1D

mk,�
0 /δ

mk

0 )] = 1, ∀k ∈ N,

was established. Since limk→∞ δ
mk

0 = ∞ and exp(−δ1D
mk,�
0 /δ

mk

0 ) ≤ 1 for all k ∈ N,
(A.17) allows us to use the dominated convergence theorem to obtain

EP0[(1 + Ĉ∞
0 /δ1)

−1] = EP0 [1/D̂∞
0 ] = 1.

Lemma 5.3 then yields ẑ∞
0 = z

∞,�
0 , which also implies Ĉ∞

0 = C
∞,�
0 (z

∞,�
0 ).

We continue to deal with the best response case. Since (3.5) implies that

log(dQmk,r/dP0) ∼ −λ
mk

0 logD
mk,r
0 + λ

mk

1 log(dP1/dP0),
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we obtain

1 = 1

EQmk,r [Dmk,r
0 ] = EP0 [(Dmk,r

0 )−λ
mk
0 (dP1/dP0)

λ
mk
1 ]

EP0 [(Dmk,r
0 )λ

mk
1 (dP1/dP0)

λ
mk
1 ]

, ∀k ∈ N.

By the domination relationship in (A.19), we may apply the dominated convergence
theorem in the numerator to obtain

lim
k→∞EP0

[
(D

mk,r
0 )−λ

mk
0 (dP1/dP0)

λ
mk
1

] = EP0 [1/D̃∞
0 ].

Similarly, the domination relationship in (A.19) allows us to apply the dominated
convergence theorem in the denominator to obtain

lim
k→∞EP0

[
(D

mk,r
0 )λ

mk
1 (dP1/dP0)

λ
mk
1

] = 1.

Combining everything, we obtain EP0[1/D̃∞
0 ] = 1, and by Lemma 5.3, it follows that

z̃∞
0 = z

∞,�
0 and D̃∞

0 =1+C∞
0 (z

∞,�
0 )/δ0, which in turn implies C̃∞

0 =C∞
0 (z

∞,�
0 ). �

We may now conclude the proof of Theorem 5.4. By way of contradiction,
if L

0- limm→∞ C
m,�
0 = C∞

0 (z
∞,�
0 ) fails, there exist ε ∈ (0,1) and a subsequence

(C
mk,�
0 )k∈N of (Cm,�)m∈N such that E[1 ∧ |Cmk,r

0 − C∞
0 (z

∞,�
0 )|] > ε for all k ∈ N.

Since the sequence (z
mk,�
0 )k∈N is bounded by Lemma A.4, there exists a further

subsequence of (z
mk,�
0 )k∈N that is convergent. Then Lemma A.6 implies that there

exists a further subsequence of (C
mk,�
0 )k∈N that L0-converges to C∞

0 (z
∞,�
0 ), con-

tradicting the fact that E[1 ∧ |Cmk,�
0 − C∞

0 (z
∞,�
0 )|] > ε for all k ∈ N. The proof

that L
0- limm→∞ C

m,r
0 = C∞

0 (z
∞,�
0 ) is carried out in the exact same way, using

Lemma A.5 in place of Lemma A.4. �

A.10 Proof of Proposition 5.5

Recall that u
m,�
0 = −δm

0 logEP0 [exp(−C
m,�
0 /δm

0 )] for all m ∈ N. On the one hand,
u

m,�
0 ≤ EP0 [Cm,�

0 ] for all m ∈ N. From (4.4) and (A.16), we get that on the
event {Cm,�

0 > 0}, we have C
m,�
0 ≤ z

m,�
0 + C

m,∗
0 for all m ∈ N. Therefore, by

(A.18), Lemma A.4 and Proposition 5.2, there exists a constant k > 0 such that
C

m,�
0 ≤ k + log+(dP0/dP1) for all m ∈ N. By Assumption 5.1 and (the reverse ver-

sion of) Fatou’s lemma, it follows that lim supm→∞ u
m,�
0 ≤ EP0[C∞,�

0 ]. On the other
hand, since limm→∞ δm

0 = ∞, it follows for all k ∈ N that

lim inf
m→∞ u

m,�
0 ≥ lim inf

m→∞
(−k logEP0[exp(−C

m,�
0 /k)])

= −k logEP0 [exp(−C
∞,�
0 /k)],

where the last equality follows from the dominated convergence theorem, and where
the fact that −C

m,�
0 ≤ δ1 for all m ∈ N is also used. Sending k → ∞, we get
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lim infm→∞ u
m,�
0 ≥ limk→∞(−k logEP0 [exp(−C

∞,�
0 /k)]) = EP0 [C∞,�

0 ]. Combin-
ing this with the inequality lim supm→∞ u

m,�
0 ≤ EP0[C∞,�

0 ], we obtain

lim
m→∞u

m,�
0 = EP0[C∞,�

0 ] = EQ∞,�
[(

1 + C
∞,�
0

δ1

)
C

∞,�
0

]
= 1

δ1
VarQ∞,�(C∞,�

0 ).

Since limm→∞ u
m,∗
0 = 0, limm→∞(u

m,�
0 − u

m,∗
0 ) = (1/δ1)VarQ∞,�(C∞,�

0 ) follows.
To obtain the limiting utility loss for agent 1, taking expectations with respect
to P0 in the equality C

∞,�
0 + δ1 log(1 + C∞,�/δ1) = z

∞,�
0 + C

∞,∗
0 , we ob-

tain EP0[C∞,�
0 ] + δ1EP0[log(dP0/dQ∞,�)] = z

∞,�
0 , where we used the fact that

1 + C
∞,�
0 /δ1 = dP0/dQ∞,�. Recalling EP0[C∞,�

0 ] = (1/δ1)VarQ∞,�(C∞,�
0 ), we ob-

tain z
∞,�
0 = (1/δ1)VarQ∞,�(C∞,�

0 )+ δ1H(P0 |Q∞,�). In particular, since z
∞,�
0 ∈ R+,

it follows that VarQ∞,�(C∞,�
0 ) < ∞ and H(P0 |Q∞,�) < ∞. Now recall that

limm→∞ z
m,�
0 = z

∞,�
0 was obtained in the proof of Theorem 5.4 and that from (4.9),

z
m,�
0 = λm

0 (um,∗ − um,�) − (u
m,∗
0 − u

m,�
0 ) = λm

0 (u
m,∗
1 − u

m,�
1 ) − λm

1 (u
m,∗
0 − u

m,�
0 ).

Since limm→∞(u
m,∗
0 − u

m,�
0 ) = (1/δ1)VarQ∞,�(C∞,�

0 ) < ∞, limm→∞ λm
0 = 1 and

limm→∞ λm
1 = 0, it follows that

lim
m→∞(u

m,∗
1 − u

m,�
1 ) = lim

m→∞ z
m,�
0 = z

∞,�
0 = 1

δ1
VarQ∞,�(C∞,�

0 ) + δ1H(P0|Q∞,�),

which concludes the proof. �

A.11 Proof of Theorem 5.7

Under Assumption 5.6, we have δm
0 log(dPm

0 /dQm,∗) ∼ λ1ξ0 − λ0ξ1 for all m ∈ N;
therefore, C

m,∗
0 = λ1ξ0 − λ0ξ1 − EQm,∗ [λ1ξ0 − λ0ξ1] for all m ∈ N. Because

(λ1ξ0 − λ0ξ1) ∈ L
∞ and (Qm,∗)m∈N converges to P in the total-variation norm,

we readily obtain limm→∞ EQm,∗ [λ1ξ0 − λ0ξ1] = EP[λ1ξ0 − λ0ξ1] = 0; therefore,
limm→∞ C

m,∗
0 = λ1ξ0 − λ0ξ1 follows.

We proceed with the limiting behaviour of the sequence (Cm,�)m∈N. For each
m ∈ N, define the function

(−δm
1 , δm

0 ) � y �→ ψm(y) := y + λ0δ
m
1 log

1 + y/δm
1

1 − y/δm
0

.

It then follows by (A.13) that ψm(C
m,�
0 ) = z

m,�
0 + C

m,∗
0 for all m ∈ N. Note that ψm

is strictly increasing with ψm(0) = 0 for all m ∈ N; furthermore, (ψm)m∈N converges
uniformly on compact subsets of R to ψ∞ : R → R defined by ψ∞(y) = 2y.

Lemma A.7 The sequence (z
m,�
0 )m∈N is bounded in R.

Proof We show that (z
m,�
0 )m∈N is bounded above. A symmetric argument applied to

agent 1 shows that (z
m,�
1 )m∈N is bounded above; since z

m,�
0 = −z

m,�
1 for all m ∈ N, it

follows that (z
m,�
0 )m∈N is also bounded below.
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Recall that EQm,� [Cm,�
0 ] = 0 for all m ∈ N. As in the beginning of the proof of

Lemma A.4, applying (4.2) for i = 1 and using (4.3), we have

log
dQm,�

dPm
1

∼ C
m,�
0

δm
1

− log

(
λm

0 − C
m,�
0

δm

)
∼ C

m,�
0

δm
1

− log

(
1 − C

m,�
0

δm
0

)

for all m ∈ N. Therefore, for every m ∈ N,

0 = EQm,� [Cm,�
0 ] = EPm

1
[Cm,�

0 exp(C
m,�
0 /δm

1 )/(1 − C
m,�
0 /δm

1 )]
EPm

1
[exp(C

m,�
0 /δm

1 )/(1 − C
m,�
0 /δm

1 )] ≥ EPm
1
[Cm,�

0 ],

where the last inequality follows from

CovPm
1

(
exp(C

m,�
0 /δm

1 )/(1 − C
m,�
0 /δm

1 ),C
m,�
0

) ≥ 0, ∀m ∈ N.

We obtain then that EP[exp(ξ1/δ
m
1 )C

m,�
0 ] ≤ 0 for all m ∈ N.

Suppose that (z
m,�
0 )m∈N fails to be bounded above. By passing to a subsequence

if necessary, we may assume that (z
m,�
0 )m∈N is a sequence of nonnegative numbers

with limm→∞ z
m,�
0 = ∞. By (A.13), it then follows that limm→∞ P[Cm,�

0 > K] = 1
for all K ∈ R+. Furthermore, C

m,�
0 ≥ −(C

m,∗
0 )− for all m ∈ N, which, together

with the uniform boundedness of (C
m,∗
0 )m∈N, implies the existence of c0 ∈ (0,∞)

such that C
m,�
0 ≥ −c0 for all m ∈ N. Since ξ1 ∈ L

∞, exp(ξ1/δ
m
1 )C

m,�
0 ≥ −c for

all m ∈ N and an appropriate c ∈ (0,∞). The last domination from below, com-
bined with L

0- limm→∞ exp(ξ1/δ
m
1 ) = 1 and limm→∞ P[Cm,�

0 > K] = 1 for all
K ∈ R+, implies limm→∞ EP[exp(ξ1/δ

m
1 )C

m,�
0 ] = ∞, which contradicts the fact that

EP[exp(ξ1/δ
m
1 )C

m,�
0 ] ≤ 0 for all m ∈ N. It follows that (z

m,�
0 )m∈N is bounded above,

which completes the argument. �

Lemma A.8 Let (zmk,�)k∈N be any convergent subsequence of (zm,�)m∈N. Then we
have limk→∞ zmk,� = 0 and L

0- limk→∞ C
mk,�
0 = C

∞,∗
0 /2.

Proof Let z̃∞ := limk→∞ zmk,�. Due to the fact that (ψm)m∈N converges uniformly
to ψ on compact subsets of R and Lemma A.7, it follows that (C

mk,�
0 )k∈N has

an L
0-limit C̃∞

0 , and this limit satisfies the equation 2C̃∞
0 = z̃∞ + C

∞,∗
0 . Recall

the inequality EP[exp(ξ1/δ
mk

1 )C
mk,�
0 ] ≤ 0 for all k ∈ N, which was established in

the proof of Lemma A.7. Furthermore, since (zmk,�)k∈N and (C
mk,∗
0 )k∈N are con-

vergent and in particular uniformly bounded from below (for the latter sequence
of random variables, this follows from the fact that ξi ∈ L

∞ for i ∈ {0,1}) and
ξ1 ∈ L

∞, we infer the existence of c ∈ (0,∞) such that the uniform lower domination
exp(ξ1/δ

mk

1 )C
mk,�
0 ≥ −c is valid for all k ∈ N. An application of Fatou’s lemma gives

EP[C̃∞
0 ] ≤ 0. The symmetric argument from the side of agent 1 gives EP[C̃∞

0 ] ≥ 0,
which implies that EP[C̃∞

0 ] = 0. Since 2C̃∞
0 = z̃∞ + C∞,∗ and EP[C∞,∗] = 0, it

follows that z̃∞ = 0. We conclude that C̃∞
0 = C

∞,∗
0 /2. �

The proof of Theorem 5.7 can now be completed exactly as in the case of
Theorem 5.4. If L

0- limm→∞ C
m,�
0 = C

∞,∗
0 /2 were not true, then there would
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exist some ε ∈ (0,1) and a subsequence (C
mk,�
0 )k∈N of (C

m,�
0 )m∈N such that

E[1 ∧ |Cmk,�
0 − C

∞,∗
0 /2|] > ε for all k ∈ N. Since the sequence (zmk,�)k∈N is

bounded due to Lemma A.7, there exists a further subsequence of (zmk,�)k∈N that
is convergent. Then Lemma A.8 implies that there exists a further subsequence of
(C

mk,�
0 )k∈N that L0-converges to C

∞,∗
0 /2, contradicting E[1∧|Cmk,�

0 −C
∞,∗
0 /2|] > ε

for all k ∈ N. �
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