
Computability 1 (2012) 1–48
DOI
IOS Press

1

The search for natural definability in the Turing degrees

Andrew E.M. Lewis-Pye
Department of Mathematics, London School of Economics, UK
andy@aemlewis.co.uk
aemlewis.co.uk

1. Introduction
These notes came out of a course which I gave at Notre Dame1 in the autumn of 2010, and which was essentially
a course in the Turing degrees aimed at PhD students who had some experience with computability theory, but not
necessarily with techniques specific to the study of the local degrees. The programme of study described is heavily
influenced by the research of Barry Cooper, and so my hope is that this paper should be a fitting contribution to
this memorial issue in his honour. Much of the material covered revolves around the jump classes, which were
introduced by Barry and Bob Soare back in the 1970s.

The course assumes very little background knowledge: familiarity with the concepts of a Turing functional,
a Turing degree, the halting problem and such things are assumed, but nothing more advanced than this. While
the earlier material is obviously aimed at the reader who does not have much experience working with the Turing
degree structure, my belief/hope is that even the seasoned professional will find much to interest them, especially
in later sections. Despite the intensive work which has been put into the study of the Turing degrees, many very
basic questions remain open. I’ve listed a good number here, together with descriptions of techniques which might
sometimes suffice to give solutions.

The course may be thought of as being divided roughly into two parts:

Forming a picture of the Turing degrees. In the earlier sections of the course we shall establish some basic
structural properties of the Turing degrees by answering the following kind of questions:r Are there incomparable Turing degrees? What are the largest chains and anti-chains?r Is the structure a lattice?r Is the structure dense? We call a degree a minimal if a > 0 and there doesn’t exist any degree b with 0 < b < a.

Are there minimal degrees? If so, where can they be found?

As an introduction to some of the techniques we’ll be using later, we will then take a look at some of the
structural properties satisfied by 0′. In particular, we shall show that 0′ satisfies the cupping, join and meet properties
– of course these properties will be defined in what follows.

The jump hierarchy, roughly speaking, is a way of measuring the position of a degree by comparing its nth
jump with the nth jump of 0. A jump class consists of the set of degrees in one level of this hierarchy. We shall
introduce the jump classes first for the local case, as originally suggested by Cooper in [BC] and Soare in [RS], and
then we shall consider the generalized version suggested by Jockusch and Posner [JP], and we shall show that these
jump classes are all distinct.

There are many classes of degrees used by computability theorists which are defined according to properties
of their members rather than structural properties of the degree itself. Three of these classes will be of particular
use to us in our analysis of the jump classes; we shall define and prove some basic properties of the PA, the a.n.r.

1The course during which the lectures were given was funded by grant EMSW21-RTG-0838506. The author would very much like
to thank Quinn Culver and Steve Flood for detailed comments on an earlier version of the paper.

2211-3568/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSE Research Online

https://core.ac.uk/display/80784273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Andrew E.M.Lewis-Pye / The search for natural definability

and the 1-generic degrees. With all this preparation in place we shall then move on to consider more advanced topics.

Properties of the jump classes. A relation on the Turing degrees is said to be definable if there is a formula in the
language of partial orders which is true of precisely those tuples of degrees in the relation. Computability theorists
have been able to establish a good number of definability results. Shore and Slaman [SSl] showed, for example,
that the jump is definable, while Nies, Shore and Slaman [NSS] showed that all the jump classes other than low are
definable (a degree a is low if a′ = 0′, and the definability of the low degrees remains an open question). With some
notable exceptions, however, these definability results have been established through the use of techniques which
involve coding models of arithmetic into the degree structure. Such methods will not be covered in this course—for
an introduction we refer the reader to [AN2]. While the success of these coding techniques is beyond question,
a disadvantage is that these proofs of definability do not yield what might be considered natural definitions. The
notion of a natural definition here is not precise, but by a natural definition what we essentially mean is a formula
which suffices to define the relevant class and which is easy to understand. Roughly speaking, then, this means that
the definition should not be too long and should not involve too many alternations of quantifier. It remains one of the
holy grails for researchers in the area to find natural definability results for the jump classes, or for the jump function
itself. In the second part of the course we shall detail some of the work2 that has been done towards achieving this
goal, by systematically studying which basic order theoretic properties are satisfied by the degrees in each jump
class. The idea here is to begin with very simple properties and then gradually move on to consider properties which
are more complex – the hope being that at some point natural definability results will precipitate out as a result of
this process.

2. Turing reductions, and Turing degrees; A review of notation and some basic
facts

2.1. Turing functionals
We shan’t give the definition of a Turing machine and a Turing functional here (just look in any introductory text-
book, such as [BC2]). We suppose we are given a fixed effective3 listing of all the Turing functionals;r For each i ∈ ω we write Ψi in order to denote the ith Turing functional in this list;r Each Turing functional occurs infinitely many times in this list, i.e. for each i there exist infinitely many j for

which Ψi = Ψj.r For A ⊆ ω and n ∈ ω , we write Ψi(A;n) in order to denote the output of Ψi given oracle input A and on
argument n (so if this computation does not converge then Ψi(A;n) ↑). We also write Ψi(n) in order to denote
Ψi(/0;n).r We write Ψi(A) in order to denote the (possibly) partial function which on argument n is equal to Ψi(A;n). We
identify subsets of ω with their characteristic functions, so that it makes sense, for example, to write Ψi(A) =B.

We let 2<ω denote the set of finite binary strings. When f and g are (possibly) partial functions, we write f ⊆ g
in order to denote that the domain of f is a subset of the domain of g and f (n) = g(n) for all n in the domain of f .
We say that f and g are incompatible if there exists some n such that f (n) ↓ and g(n) ↓ but f (n) 6= g(n). We let 〈·, ·〉
be a computable bijection ω×ω → ω . For finite strings σ and τ , σ ∗ τ denotes the concatenation of σ and τ . For a
finite string σ , we let |σ | denote the length of σ .

In fact the particulars of the oracle Turing machine definition will normally be of no importance to us. The only
things that we need to be true of oracle Turing machines, at least for the vast majority of our proofs to go through,
are the following:

2A notable omission is some of the recent work of Shore on natural definability, see for example [SH2]
3Throughout the paper the word “effective” is used synonymously with “algorithmic”, so by an effective listing of the Turing func-

tionals we mean that there is an algorithm which, given any i ∈ ω , produces the instructions for the ith functional in the list.

Andrew E.M.Lewis-Pye / The search for natural definability 3

1. The Turing functionals include and are closed under composition with all algorithmically calculable functions
2ω ×ω → ω;

2. Turing functional computations take place in stages. If the computation Ψi(A;n) does not converge in s stages
then Ψi(A;n)[s] ↑, otherwise we define it to be equal to the value outputted by the computation. If Ψi(A;n)[s] ↓
then Ψi(A;n)[t] ↓= Ψi(A;n)[s] for all t ≥ s.

3. When a computation halts it does so in a finite number of stages and therefore only a finite number of bits of
the oracle tape can be scanned. We write Ψi(σ ;n) ↓= m if Ψi(A;n) ↓= m and this computation converges after
scanning only bits of the oracle tape < |σ |. So if Ψi(A;n) = m there exists σ ∈ 2<ω which is an initial segment
of A, such that Ψi(B;n) = m for all B⊃ σ .

4. There exists a universal machine, i.e. there exists i such that for all A, j,n, we have Ψi(A;〈j,n〉) ' Ψj(A;n)
(where ' denotes that either both values are undefined or else both are defined and equal).

2.2. Turing degrees
When there exists i such that Ψi(B) = A we say that A is Turing reducible to B, denoted A≤T B. When we say that
A is computable in B this is just another way of saying that A is Turing reducible to B.r When A≤T B and B≤T A we say that A and B are Turing equivalent, denoted A≡T B.r The Turing degree of A is the set of B such that B≡T A. Each Turing degree is therefore a countable collection

of sets.r For Turing degrees a and b we define a≤ b if A≤T B for all A ∈ a and B ∈ b. Since ≤T is transitive, this latter
condition will hold precisely when there exist any A ∈ a and B ∈ b with A≤T B.r Given X0,X1 ⊆ ω , we let X0⊕X1 denote the set whose characteristic function is defined as follows: for all
n, X0⊕X1(2n) = X0(n) and X0⊕X1(2n + 1) = X1(n). We write ⊕k

i=0Xi in order to denote ((· · ·(X0⊕X1)⊕
X2) · · ·⊕Xk).
Since any set which computes A and computes B also computes A⊕B, and since A⊕B clearly computes both
of A and B, every pair of Turing degrees has a least upper bound.

2.3. The jump and c.e. sets
For any set A, A′ is the halting set for A:

A′ = {i : Ψi(A; i) ↓}.

. The basic facts are as follows:r A′ is always of degree strictly above the degree of A;r If A≤T B then A′ ≤T B′;r For any degree a we can therefore define a′, the jump of a, to be the degree of A′ for A ∈ a. In particular, 0′
denotes the jump of 0 and for all a we have a′ ≥ 0′.r A set is computably enumerable (c.e.) if there is an algorithm which enumerates the elements of the set (but
not necessarily in increasing order). Formally, A⊆ω is c.e. if there exists i such that A = {n : Ψi(n) ↓}. We let
Wi denote the ith c.e. set, so Wi = {n : Ψi(n) ↓}. We also let Wi,s denote the set of numbers enumerated into
Wi by stage s, i.e. Wi,s = {n : Ψi(n)[s] ↓}, and we assume that if Ψi(n)[s] ↓ then s≥ n.r The halting set /0′ is an example of a c.e. set which is not computable.r The computably enumerable (c.e.) degrees are those containing computably enumerable sets. Since any c.e.
set is computable in /0′, all c.e. degrees are below 0′.r The sets of degree below 0′ are precisely those that can be computably approximated, i.e. those A for which
there exists a computable sequence of finite sets {As}s∈ω such that, for all n there exists t, As(n) = A(n) for all
s≥ t.

4 Andrew E.M.Lewis-Pye / The search for natural definability

r Various important sets are of degree 0(2) or 0(3) (where a(n) denotes the nth jump of a, i.e. the result when we
start with a and apply the jump operator n times). Examples are Tot={i : (∀n)Ψi(n) ↓} which is of degree 0(2),
and Comp which is the set of all i such that Wi is computable and is of degree 0(3).

3. Chains, antichains and independent sets
The fact that a′ is always strictly above a suffices to show us that there does not exist a greatest Turing degree.
Perhaps the next natural question is whether there exists a pair of incomparable Turing degrees.

Theorem 3.1 ([KP]) There exist incomparable Turing degrees.

Proof. The basic format of the proof is one that very soon becomes familiar to anybody who works in computability
theory. Proofs in computability theory very often involve constructing a number of subsets of ω – in this case we
need to construct two sets A and B. We write down a countable list of requirements, satisfaction of which will suffice
to give the theorem:

P2s: Ψs(A) 6= B;
P2s+1: Ψs(B) 6= A.

The even requirements suffice to ensure that A does not compute B and the odd requirements suffice to ensure
that B does not compute A.

In order to construct A and B so as to satisfy these requirements it suffices, in this case, to define a finite
extension argument. This means that we define a construction which proceeds in stages, and we decide finite initial
segments αs ⊂ A and βs ⊂ B at each stage. Initially we define α0 = β0 = /0 (the string of length 0). At stage s + 1,
given αs and βs, we define αs+1 ⊃ αs and βs+1 ⊃ βs in such a way as to ensure that the next requirement in our list
is satisfied. Then ultimately we define A to be the infinite string extending all αs and we define B to be the infinite
string extending all βs. The precise instructions are as follows:

Stage 0: Define α0 = β0 = /0.
Stage 2s + 1: We are given α2s and β2s. We look to satisfy P2s. Let n be the least such that β2s(n) ↑. We ask,

“does there exist any string α ⊃ α2s such that Ψs(α;n) ↓?”

If not: then since A will extend α2s, Ψs(A;n) ↑, so that requirement P2s will be satisfied. In this case we can just
define α2s+1 to be any finite extension of α2s and we can define β2s+1 to be any finite extension of β2s.

If so: then let α2s+1 be the least such α (we may consider the finite binary strings ordered according to length
and then from left to right). Define β2s+1 to be the one element extension of β2s which disagrees with Ψs(α2s+1) on
argument n. Since A will extend α2s+1 and B will extend β2s+1, we have ensured that Ψs(A) 6= B.

Stage 2s + 2: Now we look to satisfy P2s+1. We proceed exactly as at stage 2s + 1 but with the roles of A and B
reversed. �

An analysis of this proof allows us to deduce a stronger result. Which oracle do we need in order to carry out the
construction, and so compute the characteristic functions of A and B? It suffices to be able to answer the following
question for any σ ∈ 2<ω and any n,s ∈ ω:

“does there exist any string τ ⊃ σ such that Ψs(τ;n) ↓?”

Andrew E.M.Lewis-Pye / The search for natural definability 5

We can easily devise an algorithm which, given any σ ∈ 2<ω and any n,s ∈ ω , searches for τ ⊃ σ such that
Ψs(τ;n) ↓, and which terminates if and only if it finds such a string. An oracle for /0′ can tell us whether or not this
algorithm terminates, and so suffices to answer the question above. We therefore get:

Theorem 3.2 ([KP]) There exist incomparable degrees below 0′.

Now we look to extend this result.

Definition 3.1 For i ∈ {0,1}, let ī denote 1− i. A partial function T : 2<ω → 2<ω is a tree if, for all σ ∈ 2<ω and
i ∈ {0,1}, when T(σ ∗ i) ↓:

1. T(σ) ↓⊂ T(σ ∗ i);
2. T(σ ∗ ī) ↓ and is incompatible with T(σ ∗ i).

If T is a total function of this kind, we also call it a perfect tree. The following abuse of terminology is standard: for
any string τ , we say τ is in T if τ is in the range of T. Then we say A⊂ ω is a path through T if there exist infinitely
many τ ⊂ A in T (sometimes, for the sake of emphasis, we may also refer to A as an infinite path in this case). If A
is a path through T we may also say that A lies on T.

We say that T1 is a subtree of T0, denoted T1 ⊆ T0, if the range of T1 is a subset of the range of T0.

Definition 3.2 A sequence of sets {Xi}i∈ω is independent if, for all finite F ⊆ ω and all j /∈ F, Xj 6≤T ⊕i∈FXi. A
sequence of degrees {ai}i∈ω is independent if there exists a sequence {Xi}i∈ω which is independent with Xi ∈ ai.

It is natural to ask next, what are the largest antichains we can find in the Turing degrees? By using the same
techniques we used in order to prove Theorem 3.1 it is not difficult to construct a perfect tree T such that any two
distinct paths through T are of incomparable degree. This gives us an antichain of cardinality the continuum, which
is clearly the best we can do since there are only continuum many Turing degrees. Precisely the same techniques
can also be used to show:

Theorem 3.3 ([KP]) There exists an independent sequence of degrees.

Corollary 3.1 ([KP]) Every finite poset can be embedded in the Turing degrees.

Proof. Let M = 〈M,≤〉 be a finite poset, and let M = {xi : i < n}. Let {ai}i∈ω be an independent sequence of
degrees and let Ai be of degree ai. For each k < n let F(k) be the set of all i such that xi ≤ xk, put Bk =⊕i∈F(k)Ai and
define bk to be the degree of Bk.

We define an embedding as follows: g(xi) = bi for every i < n. In order to verify that this is indeed an embedding
we must show that for all i, j < n, xi ≤ xj⇔ Bi ≤T Bj. Suppose first that xi ≤ xj. Then F(i)⊆ F(j) so the result follows
immediately. Next suppose that Bi ≤T Bj and xi 6≤ xj in order to derive a contradiction. Then Ai ≤T Bi ≤T Bj, so
Ai ≤T ⊕k∈F(j)Ak and i /∈ F(j), which contradicts the choice of {Ai}i∈ω as an independent sequence. �

By the ∃1-theory of the Turing degrees, we mean the set of sentences in the language of partial orders which
are true of the Turing degrees, and are of the form ∃x1∃x2 · · ·∃xkR(x1, · · · ,xk) for some k, where R(x1, · · · ,xk) is a
quantifier free expression with free variables x1, · · · ,xk.

Corollary 3.2 The ∃1-theory of the Turing degrees is decidable.

Proof. An ∃1 statement asserts the existence of finitely many degrees a1, ..,ak, and for some pairs i < j it asserts that
ai ≤ aj, while for other pairs it asserts that ai 6≤ aj. By Corollary 3.1, this will hold iff there is a finite poset satisfying
these conditions. In order to test whether this is the case involves running through a finite number of possibilities,
and so is decidable. �

6 Andrew E.M.Lewis-Pye / The search for natural definability

We have already seen that there does not exist a largest Turing degree. How large can a chain of Turing degrees
be? Given any countable set of Turing degrees, there exists a Turing degree strictly above every member of the set –
given {Ai}i∈ω , consider B such that B(〈i, j〉) = Ai(j) and then take B′. Therefore there exist chains of length ω1 (the
least uncountable ordinal). On the other hand, there cannot exist chains of length greater than ω1 since each Turing
degree has only countably many predecessors.

4. The Turing degrees as an upper semi-lattice
Definition 4.1 A partial order P is an upper semi-lattice if, for all x,y ∈P , there exists a least degree which is
above both x and y, denoted x∨ y. We call x∨ y the join of x and y.

We say P is a lattice if it is an upper semi-lattice and for all x,y ∈P , there exists a greatest degree which is
below both x and y, denoted x∧ y. We call x∧ y the meet of x and y.

As was mentioned previously, it is clear that any set which computes both A and B also computes A⊕B and the
Turing degrees are therefore an upper semi-lattice. In order to show that they are not a lattice we need to consider
countable ideals of degrees.

Definition 4.2 If P is an upper semi-lattice then I ⊆P is an ideal if:

1. Whenever x,y ∈I , their join x∨ y is in I ;
2. Whenever x ∈I and y≤ x, y is in I .

A set of Turing degrees X is said to be definable with parameters if there is a finite set of Turing degrees
a1, · · · ,ak and a formula in the language of partial orders F(x0, · · · ,xk) such that, for all degrees a, a ∈ X iff
F (a,a1, · · · ,ak) is true in the Turing degrees. The next theorem shows that every countable ideal in the Turing
degrees is definable with parameters – one just needs to specify an exact pair for the ideal.

Definition 4.3 If P is a partial order and I ⊆P , we say that (x,y) is an exact pair for I if, for all z ∈P , z ∈I
iff z≤ x and z≤ y.

Theorem 4.1 ([CS]) Every countable ideal in the Turing degrees has an exact pair.

Corollary 4.1 The Turing degrees are not a lattice.

Proof. Let {xi}i∈ω be a strictly increasing sequence of degrees (we could set xi+1 = x′i, for example). Let I be the
ideal generated by this sequence, i.e. any degree c is in I iff there exists xi ≥ c. Now let (a,b) be an exact pair for
I . If c≤ a and c≤ b then c ∈I and there exists xi ≥ c. Then xi+1 is also below both a and b and is strictly above
c. Thus a and b have no greatest lower bound. �

Now we prove Theorem 4.1.

Proof. We suppose that we are given an enumeration {Xs}s∈ω of all sets which are of degree in I . We must
construct A and B so as to satisfy the requirements:

Ps: Xs ≤T A and Xs ≤T B;
Qs: Let s = 〈i, j〉. Ψi(A) = Ψj(B) = C =⇒ there exists k, C = Xk.

The Ps requirements ensure that every degree in the ideal is below both a= deg(A) and b= deg(B). Then the Qs
requirements ensure that anything computable in both A and B is of degree in the ideal. Clearly these requirements
suffice to prove the theorem.

This time the proof will not be a finite extension argument, we shall describe a co-infinite extension argument.
This means that at each stage in the construction, we may define A and B on an infinite number of arguments, but at

Andrew E.M.Lewis-Pye / The search for natural definability 7

the end of each stage we will also have left each of these sets undefined on an infinite number of arguments.

In order to ensure that each Xs is computable in both A and B, the basic idea is that we divide these sets up into
columns. The sth column is all numbers of the form 〈s, j〉. If A(〈s, j〉) = Xs(j) for all j, then A will compute Xs – and
similarly for B of course. In fact, we need slightly less than this. If, for each s, A(〈s, j〉) = Xs(j) for all but finitely
many j, then this suffices to show that A computes each Xs. At each stage s + 1 we shall ensure that Xs ≤T A and
Xs ≤T B by coding Xs into the sth columns of A and B in this way.

Suppose that at the end of stage s we have already coded Xk into the kth column of A and B for each k < s, and
suppose also that:

(∗) Outside the finite set of columns we have already used for coding, we have decided only finitely many argu-
ments of A and B.

At stage s + 1 we now look to satisfy Qs. Let αs be the partial function which specifies A on the arguments we have
already decided, and let βs be the corresponding partial function for B. Note that, unless s = 0, αs and βs will not be
finite strings, but instead will be defined on an infinite number of arguments as well as being undefined on an infinite
number of arguments. We ask whether there are any extensions α ⊃ αs and β ⊃ βs for which Ψi(α) and Ψj(β) are
incompatible (and where s = 〈i, j〉).

If so, then there are finite extensions which satisfy this property. We can take these finite extensions, code Xs
into what remains of the sth columns of A and B (which will still be all but finitely many numbers), and maintain
the condition (∗).

If there is no way in which we can extend so as to force disagreement, then we will be able to show that if
Ψi(A) = Ψj(B) and is total, then it is computable in the columns of A and B which we have already determined. This
finite set of columns is essentially the join of a finite number of sets of degree in the the ideal, and so is of degree in
the ideal.

We now formally describe the construction.

Stage 0. Define α0 = β0 = /0.
Stage s+1. Let s = 〈i, j〉. We ask: does there exist α ⊃ αs and β ⊃ βs for which Ψi(α) and Ψj(β) are incompatible?
If so then let α and β be finite extensions of αs and βs respectively, which satisfy this condition. If not then let
α = αs and let β = βs.

Now let αs+1 be the least extension of α which is defined and equal to Xs(j) on all arguments of the form 〈s, j〉
for which α is undefined. Let βs+1 be defined similarly in terms of β .

This ends the formal description of the construction.

In order to show that the construction suffices to satisfy the requirements, it remains to consider what happens
when, at stage s + 1, there do not exist α ⊃ αs and β ⊃ βs for which Ψi(α) and Ψj(β) are incompatible. In this case
we claim that, if Ψi(A) and Ψj(B) are both total (and so equal) then this common value is computable in D=⊕s−1

k=0Xk,
and so is of degree in the ideal. Certainly D can decide which arguments αs and βs are defined on, and can compute
their values on all such arguments. If Ψi(A) = Ψj(B) is total, then in order to compute Ψi(A;n), an oracle for D can
proceed as follows. Find any extension α of αs such that Ψi(α;n) ↓. Such an extension must exist since A extends
αs and Ψi(A;n) ↓. Then it must be the case that Ψi(α;n) = Ψi(A;n). In order to see this, suppose otherwise. Then
let β be a finite extension of βs which is compatible with B and such that Ψj(β ;n) ↓. Since Ψi(A) = Ψj(B) it must
be the case that Ψi(α;n) 6= Ψj(β ;n) which is impossible by hypothesis. �

5. Minimal Degrees
One of the first questions one is likely to ask as one tries to understand a partial order is whether or not it is dense.
In the case of the Turing degrees, non-density is established through the existence of minimal degrees.

8 Andrew E.M.Lewis-Pye / The search for natural definability

Definition 5.1 A Turing degree a is minimal if a > 0 and there does not exist b with 0 < b < a.

Theorem 5.1 ([CS]) There exist minimal Turing degrees.

Proof. We wish to build a set A of minimal Turing degree. In order to do so, once again we begin by drawing up a
list of requirements:

Ps: A 6= Ψs(/0);
Qs: If Ψs(A) is total then either it is computable or A≤T Ψs(A).

The Ps requirements suffice to ensure that A is noncomputable. We already know a very simple technique for satis-
fying one of these requirements – find some argument n for which we have not yet specified A(n), and if Ψs(/0;n) ↓
then make A(n) different to it. The Qs requirements suffice to ensure that every set whose characteristic function is
computable in A is either computable or else is of the same degree as A. In order to satisfy these requirements we
need to consider splitting trees.

Definition 5.2 Two strings σ ,τ are Ψi-splitting if Ψi(σ) and Ψi(τ) are incompatible. We may refer to a Ψi-splitting
pair of strings just as a “Ψi-splitting”.

Definition 5.3 A tree T : 2<ω → 2<ω is a Ψi-splitting tree if any two strings in T which are incompatible are also
Ψi-splitting.

Definition 5.4 A tree T : 2<ω → 2<ω is a Ψi-nonsplitting tree if no pair of strings in T are Ψi-splitting.

Definition 5.5 We say τ is of level n in a tree T if τ = T(σ) for some σ of length n. We say τ is a leaf of T if τ ∈ T
and there do not exist any proper extensions of τ in T. We say T is of level n if it is finite and all leaves are of level n.

Note that a tree which is not Ψi-splitting will not necessarily be Ψi-nonsplitting. The following two lemmas are
precisely what we need in order to develop a technique for satisfying the Qs requirements.

Lemma 5.1. If A lies on T which is a partial computable Ψi-splitting tree and Ψi(A) is total then A≤T Ψi(A).

Proof. Suppose that A lies on T which is a partial computable Ψi-splitting tree and Ψi(A) is total. Now we suppose
that we have an oracle for Ψi(A) and we show how one can compute A. We start at the base of T and work our way
upwards.

We start with the knowledge that T(/0) ↓⊂ A. Since A lies on T , one of T(0) and T(1) must be an initial segment
of A, so compute T(0) = τ0 and T(1) = τ1 – the fact that A lies on T means that these values must be defined. Since
T is Ψi-splitting one of Ψi(τ0) and Ψi(τ1) must be incompatible with Ψi(A). Determine which this is, and therefore
which of τ0 and τ1 is an initial segment of A.

In the process just described, we started by knowing which string of level 0 in T is an initial segment of A (since
there is only one), and we worked out which string of level 1 is an initial segment of A. Now we can proceed in
exactly the same way working above this string in order to work out which string of level 2 in T is an initial segment
of A, and so on. �

Lemma 5.2. If A lies on T which is partial computable and Ψi-nonsplitting, then Ψi(A) is computable if total.

Proof. Suppose that A lies on T which is partial computable and also Ψi-nonsplitting, and suppose further that
Ψi(A) is total. In order to compute Ψi(A;n) simply search until σ ∈ T is found with Ψi(σ ;n) ↓. Such a string σ must
exist since A lies on T and Ψi(A;n) ↓. It must be the case that Ψi(σ ;n) = Ψi(A;n) since T is Ψi-nonsplitting. �

Lemmas 5.1 and 5.2 provide the key to ensuring minimality. We must ensure for each i that either:

1. A lies on a partial computable T which is Ψi-splitting. Then the conditions of Lemma 5.1 are satisfied, so that
if Ψi(A) is total then A≤T Ψi(A), or

2. A lies on a partial computable T which is Ψi-nonsplitting. Then the conditions of Lemma 5.2 are satisfied, so
that if Ψi(A) is total it is computable.

Andrew E.M.Lewis-Pye / The search for natural definability 9

Recall that by σ ∗τ we mean the string which is σ concatenated with τ , i.e. the string τ ′ such that |τ ′|= |σ |+ |τ|
and such that τ ′(n) = σ(n) for all n < |σ | and τ ′(n + |σ |) = τ(n) for all n < |τ|. We need a couple more simple
definitions before we begin describing the actual construction.

Definition 5.6 If T is a tree and τ = T(σ), then we define Tτ , the subtree of T above τ in the obvious way: for all
σ0, Tτ(σ0) = T(σ ∗σ0).

Definition 5.7 Given a partial computable tree T and τ in T, we define T1 which is the Ψi-splitting subtree of T
above τ by induction as follows. Set T1(/0) = τ . Suppose T1(σ) is defined. Search (in some fixed algorithmic fashion)
for two strings extending T1(σ) in T which are Ψi-splitting. For τ0,τ1 which are the first such pair of strings found,
define T1(σ ∗ 0) = τ0, T1(σ ∗ 1) = τ1. In the case that no such strings are found, T1 is undefined on all strings
properly extending σ .

The construction will proceed in stages. At each stage s we shall define a finite binary string αs and also a perfect
tree Ts, and αs will be a string in Ts. Making these definitions at stage s amounts to agreeing to the restriction that
A will extend αs and A will lie on Ts. We begin by defining α0 = /0 and T0 = id (where id is the identity function
2<ω → 2<ω). So far, this amounts to no restriction at all: A will extend the empty string and will be an infinite binary
string. At stage s+1, given αs and Ts, we further restrict the choices for A in two ways. We define αs+1 to be a string
extending αs and we define Ts+1 to be some perfect subtree of Ts. Of course we choose Ts+1 in such a way that the
restriction that A lies on Ts+1 suffices to ensure satisfaction of Qs.

We now formally describe the construction.

Stage 0. Define α0 = /0 and T0 = id.
Stage s + 1. First we satisfy Ps. Since Ts is total, there exists α ⊃ αs in this tree such that α(n) is different than
Ψs(n) for some n (where being defined counts as different than being undefined). Let α be the least such string.

Next we satisfy Qs. We ask the following question: does there exist τ in Ts extending α , such that no two strings
in Ts extending τ are Ψs-splitting?

If not: Then the Ψs-splitting subtree of Ts above α is total, let us call it T . We can just define αs+1 = α and
Ts+1 = T . Since A will lie on Ts+1, the conditions of Lemma 5.1 are satisfied, and so is Qs.

If so: Then we can define αs+1 = τ and we can define Ts+1 to be the subtree of Ts above τ . Since Ts+1 is
Ψs-nonsplitting, and A will lie on this tree, the conditions of Lemma 5.2 are satisfied and so is Qs. �

The proof just described suffices to show that minimal degrees exist, but analyzing the proof further can tell
us something about where they exist. What oracle do we require in order to run this construction? During the first
part of each stage, where we act in order to satisfy Ps, we need only to find the least n such that there are two
strings extending αs in Ts of length greater than n and which disagree on argument n – and then to decide whether
Ψs(/0;n) ↓. This last task requires only an oracle for /0′.

During the second part of each stage we need to be able to answer the following question: does there exist τ in
Ts extending α , such that no two strings in Ts extending τ are Ψs-splitting? In order to see that a /0′′-oracle suffices
to answer this question, consider the following /0′-oracle search procedure, which terminates iff the answer is yes.
Starting with α and proceeding through all the strings τ ∈ Ts extending α (ordered by length and then from left
to right), this search procedure asks whether there exist two strings in Ts extending τ which are Ψs-splitting, and
terminates if the answer is no.

This proof, then, gives the existence of minimal degrees below 0′′. Do there exist minimal degrees below 0′?
In fact there do, but no proof like the one just described, which uses perfect splitting trees, can be used in order to
construct one. In order to see this, we need to take a look at the hyperimmune-free degrees. The definition we give
here is not the original, but is provably equivalent to it.

Definition 5.8 We say A is of hyperimmune-free degree if, for every function f ≤T A, there exists a computable
function g which majorizes f , i.e. such that g(n)> f (n) for all n.

10 Andrew E.M.Lewis-Pye / The search for natural definability

So if A is of hyperimmune-free degree then it is not an ability A has to compute quickly growing functions –
for every function A computes there is a computable function which grows at least as quickly. It is not immediately
obvious that any hyperimmune-free degrees other than 0 should exist but, in fact, an analysis of the proof of Theorem
5.1 will tell us that any minimal degree constructed in this way will automatically be of hyperimmune-free degree.

Suppose that f ≤T A. Then f = Ψi(A) for some i, and in fact this holds for some i such that, for any σ ,
Ψi(σ ;n) ↓=⇒ Ψi(σ ;n′) ↓ for all n′ < n. If A lies on a perfect computable Ψi-splitting tree T , then it is easily seen
by induction on n that Ψi(σ ;n) ↓ for every σ of level n + 1 in T . Since T is a total function we can compute the set
of values Ψi(σ ;n) such that σ is of level n + 1 in T and then we can define g(n) to be greater than all these values.
In this way we compute g which majorizes f .

A degree is hyperimmune iff it is not hyperimmune-free.

Definition 5.9 When n≤ |σ |, σ � n denotes the initial segment of σ of length n (and this definition is also extended
in the natural way to the case of infinite strings).

Theorem 5.2 If a≤ 0′ then there exists f of degree a such that any function majorizing f is of degree above a. Thus,
every non-zero degree below 0′ is hyperimmune.

Proof. If A is of degree below 0′ then it has a computable approximation {As}s∈ω . For all n, let f (n) be the least
s > n such that As � n = A � n. Clearly f is computable in A. Now suppose that g majorizes f . We show that in this
case, A is computable in g. In order to compute A � n given g search for m > n such that As � n = Ag(m) � n for all s
such that m ≤ s ≤ g(m). Such an m exists because the approximation to A eventually settles on all arguments < n.
Since As � m = A � m for some s with m < s ≤ g(m) and As � n is the same for all such values of s, this common
value must be A � n. �

So long as we use perfect trees in order to construct our set of minimal degree, the set we construct will be of
hyperimmune-free degree, but all non-zero degrees below 0′ are hyperimmune. Therefore, in order to construct a
minimal degree below 0′, some modification in our approach will be required. The solution is to use partial splitting
trees.

Theorem 5.3 [GS] There exists a minimal degree below 0′.

Proof. The requirements are just as before, and other than the fact that we shall now use partial splitting trees the
basic approach is the same as before. In order to satisfy each requirement Qs we shall ensure that either A lies on a
partial computable Ψs-splitting tree, or else A lies on some partial computable tree which is Ψs-nonsplitting. What
we have to do is to replace the /0′′ question, “does there exist τ in Ts extending α , such that no two strings in Ts
extending τ are Ψs-splitting?” with a question which can be decided using an oracle for /0′.

When we asked this question in the proof of Theorem 5.1 what we were essentially asking was, “if we define
Ts+1 to be a Ψs-splitting tree, will there be dead-ends in this tree – will there be some point above which it is
undefined?”. The answer to this question allowed us to decide in one go how we should define Ts+1. Now we have
to give up on the idea that this decision can be made in one step. We begin by assuming that Ts+1 can be defined to
be a splitting tree and that we will be able to construct A so as to lie on this tree. At each stage we ask the oracle for
/0′ whether there exists at least one more pair of strings in the splitting tree, above the initial segment of A that we
have already defined. If so then we can continue with the idea that Ts+1 can be built as a splitting tree. If not, then
we can now begin to build Ts+1 as a nonsplitting tree.

Thus we now have to approximate the nested sequence of splitting trees. We let Ts
k denote our guess as to how

Tk should be defined at stage s. At any given stage s + 1 we may change our guess as to Tk, and when we do so we
have to abandon everything we previously believed about Tk′ for k′ > k. Once we get to a stage, however, when we
no longer change our mind about any Tk′ for k′ < k, we shall only change our mind about Tk a maximum of one

Andrew E.M.Lewis-Pye / The search for natural definability 11

further time (when and if we decide that it shouldn’t be a splitting tree). Clearly this means we shall only change
our mind as to how each tree should be defined a finite number of times.

We now formally describe the construction.

Stage 0. Define α0 = /0 and T0
0 = id.

Stage s + 1. We are given αs and a finite sequence of nested trees

Ts
0 ⊇ ·· · ⊇ Ts

k

for some k ≤ s. Find the least k0 such that either k0 = k + 1 or else there do not exist any strings in Ts
k0

properly
extending αs. The rest of the required action for the stage is divided into two subcases.

If k0 ≤ k: Then define Ts+1
k0

to be the subtree of Ts
k0−1 above αs. Define Ts+1

k1
= Ts

k1
for all k1 < k0 and make

Ts+1
k1
↑ for all k1 > k0. Define αs+1 to be a proper extension of αs in Ts+1

k0
which is not an initial segment of Ψs(/0).

If k0 = k + 1: Define αs+1 to be a proper extension of αs in Ts
k which is not an initial segment of Ψs(/0). Define

Ts+1
k1

= Ts
k1

for all k1 ≤ k, define Ts+1
k+1 to be the Ψk-splitting subtree of Ts

k above αs+1, and leave Ts+1
k1

undefined for
all k1 > k + 1.

This ends the formal description of the construction.

The verification. We only give a quick sketch. It is clear that each requirement Pk is satisfied. In order to show that
each requirement Qk is satisfied we must show that our approximation to each Tk eventually settles, either to some
partial computable Ψk-splitting tree or to some partial computable Ψk-nonsplitting tree, and that A lies on this tree.
This follows easily by induction. �

What we have given here is just a very brief introduction to the techniques of minimal degree construction. In
the 1960s and 1970s, as computability theorists looked to answer various global questions concerning the theory
of the Turing degrees, such as the decidability or otherwise of various fragments of the theory, the path originally
taken in order to achieve this was through a detailed analysis of the initial segments of the structure (where an initial
segment is a downward closed set of degrees). The techniques we have introduced here were greatly extended by
Lachlan, Thomason, Lerman and others, through the use of lattice tables and other such methods, in order to give us
a great deal of information about what the initial segments of the structure look like. It was eventually established
that the isomorphism types of countable ideals of the Turing degrees are exactly the isomorphism types of countable
upper semi-lattices with least element. For a thorough account we refer the reader to Lerman’s book [ML]. From
the latter result it can be proved that the two quantifier theory of the Turing degrees is decidable, and that the three
quantifier theory is undecidable (actually all that is required is that every finite lattice can be embedded as an initial
segment). In fact, Simpson’s original proof [SS2] in which he used coding methods in order to show that the theory
of the Turing degrees is computably isomorphic to true second order arithmetic, also relied upon initial segment
techniques. Later Slaman and Woodin [SW], however, gave a simpler (and more generally applicable) proof, which
does not use techniques of this kind.

6. Some order theoretic properties of 0′

In the following sections we shall define the local and generalized jump classes and we shall then be looking to
establish which order theoretic properties are satisfied by the degrees in each of these classes – the aim being that
we might eventually be able to establish some fairly natural order theoretic properties which suffice to define the
degrees in each class. As we discussed before, by a natural order theoretic property we mean, roughly speaking,
a property which can be described by a formula in the first order language for the Turing degrees which has ≤ as
the only non-logical symbol, which is not too long and doesn’t have too many alternations of quantifiers. A simple
example would be the cupping property; a degree a satisfies the cupping property if ∀b > a there exists c < b with
a∨ c = b.

12 Andrew E.M.Lewis-Pye / The search for natural definability

By way of preparation, we consider first some simple order theoretic properties satisfied by 0′. This will allow
us to introduce some standard techniques.

Theorem 6.1 0′ satisfies the cupping property.

Proof. We give a proof using perfect trees, which will be easily modified later on in order to give the result for
larger classes of degrees.

Definition 6.1 We say that a is perfectly cone avoiding if it computes a perfect tree T such that no path through T
is of degree above a.

If a is perfectly cone avoiding then it is easily observed that it satisfies the cupping property as follows. Suppose
that the perfect tree T is of degree below a and that no path through T is of degree above a. Given B of degree b > a
let C = T(B), i.e. let C be the infinite string which extends T(σ) for all σ ⊂ B. Then C is a path through T and so
is of degree c < b. Given an oracle for T and an oracle for C we can determine B from the fact that T(B) = C. Thus
a∨ c = b.

So in order to show that 0′ satisfies the cupping property, it suffices to show that it is perfectly cone avoiding.
We can construct the required tree T using an oracle for /0′ as follows. Suppose T(σ) is already defined and let
|σ | = n. If there exist two strings extending T(σ) which are Ψn-splitting then let τ ⊃ T(σ) be such that Ψn(τ) is
incompatible with /0′ and let T(σ ∗ 0) and T(σ ∗ 1) be incompatible extensions of τ . If there do not exist two such
strings then Ψn(A) is either partial or computable for all A ⊃ T(σ), so we can just define T(σ ∗0) and T(σ ∗1) be
any incompatible extensions of T(σ). �

It is easy to see that the degrees which satisfy the cupping property are upward closed. The join property,
however, is not so simple in this respect.

Definition 6.2 A degree a satisfies the join property if, for all non-zero b < a there exists c < a with b∨ c = a.

Theorem 6.2 ([PR]) 0′ satisfies the join property.

Proof. We suppose that we are given B of non-zero degree below 0′. In fact, we can suppose not only that B is
non-computable, but also that it is not c.e. (in any case, letting B̄ be the complement of B, B⊕ B̄ is not c.e. if B is
non-computable). We use an oracle for /0′ to construct A such that /0′ ≤T A⊕B and:

Qs: Ψs(A) 6= /0′.

The construction will be a finite extension argument. For all n let σn be the sequence of n 0s followed by a
1 (the point of this sequence of strings just being that they are pairwise incompatible). The basic idea behind the
construction is that it should be possible to retrace each stage of the construction using an oracle for A⊕B. At each
stage we code another bit of /0′ into A, so that retracing the construction means being able to compute /0′. A =

⋃
s αs

is constructed in stages as follows.

Stage 0. Define α0 = /0.
Stage s + 1. Let n be the least such that either:

Case 1. n ∈ B and there do not exist two extensions of αs ∗σn which are Ψs-splitting.
Case 2. n /∈ B and there exist two extensions of αs ∗σn which are Ψs-splitting.

Such an n must exist, since otherwise n∈ B iff there exist two extensions of αs ∗σn which are Ψs-splitting – in which
case B would be c.e., contrary to assumption.

If case 1 applies then Qs will be satisfied so long as we insist that A⊃ αs ∗σn, since then Ψs(A) is either partial
or computable. So in this case we define αs+1 = αs ∗σn ∗ /0′(s) (so we code another bit of /0′ into A with the last bit
of αs+1).

Andrew E.M.Lewis-Pye / The search for natural definability 13

If case 2 applies then consider the first Ψs-splitting extending αs ∗σn which is found by some fixed computable
search procedure, choose α∗s from this splitting such that Ψs(α

∗
s) is incompatible with /0′ and define αs+1 =α∗s ∗ /0′(s).

This ends the description of the construction.

The verification. Since it is clear that all the Qs requirements are satisfied, it remains only to show that an oracle for
A⊕B can compute the sequence {αs}s∈ω . Since the last bit of αs+1 is /0′(s), computing this sequence means being
able to compute /0′. So suppose that, using an oracle for A⊕B we have already been able to decide αs. Then there
exists a unique n such that αs ∗σn ⊂ A. Given n, we can then consult the oracle for B to decide whether n ∈ B. This
tells us whether case 1 or case 2 applied at stage s + 1, and this suffices for us to decide αs+1. �

Definition 6.3 A degree a satisfies the meet property if, for all b < a, there exists non-zero c < a with b∧ c = 0.

The following proof is amongst the hardest that we shall give in this course. It is not necessary to understand
this proof in order to follow the rest of the course, and so readers who feel inclined to do so may certainly omit it.
In fact, the result can be proved more simply, but the advantage of making the effort to understand the proof given
here is that it is easily modified in order to prove the complementation theorem: if 0 < a < 0′ then there exists b < 0′
such that a∨b = 0′ and a∧b = 0. It also serves as a good example of various techniques.

Theorem 6.3 ([JS]) 0′ satisfies the meet property.

Proof. We suppose that we are given B <T /0′ and we use an oracle for /0′ to construct A which satisfies all require-
ments:

Pe: A 6= Ψe(/0).
Qe: If Ψe(A) is total and Ψe(A) = Ψe(B) = C then C is computable.

Definition 6.4 We say that a function f dominates a function g if for all but finitely many n ∈ ω , f (n)≥ g(n).

Let’s begin by considering a simple strategy that we might employ in order to satisfy an individual requirement
Qe. Given the oracle for /0′ we intend to construct A by a finite extension argument, so suppose that at stage s + 1 of
the construction the initial part of A we have already defined is αs, and that now we wish to satisfy requirement Qe.
Using the oracle for /0′ we can ask whether there exist two strings extending αs which are Ψe-splitting.
If not: then, since A will extend αs, Ψe(A) will either be partial or computable.
If so: then we can find τ0,τ1 extending αs and m for which Ψe(τ0;m) ↓6= Ψe(τ1;m) ↓. Now suppose that we knew
Ψe(B;m) ↓ – then we could choose i such that Ψe(τi;m) 6= Ψe(B;m) and thus satisfy requirement Qe in this case
also by defining αs+1 = τi.

The obvious problem with this approach is that we do not know whether Ψe(B;m) ↓. In order to decide this for
arbitrary e and m would require an oracle for B′, which we do not have. The basic idea to overcome this obstacle
is to use Theorem 5.2. We suppose we are given f of degree 0′ which is not dominated by any function of degree
strictly below 0′ and so, in particular, is not dominated by any function computable in B.

Using this function f we now consider a slightly more sophisticated approach. At stage s + 1, given αs, we
perform an iteration as follows. Initially we define τ0 = αs. At the nth step in the iteration (n≥ 1) we are given τn−1.
Check to see whether there exist two strings extending τn−1 which are Ψe-splitting. If not then we say that (†n)
holds, and in this case we may define αs+1 = τn−1 before terminating the iteration. Otherwise let τ ,τ ′ be two such
strings. Let mn

e be such that Ψe(τ;mn
e) ↓6= Ψe(τ

′;mn
e) ↓. Then check to see whether Ψe(B;mn

e) ↓ in less than f (n)
steps. If so then we say that (‡n) holds and in this case we can choose τ∗ ∈ {τ ,τ ′} such that Ψe(τ

∗;mn
e) 6= Ψe(B;mn

e),
define αs+1 = τ∗ and terminate the iteration. If (‡n) does not hold, then let τ∗ be the leftmost of τ ,τ ′, define τn = τ∗

and perform the next step in the iteration.
Now if Ψe(B) is total we need to be able to argue that this iteration will come to an end, i.e. for some n ≥ 1,

either (†n) or (‡n) holds. So suppose otherwise and consider the function:

14 Andrew E.M.Lewis-Pye / The search for natural definability

g(n) = µs.(Ψe(B;mn
e)[s] ↓),

(where for any predicate R(s), µs.R(s) denotes the least s such that R(s) holds and is undefined if R(s) does not
hold for any s). Since it is the case for all n ≥ 1 that (‡n) does not hold, g dominates f . This gives us the required
contradiction because g is computable in B.

We are not through the woods yet though. The argument above sufficed to show that, when Ψe(B) is total the
iteration must terminate. When Ψe(B) is not total, however, we have a problem because then the iteration may not
terminate. To attempt to perform this iteration at a given stage might require an infinite number of steps, meaning
that we never reach the next stage of the construction. The obvious way to deal with this is to dovetail the action
required for each requirement. Rather than attempting to perform the entire iteration for a single Qe at any given
stage, we perform one step of the iteration for Q0 at stage 1, then another step of the iteration for Q0 and also one
step of the iteration for Q1 at stage 2. Then at stage 3, we perform one step of each of the iterations for Q0, Q1,Q2,
and so on.

This approach now brings with it a new problem. In order that g should be computable in B it was necessary that
the sequence mn

e should be computable (or at least computable in B). Previously this was the case because, at each
step in the iteration, when we found that neither of (†n) and (‡n) held, τn+1 was always defined to be the leftmost of
τ and τ ′. It was because we always went to the left that the sequence mn

e was computable – had we gone sometimes
to the left and sometimes to the right in a manner computable only in an oracle for /0′ then we would only have been
able to deduce that the sequence mn

e (and so also the function g) was computable in /0′. Now that we dovetail the
action required for various requirements, this is precisely what will happen – sometimes we will find the chance to
diagonalize for lower priority requirements and this may require us fixing either the leftmost or the rightmost string
in some splitting as an initial segment of A.

What we need is a function h≤T B which dominates g and which does not depend upon the values mn
e in such a

sensitive way, and we therefore consider the function h defined as follows:

h(1) = g(1)

h(n + 1) = µs.(Ψe(B)[s] � h(n) ↓).

If we had that, for all n≥ 1, mn+1
e < g(n) then we could prove that for all n≥ 1, g(n)≤ h(n) by a simple induction

as follows. By definition g(1)≤ h(1). Suppose that we know g(n)≤ h(n). Then mn+1
e < h(n) and thus:

h(n + 1) = µs.(Ψe(B)[s] � h(n) ↓)≥ g(n + 1) = µs.(Ψe(B;mn+1
e)[s] ↓).

Now in order to ensure that mn+1
e < g(n) for all n ≥ 1 we need only make a small change to the construction.

Instead of checking to see whether the computation Ψe(B;mn
e) converges in less than f (n) steps, we wait until we

have defined mn+1
e and then check to see whether the computation converges in at most max{f (n),mn+1

e } steps. If
so then we may define αs+1 so as to successfully diagonalize once and for all. Otherwise mn+1

e < g(n) as we required.

Now we must put all this together. First of all we establish some further notation and terminology. The splittings
that are found during the iteration that we perform for Qe will all be enumerated into a set Te. So initially this set is
empty, and then we enumerate strings into it during the course of the construction. Any strings that are enumerated
into any Te will also be enumerated into the set T – so T collects all of these splittings together into one set.

There are two ways in which we might get to irreversibly satisfy a requirement Qe. When we find a string τ

above which there are no Ψe-splittings, we shall say that the requirement is γ-satisfiable via τ . When we find τ

Andrew E.M.Lewis-Pye / The search for natural definability 15

with which we can diagonalize by forcing Ψe(τ;m) ↓6= Ψe(B;m) ↓ for some m, we shall say that the requirement is
β -satisfiable via τ .

As described above, at stage 1 we perform one step in the iteration for Q0. Suppose that a splitting is found
and that these strings, τ0 and τ1 say, are enumerated into T0 and T . For the reasons described above, we do not
immediately decide which of these strings will be an initial segment of A. At stage 2 we now look to perform a step
of the iteration for Q0 and also a step in the iteration for Q1. We do this, however, in reverse order, i.e. we work for
Q1 first and then Q0. The reason for this will subsequently become apparent. So first of all, we work for Q1. We
do not yet know, however, which of the two strings already enumerated into T will be an initial segment of A, so we
must work above both of these strings. We ask whether there exists a Ψ1-splitting above τ0 and we also ask whether
there exists a Ψ1-splitting above τ1. Any splittings that exist are enumerated into T and T1. If there doesn’t exist a
splitting above some τi then we record that Q1 is γ-satisfiable via this string. Rather than a single argument m1

1 as in
the iteration described before, we now have an argument corresponding to each splitting pair enumerated into T1.

Having done this for Q1, we now work for Q0, and once again we work above every string enumerated into T .
Again, rather than a single argument m2

0 we now have an argument corresponding to each pair of strings enumerated
into T0. We use the maximum of these values and f (1) as we test to see whether Q0 is β -satisfiable via either τ0 or
τ1.

Then at the end of stage 2, we consider the highest priority requirement which is either β -satisfiable or
γ-satisfiable via some string, and we declare that this string should be an initial segment of A. It is at this point that
we can see why we considered the requirements in reverse order. Suppose that Q0 is not γ or β -satisfiable via any
string at the end of stage 2, but that Q1 is γ-satisfiable via either τ0 or τ1. When we declare that this string, τi say,
should be an initial segment of A at the end of stage 2, we have not lost our opportunity to find a string via which
Q0 is β -satisfiable at the next stage – there are splittings which we have enumerated into T0 extending τi at stage 2,
and this is true only because we treated the requirements in reverse order. Thus we avoid the action we take for Q1
injuring our attempt to satisfy Q0.

The construction.
Stage s = 0. Define α0 = /0. Initially T and all the Te are empty.
Stage s > 0.
Step 1. For each e < s, from greatest to least, proceed as follows in turn. For each leaf σ of T that extends αs−1 (if
T is empty then it is convenient to consider /0 a leaf of T) check to see whether there exist two strings extending
σ which are Ψe-splitting. If not then record that Qe is ‘γ-satisfiable’ at stage s via σ , unless the requirement Qe
has already been declared satisfied. Otherwise let τ and τ ′ be two such strings, enumerate them into T and Te,
and find m such that Ψe(τ;m) ↓6= Ψe(τ

′;m) ↓. Since τ and τ ′ are both enumerated into T at the same stage and
both extend the same string τ which was (prior to their enumeration) a leaf of T , we shall call these two strings a
‘pair’. We shall call m the ‘argument’ corresponding to this pair of strings. Let τ1, ...,τ2k be all of those strings that
we have enumerated into Te at stage s, if there are any such, and let m1, ..,mk be those arguments corresponding
to each pair of strings in this set. If this set is non-empty proceed as follows (and otherwise do nothing). Define
m(e,s) = max{f (s− 1),m1, ..,mk}. Check to see whether there exist any strings which we enumerated into Te at
stage s−1 and which properly extend αs−1. If so then call these strings σ1, ..,σ2k′ and let n1, ..,nk′ be the arguments
corresponding to each pair of strings in this set. Check to see whether there exists i ≤ k′ such that Ψe(B;ni)
converges in at most m(e,s) steps. If so then choose σj such that Ψe(B;ni) 6= Ψe(σj;ni) ↓ and record that Qe is
‘β -satisfiable’ at stage s via σj, unless the requirement Qe has already been declared satisfied.

Step 2. If there does not exist e < s which is either γ-satisfiable or β -satisfiable at stage s then let τ be the
leftmost of all the strings extending αs−1 which were leaves of T at the end of stage s− 1, and define αs = τ (if
T was empty prior to stage s then define αs = /0). Otherwise let e be the least such. We act to satisfy requirement
Qe. If Qe is γ-satisfiable via some string τ then choose such a string and define αs = τ . Otherwise if Qe is β -
satisfiable via some string τ , choose such a string and define αs = τ . Requirement Qe is then declared to be satisfied.

16 Andrew E.M.Lewis-Pye / The search for natural definability

Step 3. For each leaf τ of T enumerate into T a string τ ′ extending τ which diagonalizes against the sth computable
function.

Verification (Sketch). It is clear that for every e ∈ ω the requirement Pe is satisfied so we are left to show that all
requirements of the form Qe are satisfied. If we act to satisfy any requirement Qe at some stage of the construction
then obviously this requirement is (irreversibly) satisfied. So suppose that there is no stage of the construction at
which we act in order to satisfy the requirement Qe and that Ψe(B) is total. Then we may take a stage s large
enough such that at no stage s′ ≥ s do we act in order to satisfy any requirement Qe′ for e′ ≤ e. At no stage s′ ≥ s
is the requirement Qe γ-satisfiable. At every stage s′ > s we enumerate strings into Te and it is the case that there
exist strings which we enumerated into Te at stage s′− 1 which extend αs′−1. Consider the function g′ defined as
follows. If s′ < s then g′(s′) = 0. Given any s′ ≥ s let τ1, ..,τ2k be those strings which we enumerated into Te at stage
s′ and which extend αs′ . Let m1, ..,mk be the arguments corresponding to each pair of strings in this set. If s′ ≥ s
then g′(s′) = min{µs′′.(Ψe(B;mi)[s′′] ↓) : 1 ≤ i ≤ k}. Then g′ dominates f . We may also show by almost precisely
the same inductive argument as before that g′ is dominated by the function h′ defined as follows. If s′ ≤ s then
h′(s′) = g′(s′). If s′ > s then h′(s′) = µs′′.(Ψe(B)[s′′] � h′(s′− 1) ↓). This gives us the contradiction required since
h′ ≤T B. �

7. The jump hierarchy
We introduce the jump hierarchy first for the degrees below 0′. In this context the jump hierarchy provides a way of
formalizing the notion of being close to 0 or close to 0′. The idea behind this hierarchy begins with the observation
that there are degrees a > 0 such that a′ = 0′.

Definition 7.1 A degree a is low if a′ = 0′.

Theorem 7.1 There exist non-zero low degrees. In fact there exist c.e. degrees of this kind.

Proof. To prove that there exist non-zero low degrees can be done very easily using a finite extension /0′-oracle
construction. We prove the stronger result that there exist non-zero c.e. degrees which are low, because it gives us
the opportunity to describe a finite injury construction.

As is normally the case when working with the c.e. degrees, the construction we describe will be a full approx-
imation construction, which means we shall not make use of any oracle but instead will describe a construction
which can be effectively carried out. This is not surprising since the only general method we have for ensuring that
a constructed set is c.e. is to describe an effective procedure for enumerating it.

First, let’s consider the non-computability requirements. In order to ensure that A is non-computable, it suffices
to ensure that it has infinite complement and that:

Pe : We infinite =⇒ We∩A 6= /0.

These requirements suffice because A is computable iff A and Ā are both c.e. – these requirements ensure that the
complement of A is not equal to We for any e.

Next let’s consider how to make the degree of A low. In order to do this, we act in order to satisfy the following
requirements:

Ne : (∃∞s)[Ψe(As;e)[s] ↓] =⇒ Ψe(A;e) ↓,

Andrew E.M.Lewis-Pye / The search for natural definability 17

where (∃∞s)Q(s) denotes “there exist infinitely many s such that Q(s)”, As consists of the numbers enumerated into
A by the end of stage s and A =

⋃
s As. In order to see that satisfaction of the Ne requirements suffices to ensure that

A is of low degree, consider the function g defined as follows; g(e,s) = 1 if Ψe(As;e)[s] ↓ and g(e,s) = 0 otherwise.
Let g∗(e) = limsg(e,s) – satisfaction of Ne means that this limit exists. Then g∗ is the characteristic function of A′

and, since g is computable, g∗ is computable given an oracle for /0′.

Definition 7.2 The use function is defined as follows; u(B;e,x,s) is 1 plus the maximum element of the oracle used
in the computation Ψe(B;x)[s] if this computation converges, and is 0 otherwise.

In order to satisfy the requirements Ne we consider a restraint function for each e;

re(s) = u(As;e,e,s).

We shall say that the restraint function re is injured at stage s + 1 of the construction if n < re(s) is enumerated
into A at this stage. The crucial point about the restraint function is just this: if there exists a stage of the
construction after which re is not injured then Ne is satisfied and limsre(s) is defined. In order to see this,
suppose that re is not injured at any stage ≥ s0. If there doesn’t exist any stage t ≥ s0 at which Ψe(At;e)[t] ↓ then
Ne is satisfied, and lims re(s) = 0. Otherwise let t be the least such. Since we do not enumerate any numbers
into A less than u(At;e,e, t) after stage t, this computation is preserved so that Ψe(A;e) ↓ and re(s)= re(t) for all s≥ t.

In order to satisfy all of the requirements, then, we consider them given a priority ranking N0,P0,N1,P1,
So N0 is the highest priority requirement, then P0 is the requirement of next highest priority, and so on. Then we
agree that any requirement Pe is not allowed to injure any requirement Ni of higher priority, i.e. Pe is only allowed
to enumerate a number into A if this number is greater than the present values of all the restraint functions corre-
sponding to requirements of higher priority. Once a requirement Pe enumerates a number into A it is irreversibly
satisfied, so each requirement Pe needs only to enumerate at most one number into A.

For each requirement Ni there are only a finite number of requirements Pe which are of higher priority, and
this immediately means that there will be a stage of the construction after which Ni is not injured. Therefore
Ni is satisfied and lims ri(s) is defined. This in turn means that we can satisfy each requirement Pe – if We is
infinite then it will have a member greater than the limit values of all restraint functions of higher priority, and
we can enumerate this number into A in order to satisfy the requirement. We now formally describe the construction.

Stage 0. Let A0 = /0.
Stage s + 1. We are given As. Find the least i≤ s (if any) such that:

Wi,s∩As = /0

and

∃x[x ∈Wi,s & x > 2i & (∀e≤ i)[re(s)< x]],

where Wi,s is the domain of Ψi(/0)[s]. If such an i exists, then choose the least x satisfying the second clause above
and enumerate this x into A, i.e. define As+1 = As∪{x}. If no such i exists then do nothing, so As+1 = As.

This ends the construction.

18 Andrew E.M.Lewis-Pye / The search for natural definability

The verification. That the complement of A is infinite follows since each requirement Pe enumerates at most one x
into A, and if it does enumerate some x into A then x > 2e. That every requirement is satisfied follows by induction
on the priority ranking according to the arguments already described above. �

We define the jump hierarchy first for the degrees below 0′.

Definition 7.3 We define a(n) inductively as follows; a(0) = a and a(n+1) is the jump of a(n).
A degree a is lown if a < 0′ and a(n) = 0(n). A degree a is highn if a≤ 0′ and a(n) = 0(n+1).

In other words, a degree below 0′ is lown if its nth jump is as low as it possibly could be – the same as the nth
jump of 0. On the other hand, a degree is highn if its nth jump is as high as it possibly could be – the same as the nth
jump of 0′. A crucial point here is that when a ≤ b we always have a′ ≤ b′. This means that if a ≤ b and b is lown
then a is also lown. If a≤ b and a is highn then b must be highn also.

The next question which arises is whether these jump classes are all distinct. Is it the case that for every n, there
exist degrees which are lown+1 but not lown, and degrees which are highn+1 but not highn? How about when we
restrict to the c.e. degrees? In order to answer this question we consider hop operators, which are of considerable
interest in their own right.

Definition 7.4 WA
e is the domain of Ψe(A).

Definition 7.5 For e ∈ ω the eth hop operator Je is defined as follows: for all Y ⊆ ω , Je(Y) = Y⊕WY
e .

In the definition above we take the ⊕ with Y simply in order to ensure that the degree of Je(Y) is above the degree
of Y .

Definition 7.6 We say that A≡T B via 〈k0,k1〉 if A = Ψk0(B) and B = Ψk1(A).

Theorem 7.2 ([Jsh]) For every e there exists a c.e. set A such that Je(A)≡T /0′. Moreover, A can be found uniformly
in e and this result can be relativized to any Y, i.e. there exist computable functions f and g such that for all e,Y;

Je(Jf (e)(Y))≡T Y ′ via g(e).

Proof. The basic techniques are somewhat similar to the proof of Theorem 7.1. First of all, we must make sure that
WA

e ≤T /0′. In order to achieve this we act in order to satisfy the requirements:

Nx : (∃∞s)[x ∈WAs
e,s] =⇒ x ∈WA

e ,

where WAs
e,s is the domain of Ψe(As)[s]. That these requirements suffice to ensure WA

e ≤T /0′ can be argued in the
same way that we argued that the requirements for the proof of Theorem 7.1 sufficed to show A′ ≤T /0′. The way in
which we look to satisfy these requirements is also almost identical. We define a restraint function rx for each x:

rx(s) = u(As;e,x,s)

and we require that, for each x, there exists a stage of the construction after which the restraint function is not injured,
i.e. after which we do not enumerate any numbers into A less than the present value of the restraint function for x. If
we do this, then Nx will be satisfied and the value rx(s) will reach a limit.

Andrew E.M.Lewis-Pye / The search for natural definability 19

Definition 7.7 We let A[i] denote the ith column of A, i.e. the set of all numbers in A of the form 〈i, j〉. Given finite
F ⊂ ω , let F = {a0 < · · ·< ak}, and for each i≤ k let Xi be A[ai]. We define A[F] =

⋃k
i=0 Xi.

Our second task is to code /0′ into A⊕WA
e . In order to do this, we agree first of all, that we shall put a number into

the xth column of A iff x ∈ /0′, i.e. we shall ensure that A∩ω [x] is non-empty iff x ∈ /0′. On its own this would achieve
very little, we would have only that /0′ is c.e. given an oracle for A and this would be true anyway! If, however, we
can ensure that there exists a function h≤T A⊕WA

e such that, whenever there exists a number in the xth column of
A, there exists one less than h(x), then we shall have that /0′ ≤T A⊕WA

e as required. For each x, then, we have the
requirement:

Px : x ∈ /0′⇐⇒ (∃y≤ h(x))[y ∈ ω
[x]∩A].

The pleasing observation now is that, in fact, these requirements are easily satisfied. What is it, after all, which is
limiting how small are the numbers that we can enumerate into the xth column? This is just the restraints associated
with the requirements Nx′ . If we prioritize the requirements N0,P0,N1,P1, ... then there will only be a finite
number of requirements Nx′ of higher priority than Px. Given an oracle for WA

e we know which of these x′ are in
WA

e , and then we can use the oracle for A to compute the limit values of each corresponding rx′ . This means that,
using the oracle for A⊕WA

e we can find a position in the xth column after which we will always be allowed to
enumerate numbers without injuring requirements of higher priority.

The precise instructions for the construction are as follows.

Stage 0. Let A0 = /0. For all x we define h∗(x,0) = 〈x,0〉.
Stage s + 1. For each x we define:

h∗(x,s) = (µy)[y ∈ ω
[x] & h∗(x−1,s)< y & h∗(x,s−1)≤ y

& (∀j≤ x)[rj(s)< y]].

For each x ∈ /0′s+1− /0′s enumerate h∗(x,s) into As+1.
This ends the description of the construction.
We define h(x) = lims h∗(x,s).

We leave it to the reader to verify that h is computable in A⊕WA
e , and that the proof relativizes and remains

uniform. �

Theorem 7.3 ([GS2]) For every n, there exist c.e. degrees which are lown+1 but not lown, and degrees which are
highn+1 but not highn.

Proof. First note that Theorem 7.1 relativizes to arbitrary Y . There exists an index e1, in other words, such that
Y <T Je1(Y) and Y ′ ≡T (Je1(Y))

′ for all Y . So Je1(Y) is low1 relative to Y but not low0 relative to Y . Applying
Theorem 7.2 to e1 produces an index j1 such that Jj1(Y) is high1 relative to Y but not high0 relative to Y . Now,
applying Theorem 7.2 to j1, produces e2 such that Je2(Y) is low2 relative to Y but not low1 relative to Y . Continue
this pattern using the fact that Y ′ is lown relative to C iff C is highn relative to Y . �

20 Andrew E.M.Lewis-Pye / The search for natural definability

7.1. Generalizing the jump classes
When discussing the Turing degrees in general, rather than just the degrees below 0′, it turns out that the most fruitful
way to proceed is to consider the relationship between the iterated jump of the given degree and its join with 0′.

Definition 7.8 For n≥ 1, a degree a is generalized lown (GLn) if a(n) = (a∨0′)(n−1). A degree is generalized highn
(GHn) if a(n) = (a∨0′)(n). If a degree is generalized low1 then we also say that it is generalized low, and if a degree
is generalized high1 then we say that it is generalized high.

To rephrase – a degree a is generalized lown if its nth jump is as low as it possibly could be in relation to a∨ 0′,
and is generalized highn if its nth jump is as high as it possibly could be in relation to a∨ 0′. This might initially
seem a little arbitrary. The fact that this is a useful definition comes from the fact that this is normally precisely the
definition which is needed in order to carry local results through to the generalized case. If we work first with the
degrees below 0′ and we find that all non-low2 degrees satisfy a certain structural property, for example, it will then
normally be the case that, in fact, the proof can be played with in order to give the same result for all non-GL2.
There is one consequence of this definition, however, which it is important to note. The generalized jump classes do
not respect the ordering relation on the Turing degrees in the way that one might initially hope. In fact, every degree
which is not above 0′ is bounded by a generalized low.

Theorem 7.4 Every degree which is not above 0′ is bounded by a generalized low degree.

Proof. First of all we note that the proof of Theorem 6.2 can easily be modified in order to give the stronger result,
that for every non-zero degree b ≤ 0′ there is a low degree a such that 0′ = a∨ b. We only sketch the modification
since it is not complicated.

Now, rather than simply building a to be non-computable, we must satisfy lowness and in order to do this, we
decide whether or not Ψs(A;s) ↓ at stage s + 1 of the construction. Since the construction requires an oracle for /0′

and we compute A′ as the construction progresses, this suffices to show that A′ ≤T /0′.
So now, at stage s + 1, we perform a modified version of the search previously described. We let n be the least

such that:

Case 1. n ∈ B and there does not exist α ⊃ αs ∗σn such that Ψs(α;s) ↓.
Case 2. n /∈ B and there does exist α ⊃ αs ∗σn such that Ψs(α;s) ↓.

Such an n must exist, for precisely the same reasons as before –since otherwise B would be c.e., contrary to
assumption.

If case 1 applies then s /∈ A′ so long as we insist that A⊃ αs ∗σn. So in this case we define αs+1 = αs ∗σn ∗ /0′(s)
(recall that we code another bit of /0′ into A with the last bit of αs+1).

If case 2 applies then consider the first such α which is found by some fixed computable search procedure, and
define αs+1 = α ∗ /0′(s).

Now we are ready to prove the theorem. Given d which is not above 0′, let b = d∨0′ and observe that d < b≤ d′.
Now apply the result we just proved, relativized to d (one can easily verify that the proof relativizes). This gives
a > d such that a′ = d′ and a∨0′ = a∨ (d∨0′) = d′, so a∨0′ = a′ and a is generalized low. �

Now that we have defined the jump hierarchies, we shall go on to consider what structural properties are satisfied
by the degrees in each of the jump classes. Beginning with very simple properties such as the cupping property and
gradually moving to consider properties which are more complex, we shall look to answer questions of the form,
“do all high degrees satisfy this property?”, “do all non-GL2 degrees satisfy this property?”, and so on. We shall go
on to consider such matters shortly, but first it is necessary to consider some classes of degrees that will be useful
in this analysis. We shall consider the PA degrees, and then we shall briefly introduce the a.n.r. degrees and the
1-generic degrees.

Andrew E.M.Lewis-Pye / The search for natural definability 21

8. PA degrees and Π0
1 classes

Since Turing functionals can take elements of 2ω as well as natural numbers as inputs, it makes sense to talk about
computable subsets of 2ω , or more generally, computable subsets of ωk×(2ω)l. A set P ⊆ωk×(2ω)l is computable
if there is a Turing functional which terminates given any element of ωk×(2ω)l, and which outputs 1 if this element
is in P and outputs 0 otherwise. Then P ⊆ 2ω is Π0

1 if it is defined by a Π0
1 formula, i.e. if there exists some

computable R such that:

P = {A : (∀n)R[A,n]}.

Similarly P is Σ0
1 if there exists some computable R such that:

P = {A : (∃n)R[A,n]}.

One of the reasons that Π0
1 classes are very important is that they crop up all over the place. Very often one will

be working with a subset of 2ω which will turn out to be a Π0
1 class and one will then immediately be able to apply

all of the results we have for Π0
1 classes. By way of example, the set of complete and consistent extensions of any

axiomatizable theory can be seen as a Π0
1 class (where an axiomatizable theory is the deductive closure of a c.e. set

of sentences). In order to see this fix an effective bijection between sentences in the language and ω . Then any string
can be seen as a set of sentences. Consider an algorithm which, given any string σ and the set of sentences T ′ that
it codes, outputs 1 unless it finds after searching for |σ |many steps that any of the following conditions are satisfied,
in which case it outputs 0:

(i) that there exists some sentence such that both it and its negation correspond to numbers less than |σ | but neither
it nor its negation is in T ′;

(ii) there exists some sentence in T , whose code is strictly less than |σ |, which is not in T ′;
(iii) T ′ is not consistent.

Often P ⊆ 2<ω which is a Π0
1 set is referred to as a Π0

1-class – this is simply in order to emphasize the fact
that it is a set of sets of natural numbers being considered, rather than just a set of natural numbers. Now we want
to analyze these classes, to see something of what they look like. Our first aim is to find a very concrete way of
picturing these objects. The following observations are easily verified.r A Σ0

1 class is a set P for which there exists a c.e. set of finite strings W such that elements of P are precisely
those infinite strings which extend some element of W.r A Π0

1 class is a set P for which there exists some downward closed and computable set of finite strings Λ,
such that P is the set of all infinite paths through Λ.

A set of strings is downward closed if all initial segments of any member of the set are also in the set. In this context,
it is useful to consider a simple topology on 2ω . We take as the basic open sets, those of the form [σ] where σ is a
finite binary string, and where [σ] denotes the set of all infinite strings extending σ . According to this topology any
Π0

1 class is a closed set and any Σ0
1 class is open. Compactness for this space (Cantor space) is given by the following

weak form of König’s lemma.

Lemma 8.1 (König’s Lemma). If Λ is a downward closed set of finite binary strings and is infinite, then there exists
an infinite path through Λ.

Proof. We define A =
⋃

s αs which is an infinite path through Λ one bit at a time.
Stage 0. Define αs = /0.

22 Andrew E.M.Lewis-Pye / The search for natural definability

Stage s + 1. We are given αs such that there exist infinitely many strings in Λ extending αs. If there exist infinitely
many strings in Λ extending αs ∗0 then define αs+1 to be this string, otherwise define αs+1 = αs ∗1. �

8.1. Basis theorems
A basis theorem is a theorem which says that every set of a particular kind has a member of a particular kind. We
shall establish three basis theorems for Π0

1 classes.

Theorem 8.1 Every non-empty Π0
1 class has a member of c.e. degree.

Proof. Let us suppose that P is a non-empty Π0
1 class, and let Λ be a downward closed and computable set of finite

binary strings such that P is the set of all infinite paths through Λ.
For each n let σn be the leftmost of all the strings of length n which has an extension in P . Since P is a closed

set, A =
⋃

n σn is an element of P . Now it follows from König’s lemma that if σ does not have any infinite extension
in P then there exists m such that σ does not have any extension in Λ of length m. Therefore the set of finite strings
to the left of A is computably enumerable, and is of the same degree as A. �

Definition 8.1 If Λ ⊆ 2<ω then we let [Λ] denote the set of all infinite paths through Λ, i.e. the set of all A ⊂ ω

which have an infinite number of initial segments in Λ.

Probably the most cited theorem in the theory of Π0
1 classes, is the low basis theorem of Jockusch and Soare:

Theorem 8.2 (The low basis theorem [JS]) Every non-empty Π0
1 class contains a member of low degree.

Proof. We suppose we are given P which is a non-empty Π0
1 class, and also a downward closed and computable set

of strings Λ such that P = [Λ]. We construct A ∈ [Λ] of low degree. To construct A , we define a sequence of finite
strings {αs}s∈ω such that A =

⋃
s αs. In order to help us define this sequence, we define also a sequence {Λs}s∈ω

such that Λ0 = Λ and each Λs+1 ⊆ Λs.
We do all this in a sequence of stages, so that at stage s we define αs and Λs. At stage s, what we have done is to

decide that αs ⊂ A and that A ∈ [Λs]. So at each stage we further restrict the Π0
1 class of which A must be a member.

We run this construction using an oracle for 0′ in such a way that at stage s + 1 we get to decide whether s ∈ A′.
If we do this it is clear that A′ will be computable in the halting problem.

The construction is defined precisely as follows.

Stage 0. Define α0 = /0. Define Λ0 = Λ. So far we know that α0 ⊂ A and that A ∈ [Λ0].
Stage s + 1. We have already defined αs and Λs. We ask the following question (the fact that we can answer this
question using an oracle for /0′ follows from König’s Lemma):

Does there exist B ∈ [Λs] extending αs such that Ψs(B;s) ↑?

If so: we define Λs+1 so that [Λs+1] is the set of all B in [Λs] of this kind. Since A will be in [Λs+1] we know that
A′(s) = 0. We define αs+1 to be some extension of αs which has an infinite extension in [Λs+1].

If not: we just define Λs+1 = Λs and define αs+1 to be some extension of αs which has an infinite extension in
[Λs+1]. Since A will be in [Λs+1] we know that A′(s) = 1. �

Corollary 8.1 There exists a complete and consistent extension of PA which is of low degree.

Proof. We saw before that the complete and consistent extensions of any axiomatizable theory can be seen as a Π0
1

class. The result then follows from the low basis theorem. �

Andrew E.M.Lewis-Pye / The search for natural definability 23

Almost as important as the low basis theorem is a hyperimmune-free basis theorem.

Theorem 8.3 (The hyperimmune-free basis theorem, [JS]) Every non-empty Π0
1 class contains a member of

hyperimmune-free degree.

Proof. The basic format of the proof is very similar to the proof of the low basis theorem. Once again, we suppose
we are given P which is a non-empty Π0

1 class, and also a downward closed and computable set of strings Λ such
that P = [Λ]. We construct A ∈ [Λ] which is of hyperimmune-free degree. Once again, to construct A, we define
a sequence of finite strings {αs}s∈ω such that A =

⋃
s αs. In order to help us define this sequence, we define also a

sequence {Λs}s∈ω such that Λ0 = Λ and each Λs+1 ⊆ Λs.
We do all this in a sequence of stages, so that at stage s we define αs and Λs. At stage s, what we have done is to

decide that αs ⊂ A and that A ∈ [Λs]. So at each stage we further restrict the Π0
1 class of which A must be a member.

A major difference is that, this time around, we do not have to worry about which oracle is required in order to
run the construction. We run the construction in such a way that at stage s + 1 we either force Ψs(A) to be partial, or
we define some computable g which majorizes Ψs(A).

The construction is defined precisely as follows.

Stage 0. Define α0 = /0. Define Λ0 = Λ. So far we know that α0 ⊂ A and that A ∈ [Λ0].
Stage s + 1. We have already defined αs and Λs. We ask:

Does there exist m and B ∈ [Λs] extending αs, such that Ψs(B;m) ↑?

If so: we fix such an m and define Λs+1 so that [Λs+1] is the set of all B in [Λs] of this kind. Since A will be in
[Λs+1] we know that Ψs(A) is partial. We define αs+1 to be some extension of αs which has an infinite extension in
[Λs+1].

If not: we just define Λs+1 = Λs and define αs+1 to be some extension of αs which has an infinite extension
in [Λs+1]. It is then easy to define some computable g which majorizes every Ψs(B) such that B ∈ [Λs+1]. For any
m ∈ ω , in order to define g(m) proceed as follows. Since there does not exist B ∈ [Λs] extending αs, such that
Ψs(B;m) ↑, it follows from König’s Lemma that there must exist some l such that Ψs(σ ;m) ↓ for all strings σ in
Λs of length l. We can search in a computable fashion until such an l is found, and then simply choose g(m) to be
greater than all of the values Ψs(σ ;m) such that σ is a string in Λs of length l.

This ends the construction. �

Corollary 8.2 There exists a complete and consistent extension of PA of hyperimmune-free degree.

Definition 8.2 A Turing degree is PA if it contains a set which effectively codes a complete and consistent extension
of PA.

The following theorem, which we state without proof, means that the study of the PA degrees and the study of
degrees of members of Π0

1 classes are intimately related.

Theorem 8.4 (Solovay, extending Scott’s basis theorem [DS]) A degree a is PA iff every non-empty Π0
1 class con-

tains a member of degree below a.

The following theorem is very often useful.

Definition 8.3 We say f is diagonally non-recursive (DNR) if, for all n, f (n) 6= Ψn(n). If in addition, f (n) ∈ {0,1}
for all n, then we say that f is 0,1-valued DNR. We say f is fixed point free (FPF) if, for all n, Ψn(/0) 6= Ψf (n)(/0).

24 Andrew E.M.Lewis-Pye / The search for natural definability

Jockusch observed that the DNR degrees (those containing DNR functions) are precisely the FPF degrees (those
containing FPF functions).

Theorem 8.5 A degree is PA iff it contains a 0,1-valued DNR function.

Proof. On the one hand, the fact that any PA degree computes a 0,1-valued DNR function follows from Theorem
8.4 and the fact that the set of all 0,1-valued DNR functions is a Π0

1 class. It is not difficult to see that the degrees
containing 0,1-valued DNR functions are upward closed.

On the other hand, if a contains a 0,1-valued DNR function f , then this can be used to compute a path through
any Π0

1 class as follows. Let P = [Λ] for some downward closed computable Λ.

Stage 0. Define α0 = /0.
Stage s + 1. We are given αs which has an infinite extension in [Λ]. Consider the algorithm which searches for j≤ 1
and l such that αs ∗ j does not have any extensions in Λ of length l, and which outputs the first such j found (and
which does not terminate if no such j and l are found). Let i be such that the output of this algorithm is equal to
Ψi(/0; i). Then αs ∗ f (i) has an infinite extension in [Λ], so define αs+1 to be αs ∗ f (i). �

So far then, what do we know about what the PA degrees look like? Theorem 8.4 makes it clear that the PA
degrees are upward closed. We know that there are PA degrees which are low, so certainly all degrees above 0′ are
PA. There are PA degrees which are hyperimmune-free. Theorem 8.5 makes it clear that all PA degrees are fixed-
point-free. The fact that the PA degrees are a proper subset of the fixed-point-free degrees can be seen through an
analysis of the measure of these sets – the PA degrees are of Lebesgue measure 0, while the fixed-point-free degrees
are of measure 1. Since we are not dealing with measure in this course, however, another way to see this is from the
fact that there exists a minimal degree which is fixed-point-free, together with the following theorem.

Theorem 8.6 Every PA degree strictly bounds a PA degree.

The following property of the PA degrees will also be used later.

Theorem 8.7 ([AK]) Every PA degree satisfies the cupping property.

Proof. (Sketch) The proof we sketch here is an alternative proof due to the author. For the duration of this proof we
assume that, for any i,τ ,n, Ψi(τ;n) ↓ only if this computation converges in < |τ| many steps and Ψi(τ;n′) ↓ for all
n′ < n.

Definition 8.4 A total function T : n<ω 7→ n<ω is an n-branching tree if, for all σ ∈ n<ω and i < j < n:

1. T(σ)⊂ T(σ ∗ i), T(σ)⊂ T(σ ∗ j);
2. T(σ ∗ j) is incompatible with T(σ ∗ i).

We move freely between thinking of trees as sets of strings or as functions from strings to strings—so we may
specify a tree by describing its range.

What we aim to do is to construct a downward closed and computable set of finite binary strings Λ such that
there exist infinite paths through Λ and such that if A is an infinite path through Λ then A computes some non-empty
2-branching TA (let’s say) such that no set lying on TA computes A. In order to ensure that no set lying on TA

computes A it is convenient to construct a Turing functional Ψ such that no set lying on TA computes Ψ(A). In order
to define TA for any A which is an infinite path through Λ we shall define values Tτ for τ in Λ and then TA will be
defined to be the union of all Tτ such that τ ⊂ A. Thus there are three different kinds of object under construction:
Λ, TA for A which is an infinite path through Λ and Ψ, and we must define these values in such a way that there exist
infinite paths through Λ and so that the following requirements are satisfied:

Andrew E.M.Lewis-Pye / The search for natural definability 25

Ni : (A ∈ [Λ]∧C ∈ [TA])→ (Ψi(C; i) 6= Ψ(A; i)).

In fact, what we shall do here is just to consider how to satisfy a single requirement N0. We shall therefore only
be concerned with the values Ψ0(C;0) and with defining Ψ on argument 0.

The most primitive form of the intuition runs as follows: if we are given four strings and we colour those four
strings using two colours then there exists some colour such that at least two strings are not that colour (actually we
only need three strings but it is convenient here to do everything in powers of two). Now we extend this idea. First
we define a certain set of strings T . The role of T is that it is the set of all strings that could possibly be in Tτ for
some τ ∈ Λ. In the case that we are only looking to satisfy a single requirement T is rather trivial, we just define T
to be the set of all strings of even length. The important thing about T is that it is 4-branching. We let T(n) denote
the set of strings in T of level ≤ n in T . Next, we consider a certain form of finite subset of T:

Definition 8.5 We say that finite T ′ ⊂ T is (T ,2)-compatible if the strings of level n in T ′ are of length 2n and every
string in T ′ which is not a leaf of T ′ has precisely two successors.

The role of these (T ,2)-compatible T ′ is that when we define Tτ for τ ∈ Λ actually we shall define this value to
be some (T ,2)-compatible T ′. Recall that T ′ is said to be of level n if it is finite and all leaves are of level n. The
following lemma is what we need in order to satisfy the first requirement:

Lemma 8.2. For any finite T ′ ⊆ 2<ω a 2-colouring of T ′ is an assignment of some col(σ) ∈ {0,1} to each leaf σ of
T ′. For any n and any 2-colouring of T(n) there exists T ′ which is (T ,2) compatible of level n and d ∈ {0,1} such
that no leaf σ of T ′ has col(σ) = d.

Proof. This is easily seen by induction. The case n = 0 is trivial and, in fact, we have already seen the case n = 1. If
we are given four strings and we colour those four strings using two colours then there exists some colour such that
at least two strings are not that colour. Those two strings then define some (T ,2)-compatible T ′ of level 1. In order to
see the induction step suppose we are given a 2-colouring of T(n+1). First we use this 2-colouring in order to define
a 2-colouring of T(n) as follows. Consider each leaf σ of T(n). Such σ has precisely four successors in T(n + 1).
If more than two of those successors are coloured 0 then colour σ with 0. If more than two of those successors are
coloured 1 then colour σ with 1, and otherwise colour σ with 0. What this means is that if σ is not coloured d then
at least two successors of σ are not coloured d. By the induction hypothesis there exists some (T ,2)-compatible T ′

of level n and there exists d such that no leaf of T ′ is coloured d. In order to define T ′′ of level n + 1 sufficient to
complete the induction step, all we need do is to choose two successors of each leaf of T ′ which are not coloured d.
�

Now we see how to use this lemma in order to satisfy N0 while also satisfying the condition that [Λ] should be
non-empty. Before defining Λ we define a set of strings Λ?. These are strings which may or may not be in Λ. We do
not insist that Λ? should be downward closed, in order to form Λ we shall later add strings in so that Λ is downward
closed. For every n we let Λ?(n) denote the set of strings in Λ? which are of level n in Λ?. Thus for every n we
must define the set of strings which are in Λ?(n), for each such τ we must define a value Tτ which will be some
(T ,2)-compatible T ′ of level n (if τ ⊂ τ ′ then we must also have that Tτ ⊆ Tτ ′), and we must also ensure that if
n > 0 then Ψ(τ) is defined on argument 0. In order to satisfy this latter condition we can just ensure that Ψ(τ;0) is
defined for all τ of level 1 in Λ? and then this task is done once and for all. We shall not describe here precisely how
to define these values, but hopefully it is clear that we can do so in such a way that the following lemma is satisfied:

Lemma 8.3. For any n > 0, any (T ,2)-compatible T ′ of level n and any d ∈ {0,1} there exists τ ∈ Λ?(n) such that
Tτ = T ′ and Ψ(τ;0) = d.

The fact that we can satisfy Lemma 8.3 is really completely obvious. We are not insisting that Λ? should be down-
ward closed, so in order to ensure satisfaction of the lemma all we need do is to put enough strings into each Λ?(n)
so that all possibilities can be realised.

26 Andrew E.M.Lewis-Pye / The search for natural definability

What this means is that if we define Λ by taking the strings in Λ?, adding in strings in order to make it downward
closed and then removing any string τ (together with all extensions) for which it is the case that there exists σ ∈ Tτ

with Ψ0(σ ;0) ↓= Ψ(τ;0) then for every n we must be left with strings in Λ?(n) which are in Λ. In order to see this
suppose we are given n > 0. Then we can consider the values Ψ0(σ ;0) for those σ ∈ T(n) to define a 2-colouring of
T(n)—where values are not defined to be either 0 or 1 we need not be concerned with them. Then Lemma 8.2 tells
us that for this 2-colouring of T(n) there exists some (T ,2)-compatible T ′ of level n and there exists d ∈ {0,1} such
that no leaf of T ′ is coloured d. Fixing such T ′ and such d we may then apply Lemma 8.3 which tells us that there
exists τ ∈ Λ?(n) with Tτ = T ′ and Ψ(τ;0) = d. Then τ is a string in Λ?(n) which is in Λ. By König’s Lemma the
fact that there exist an infinite number of strings in Λ suffices to ensure that [Λ] is nonempty.

In order to satisfy all requirements we must become a little more sophisticated —we need more colours and
bushier trees—but the basic idea remains the same. �

9. The a.n.r. degrees
We shall see later that the non-GL2 degrees turn out to be an important class when we come to consider
structural properties of degrees which are likely to to satisfied by degrees that are fairly high up in the Tur-
ing degree structure. Part of the reason for this, is that Theorem 10.4 often suffices to make uninteresting the
question as to whether a property is satisfied by all degrees which are GL2 or all degrees which are GL2 and not GL1.

When working with the degrees which are non-GL2, it will invariably be a domination property of these degrees
which we shall use in order to prove our results. The domination property in question, comes from a relativization
of the following result.

Theorem 9.1 ([DM]) A computes f which dominates all total computable functions iff A′ ≥T /0′′.

Proof. Recall that Tot= {i : (∀n)Ψi(/0;n) ↓} is of degree 0′′. First of all suppose that f dominates all total computable
functions. Then we show how to compute g using an oracle for f , such that for all i, lims g(i,s) =Tot(i). In order
to decide g(i,s) run all computations Ψi(/0;s′) for f (s) many steps, and for all s′ ≤ s. If all of these computations
converge within f (s) many steps then output 1, otherwise output 0. If i ∈Tot then let h(s) be the number of steps it
takes for all computations Ψi(/0;s′) to converge for s′ ≤ s. Then h is a computable function and so is dominated by f .

On the other hand, suppose that A′ ≥T /0′′. Then A can approximate Tot, and so computes g as just described. In
order to compute the required f on argument s, proceed as follows for each i≤ s. Run the computation Ψi(/0;s) until
either the computation converges or else we find s′ ≥ s such that g(i,s′) = 0. In the first case let ni = Ψi(/0;s), and in
the second case define ni = 0. Choose f (s) greater than all ni for i≤ s. �

Now we can relativize:

Theorem 9.2 A is of non-GL2 degree iff there is no function computable in A⊕ /0′ which dominates all A computable
functions.

Proof. This follows by relativizing the proof of Theorem 9.1, since it follows directly from the definition that A is
of degree which is GL2 iff A⊕ /0′ is high relative to A. �

A proof that all non-GL2 degrees satisfy a certain property typically follows the following pattern. We begin by
observing that 0′ satisfies the property in question, and then observe that, in fact, it is the ability of /0′ to compute
a sufficiently fast growing function f which allows us to prove this (when relativizing to A one will often find that
it is now the ability of A⊕ /0′ to compute a sufficiently fast growing function which is required). The final step
then requires showing that the previous proof can be modified. This modification involves showing that, actually, it
wasn’t necessary to be able to compute f . In fact, it suffices to compute g not dominated by f .

Described out of context the paragraph above might seem rather abstract, so let us give an example.

Andrew E.M.Lewis-Pye / The search for natural definability 27

Theorem 9.3 ([JP]) All non-GL2 degrees satisfy the cupping property.

Proof. For the duration of this proof we assume that Ψi(τ;n) is defined only if the computation converges in < |τ|
many steps. First of all, recall the proof that 0′ satisfies the cupping property, given in Section 6. In that proof an
oracle for 0′ sufficed to build the required tree, essentially because, given any i and any σ , the oracle is able to decide
whether or not there exist Ψi-splittings above σ . Now we see that, to put this another way, it sufficed to be able to
compute some sufficiently fast growing function. For any τ we define f (τ) as follows. For each i ≤ τ let si be the
least such that there exist τ0,τ1 extending τ of length si and which are a Ψi-splitting and if there exist no such τ0,τ1
then let si = 0. Define f (τ) = max{si : i ≤ τ}. For every s define f ?(s) = max{f (τ) : τ = s}. Then f ? ≤T /0′ and
computing any function which grows as quickly as f ? does, allows one to decide when splittings exist.

Now suppose we are given A of non-GL2 degree. Then there exists g≤T A with g(s)≥ f ?(s) for infinitely many
s. We can assume that g is an increasing function.

In order to show that A is perfectly cone avoiding we define T =
⋃

s Ts as follows. We define T as a set of finite
binary strings, but it will be clear how to convert this into the appropriate function 2<ω → 2<ω .

Stage 0. We define T0 to be { /0}.
Stage s + 1. For each leaf τ of Ts and each i ≤ τ such that Ψi(τ) is compatible with A, check to see whether there
exists a Ψi-splitting τ0,τ1 such that both these strings extend τ and are of length ≤ g(s).
If so (for some i≤ τ): then let i be the least such, let τ ′ ⊃ τ be as short as possible such that Ψi(τ

′) is incompatible
with A and if τ ′ ≤ s then enumerate the two one element extensions of τ ′ into Ts+1.
If not: then enumerate the two one element extensions of τ into Ts+1.

This ends the description of the construction.

It is a crucial detail that, in the first case above, we only enumerate the two one element extensions of τ ′ into
Ts+1 if τ ′ ≤ s. This means that, by the end of stage s, all strings enumerated into T are of length at most s. We know
that there exist infinitely many s with g(s)≥ f ?(s), suppose that s is one of these stages. Let τ be a leaf of

⋃
s′≤s Ts′ .

Then at stage s + 1 we search for enough steps to see all of the relevant splittings that exist—for every i ≤ |τ| such
that there exists a Ψi-splitting above τ there exists a splitting in which the strings are of length≤ g(s). If there exists
no such i, then we shall enumerate the two one element extensions of τ into T at stage s + 1. Otherwise, let i be the
least such, let τ ′ ⊃ τ be as short as possible such that Ψi(τ

′) is incompatible with A, and let |τ ′|= s′. Then we shall
not enumerate any proper extensions of τ into T until stage s′+ 1, when we shall enumerate in the two one element
extensions of τ ′. �

Now we are ready to define the a.n.r. degrees and to explain one of the reasons for their usefulness.

Definition 9.1 We say that A≤wtt B if A≤T B via a Turing functional which has use on argument n bounded by g(n)
for some (total) computable function g.

Definition 9.2 A is array non-recursive (a.n.r.) if there is no function f ≤wtt /0′ which dominates every function
computable in A. A degree is a.n.r. if its members are. A set A is array recursive if it is not array non-recursive.

Since in this course we are using the terminology “computable” rather than “recursive”, one might reasonably
ask why we do not refer instead to the “array non-computable” degrees. The reason is that that degrees are standardly
referred to by their acronym “a.n.r.” rather than their full name “array non-recursive”. To call them the a.n.c. degrees
would probably lead to confusion.

Theorem 9.4 ([DJS]) All degrees which are non-GL2 are a.n.r..

Proof. If A is of non-GL2 degree then A⊕ /0′ is not high relative to A. The result then follows from Theorem 9.2 –
for every function f which is Turing reducible to /0′ there is g≤T A which is not dominated by f , so certainly this is
also true for all those functions wtt reducible to /0′. �

28 Andrew E.M.Lewis-Pye / The search for natural definability

So the a.n.r. degrees are a superset of the degrees which are non-GL2. In fact they are a proper superset, since
it follows directly from the definition that they are upward closed. The key point here is that, when proving results
concerning 0′ or the non-GL2 degrees, it is often the existence of some fast growing function f ≤T /0′ which allows
us to put the proof through, and this function is very often wtt-reducible to /0′. In this case we may well be able to
put the same proof through in order to give the result for the a.n.r. degrees. Theorem 9.3 is an example.

Theorem 9.5 ([DJS]) All a.n.r. degrees satisfy the cupping property.

Proof. The function f in the proof of Theorem 9.3 is actually wtt reducible to /0′, so the same proof suffices to give
this stronger result. �

We state the following theorem without proof.

Theorem 9.6 ([DJS]) There exist low degrees which are a.n.r..

The class of a.n.r. degrees has many interesting interactions with other properties in various contexts. Perhaps
the most impressive example is the following characterization of those c.e. degrees which have a strong minimal
cover, due to Ishmukhametov.

Definition 9.3 A degree b is a minimal cover for a if b > a and there does not exist c with a < c < b.

Definition 9.4 A degree b is a strong minimal cover for a if the degrees strictly below b are precisely the degrees
below and including a.

Theorem 9.7 ([IS]) A c.e. degree has a strong minimal cover iff it is array recursive.

Proof. For the duration of this proof it is convenient to assume that, for any i,τ ,n, Ψi(τ;n) ↓ only if the computation
converges in |τ| many steps and Ψi(τ;n′) ↓ for all n′ < n. We give a proof which is a little more informative than the
original and proceeds via a sequence of lemmas.

Definition 9.5 We say a is a tree basis if, whenever it computes a perfect tree T, it computes a perfect pointed
subtree of T (a tree is pointed if all paths compute the tree).

Lemma 9.1 ([AL]). If a is a tree basis then it has a strong minimal cover.

Proof. First we need to consider how we can relativize the minimal degree construction, and what happens when
we do so. Suppose we are given A. We can relativize the minimal degree construction to A by starting with a tree T0
which contains all strings of the form σ ⊕ τ such that σ ⊂ A, rather than the full binary tree. This ensures that the
set we construct is of degree above A, but means that now we must work with A computable trees rather than partial
computable trees. Suppose that the set we are constructing is B. When we force B to lie on a Ψi-nonsplitting tree,
this now means that Ψi(B) is either partial or computable in A. When we force B to lie on a Ψi-splitting tree, this
now means that A⊕Ψi(B) computes B. What results, then, is a degree which is a minimal cover for a = deg(A), but
not necessarily a strong minimal cover. Now, however, suppose that we know a is a tree basis. In order to construct a
strong minimal cover for a we begin just as if we were trying to construct a minimal cover for a. At stage s+1, given
Ts and βs, we ask, “does there exist any string τ ∈ Ts such that no two strings extending τ in Ts are Ψs-splitting?”

If so: then we define Ts+1 to be the subtree of Ts above τ .
If not: then we can let T0 be a perfect A-computable Ψs-splitting subtree of Ts+1. Now let T1 be such that τ ∈ T1

iff τ = Ψs(σ) for some σ ∈ T0, so T1 is a perfect A-computable tree. Now we use the fact that a is a tree basis. Let
T2 ⊆ T1 be a perfect A-computable tree such that all paths through the tree compute A. Then T3 such that σ ∈ T3 iff
Ψs(σ) ∈ T2 is a perfect A-computable tree. We can define Ts+1 = T3. If B lies on Ts+1 then B≤T Ψs(B). �

The next couple of lemmas we need concern the c.e. traceable degrees.

Andrew E.M.Lewis-Pye / The search for natural definability 29

Definition 9.6 A⊆ ω is c.e. traceable if there is a computable function p such that for every function f ≤T A there
is a computable function h such that Wh(n) ≤ p(n) and f (n) ∈Wh(n) for all n ∈ ω .

How should one understand this definition? The function p here can be thought of as a bounding function and
the function h can be thought of as a guessing function. Thus A is c.e. traceable if there exists some computable
bounding function p such that for every f ≤T A there exists some computable guessing function h which makes at
most p(n) guesses as regards each value f (n) and one of these guesses is always correct. The next lemma shows
that the choice of bounding function is fairly arbitrary.

Lemma 9.2 ([TZ]). If A is c.e. traceable then, for any increasing and unbounded computable function g such that
g(n) ≥ 1 for all n, and for every function f ≤T A, there is a computable function h such that |Wh(n)| ≤ g(n) and
f (n) ∈Wh(n) for all n.

Proof. We freely identify finite strings and natural number codes for them, for the sake of readability. Let g be
any increasing and unbounded computable function such that g(n)≥ 1 for all n. Let p be an increasing computable
function such that for every function f ≤T A there is a computable function h such that Wh(n) ≤ p(n) and f (n)∈Wh(n)
for all n∈ω . We can assume p(0) = 1. Now let r be an increasing and unbounded computable function which grows
sufficiently slowly that for all n:

p(r(n))≤ g(n).

Let q be an increasing computable function such that for all n:

q(r(n))> n.

Suppose we are given f ≤T A and let f ∗(n) = f � q(n). Let h be a computable function such that |Wh(n)| ≤ p(n)
and f ∗(n) ∈Wh(n) for all n. Let h∗(n) = i such that Wi = {τ(n)| τ ∈Wh(r(n))}. Then there are at most p(r(n))≤ g(n)
many strings in Wh(r(n)) and (we can assume that) each is of length q(r(n)) > n. Also, f � q(r(n)) ∈ Wh(r(n)), so
f (n) ∈Wh∗(n). �

Lemma 9.3 ([AL2]). Every c.e. traceable degree is a tree basis.

Proof. Suppose we are given A which is c.e. traceable. By the previous lemma this means that, for every function
f ≤T A there is a computable function h such that Wh(n) ≤ 2n and f (n) ∈Wh(n) for all n ∈ ω .

Recall that for any finite tree T ′, we say T ′ is of level n if the domain of T ′ is all strings of length ≤ n. In what
follows we shall subdue mention of effective codings between strings and natural numbers and between finite sets
of strings and natural numbers for the sake of readability. So now assume that A is c.e. traceable, T ≤T A and that T
is perfect. In fact we may assume without loss of generality that that we are given Ψ such that:r for any τ , the value Ψ(τ) is a finite tree of level n for some n and can be computed in τ many steps,r Ψ(A) = T ,r for any τ ⊂ τ ′, Ψ(τ ′) extends Ψ(τ) as a function from strings to strings.r if Ψ(τ) is of level n > 0 then there exists τ ′ ⊂ τ such that Ψ(τ ′) is of level n−1.

So Ψ is just a functional via which A computes T and which behaves in a nice tidy fashion. First we define the
function f ≤T A as follows; for every n, f (n) is the shortest initial segment of A, τ say, such that Ψ(τ) is of level
Σn

i=0(i + 2). Since A is c.e. traceable we can then take computable h such that Wh(n) ≤ 2n and f (n) ∈ Wh(n) for all
n ∈ ω . We can assume that if n > 0 then τ is not enumerated into Wh(n) unless some initial segment of τ has already
been enumerated into Wh(n−1) and unless Ψ(τ) is of level Σn

i=0(i + 2) and this is not the case for any proper initial
segment of τ .

30 Andrew E.M.Lewis-Pye / The search for natural definability

Next we proceed to computably enumerate various values T0(τ) and T1(τ) and axioms for a Turing functional
Φ such that T0(A) is a 2-branching subtree of T and for every set C lying on T0(A) we have Φ(C) = A. We construct
T1 just as an auxiliary function which is useful in defining the construction.

The basic idea is just this. Each value Wh(n) only has a small number of trees in it, while each of these trees has
a large number of strings. This allows us to pick out strings in each tree which are chosen specifically for that tree,
and which can then be mapped to the tree via Φ.

Initially all strings are available for use (which means that there isn’t any τ such that they have been put into
T0(τ) yet). There can be only a single string enumerated into Wh(0), τ say. We define T1(τ) to be the strings of level
0 and 2 in Ψ(τ) and we define T0(τ) to be the string, σ say, of level 0 in Ψ(τ). We declare σ to be unavailable for
use and enumerate the axiom Φ(σ) = τ . Whenever some τ is enumerated into Wh(n) for n > 0 we shall already have
enumerated a (unique and proper) initial segment of this string, τ ′ say, into Wh(n−1). For each leaf σ of T0(τ

′) there
will be precisely 2n+1 successors in T1(τ

′). Let σ0 and σ1 be the first two of these which are still available for use,
enumerate these strings into T0(τ) and enumerate all leaves σ ′ of Ψ(τ) which extend these two strings into T1(τ)
before enumerating the axioms Φ(σ0) = τ , Φ(σ1) = τ . Declare σ0 and σ1 to be unavailable for use.

In order to see that the axioms enumerated for Φ are consistent observe that when we enumerate an axiom
Φ(σ) = τ , σ is a leaf of T0(τ). The consistency of the axioms enumerated for Φ then follows from the fact that it
is easily seen by induction on the stage of the construction that if τ and τ ′ are incompatible and we have defined
values T0(τ),T0(τ

′) then the leaves of these two sets of strings are pairwise incompatible. The fact that T0(A) is
2-branching and that for every C ∈ T0(A) we have Φ(C) = A then follows immediately from the description of the
construction. �

We just need one more lemma:

Lemma 9.4 ([IS]). Any c.e. degree is c.e. traceable iff it is array recursive.

Proof. Suppose A is a c.e. set. If A is a.n.r. then its degree satisfies the cupping property, and so, by the previous
lemmas A cannot be c.e. traceable. Now suppose that A is array recursive, and let g ≤wtt /0′ dominate every A
computable function. Since g can be computed from /0′ with use bounded by a computable function, we can take a
computable function p and a computable function h∗ such that |Wh∗(n)|< p(n) and g(n) ∈Wh∗(n) for all n. Given an
enumeration of A and f ≤T A let f = Ψi(A) and let k(n) be the least s such that Ψi(As;n)[s] ↓ and As below the use of
this computation is actually an initial segment of A. Let Wh(n) be the set of values Ψi(As;n)[s] such that there exists
t ∈Wh∗(n) and s is the first stage s′ ≥ t at which Ψi(As′ ;n)[s′] ↓. There are less than p(n) such values and, since g
dominates k, for all but finitely many n one of these values is f (n). �

Now we just need to put these lemmas together. Suppose A is a c.e. set. If A is a.n.r. then its degree satisfies the
cupping property and so does not have a strong minimal cover. If A is not a.n.r. then it is c.e. traceable, and so is a
tree basis and so has a strong minimal cover. �

We shall see more about the a.n.r. degrees later.

10. The 1-generic degrees
There is little one can say in general about D[≤ a] which is true for all a which are low, or for all a which are
generalized low. The 1-generic degrees, however, are a nice subset of the degrees which are GL1, for which D[≤ a]
is relatively rich in structure.

Definition 10.1 A set A⊆ ω is 1-generic if for every c.e. set of strings W, either:

(i) (∃σ ⊂ A)[σ ∈W]; or
(ii) (∃σ ⊂ A)(∀τ ⊇ σ)[τ /∈W].

A degree is 1-generic if it contains a 1-generic set.

Andrew E.M.Lewis-Pye / The search for natural definability 31

Theorem 10.1 If A is 1-generic then its degree is GL1.

Proof. Consider W = {τ|Ψe(τ;e) ↓}. If A is 1-generic then either (i) or (ii) of definition 10.1 holds. Using an oracle
for A⊕ /0′ we can successively test initial segments σ of A to see whether either of (i) or (ii) hold for that σ . When
we find σ for which this is true, this tells us whether e ∈ A′. Therefore A′ ≤T A⊕ /0′. �

Theorem 10.2 Every degree b≥ 0′ is the jump of a 1-generic.

Proof. Given an oracle for B ≥T /0′ we construct A which is 1-generic. Since all 1-generics are generalized low, in
order to show that A′ ≡T B, it suffices to ensure that A⊕ /0′ can compute B. This will follow since we code one more
bit of B into A at each stage of the construction, and an oracle for A⊕ /0′ will suffice to retrace the construction and
so determine the coded bits of B. We construct A as the union of a sequence of strings {αs}s∈ω .

Stage 0. Define α0 = /0.
Stage s + 1. We identify finite strings and natural numbers codes for them, so that Ws is the sth c.e. set of strings.
Using an oracle for /0′ determine whether there exists α ⊇ αs which extends some element of Ws. If not then define
αs+1 = αs ∗B(s). Otherwise let α be the first such, and define αs+1 = α ∗B(s). �

Theorem 10.3 If a is 1-generic, then there exists an independent sequence of degrees below a.

Proof. Let A be 1-generic, we show that the sequence {A[i]}i∈ω is independent. For each i and each finite F such
that i /∈ F consider the set:

W = {τ| (∃x ∈ ω)(∃σ ⊂ τ
[F])[Ψi(σ ;x) ↓6= τ

[i](x)]

Since A is 1-generic, either (i) or (ii) of Definition 10.1 holds. If (i) holds then Ψi(A[F]) 6= A[i]. So suppose (ii)
holds for σ . Let x be such that σ [i](x) ↑. If it was the case that Ψi(A[F];x) ↓ then it would be the case that (i) holds
for some extension of σ , so it must be the case that Ψi(A[F];x) ↑. �

Corollary 10.1 If a is 1-generic, then ∃1∩Th(D[≤ a]) is decidable.

Having done the ground work we are now ready to study the structural properties satisfied by the degrees in each
of the various jump classes. We begin by considering simple properties and then work our way gradually to consider
properties which are more complex. The following theorem means that the right choice of upper semi-lattice can
often be used in order to show that a given structural property is not satisfied by all degrees which are low or by all
degrees which are low2.

Theorem 10.4 ([ML]) Let P be a finite upper semi-lattice. Then there is a low degree a such that D[≤ a] is
isomorphic to P , and there also exists a degree which is low2 non-low of this kind.

11. Minimal degrees and the jump classes
By Theorem 8.6 no PA degree is minimal. We saw earlier that there exist low PA degrees, and that the PA degrees
are upward closed. It’s also true that every low degree is bounded by a degree in each jump class. This can be seen
by relativizing Theorem 7.3, because it follows straight from the definition that (for n > 0) any degree which is lown
relative to a low degree is still lown, and that any degree which is highn relative to a low degree is still highn. Putting
all these facts together, we see that every jump class has members which are not of minimal degree. The question
which remains is, which jump classes do have members of minimal degree?

32 Andrew E.M.Lewis-Pye / The search for natural definability

Theorem 11.1 ([JP]) If a is non-GL2 then a bounds a 1-generic.

Proof. The proof follows the same structure that we discussed earlier in Section 9. First of all, one thinks about how
one would prove that 0′ bounds a 1-generic, and then one thinks how to rephrase this proof so that it is the ability of
/0′ to compute a sufficiently fast growing function f which allows the proof to go through.

In this case we define the function f as follows. Given τ ∈ 2<ω , for each i ≤ |τ| let si be the least s such that
there is a string σ ⊃ τ in Wi,s, putting si = 0 if there exists no such s (again we identify finite strings and natural
numbers codes for them, so that Wi may be regarded as a set of finite strings). Let f ∗(τ) = max{si| i≤ |τ|} and, for
all n, define f (n) = max{f ∗(τ)| |τ| ≤ n}.

Given A which is of non-GL2 degree, choose an increasing function g ≤T A which is not dominated by f . We
define B =

⋃
s σs as follows.

Stage 0. Define σ0 = /0.
Stage s + 1. For each i ≤ |σs| such that there does not exist any initial segment of σs in Wi,s, check to see whether
there exists a proper extension of σs in Wi,g(s).

If so (for some i): then let i be the least such. Let τ be the first extension of σs enumerated into Wi. If |τ| ≤ s + 1
then define σs+1 = τ , otherwise define σs+1 = σs.

If not: then define σs+1 = σs ∗0.

In order to see that the construction does what it is supposed to, consider any s such that g(s) > f (s). The key
point is that |σs| ≤ s. At stage s + 1 there are two possibilities. The first possibility is that for each i ≤ |σs| the
following holds: there is already a string in Wi,s which is an initial segment of σs, or else there are no strings in Wi
properly extending σs. In this case we define σs+1 = σs ∗ 0. The second possibility is that there is some least i for
which this does not hold – so there is a first string τ ⊃ σs enumerated into Wi. Let |τ|= s′. At stage s′ we shall define
σs′ = τ . �

By Theorem 10.3 no 1-generic degree is minimal. By Theorem 11.1, it therefore follows that all minimal degrees
are GL2. The fact that there are minimal degrees which are low follows from the fact that any c.e. degree bounds a
minimal degree. In order to prove this, however, requires being able to construct a minimal degree by full approx-
imation, and this is a technique which we will not cover in this course. We restrict ourselves to showing that there
are minimal degrees which are GL2 but not GL1.

Theorem 11.2 ([LS]) There exists a minimal degree which is GL2 but not GL1.

Proof. Since we are not worried about whether or not the minimal degree we construct is below 0′, we use a
modification of the construction which builds minimal degrees using perfect trees. In order to ensure that A is not
GL1 it suffices to satisfy the requirements:

Ve : A′ 6= Ψe(A⊕ /0′).

Now we intersperse the action required to satisfy these requirements with the original construction, so we might
act to satisfy these requirements at odd stages for example. Suppose that at some stage of the construction it is
already decided that A will lie on the perfect tree T . In order to satisfy the requirement Ve we consider the narrow
subtree of T:

Definition 11.1 If T is a perfect tree, then the narrow subtree of T, T∗ say, is defined as follows. For σ of length n,
T∗(σ) = T(σ ⊕0n), where 0n is the sequence of n zeros.

The crucial point about the narrow subtree T∗ is that, for every σ ∈ T∗ there exists τ ⊃ σ which is in T but not
in T∗ – at any point in a finite extension argument it is still possible to leave T∗ and remain in T . Note that if T
is computable then its narrow subtree is computable too. Given an index for T∗ we can effectively find i such that

Andrew E.M.Lewis-Pye / The search for natural definability 33

i ∈ A′ iff A does NOT lie on T∗.

In order to satisfy Ve, we just have to ask, does there exist σ ∈ T∗ such that Ψe(σ ⊕ /0′; i) ↓= 0?
If not: then we satisfy the requirement simply by having A lie on T∗. If we do this, then either Ψe(A⊕ /0′; i) ↑ or

Ψe(A⊕ /0′; i) ↓= 1 but i /∈ A′.
If so: then let σ ∈ T∗ be such that Ψe(σ⊕ /0′; i) ↓= 0. There exists τ ⊃ σ which is in T−T∗ so now we just have

to insist that A lies on the subtree of T above τ . Then i ∈ A′ but Ψe(A⊕ /0′; i) ↓= 0. �

12. The cupping property
All relations between the cupping property and the jump classes are fully understood. We have seen already that
all a.n.r. degrees (and so all degrees which are non-GL2) satisfy the cupping property. We saw that all PA degrees
satisfy the cupping property, that there are PA degrees which are low and PA degrees which are low2 non-low (since
the PA degrees are upward closed and a low degree is bounded by members of each and every jump class). So we
know that there are low degrees and also low2 non-low degrees which satisfy the cupping property. On the other
hand there are also low degrees and low2 non-low degrees which have a strong minimal cover, and no degree with a
strong minimal cover satisfies the cupping property.

There are, however, many open questions concerning the cupping property which remain. We list a few here.

Question 12.1 Does every degree either have a strong minimal cover or satisfy the cupping property?

Question 12.2 Is every degree either a tree basis or else perfectly cone avoiding?

A positive answer to Question 12.2 would give a positive answer to Question 12.1 and would also give a positive
solution to an old question of Yates which is one of the longstanding questions of degree theory: does every minimal
degree have a strong minimal cover? This follows because:

Theorem 12.1 ([AL3]) Every perfect and non-computable tree computes one of its non-computable paths.

Theorem 12.1 suffices to show that no minimal degree is perfectly cone avoiding. In order to see this suppose
that A is of minimal degree and computes the perfect tree T . Then A computes a non-computable path of T , and
since A is of minimal degree this path must therefore be of the same degree as A. A positive solution to Question
12.2 would therefore mean that the degree of A must be a tree basis, and so have a strong minimal cover. A positive
solution to Question 12.2 would also give a positive solution to the following question:

Question 12.3 Are the degrees which satisfy the cupping property precisely those which are perfectly cone avoid-
ing?

13. The join property
This is a property which is more interesting in this context, basically because it is not upward closed. First consider
the non-GL2 degrees:

Theorem 13.1 ([DGLM]) All non-GL2 degrees satisfy the join property.

Proof. The proof follows the format for non-GL2 proofs that we described in Section 9. So we look at how the
proof works for 0′, and then consider how to modify this proof. In Section 6 we gave a proof that 0′ satisfies the join
property. The reader is invited to verify for themselves that the proof given there is easily modified to show that for

34 Andrew E.M.Lewis-Pye / The search for natural definability

all non-zero a < 0′ there exists b < 0′ which 1-generic with a∨b = 0′. In the present proof we shall also build a
joining partner which is 1-generic.

So we suppose we are given D of degree which is not GL2, and A which is of non-zero degree strictly below that
of D. We want to construct B <T D such that A⊕B≡T D. As before, we define

σn = 000 · · ·︸ ︷︷ ︸
n zeros

1.

If s = 〈m,n〉 let left(s) = m. Once again, we can assume that A is not computably enumerable. First of all, we have
to define the appropriate fast growing function.

Given any σ ∈ 2<ω and any e,s ∈ ω , let g(σ ,e,s) be defined in the following way. First, let n be the least such
that:

n ∈ A ⇒ 6 ∃τ ∈We,s with τ ⊇ σ ∗σn;
n /∈ A ⇒ ∃τ ∈We,s with τ ⊇ σ ∗σn.

If n ∈ A define g(σ ,e,s) = σ ∗σn. If n /∈ A then let g(σ ,e,s) be the first string enumerated into We,s with τ ⊇ σ ∗σn.
So g(σ ,e,s) basically tells us how the join construction (modified to build a 1-generic joining partner) would

proceed at some stage if σ was the initial segment we have already constructed, if we were looking to satisfy the
eth genericity requirement at this stage, but providing we only search for s many steps in order to try to ascertain
the correct way of extending σ . Let g∗(σ ,e) be the least s such that either g(σ ,e,s) extends a string in We,s, or there
doesn’t exist any string in We extending g(σ ,e,s). Then, roughly speaking, g∗(σ ,e) tells us the least s such that
g(σ ,e,s) is the “correct” extension.

Given any f : ω → ω we define a set Bf =
⋃

s τf ,s as follows:

Stage 0. Define τf ,0 = D(0).

Stage t + 1. Define τf ,t+1 = g(τf ,t, left(t), f (t))∗D(t + 1).

So Bf is the set that the join construction will build, if we use f in order to bound how many steps we search for
at each stage in order to try to determine the correct way to extend.

Now for any t the set Πt = {τf ,t | f : ω→ω} is finite (since once you search for “enough” steps at a certain stage
you will never subsequently change your mind about how to extend at this stage), so let f0 be an increasing function
computable in A⊕ /0′ such that, for all t and all τ ∈ Πt, f0(t) is greater than g∗(τ , left(t)). Then f0 is a function
which bounds how long we have to search at stage s of the join construction in order to proceed correctly if we
wish to satisfy the (left(t))th genericity requirement, no matter how we have proceeded at previous stages, i.e. even
if we did not search for long enough to proceed “correctly” at previous stages. One last little detail we have to be
concerned with, is that when we choose a function f2 not dominated by f0, we cannot be sure for which arguments
t we will have that f2(t) > f0(t)—we want to be sure that for each e this happens for some t with left(t) = e. Let
h be a computable and increasing function such that, for all t and all e ≤ t, there exists t′ with t < t′ < h(t) and
left(t′) = e. Define f1(t) = f0(h(t)) for all t. Since D is not GL2, we may let f2 be an increasing function computable
in D which is not dominated by f1 and then define B = Bf2 .

That D is computable in A⊕B follows using precisely the same argument as we used when proving that 0′
satisfies the join property. It remains to show that B is 1-generic. In order to see this, let t > e be such that f2(t)> f1(t).
Then there exists t′ such that t < t′ < h(t) and left(t′) = e. We have that f2(t′)> f2(t)> f1(t) = f0(h(t)) > f0(t′), so
that f2(t′)> g∗(τf2,t′ ,e) as required. �

Theorem 10.4 then suffices to show that there are low degrees and also low2 non-low degrees which satisfy the
join property, as well as degrees of these kinds which do not.

Andrew E.M.Lewis-Pye / The search for natural definability 35

The situation becomes more interesting, however, when we consider the upward closure – for which degrees is
it the case that all degrees above satisfy the join property? In looking to answer this question, it becomes natural to
consider upward closed classes of degrees which we are used to working with. Do all PA degrees satisfy the join
property? Do all a.n.r. degrees satisfy the join property? Another natural question is as to whether satisfaction of the
cupping property is equivalent to all degrees above satisfying join. We can answer all of these questions with the
following result:

Theorem 13.2 ([AL4]) All low fixed point free degrees fail to satisfy the join property.

The techniques used to prove this theorem are a combination of Kučera’s fixed point free permitting below /0′

[AK2] and the techniques developed independently by Cooper [BC4], and also Slaman and Steel [SS] in order to
show that there exist c.e. degrees which do not satisfy the join property (when considered as elements of the ∆0

2
degrees). The proof of the latter result we shall sketch later in this section. We shall not cover the fixed point free
permitting technique in this course, an account is given in Nies’ book [AN].

Corollary 13.1 Above each low degree, there is a low degree which doesn’t satisfy join.

Proof. Each low degree is bounded by a degree which is low and fixed-point-free. To see this, apply the low basis
theorem relative to a low degree a, in order to deduce that there is a degree b which is PA relative to a and low over
a. The degree b is then PA by Theorem 8.5, and is also low, since any degree which is low over a low degree is still
low. �

The following corollary concerns Martin-Löf randomness, which we don’t define here. For an introduction to the
study of algorithmic randomness (and, in particular, Martin-Löf randomness), we refer the reader to [AN] and [DH].

Corollary 13.2 There are PA/a.n.r./Martin-Löf random degrees which don’t satisfy join.

Proof. All PA degrees and all Martin-Löf random degrees are fixed-point-free, and it follows from the low basis
theorem that there exist PA degrees which are low and also Martin-Löf random degrees which are low. For the a.n.r.
degrees, the corollary follows from Corollary 13.1 and the fact that the a.n.r. degrees are upward closed. �

Corollary 13.3 Satisfaction of the cupping property is not equivalent to all degrees above satisfying join.

Proof. By Theorem 8.6 any PA degree properly bounds another PA degree. The result then follows from Corollary
13.2 and the fact that all PA degrees satisfy the cupping property. �

There is another theorem along the same lines:

Theorem 13.3 ([AL4]) Above every low c.e. degree, there is a low c.e. degree which doesn’t satisfy join.

This leaves open various questions. Working below 0′ first of all, we have already managed to separate the
non-low2 degrees from the low degrees, and it seems natural to ask if this can be extended to give a definition of
low2:

Question 13.1 In D[≤ 0′], are the low2 degrees precisely those for which it is not the case that all degrees above
satisfy join?

It remains open, in fact, whether 0′ can be given an extremely simple definition using the join property, although
one would expect the following question to be answered in the negative:

Question 13.2 Can 0′ be defined as the least degree such that all degrees above satisfy join?

36 Andrew E.M.Lewis-Pye / The search for natural definability

There is an interesting observation to be had here. Let us suppose for a moment that question 13.2 receives a
negative response, and that, in fact, any degree which bounds a high degree satisfies join. This moves us towards
a definition of 0′ in another direction. Immediately from this we get a formula sufficient to distinguish 0′ from all
degrees comparable with it, because then all degrees above 0′ satisfy the following formula, while no degree strictly
below 0′ does so:

a satisfies mincup, and ∀b≥ a, ∀ minimal degrees m < b,b satisfies join(m),

where a satisfies mincup if for all b ≥ a there exists a minimal degree m < b with a∨m = b, and where join(m)
means join above m, i.e. b satisfies join(m) if, for all c with m < c < b there exists d with m < d < b and d∨c = b.
Let us see first why degrees above 0′ satisfy the formula above. All such degrees satisfy mincup – this follows from
the fact that /0′ computes a perfect tree of sets of minimal degree. If b ≥ 0′ bounds a minimal degree m then, since
all minimal degrees are GL2, b bounds a degree which is high relative to m and so satisfies join(m) according to our
hypothesis (given relativization).

Now suppose that a < 0′. Then a may not satisfy mincup, but if it does then let b ≥ a be GL1 (such a degree
will exist by Theorem 7.4), and let m be a minimal degree such that m∨ a = b. Then m∨ 0′ ≥ b∨ 0′ = b′, so
m∨0′ = b∨0′ = b′ = m′, so that b is actually low over m. By Corollary 13.1, above every low degree there exists
a low degree which doesn’t satisfy join. This proof relativizes, meaning that we may choose c ≥ b which doesn’t
satisfy join(m).

One may reasonably ask how useful this observation actually is, given that we are supposing something that
may well not be true – it could well be the case that there are degrees which bound a high degree and which do
not satisfy the join property. The point here, though, is that we don’t have to consider just the join property. Any
property which suffices to separate high and low cones will suffice:

Question 13.3 Can we find a natural order theoretic property P, which suffices to separate the high and low cones,
in the sense that above any low degree there is a degree which does not satisfy P, while any degree which bounds a
high degree satisfies P?

Question 13.4 If a 6≥ 0′ does there necessarily exist b≥ a and a minimal degree m < b such that b is low over m?

These two questions are interesting because positive answers to both would give a natural definition of the jump
(assuming necessary relativizations hold). This follows because then 0′ would be the least degree such that:

∀b≥ a,∀ minimal degrees m < b, b ∈ P(m),

where P(m) denotes P above m, in just the same way that we let join(m) denote join above m previously.

We finish this section by considering the methods needed to prove Theorem 13.2. We shall not actually prove
this theorem, but will prove instead the theorem mentioned previously due to Slaman and Steel, and independently
due to Cooper, that there exist non-zero c.e. degrees b < a such that no ∆0

2 degree d < a joins b up to a. This proof
illustrates the basic framework which has to be expanded in order to prove Theorem 13.2. We construct c.e. sets B
and C such that the following requirements are satisfied:

Pi: If Wi is infinite then Wi∩B 6= /0;
Qi: If Φi(B⊕C) (= Di say) is total and Ψi(B⊕Di) = C then Γi(Di) = B;

where {(Φi,Ψi)}i∈ω is an effective listing of all pairs of Turing functionals, and each Γi is a functional that we
build during the course of the construction. B will have infinite complement by construction. The reader is invited to
verify for themselves that satisfaction of these requirements suffices to prove the theorem. In what follows we will

Andrew E.M.Lewis-Pye / The search for natural definability 37

often abuse notation by writing Di in order to denote Φi(B⊕C), even though this may actually be a partial function.

We shall have one strategy for each requirement, and the requirements and their corresponding strategies are
prioritized P0,Q0,P1,Q1, At each stage s of the construction we perform another step of the instructions for
each of the first s strategies in turn. The construction will have finite injury. More precisely, what this means here,
is that each strategy will be initialized a finite number of times by higher priority strategies. When a strategy is
initialized, this means that it then begins again as if it had never been run before, and in particular that we discard
any axioms for Turing functionals that it has previously enumerated. It is only the Qi requirements which enumerate
axioms for Turing functionals, and each enumerates axioms for a functional that is specific to the strategy, so if the
strategy is only initialized finitely many times then the finitely many discarded axioms for that functional are not
problematic.

Since the strategies are very simple and the interactions between them are not complicated, it is probably easiest
just to describe the strategies directly and then verify that they work.
In what follows we adopt the convention that when discussing any point in the construction, we may write B, C
etc in order to denote their present values. At any point during the construction we let δi denote the finite string
Φi(B⊕C) (which we can assume to be binary).

The Qi strategy. The basic idea behind this strategy is extremely simple – at each stage at which it is run the strategy
considers the least n such that Γi(δi;n) ↑ and it looks to define this value. There are a few small considerations that
have to be made, however.

(a) Whenever we enumerate an axiom defining a value Γi(δ ;n), we wish to ensure that it is already the case
Γi(δ ;n′) ↓ for all n′ < n.

(b) When we enumerate such an axiom, we wish to ensure that δ and the present value B already map via Ψi to
an initial segment of C which is longer than n. The motivation for this is in order to co-ordinate with the P
strategies.

(c) We also have to make sure that the axioms enumerated are consistent. We do not wish to enumerate an axiom
Γi(δ ;n) = 1, for example, when there is already some δ ′ ⊇ δ for which we have enumerated the axiom
Γi(δ

′;n) = 0. The precise instructions are therefore as below.

At any point in the construction the length of agreement for Qi is the greatest m such that C � m ⊆Ψi(B⊕δi).
At each stage at which it is run the strategy considers the least n such that Γi(δi;n) ↑ and if n is less than the length
of agreement then it proceeds as follows. Let β and δ be, respectively, the initial segments of B and δi used in the
computation Ψi(B⊕ δi;n) = C(n). If there exists a shortest δ ′ with δ ⊆ δ ′ ⊆ δi such that Γi(δ

′;n′) ↓ for all n′ < n
and for which it is consistent with all axioms previously enumerated to enumerate the axiom Γi(δ

′;n) = β (n), then
enumerate this axiom.

If Φi(B⊕C) = Di is total and Ψi(B⊕Di) = C then it is not hard to see that these instructions ensure that Γi is
total. In order to ensure that Γi(Di) = B we just have to make sure that:

(?i) when n ∈ B, Di does not extend any string δ for which we enumerate an axiom Γi(δ ;n) = 0.

The Pi strategy. When this strategy enumerates some n into B it must be able to ensure for each Qi′ of higher
priority, that if Di′ is total and Ψi′(B⊕Di′) = C, then condition (?i′) is not violated, i.e. Di′ cannot extend any
string δ for which we have enumerated an axiom Γi′(δ ;n) = 0. In order to achieve this the strategy uses a standard
agitator technique, which works as follows. It will not enumerate n into B, unless there exists β = B � n′ for some
n′ < n and there exists m such that, for all δ and i′ < i for which we have enumerated an axiom Γi′(δ ;n) = 0, it is
the case Ψi′(β ⊕ δ ;m) = 0. We call m the agitator for this strategy. Then, upon enumerating n into B, the strategy
enumerates m into C and looks to preserve β as an initial segment of B. It attempts to achieve this latter task simply
by initializing all lower priority strategies – these strategies will only be allowed to enumerate numbers into B or C

38 Andrew E.M.Lewis-Pye / The search for natural definability

which are greater than the last stage at which they were initialized. So long as β is preserved as an initial segment
of B, then for each i′ < i and each δ for which we have enumerated the axiom Γi′(δ ;n) = 0, it cannot be the case
that Di′ is total, Ψi′(B⊕Di′) = C and δ ⊂ Di′ because Ψi′(β ⊕ δ ;m) = 0, but m ∈ C. Any higher priority strategy
Pi′′ may subsequently enumerate a number into B which is less than |β |, but then this strategy will similarly ensure
that no problematic δ can be an initial segment of Di′ if it is to be the case that Di′ is total and Ψi′(B⊕Di′) = C (and
if i′′ > i′), since it will also enumerate some m′ into C and preserve a (shorter) initial segment of B. The instructions
for the strategy are as follows.

The instructions for Pi. When the strategy is first run (subsequent to any initialization) it chooses a large agitator
m and then a large marker n > m. At every subsequent stage s at which it has not yet been declared satisfied it
performs the following steps:

1. Check to see whether there exist any i′ < i for which the strategy has not previously seen convergence (this
will initially be all i′ < i) and for which Γi′(δi′ ;m) ↓. If so then initialize all lower priority strategies, redefine
n to be large, declare that the strategy has seen convergence for each i′ < i for which Γi′(δi′ ;m) ↓, and perform
no further action at this stage. If not then proceed to (2).

2. If there exists n′ such that n < n′ and n′ ∈Wi,s−Wi,s−1, then enumerate n′ into B, enumerate m into C, declare
the strategy to be satisfied and initialize all lower priority strategies.

The verification. It is clear that each strategy is initialized a finite number of times, and since each marker for a
strategy Pi is only redefined a finite number of times it follows that each Pi requirement is satisfied. That the
complement of B is infinite follows since markers are chosen to be large. In order to show that the Qi requirement
is satisfied, let s0 be such that the Qi strategy is never initialized after stage s0. It suffices to show that if Di is total
and the length of agreement is unbounded, then Di is not compatible with any δ for which we enumerate an axiom
subsequent to stage s0, of the form Γi(δ ;n) = 0 for some n which is enumerated into B. This suffices, because then
the instructions for Qi clearly ensure that Γi(Di) is total.

So suppose that n is enumerated into B by a strategy Pi′ for i′ > i at a stage s1 > s0 and that, prior to this
enumeration, we have enumerated an axiom Γi(δ ;n) = 0. Let i′′ be the least such that Pi′′ enumerates a number
into B at a stage s2 ≥ s1, and such that Pi′′ is not initialized at any stage in the interval [s1,s2] (so that i′′ ≤ i′).
Then Pi′′ has already seen convergence for i when the axiom Γi(δ ;n) = 0 is enumerated, since its agitator m
is less than or equal to that of Pi′ . Let β and δ ′ be, respectively, the initial segments of B and δi used in the
computation Ψi(B⊕δi;m) when Pi′′ saw convergence for i. Since Pi′′ initialized all lower priority strategies when
it saw convergence for i, δ ′ ⊆ δ , and β is an initial segment of the final value B – in order to see this note that δi
cannot change below any given length unless B or C change below the relevant use and that once lower priority
strategies are initialized, they will subsequently choose markers and agitators larger than all previously observed
uses. It follows that if the length of agreement is unbounded then δ cannot be an initial segment of Di, because
Ψi(β ⊕δ ′;m) = 0 and Pi′′ enumerates m into C.

14. Degrees which bound minimal degrees
Cooper showed that every high degree bounds a minimal, and this was extended by Jockusch who showed that all
GH1 degrees bound minimal degrees.

Theorem 14.1 ([CJ]) Every generalized high degree bounds a minimal degree.

Proof. The proof is a modification of the proof that there exists a minimal degree below 0′, which makes use of the
recursion theorem.

Theorem 14.2 The recursion theorem. If f is computable then there exists i such that Ψi(/0) = Ψf (i)(/0).

Andrew E.M.Lewis-Pye / The search for natural definability 39

The main use we make of the recursion theorem is that it allows us to perform the following trick. If we
define a construction which takes any index i, and produces a computable function Ψf (i) (or a c.e. set Wf (i))
then, in fact, for the right choice of i, we shall have that Ψf (i) = Ψi (Wi = Wf (i)). So long as we don’t make any
assumptions about i in advance – so long as we don’t assume while defining Ψf (i) for example, that Ψi is total –
we may assume given an index for the partial computable function or the c.e. set that we are constructing in advance.

Posner’s trick. There is another trick which we can make use of when defining minimal degree constructions,
which is due to Posner, and which means that generally speaking we do not need to explicitly work in order
to satisfy non-computability requirements. Suppose that we construct a set B so that for every i, B either lies
on a Ψi-splitting tree, or else lies on a Ψi-nonsplitting tree. Now suppose that B is computable and consider Ψi
which is defined as follows; Ψi(σ) = /0 if σ ⊂ B, Ψi(σ) = σ otherwise. Since it is not possible for B to lie on a
Ψi-nonsplitting tree, it must lie on a Ψi-splitting tree, which gives a contradiction.

Now suppose that A is GH1. We are going to construct a set B ≤T A, so by the recursion theorem (which
relativizes) we may assume given d such that B = Ψd(A). Now since A is GH1, it can approximate (B⊕ /0′)′. This
means we can assume given a function f such that, for all i, j, lims f (i, j,s) = 1 if there exists a Ψi-splitting above
every initial segment of B amongst the strings in Wj, and is equal to 0 otherwise.

Now recall the construction of a set B of minimal degree below 0′. At each stage s + 1 we are given βs which is
the initial segment of B constructed so far, together with a nested sequence of trees Ts

0 ⊇ ·· · ⊇ Ts
k . Since we have an

oracle for /0′ we can ask whether or not there exists at least one more pair of strings extending βs in each of these
trees. For the least k′ for which this is not the case (if there exists such) we change our mind about how Tk′ should
be defined – we define Ts+1

k′ to be some subtree of Ts
k′−1.

Now that we don’t have an oracle for /0′ we cannot tell for sure whether or not there exist any strings in each of
these trees extending βs. What we can do, however, is to keep searching for such strings until the function f gives
us new evidence that there doesn’t exist any such pair. For a given tree, this may cause us to stop searching too
early sometimes, but once all trees of higher priority settle down and then the corresponding approximation given
by f settles down also, we will not stop searching too early while searching for splittings in this tree anymore. Thus,
it will easily follow by induction that the approximation to each tree settles and is defined correctly. The precise
construction is as follows.

Stage 0. Define β0 = /0 and define T0 to be the identity function 2<ω → 2<ω .
Stage s + 1. We are given βs and a nested sequence of trees:

Ts
0 ⊇ Ts

1 ⊇ ·· · ⊇ Ts
k ,

together with an index ij for each j ≤ k which specifies the range of Ts
j as a c.e. set of strings. First of all we have

to check that there isn’t new evidence that we stopped searching too early for one of the trees at a previous stage.
We shall define precisely what it means for some j ≤ k to require attention below, but basically this will just mean
that there is now evidence that we stopped searching too early for splittings in the corresponding tree at some earlier
stage, because a splitting has now been found. If there is some least j≤ k which requires attention, then proceed as
follows:r Define Ts+1

j to be the Ψj−1-splitting subtree of Ts
j−1 above βs.r Define Ts+1

j′ = Ts
j′ for all j′ < j.r Make Ts+1

j′ undefined for all j′ > j.r Declare that j has received attention.r Define βs+1 = βs.

40 Andrew E.M.Lewis-Pye / The search for natural definability

If no j ≤ k required attention then for each 0 < j ≤ k such that Ts
j is not defined simply to be the subtree of the

previous tree in the sequence above a certain string, search until either:
Case 1: a pair of strings is found in Ts

j extending βs, or else;
Case 2: we find s′ > s such that f (j−1, ij−1,s′) = 0.

If there exists a least j such that case 2 applies then define Ts+1
j to be the subtree of Ts

j−1 above βs. Define
Ts+1

j′ = Ts
j′ for all j′ < j and make Ts+1

j′ undefined for all j′ > j. Define βs+1 to be a proper extension of βs in Ts+1
j .

We say that j requires attention at any stage s′ > s + 1 if Ts′′
j−1 = Ts

j−1 for all s′′ with s < s′′ ≤ s′′, j has not received
attention at any of these stages s′′, and there exists a Ψj−1 splitting with both strings extending βs which is found
within s′ steps of some fixed effective search procedure.

Otherwise define Ts+1
j = Ts

j for all j ≤ k, define βs+1 to be a proper extension of βs in Ts+1
k , and define Ts+1

k+1 to
be the Ψk-splitting subtree of Ts+1

k above βs+1.

The reader is invited to verify the construction. Note that Posner’s trick can be used in order to help verify that
the set constructed is of minimal degree. �

The fact that this result is sharp in terms of the jump hierarchy follows from the following result of Lerman’s.

Theorem 14.3 [ML2] There exists a high2 degree which doesn’t bound any minimal degrees.

15. The joins of minimal degrees
Which degrees are the join of two minimal degrees? The strongest possible result in terms of the jump hierarchy is
the following, which settles a conjecture of Posner’s from the 70’s.

Theorem 15.1 ([EL2]) Every generalized high degree is the join of two minimal degrees.

In order to demonstrate the basic idea behind the proof, we give here a proof of the weaker result, due to Posner,
that all degrees above 0′ are the join of two minimal degrees.

Proof. In this context it is useful to think of trees as sets of strings rather than functions from strings to strings. It
is also useful to restrict our attention to trees of a very particular kind. So, for the duration of this proof, we say
that T is a c.e. Ψ-splitting tree if every pair of incompatible strings in T are Ψ-splitting and T has a computable
enumeration {Ts}s∈ω such that:

Conv A: |T0|= 1 and each Ts+1−Ts is finite and consists only of strings extending leaves of Ts.
Conv B: If any string in T has successors in T , then it has precisely three. Three strings of this kind, all of which are

successors to the same string, will be called a splitting triple.

Corresponding to each Ψ-splitting tree that we consider, we shall assume that there is some fixed computable enu-
meration satisfying Conv A and Conv B. If T is any tree which is computably enumerated according to Conv A, and
if σ ∈ T , then by the c.e. Ψ-splitting subtree of T above σ , we just mean any (canonically chosen) c.e. Ψ-splitting
tree T ′ ⊆ T which has σ as the unique string of level 0 and which is maximal, in the sense that if τ ∈ T ′ and there
exist three extensions of τ in T every pair of which are a Ψ-splitting, then τ has successors in T ′. We assume that
any string τ ∈ T ′ is enumerated into this tree at a stage s≥ s′, where s′ is the stage at which τ is enumerated into T .

We shall use a notion of thin subtrees, which works very much like in the proof of Theorem 11.2. If T is a c.e.
Ψ-splitting tree, then the thin subtree of T above τ ∈ T is the smallest T ′ satisfying:

(i) τ ∈ T ′;
(ii) if τ ′ ∈ T ′ and is of even level in T ′, then its leftmost successor in T (if there exists such) is in T ′;

(iii) if τ ′ ∈ T ′ and is of odd level in T ′, then every successor of τ ′ in T is in T ′.

Andrew E.M.Lewis-Pye / The search for natural definability 41

We assume T ′ to be given the computable enumeration in which each string in T ′ is enumerated into this tree at the
same stage it is enumerated into T .

Recall that , for any two finite binary strings τ and τ ′, if there exists some least n such that τ(n) ↓6= τ ′(n) ↓,
then we say that τ is to the left of τ ′ (and that τ ′ is to the right of τ) if τ(n) = 0. If T is tree and τ ∈ T has three
successors in T , then we shall refer to these three successors as the leftmost, the second and the rightmost successor
respectively when ordered from leftmost to rightmost. We write λ to denote the string of length 0. By a 3-fold
Ψ-splitting, we mean three strings, every pair of which are Ψ-splitting. From this point on, for the duration of this
proof, by a splitting tree we shall mean a tree which is a c.e. Ψ-splitting tree for some Ψ, and by a splitting we shall
actually mean a 3-fold splitting—but no confusion will result from these abuses of terminology. We assume the full
binary tree to be given the enumeration in which all strings of length s are enumerated at stage s.

15.1. The basic idea
Suppose we are given C of degree above 0′, and consider running Sacks’ oracle construction of a set A of minimal
degree below 0′, as described in the proof of Theorem 5.3, but using an oracle for C and using splitting trees of the
modified form just described in which each string in the tree has three successors if any, rather than just two. At each
stage we are given a sequence of trees T0, · · · ,Ti and a finite binary string α which is the initial segment of A that
we have constructed so far. We find the greatest j≤ i such that there exists a splitting triple in Tj above α , and then
redefine α to be the leftmost string in this splitting triple, before defining the sequence of trees to be considered at
the next stage of the construction.

Of course, we did not have to redefine α to be the leftmost string in the splitting. We could consider trying to
code C into A at stage s + 1 by redefining α to be the second string if C(s) = 0 and the rightmost string otherwise.
A constructed in this way would fail to compute C because it is unable to retrace the construction to see how the
sequence of trees is defined at each stage. We shall show how to define two sets A and B in this way, however, so
that A⊕B is able to compute the sequence of trees defined at each stage of the construction, and thereby compute
C.

The basic idea is very simple. We shall construct a sequence of trees T0,T1, · · · such that A is a path through Tj
when j is even, and B is a path through Tj when j is odd. For each j we shall also consider a tree Sj which will be a
thin subtree of Tj. Suppose for a moment that j is even—the following discussion will also hold for odd j, but with B
in place of A. Initially we try to construct A lying on Sj. Tj+2, then, is constructed as a splitting subtree of Sj. When
we find at some stage that we must redefine Tj+1, however, we code this fact by forcing A to “step off” Sj (i.e. we
decide that A should be a path through Tj which is not a path through Sj). If this happens at stage s and A⊕B has
already been able to compute the set of trees that we are working with at stage s, then it will be able to see that A
has stepped off Sj, and so will be able to discern how we redefined the trees at this stage of the construction.

Along these lines, the following terminology will be useful. Suppose that τ is a string of even level in Sj. Then
we call the splitting triple in Tj whose strings are successors of τ (should such a triple exist), a coding opportunity.
The second and rightmost strings of the coding opportunity are referred to as the coding strings. We shall define αs
and βs at each stage s, and ultimately we define A =

⋃
s αs and B =

⋃
s βs. At every stage s > 0 of the construction

we shall find a coding opportunity in some Tj and define either αs or βs (depending on whether j is even or odd) to
be one of the strings in this coding opportunity. Note that the set of coding opportunities in Tj depends also on Sj,
which may be redefined at stages of the construction when Tj is not.

So we start with the following sort of procedure in mind. At the beginning of stage s + 1 we are given T0, · · · ,Ti,
S0, · · · ,Si, αs and βs. Initially we define α = αs and β = βs. These values α and β may be redefined a finite number
of times during stage s+1, to be extensions of their previous values. At the end of the stage we will define αs+1 = α

and βs+1 = β . At stage s + 1 we perform a finite iteration which moves down through the sequence of trees, starting
with Ti and continuing until we find some Tj with a coding opportunity that can be used at this stage. Suppose for
now that i is even.

42 Andrew E.M.Lewis-Pye / The search for natural definability

We ask, does there exist a splitting triple above α in Ti? If so, there are now two subcases. If this splitting triple
is not a coding opportunity in Ti, then we redefine α to be the leftmost string in the triple and go back to asking
whether there exists a splitting triple in Ti above α . Otherwise, redefine α to be the second string in the coding
opportunity if C(s) = 0 and the rightmost string otherwise, before redefining Si, Ti+1,Si+1 and terminating stage
s + 1 of the construction. The use of this coding opportunity codes the fact that we did not have to redefine any of
T0, · · · ,Ti at this stage.

If not, then let j ≤ i be the least which is even and such that there doesn’t exist a splitting triple above α in Tj.
We now try to code the fact that Tj must be redefined. In order to do so, we begin the iteration again but with Tj−1
and β in place of Ti and α (and with “odd” in place of “even”).

15.2. Further considerations
When A⊕B retraces the construction at stage s + 1, having already computed the set of trees that we are working
with at this stage together with αs and βs which are the initial segments of A and B which have been decided by
the end of stage s, it will continue to enumerate the trees until it sees either A or B step off one of the Sj. We must
ensure, however, that the first coding opportunity which appears in this way, with either A or B extending one of its
coding strings as appropriate, is actually the coding opportunity that is used at stage s + 1 and not one that is used
at some subsequent stage. If we proceed simply as described in 15.1 it remains possible that at stage s + 1 we use
a coding opportunity in Ti, which is enumerated into this tree at stage t (say), and that at the next stage we use a
coding opportunity in Ti−1 which is enumerated into this tree at a stage t′ < t. In this case A⊕B will retrace the
construction incorrectly. For this reason we define a value ts at each stage s, which is the stage at which the coding
opportunity we use at stage s is enumerated into the respective tree. At stage s + 1 we are restricted to using coding
opportunities which are enumerated into the relevant tree at a stage > ts. The following terminology is useful in this
context. If T is a tree with a given computable enumeration, then for any τ ∈ T , t(T ,τ) is the stage at which τ is
enumerated into T . We also use the variable ρ to range over the set of splitting triples, and let t(T ,ρ) be the stage at
which ρ is enumerated into T .

Perhaps some words of caution are useful here. In the proofs of some previous theorems in this course and in
the proof that follows, we often use computer science type conventions of choosing variables, and then allowing
these variables to be redefined multiple times without any corresponding indication in the notation. The motivation
here is that, in doing so, the argument should become much easier to follow – the alternative, indexing variables in
terms of the stages and ultimately the sub-stages of the construction, would result in heavy notation. The danger is
that ambiguity might result from referring to variables that take multiple values at various stages of the construction.
During the construction there will be no ambiguity, because when we refer to the value of any given variable, we
simply mean the value as defined at that point in the construction. During the verification, ambiguity will not result
so long as we are very clear about exactly which point of the construction (and not just the stage, but which point of
the stage) is being referred to.

It is also worth pointing out that the stages of the construction and the stages in the enumeration of the trees that
are considered at any point of the construction, are treated entirely separately. Thus, at stage 5 we might enumerate
T2 until we see that, at stage 117 in the enumeration of this tree, a splitting triple ρ appears which we can use as a
coding opportunity. If we use this coding opportunity at stage 5, then t5 = 117, and, at the end of this stage, if we
remark that t(T2,ρ) = 117, then the value T2 being referred to here is the value at the end of stage 5.

There is another (fairly trivial) way in which our construction will deviate from the Sacks construction. In that
construction, when we find at stage s + 1 that j is the least such that there do not exist any proper extensions of
αs in Tj, we then redefine this tree to be the subtree of Tj−1 above αs+1 (i.e. the set of all strings in Tj−1 which
extend αs+1). The redefined tree Tj, however, does not subsequently play any vital role in the construction. If Tj was
defined to be a Ψk-splitting tree at the end of stage s, then at stage s + 1 we could alternatively just redefine Tj to be
the Ψk+1-splitting subtree of Tj−1 above αs+1. It will be technically much more convenient to follow this approach
here, and so we shall do so (although now that we are constructing two sets and since we are using thin subtrees, Tj

Andrew E.M.Lewis-Pye / The search for natural definability 43

will be defined to be a splitting subtree of Sj−2 rather than Tj−1).

Before describing the construction precisely, let us describe in outline how A⊕B will be able to retrace it. So
suppose that A⊕B has already been able to decide αs,βs, ts and the sequence of trees T0, · · · ,Ti which are defined
at the end of stage s, together with each Sj for j≤ i. In order to compute these values for stage s + 1, A⊕B will then
enumerate these trees until it sees an initial segment of A which is compatible with a coding string in some Tj such
that j is even, or an initial segment of B which is compatible with a coding string in some Tj such that j is odd (and
then it will consider the first such coding string which appears). Suppose for now, that the first such coding string τ

is a coding string in Tj, and that j is even. Then αs+1 is that coding string, and we define the construction so as to
ensure that βs+1 is the longest initial segment of B which is enumerated into Tj−1 at a stage ≤ t(Tj,τ).

15.3. The construction
We proceed in stages as follows.
Stage 0. It is convenient to assume that Ψ0 is the identity functional 2<ω → 2<ω . Define T0 and T1 to be the
Ψ0-splitting subtree of the full binary tree above λ , and define S0 and S1 to be the thin subtree of T0 above λ . Define
α0 = β0 = λ and t0 = 0.

Stage s + 1. Let i be the greatest such that Ti is defined. We run a finite iteration which will terminate at the first
step n + 1 at which we find an appropriate opportunity to code C(s). At step n in this iteration we define a value jn
such that j0 = i and each jn+1 ≤ jn. Initially we have α = αs and β = βs and we may redefine these values to be
extensions of their previous values at various stages in the iteration.

Step 0. Define j0 = i, α = αs and β = βs.
Step n+1. We ask, does there exist a splitting triple in Tjn , above α if jn is even and above β if jn is odd? If not, then
let j be the least ≤ jn, which is even if jn is even and odd if jn is odd, such that there does not exist such a splitting
triple in Tj (the way in which we define T0 and T1 means that j≥ 2). Put jn+1 = j−1 and perform step n + 2.

Otherwise, consider the first such splitting triple ρ enumerated into Tjn . Now there are two cases to consider.
Case (a): ρ is not a coding opportunity or else t(Tjn ,ρ) ≤ max{ts,x}, where x = t(Tjn−1,α) if jn is odd and

x = t(Tjn−1,β) otherwise. Then redefine α to be the leftmost string in the splitting triple if jn is even, and redefine β

to be the leftmost string in the splitting triple if jn is odd. Put jn+1 = jn and perform step n + 2.
Case (b): otherwise. Define ts+1 = t(Tjn ,ρ). First we code C(s).
If jn is even then define αs+1 to be the second string in the splitting triple if C(s) = 0 and the rightmost string oth-

erwise. In this case, define βs+1 to be the longest of all those leftmost extensions of β in Sjn−1 which are enumerated
into this tree at a stage ≤ ts+1. If jn is odd then define βs+1 to be the second string in the splitting triple if C(s) = 0
and the rightmost string otherwise. In this case, define αs+1 to be the longest of all those leftmost extensions of α in
Sjn−1 which are enumerated into this tree at a stage ≤ ts+1.

Next we must redefine the trees. Let j = jn.r If j = i, with i defined as at the beginning of stage s + 1, then suppose that Ti−1 is presently defined to be a
Ψk-splitting tree. Define Ti+1 to be the Ψk+1-splitting subtree of Si−1 above βs+1 if i is even, and define Ti+1 to
be the Ψk+1-splitting subtree of Si−1 above αs+1 if i is odd.r If j < i then suppose that Tj+1 was defined to be a Ψk-splitting tree at the end of stage s. Redefine Tj+1 to be
the Ψk+1-splitting subtree of Sj−1, above βs+1 if j is even or above αs+1 if j is odd.r Redefine Sj to be the thin subtree of Tj, above βs+1 if j is odd or above αs+1 if j is even. Define Sj+1 to be the
thin subtree of Tj+1, above βs+1 if j is even or above αs+1 if j is odd. Make Ti′ and Si′ undefined for all i′ > j+1.r Terminate the iteration and stage s + 1 of the construction.

It is not difficult to show that A =
⋃

s αs and B =
⋃

s βs are total and are of minimal degree. Now suppose that the
oracle A⊕B has already been able to compute αs, βs, ts and the sequence of trees T0, · · · ,Ti which are defined at the
end of stage s, together with each Sj for j≤ i. In order to conclude that A⊕B can compute these values for stage s+1,

44 Andrew E.M.Lewis-Pye / The search for natural definability

it suffices to show that the coding opportunity we use at this stage is the first enumerated into any Tj ∈ {T0, · · · ,Ti}
such that either A extends one of the coding strings and j is even or B extends one of the coding strings and j is odd.
In order to see this, suppose that the iteration terminates at step n + 1 at stage s + 1 and let j = jn, as defined at that
stage. We consider each of the trees Tk such that k 6= j.

First consider k > j. Suppose that k is even, a similar argument will apply when k is odd. Let m be the greatest
such that jm ≥ k, and let σ = α as defined at the beginning of step m + 1 (so that σ is a string in Sk). If jm is even
then our action at step m + 1 determines that there is no splitting triple in Tk above σ . So suppose otherwise. Then
by induction on the steps after m, at the beginning of step n + 1, for all strings τ ∈ Tk extending σ , α is either an
initial segment of τ or lies to the left of τ . If j is even, then at step n + 1 we define αs+1 to be incompatible with any
coding strings in Tk. If j is odd, then at step n + 1 we define αs+1 to lie to the left of any coding strings in Tk above
σ which are enumerated into this tree at a stage ≤ ts+1.

Next consider k < j. If there does not exist any subsequent stage at which we elect to use a coding opportunity in
some Tk′ for k′ ≤ k then A lies on Sk if k is even and B lies on Sk if k is odd. So suppose otherwise and consider the
first such stage s′. If k′ = k then the coding opportunity ρ in Tk which we use at stage s′, has t(Tk,ρ)> ts+1. If k′ < k
then precisely the argument we used above for the case k > j, suffices to show that A does not extend any coding
strings in Tk which are enumerated into this tree at a stage≤ ts′ if k is even, and B does not extend any coding strings
in Tk which are enumerated into this tree at a stage ≤ ts′ if k is odd. Since ts′ > ts+1, the claim follows. �

Posner originally asked whether 0′ could be defined as the least degree such that all degrees above are the join
of two minimal degrees. This was settled negatively by Shore, but the following question remains open:

Question 15.1 Is 0′ minimal amongst the degrees such that all degrees above are the join of two minimal degrees?

16. The minimal cupping property
We gave the definition earlier:

Definition 16.1 A degree a satisfies the minimal cupping property (mincup) if for all b ≥ a there exists a minimal
degree m < b with a∨m = b.

Let us consider the situation below 0′ first.

Theorem 16.1 ([EL2]) In D[≤ 0′], all high degrees satisfy mincup.

This result is clearly sharp in terms of the jump hierarchy – again this follows from Lerman’s result [ML2] that
there exist high2 degrees which don’t bound minimal degrees.

Conjecture 16.1 In D[≤ 0′], a c.e. degree is high iff it satisfies mincup.

If true this would give us a nice characterization of the high c.e. degrees (and a natural definition of the high c.e.
degrees in terms of a definition for the c.e. degrees in D[≤ 0′]). Unfortunately it certainly can’t be extended to give
us a natural definition of the high degrees:

Theorem 16.2 ([EL2]) There exists a low degree which satisfies mincup.

Note that this theorem holds globally. In order to give this result, the approach taken is to establish the existence of
a perfect tree which is of low degree, and such that every path through the tree is of minimal degree.

The first remaining questions here, also concern the global structure.

Question 16.1 Do all GH1 degrees satisfy mincup?

Andrew E.M.Lewis-Pye / The search for natural definability 45

17. The meet and complementation properties
We next consider the meet and complementation properties. The meet property was defined previously.

Definition 17.1 A degree a satisfies the complementation property if, for all non-zero b < a, there exists c < a such
that b∧ c = 0 and b∨ c = a.

First of all, let us establish the uninteresting cases – initial segment results can be used in order to show that all
possibilities can be realized for the low and for the low2 non-low degrees. On the positive side, Posner [DP2] showed
that 0′ satisfies the complementation property using a non-uniform proof. This non-uniformity was subsequently
shown not to be necessary by Slaman and Steel [SS]. The following is the strongest result known:

Theorem 17.1 ([GMS]) All generalized high degrees satisfy the complementation property.

The proof given for this stronger result is once again non-uniform, and it remains open as to whether the complement
here can be constructed uniformly. Recently, James Riley has shown that this result fails for the high2 degrees:

Theorem 17.2 ([JR]) There exists a high2 degree which does not satisfy the meet property.

The following theorem settles a conjecture of Cooper’s from the 80s:

Theorem 17.3 ([DLNR]) All c.e. degrees satisfy the meet property i.e. if a is c.e. then for all b < a, there exists
non-zero c < a (which is not necessarily c.e.) such that b∧ c = 0.

The following question was asked by Slaman and Steel:

Question 17.1 ([SS]) Can 0′ be defined as the least degree such that all degrees above satisfy complementation?

As with Question 13.2, the expectation is presumably that this question will eventually be answered in the
negative, but that the counter example may be difficult to construct.

18. The capping property
In this section, we briefly consider a property about which little is known:

Definition 18.1 A degree a satisfies the capping property if, for all b > a there exists non-zero c < b such that
a∧ c = 0.

It follows from Theorem 16.2, that there exists a low degree such that all degrees above satisfy the capping
property. This suffices to show that there exist members of each jump class which satisfy the capping property.
It also follows from Theorem 16.1 that, in D[≤ 0′], all high degrees satisfy the capping property. Nothing else
substantial is known at this point.

Question 18.1 Do all GH1 degrees satisfy the capping property?

19. The minimal complementation property
In this final section, we consider the most complex property so far:

46 Andrew E.M.Lewis-Pye / The search for natural definability

Definition 19.1 A degree a satisfies the minimal complementation property if, for all non-zero b < a, there exists a
minimal degree m < a such that b∨m = a.

The results here are as follows:

Theorem 19.1 (Lewis, Seetapun, Slaman [AL5]) 0′ satisfies the minimal complementation property.

Theorem 19.2 ([AL6]) All degrees above 0′ satisfy the minimal complementation property.

In fact, one can complement quite a lot of degrees simultaneously:

Theorem 19.3 ([AL7]) There exists a minimal degree below 0′ which complements all (non-zero, incomplete) c.e.
degrees.

While it is immediately clear that no ∆0
2 degree can complement all non-zero and incomplete ∆0

2 degrees, one might
hope that some version of this theorem might hold for the ∆0

2 degrees in general – there might be two degrees such
that each non-zero, incomplete degree is complemented by at least one of them, for example. In fact, however, this
fails very strongly:

Theorem 19.4 ([AL8]) For every degree c with 0 < c≤ 0′ and every uniformly ∆0
2 sequence of degrees {bi}i≥0 such

that, for all i, bi 6≥ c, there exists a with 0 < a < 0′ such that a∨bi 6≥ c for all i.

The first remaining questions are these:

Question 19.1 Do all/any incomplete high degrees satisfy the minimal complementation property?

Question 19.2 Can 0′ be defined as the least degree such that all degrees above satisfy minimal complementation?

20. Acknowledgements
The author would very much like to thank Quinn Culver and Steve Flood for detailed comments on an earlier version
of the paper.

References
[BC] Cooper, S.B., Distinguishing the arithmetical hierarchy, preprint, Berkeley, 1972.

[BC2] Cooper, S.B., Computability Theory, Chapman & Hall, 2004.
[BC3] Cooper, S.B., Degrees of unsolvability complementary between recusively enumerable degrees, Annals of

Mathematical Logic, 4 (1), 31-74, 1972.
[BC4] Cooper, S.B., The strong anticupping property for recursively enumerable degrees, Journal of Symbolic

Logic, vol. 54, 527-539, 1989.
[DGLM] Downey, R., Greenberg, N., Lewis, A.E.M., Montalbán, A., Extensions of embeddings below computably

enumerable degrees, Transactions of the American Mathematical Society, 365, 2977-3018, 2013.
[DH] Downey, R., Hirschfeldt, D., Algorithmic Randomness and Complexity, Springer-Verlag, 2010.
[DJS] Downey, R., Jockusch, C.G. and Stob, M., Array nonrecursive degrees and genericity, Computability, Enu-

merability, Unsolvability, Directions in recursion theory. Edited by S. B. Cooper, T. A. Slaman and S. S.
Wainer, vol. 224, London Mathematical Society Lecture Note Series, 93-104, 1996.

Andrew E.M.Lewis-Pye / The search for natural definability 47

[DLNR] Durrant, B., Lewis-Pye, A., Ng, S,, and Riley, R., C.e. degrees and the meet property, Proceedings of the
American Mathematical Society, 144, 1735-1744, 2016.

[EL] Ellison,P., Lewis, A.E.M., Joining up to the generalized high degrees, Proceeding of the American Mathe-
matical Society, 138, 2949-2960, 2010.

[EL2] Ellison, P., Lewis, A.E.M., The minimal cupping property, to appear.
[GMS] Greenberg, N., Montalbán, A. and Shore, R.A., Generalized high degrees have the complementation prop-

erty, Journal of Symbolic Logic, 69, 1200-1220, 2004.
[IS] Ishmukhametov, S. Weak recursive degrees and a problem of Spector, Recursion theory and complexity.

Proceedings of the International Workshop on Recursion Theory and Complexity Theory (WORCT’97) held
at Kazan State University, Kazan, July 14-19, 1997. Edited by Marat M. Arslanov and Steffen Lempp, de
Gruyter Series in Logic and its Applications, 2, 81-89, 1999.

[CJ] Jockusch, C.G., Simple proofs of some theorems on high degrees of unsolvability, Canadian Journal of
Mathematics, 29, 1977, 1072-1080.

[Jsh] Jockusch, C.G., Shore, R., Pseudo jump operators I: the R.E. case, Transactions of the American Mathemat-
ical Society, 275, 1983, 599-609.

[JP] Joskusch, C.G., and Posner, D.B., Double jumps of minimal degrees, Journal of Symbolic Logic, 43, 715-
724, 1978.

[JS] Jockusch, C.G., and Soare, R., Π0
1 classes and degrees of theories, Transactions of the American Mathemat-

ical Society, 173, pp. 33-56, 1972.
[KP] Kleene, S.C and Post, E.L., The upper semi-lattice of degrees of recursive unsolvability, Annals of Mathe-

matics, 59, 1954, 379-407.
[AK] Kučera, A., Measure, Π0

1 classes and complete extensions of PA, in Recursion Theory Week (Proceedings
Oberwolfach 1984), Lecture Notes in Mathematics, vol 1141, pp. 245-259, 1985.

[AK2] Kučera, A., An alternative priority-free solution to Post’s problem, Mathematical foundations of computer
science. Proceedings of the twelfth symposium held in Bratislava, August 25-29, 1986. Edited by J. Gruska,
B. Rovan and J. Wiedermann. Lecture Notes in Computer Science No. 233.

[ML] Lerman, M., Degrees of Unsolvability, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.
[ML2] Lerman, M., Degrees which do not bound minimal degrees, Annals of Pure and Applied Logic, 30, 249-276,

1986.
[AL] Lewis, A.E.M., Π0

1 classes, strong minimal covers and hyperimmune-free degrees, Bulletin of the London
Mathematical Society, 39, 892-910, 2007.

[AL2] Lewis, A.E.M., Strong minimal covers and a question of Yates: the story so far, Proceedings of the Logic
Colloquium 2006.

[AL3] Lewis, A.E.M., On a question of Slaman and Groszek, Proceedings of the American Mathematical Society,
136, 3663-3668, 2008.

[AL4] Lewis, A.E.M., A note on the join property, Proceedings of the American Mathematical Society, 140, 707-
714, 2012.

[AL5] Lewis, A.E.M., Minimal complements for degrees below 0’, Journal of Symbolic Logic, 69 (4), 937-966,
2004.

[AL6] Lewis, A.E.M., The minimal complementation property above 0’, Mathematical Logic Quarterly, 51 (5),
470-492, 2005.

[AL7] Lewis, A.E.M., A single minimal complement for the c.e. degrees, Transactions of the American Mathemat-
ical Society, 359, 5817-5865, 2007.

[AL8] Lewis, A.E.M., Finite cupping sets, Archive for Mathematical Logic, 43, 845-858, 2004.

48 Andrew E.M.Lewis-Pye / The search for natural definability

[DM] Martin, D., Classes of recursively enumerable sets and degrees of unsolvability, Zeit. Math. Log. Grund.
Math., 12, (1966), 295-310.

[AN] Nies, A., Computability and Randomness, Oxford University Press, 2009.
[AN2] Nies, A. Coding Methods in Computability Theory and Complexity Theory. Habilitation thesis, Universität

Heidelberg, Jan 1998.
[NSS] Nies, A., Shore, R.A., and Slaman, T.A., Interpretability and definability in the recursively enumerable

degrees, Proceedings of the London Mathematical Society, (3), vol. 77, no. 2, 241-291, 1998.
[DP] Posner, D., A survey of the non-r.e. degrees ≤ 0′, London Mathematical Society Lecture Note Series 45,

Recursion Theory: its Generalisations and Applications, Proceedings of the Logic Colloquium ’79, Leeds,
edited by F.R. Drake and S.S.Wainer.

[DP2] Posner, D., The uppersemilattice of degrees ≤ 0′ is complemented, Journal of Symbolic Logic, 46, 705-713,
1981.

[PR] Posner, D. and Robinson, R., Degrees joining to 0′, Journal of Symbolic Logic, 46, 714-722, 1981.
[JR] Riley, J., PhD thesis, University of Leeds, 2016.
[GS] Sacks, G., A minimal degree less than 0′, Bulletin of the American Mathematical Society, 67, 416-419, 1961.

[GS2] Sacks, G., Recursive enumerability and the jump operator, Transactions of the American Mathematical Soci-
ety, 108, 1963, 223-239.

[LS] Sasso, L., A minimal degree not realizing least possible jump, Journal of Symbolic Logic, 39, 1974, 571-574.
[DS] Scott, D., Algebras of sets binumerable in complete extensions of arithmetic, Proceedings of Symposia in

Pure Mathematics. Vol. V. Recursive functions theory. American Mathematical Society, Providence, R.I.
1962, 117-121.

[JS] Shoenfield, J., A theorem on minimal degrees, Journal of Symbolic Logic, 31, 539-544, 1966.
[SSl] Shore, R. and Slaman, T., Defining the Turing jump, Mathematical Research Letters, 6(5-6):711-722, 1999.
[SH] Shore, R., Natural definability in degree structures, Computability Theory and Its Applications: Current

Trends and Open Problems, P. Cholak, S. Lempp, M. Lerman and R. A. Shore eds., Contemporary Mathe-
matics, AMS, Providence RI, 255-272, 2000.

[SH2] Shore, R., Direct and local definitions of the Turing jump, Journal of Mathematical Logic, 7, 229-262, 2007.
[SS2] Simpson, S., First order theory of the degrees of recursive unsolvability, Annals of Mathematics, 105, 121-

139, 1977.
[SS] Slaman, T.A. and Steel, J.R., Complementation in the Turing degrees, Journal of Symbolic Logic, vol. 54

no. 1, pp. 160-176, 1989.
[SW] Slaman, T.A. and Woodin, H., Definability in the Turing degrees, Illinois Journal of Mathematics, 30, 320-

334, 1986.
[RS] Soare, R., Automorphisms of the lattice of recursively enumerable sets, Bulletin of the American Mathemat-

ical Society, 80, 53-58, 1974.
[RS2] Soare, R., Recursively enumerable sets and degrees, Springer, New York, 1987.

[CS] Spector, C., On degrees of recursive unsolvability, Annals of Mathematics, 64, (1956), 581-592.
[TZ] Terwijn, S.A. and Zambella, D., Computational randomness and lowness, Journal of Symbolic Logic, 66,

2001, 1199-1205.

