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27 Abstract. Recent developments brings thepessibility of achieving scalable quantum

28 networks and quantum devices elosers, From the computational point of view these

ég emerging technologies become relevant when they are no longer classically simulatable.

31 Hence a pressing challengenis, the construction of practical methods to verify the

32 correctness of the outcome produced by universal or non-universal quantum devices. A

33 promising approach that has beemextensively explored is the scheme of verification via

34 encryption through blind quantum computation. We present here a new construction

35 that simplifies the required resources for any such verifiable protocol. We obtain an

36 overhead that is linear in the size of the input (computation), while the security

37 parameter remains _independent of the size of the computation and can be made

38 exponentially, Small?with small extra cost). Furthermore our construction is generic

Zg and could belapplied to any universal or non-universal scheme with a given underlying

a1 graph.

42

43

44

45 1. Introduction

46

47 It is widely believed that, quantum computers and generally quantum devices, can

48 . ) .

49 outperforms their classical counterparts. There are problems efficiently solvable by

50 quantum computers that is believed that classical computers would require exponentially

g; (in the size of the input) long time. If the problem is in NP, a classical verifier can

53 efficiently check the result of the quantum device. However, there are problems believed
Yy q p

54 to be outside NP, such as quantum simulation [, 2] or other BQP problems [3] that

o5 the verifier needs to resort to different techniques to detect a “dishonest” quantum

56

57 device:, Currently the most efficient ways to verify a quantum computation, is to employ

gg cryptographic methods, where we have an almost classical verifier that executes the

60 computation using an untrusted but fully quantum prover. There has been a number

of such verification methods [4, 5] 6] [7, 8, @ 10, 1T, 12 13, 14, [15] 16l 17, 18, 19, 20]
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where generally there exists a trade-off between the practicality of the schemé versus
their generality, trust assumptions and security level. It is the target of #his work
to both reduce the experimental requirements of the most general schemes and.to
achieve further improvements in the more restricted schemes. In general, imorder to
make quantum verification schemes practical number of different aspects have been
considered. While a full review of those aspects is beyond the seope of this paper
it is worth noticing that most of them have been addressed using protocols based on
verification via blind quantum computing [4, ©, [7, 8, 13|, 14,4T5]. " »We awill refer to
this family of protocols collectively as Verifiable Blind Quantum Comﬁtation (VBQC)
schemes where the key idea is based on hiding the underlyingicomputation (also known
as blindness). This would allow the verifier to encode simple trap ¢emputations within a
general computation that runs on a remote device in such a'way that the computation is
not affected, while revealing no information to the device."The eorrectness of the general
computation is then tested via the verification of the trap computation. The latter is
significantly less costly and thus leads to an efficient,scheme (essentially similar to an
error detection code). What makes the procedure work is"the blindness that hides the
trap computation from the actual one. To,elaborate further on the security parameter
scaling, consider the following informal definition of verification that we formalise later
(for details see also [4]).

Definition 1. A quantum computation protocol is e-verifiable if the probability of
accepting an incorrect output for any choiee of the prover’s strategy is bounded by .

In a practical scenario, to be eonvinced of the correctness of the output obtained
from a given quantum device, one needs a verification protocol where the security
parameter (e) can be madesarbitrarily small while keeping the cost (in terms of the
experimental requirements) optimal. The standard technique for amplification when
dealing with classical output is to simply repeat the protocol multiple times (let say
d) and if all rounds are accepted and result in the same outputs, then this output is
the correct exceptith.probability ¢/. However, dealing with quantum output requires
more elaborate methods (to deal with the possibility of coherent attacks) that involves
the use of full fault-tolerant computation and the presence of multiple traps in order to
achieve exponential bounds.

It is evident that in order to obtain a wverifiable quantum computation, some extra
cost in terms of resources is needed. However, one wishes to ensure that the extra cost
of verification is not excessive, and in particular is not more than the speed-up that one
obtains fromusing a quantum algorithm. Here it is worth mentioning, that quantum
algerithmsjiin many cases, provide polynomial speed-up (e.g. Grover’s sea,rc and
if theiggwerification requires extra quadratic cost it could reduce considerably or even
amiihilate the advantage of the quantum algorithm.

T Note however, that in the specific case of search algorithms, they belong to NP, and thus are classically
verifiable without the need for a quantum verification protocol.

Page 2 of 30
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1.1. Our Contribution

In this work we focus to further improve the underlying resource construction required
for VBQC schemes. Our main results can be summarised as follows:

(i) In Section |2} inspired by the dotted-complete graph state introducéd in [4], we give
a generic construction where for any given (universal or non-universal graph state
resource) multiple trap qubits isolated from the computation qubits can be added.
Unlike the dotted-complete graph state the overhead of the new, construction is
only linear (instead of quadratic) in the size of the specific computation that will
be performed. Furthermore the traps are uniformly distributed and their positions
are essentially independent from each other.

(ii) We use this construction to obtain a new universal VBQC protocol (Section
that has lower cost. Since we are using a different resource, the proof technique
had to be accordingly adapted. Our protocol even before adding any boosting
mechanism has a constant security parameter and tklus allows a straightforward
one-shot experiment.

(iii) When the output of the quantum ‘computationsis classical, we use a repetition
technique to boost the security of our pretocol to arbitrarily small e (Section
4.1). Importantly, we can achieve thisiusing a constant number of repetitions
that is independent of the size of the‘eomputation and scales with the desired
security parameter leading to an overall cost O(log 1) x O(N). In previous VBQC
protocols the number of repetitions that were required increased with the size of
the computation.

(iv) For the general quantum eutput case, we use a fault-tolerant encoding of the
computation to boost the security to arbitrary small e while in the same time we
still require only linear,dn the size of the computation, overhead (Section with
a moderate extra cost thatidepends on the security parameter and scales as O(log %)
depending on_the. fault-tolerant encoding used. The overhead of previous VBQC
protocols (except [7]) is quadratic (on top of the security-parameter logarithmic
dependency).

Our construetion could bewsed to optimise various other existing VBQC (see|Appendix]
5.

1.2. Related works

There has been a number of papers on verification addressing different aspects. With
no aimuto give a complete list we give here a brief description of some related works.
Aharonov, Ben-Or and Eban [5] provided the first verification protocol. It requires
a linear overhead in the size of the computation, but also requires a verifier that
has involved quantum abilities, in particular can prepare entangled states of size that
depends on the security parameter.
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Following another approach, based on measurement-based quantum computation,
Fitzsimons and Kashefi [4] obtained the most optimal scheme from the point of view
of verifiers capability. However, the overhead of the full scheme becomes quadratic.
Recently a solution for addressing this issue was proposed in [7] by combining the above
two protocols ([4],[5]) to construct a hybrid scheme. This was the only verification
protocol (before our work) that requires linear number of qubits whilein the;same time
requires that the verifier has the minimal quantum property of preparing single quantum
systems. However, the protocol requires the preparation of qudits (rather than qubits)
where the dimension is dictated by the desired level of security. Méreover the required
resource is still constructed based on dotted-complete graphéstate but_ of small constant
size. Hence further investigation is needed to compare the experimental simplicity of
the two schemes, ours and the one in [7].

The first experimental implementation of a simplified verification protocol was
presented in [6] where a repetition technique was explored as‘well. Other experiments
on verifiable protocols include [19] and an expefiment based on the protocol in [17].
However, none of these works are applicable tola full universal scheme like ours.

On the other hand to achieve a classical verifier new techniques are proposed
either using two provers at the cost of inereasing the overall overhead of the protocol
dramatically [I1] or increasing the number of theyprovers further [12]. Other device-
independent protocols [13], [14] used a single.universal quantum prover and an untrusted
qubit measuring device and while the complexity improved (compared to the two provers
protocol [I1]) it is still far frompexperimentally realisable.

The VBQC protocol couldsbe generally viewed as prepare and send scheme (using
the terminology from Quantum Key Distribution). Equivalent schemes based on
measurement-only could alsé'bejobtained [9, [10]. In this scenario the prover prepares a
universal resource and sends/it qubit-by-qubit to the verifier that performs different
measurements in order te ‘complete a quantum computation. These protocols are
referred to as online protocols (in contrast to the offline protocols mentioned above)
since the quantum operations of the verifier occur when they know what they wants
to compute. The online scheme can also achieve verification either by creating traps
[9], or by measuring thefstabiliser of the resource state [10]. These protocols could be
improved using our téchmiques (see .

Finally,a ¢ompeosable definition of [4] is given in [I5], while a limited computational
model (one-pure-qubit) is examined in [§]. Due to the generic nature of our construction
these results would be applicable to our protocol as well.

The verification protocols in [16, 20] are teleportation based. Due to the general
mapping (see [21], 22]) between the teleportation (with two-qubits measurement) and
one-way eomputation (with single-qubit measurement), one can also explore any possible
improvement that our techniques could bring to these new protocols. For example, it
may be possible to amplify the probability of success for quantum output with minimal
extra-cost, given a constant probability of error “one-shot” protocol (which is already
achieved in [16]) combining the technique of [4] that uses fault-tolerant encoding with

Page 4 of 30
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our local resource construction.

1.3. Background

The family of VBQC protocols are conveniently presented in the measurement-based
quantum computation (MBQC) model [23] that is known to be the same,as any gate
teleportation model [24]. We will assume that the reader is familiar with this model,
whereas further details can be found in [22]. The general idea behind an MBQC protocol
is that one starts with a large and highly entangled multiparty state (the resource state)
and the computation is performed by carrying out single-qubit measurements. There is
an order on the measurements since the basis of a measurement may depend on outcomes
of previous measurements. The resource states used aredknown as graph states as they
can be fully determined by a given graph see details ind25]. Awway to construct a graph
state given the graph description is to assign to each vertex ofithe graph a qubit initially
prepared in the state |+) and for each edge of the graph to perform a controlled-Z gate
to the two adjacent vertices. IS

If one starts with a graph state where qubits are prepared in a rotated basis |+4) =
1/4/2(]0) + €?|1)) instead, then it is possible to perform the same computation with
the non-rotated graph state by performing measurements in a similarly rotated basis.
This observation led to the formulation of the universal blind quantum computation
(UBQC) protocol [26] which hides the computation in a client-server setting. Here
a client prepares rotated qubits, where the rotation is only known to them. Client
sends the qubits to the server (agisoon as they are prepared hence there is no need for
any quantum memory). Finally the elient instructs the server to perform entangling
operations according to the graph and perform single qubits measurements in suitable
angles in order to performthe desiréd computation (where an extra randomisation r; of
the outcome of the measuremients/is added). During the protocol the client receives the
outcomes of previous measurements and can classically evaluate the next measurement
angle. Due to the umknown rotation and the extra outcome randomisation, the server
does not learn what computation they actually perform.

The UBQC protocol can be uplifted to a verification protocol where the client
(referred to mow as verifier) can detect a cheating server (referred to now as prover).
To do so, the verifier for certain vertices (called dummies) sends states from the set
{]0) , |1)4 which has the same effect as a Z-basis measurement on that vertex. In any
graph state if a vertex is measured in the Z-basis it results in a new graph where that
vertéx and allsits adjacent edges are removed. During the protocol the prover does not
know for a'particular vertex if the verifier send a dummy qubit or not. This enables the
verifier todsolate some qubits (disentangled from the rest of the graph). Those qubits
have fixed deterministic outcomes if the prover followed honestly the instructions. The
positions of those isolated qubits are unknown to the prover and the verifier uses them
as traps to test that the prover performs the quantum operations that is given. This
technique lead to the first universal VBQC protocol [4] which is the basis of our paper.
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While the trapification idea is straightforward, it is challenging to find the optimal way
of inserting trap qubits while not breaking the general computation. This is the central
focus of this paper to introduce a general optimised scheme for constructing graph state
resources for VBQC protocols.

2. The dotted triple-graph construction

Our construction starts with a “base” graph G such that the related graph state |G) can
be used as the resource to perform a particular (or universal) quantiim computation in
MBQC. This graph is then “decorated” in a suitable way, résulting to/a graph that we
will call dotted triple-graph DT(G) that defines the resource state,|DT(G)) for running
a verified quantum computation in an efficient way. The general idea is to construct the
DT(G) graph which after some operations (chosen secretly by the verifier) can be broken
to three identical graphs. The one will be used to perform the desired computation and
the other two to insert trap computations to deteetypossible deviations. The way that
the DT'(G) is broken is chosen by the verifier and thus thé prover is blind about which
vertex belongs to which graph. This general idea was first introduced in [4]. The key
difference of our construction is that while inyf4] the breaking to subgraphs occurs in a
global way, in our construction it happens locally.yThis difference results in a reduction
on the number of vertices (and thus qubits).

Our local construction, defined precisely later, means that the prover can obtain
certain information about the,graph without compromising the security. Therefore
knowledge or leaking of secret.parameters at one part of the computation does not
affect other positions. This property makes the present construction particularly useful
for applications and extensions that involve multiple parties, a fact exploited in the
secure two-party quantum computation protocol of [27].

In this section, we, willlonly/give definitions and properties of the dotted triple-
graph construction when viewed purely as graph operations. These properties will play
a crucial role in thé next sections where we will use as resource state the dotted triple-
graph state |DT(G)) in order to obtain verifiable quantum computation protocols.

Definition 2/(introduced in [4]). We define the dotting operator D on graph G to be the
operator which transformswa graph G to a new graph denoted as D(G) and called dotted
graph, bysreplacing every edge in G with a new vertex connected to the two vertices
originally joined by that edg. We call the set of vertices of D(G) previously inherited
from.G. assprimary vertices P(D(G)), and the new vertices as added vertices A(D(G)).

Dotted triple-graph construction:

(i) Wepare given a base graph G that has vertices v € V(G) and edges e € E(G), as
in Figure [1] (a). In the following steps we will give the new graph DT(G), called
dotted-triple graph and specify its vertices and edges.

(ii) For each vertex v;, we define a set of three new vertices P,, = {p}*, py’, p5' }.

§ The dotting operation is also known as edge subdivision.

Page 6 of 30
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(iii) Corresponding to each edge e(v;,v;) € E(G) of the base graph that connécts the
base vertices v; and v;, we introduce a set of nine edges F¢(,, .;) that connect each
of the vertices in the set P,, with each of the vertices in the set P, -

(iv) The graph that its vertices are U,cv(c) P and the edges are definedas in the
previous step is called triple-graph T'(G), as in Figure 1| (b).

(v) We perform the dotting operator D on the triple graph T(G) 0 obtain the dotted
triple-graph DT'(G). An example of dotted triple-graph can 'be seen in Figure

(). ~
Pr| P-"z p'-; Jrj-.'| A 12 Pl"z A"z:t B 3

4] €12 Uy £33 iy g \‘%‘M (

— b }: ¥ o -l o . —X ——. ¥

P o s a

", » ul

- i o,

y 4 Ve

(a) (b) (c)

Figure 1. (a) A base graph consisting ofithree vertices and two edges. (b) A triple-
graph T(G) where for edehnvertex v there is a set of three vertices P,. (¢) A dotted
triple-graph. For each edge of the base graph there is a set of nine added vertices A..
The added vertices are denoted as squares, while the primary as circles.

Note that, according to Definition 2| and the labelling in the above construction
the primary vertices are given.as P(DT(G)) = U,, P,,. For convenience we also label
the added vertices A(DT(G)) asifollows. Corresponding to each edge e(v;,v;) of the
base graph G, there are now 9 added vertices and we will denote each set of added
vertices as A, = {ay®, - ayg’}¢ Note that the number of vertices of the new graph
is [V(DT(Q))| = 3|V(G)| + 9|E(G)|. If the maximum degree of the base graph is
a constant ¢ theu the mumber of vertices of the DT'(G) are linear in the number of
vertices of the base graph. This property means that if we can base our verifiable
quantum computationsprotocol on this graph, then the number of qubits we will need
is linear in the size of the eomputation.

In what follows'we present a labelling scheme that for convenience we present it as
a colouring (however, connected vertices could get the same colour).

Definition:3+(Trap-Colouring). We define trap-colouring to be an assignment of one
colour to ‘each of the wvertices of the dotted triple-graph that is consistent with the
following conditions.

(i)wPrimary vertices are coloured in one of the three colours white, black or green.

(11) Added vertices are coloured in one of the four colours white, black, green or red.

(i1i) In each primary set P, there is exactly one vertex of each colour.
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(iv) Colouring the primary vertices fizes the colours of the added vertices: Addedwertices
that connect primary vertices of different colour are red. Added vertices that connect
primary vertices of the same colour get that colour.

Note that the choice of colours for each of the primary sets P, (can benchosen
randomly and is independent from the choices made on other primary sets: We can also
see that in each of the added sets A, we have one white, one black, one green and six red
vertices. It is easy to see that such labelling can be obtained efficiently for any graph.

s

(&) Primary vertices coloured independently fh) Thap-colouring

F
(¢) Three dotted base graphs after breaking tha et vertices (d@pComputation graph and isolated white and black traps

Figure 2. (a) A dotted triple-graph, where only the primary vertices are coloured,
and this is done randomly for each set. (b) A trap-colouring of DT'(G) that is fully
fixed from thefeolouring,of the primary vertices. (c) DT(G) after performing break
operations on all red vertices. This results to three copies of the dotted base graph.
(d) DI(G) after performing further break operations on the primary vertices of the
black graph and added vertices of the white graph. The result is a dotted base graph
(green).and isolated white traps on primary vertices and black traps on added vertices.
For each green vertex there is a corresponding trap.

In Figuref2] (a) aid(h) we see an example of trap-colouring, where in (a) we choose
independently the cdlouriehoices of primary vertices and in (b) the colours of added
vertices isffixed following the rules for trap-colouring given above.

Definition 4 (introduced in [4]). We define the break operator| on a vertez v of a
graph G to besthe operator which removes vertex v and any adjacent edges to v from G.

Lemma 1. Given the dotted triple-graph DT (G) and a trap-colouring, by performing
break opérations on the red vertices we obtain three identical copiedq] of the dotted base
graph,D(G) each of them consisting of a single colour.

|l The break operator is also known as vertex deletion.
g Also known as isomorphic graphs.

Page 8 of 30
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The proof is given in [Appendix A.1| Figure 2| (c) illustrates how the DT'(G) breaks
to three identical dotted base graph, after performing break operations ofe the red

vertices.

Definition 5. We define the base-location of a vertex f € V(DT(G)) of the,dotted
triple-graph to be the position that the set P, or A. that includes f hasvin the dotted
base graph D(G). This position is denoted by either “v” corresponding to the specific
primary vertex of D(G) or with “e” corresponding to the specific added vertexr of D(G)
on the edge e. -

Given a trap-colouring, each primary vertex belongs te one of the three graphs
where the colour is determined by the trap-colouring. However, ‘its base-location is
fixed prior to the trap-colouring. Here we can see the“difference of our construction
with that of [4]. There a dotted-complete graph wa$ used and the graph also broke
to three identical graphs, where all primary vertices belonged to one of these graphs.
However, there was no restriction of how this break happens, and any choice of three
equal subsets was valid. In our construction we maintain the structure of the base-
location (reducing the number of addedsvertices required), but in the same time the
colour choices at one primary base-location are totally independent from colour choices
at other primary base-location.

Lemma 2. Given a dotted graph D(G),“bysapplying break operators to every vertex in
P(D(G)) or A(D(G)) the resulting graph_is composed of the vertices of A(D(G)) or
P(D(Q)) respectively and contains no edges.

This property was essenti@lly proved in [4] (see [Appendix A.2)) and is required for

the verification protocols presented in the next sections. In Figure [2 (d) we see after
the break operations of Higure [2[(€); further break operations performed on all white
added vertices and on all'black primary vertices. We end up with a (green) copy of the
dotted base graph and white iselated traps at primary vertices and black isolated traps
at added vertices.

There are common properties that we will prove for both primary and added vertices
and for the eas¢ of notation we will refer to either such set P, or A, as F; with the
convention that the subscript [ denotes the base-location of the set and when it takes
value v (primary base-location) it becomes P, and when it takes value e (added base-
location) it becomes A..

Next we show that while the trap-colouring is a global construction it can indeed
be eonsideredsas a local scheme. This property will be explored in our proof technique
for the verification. We formalise this notion in the next set of definitions and lemmas.

Definition 6. We define local-colouring of a set F; to be an assignment of colours to
that.set that is consistent with some global trap-colouring.

This definition captures the idea of colouring a particular set F; corresponding to
base-location [ such that it can be part of some global trap-colouring without having
any further constraints from colours of vertices at other base-locations. We can see
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that a local-colouring of an added set A.,; fully determines the colours of the/vertices
in the two neighbouring primary base-locations P,,, P,;, while the converse istalso true:
A local-colouring of the two primary sets P, P,, fully determines the colours of,the
added set A.,;. We can therefore see that a local-colouring of set A, is equivalent with
a local-colouring of the two neighbouring primary base-locations P, By, We cam also
see that a local-colouring of all primary sets P, is compatible with attrap-coleuring and
fixes it uniquely.

However, if we have two general sets Fj , F}, it is not always pessible to colour
them both using a local-colouring and still be able to find a global tr;p—colouring. An
example is if we have a primary set P,, and its added neighbotiring set Ag,, , where a local
e further than those

required from a local-colouring. E.g. an added vertex cemmected to a white primary

colouring of the set P,, imposes constraints on the colours of A

vertex can be either white or red, but can never be black.yAntadded set A, can have
local-colouring if there is no constraint on the coleurs from the neighbouring primary
sets P,,, P,;, but also from other added sets Aeik,,Aejk that have common neighbour sets
(either P, or P,;). We wish to make precise when there is"a collection of base-locations
that one can assign (independently) local=colourings te all the related sets F; and still

be able to always find a global trap-colouring.

Definition 7 (Independently Colourable Loeations (ICL)). Given a dotted triple-graph
DT(G) and a collection of n base-loeations Exwith corresponding sets Fy, we call the set
& independently colourable locations if ‘@ny local-colouring of the sets F; is consistent
with at least one trap-colouring.

We should stress at thig point, that ICL is a property of a collection of base-
locations and not of verticess T‘Qe motivation is that for those base-locations, one could
independently colour the vergicesiof each base-location and obtain an allowed trap-
colouring. In other, wordsyavhat /this definition captures is that the choice of colours
within each of the sets #; corresponding to a base-location in £ is independent from the
choice of colours imother sets Iy with base-location in £.

For each base-location [ we define ¢ = {l} if the base-location is primary and
& = Np() (1) ifsthebasedocation is added (i.e. in the latter case, it contains the two
primary basé-locations that are adjacent to the location 1).

Lemma. 3w A set_of n base-locations € is ICL if and only if for all pairs i,5 € € the
sets e; Me; = 0

Theproofisgiven in [Appendix A.3| The following property is necessary for Section [4.2]

Theorem 1. Consider a dotted triple-graph DT (G). Consider a set S of n base-
locationstand assume that the base graph G has maximum degree c¢. Then there exists
awsubset S" C S of these base-locations that are ICL (independent colourable locations)

and it contains at least |S'| = 575 locations.

Page 10 of 30
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Proof. The set S has n locations of the graph D(G)ﬂ We want a subset of these
locations S’ such that it satisfies Lemma |3] The condition of that lemma requires that
if a primary base-location v; is included, then all its neighbouring base-locations should
be excluded. The maximum number of neighbours is given by the maximum number of
added base-locations which is ¢. Therefore if we include the base-location v; in the set
S’, we might need to exclude at most ¢ other base-locations from the'set S.

To include any added base-location e;; in the set S’, Lemma [3| requires that its
neighbours v;, v; and the neighbours of its neighbours e;x, e shouldEe excluded. Its
neighbours are 2, while the neighbours of the neighbours are at most 2(¢— 1). It follows
that to include e;; in the set S’ we might need to exclude at most 2c¢ other base-locations
from the set S.

From the pigeonhole principle follows that we can find a/set S’ with at least

ey = |S’| base-locations that are ICL. -

The ezistence of this number of ICL is what isaecessary for the proof of Section [4.2]
However, we should note that finding such S’ given S can e done efficiently, essentially
following the procedure of the above proof.

3. Verifiable quantum computation

We give a verifiable blind quantum cemputation protocol using the dotted triple-graph
construction, but otherwise, we follow similar steps with [4]. With our construction we
obtain a protocol where the probability of success is constant (independent of the size
of the computation) and we uge onlyilinear, in the size of the computation, number of
qubits.

As we mentioned in Sectio dummy qubits break the graph to the computation
graph and isolated traps.!This breaking is hidden from the prover, since the prover does
not know the positions of dummy qubits. For the computation to be accepted, the prover
needs to return the.correet results for the isolated traps. In other words, a malicious
prover that wants to deceive the verifier, needs in the same time to guess correctly all
the traps and corrupt the computation by deviating on some of the computation graph
qubits.

As it is evident from’the protocol (see Protocol [1]), the positions of the dummy
qubits (ite. thosesthat are {|0),|1)}) is determined by the trap-colouring. It is easy to
check that sending dummy qubits has the same effect as making a Z measurement in
MBQC which.effectively breaks the graph state at this vertex. Therefore the properties
defined inSection [2| corresponding to the reduction of the DT(G) to one dotted base
graphnD (@) and isolated traps (Lemmas [l and [2)) as well as the properties concerning
the independence of the colouring and thus the distribution of traps (Theorem [1]), all
apply here.

* Note again, that here we are dealing with D(G) and not DT(G), and thus we are dealing with a set
of base-locations and not of vertices of the DT(G).
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Theorem 2. (correctness) If both verifier and prover follow the steps of pmtocol then
the output is correct and the computation accepted.

Protocol 1 Verifiable Universal Blind Quantum Computation using dottéd triple-graph

We assume that a standard labelling of the vertices of the dotted triple-graph
DT(G), is known to both the verifier and the prover. The number of qubits is at
most 3N (3¢ + 1) where ¢ is the maximum degree of the base graph G

~
e Verifier’s resources

— Verifier is given a base graph G that the dotted graph state [D(G)) can be used to
perform the desired computation in MBQC with aeasurement pattern MComp'

— Verifier generates the dotted triple-graph DZ(G), andyselects a trap-colouring
according to definition [3| which is done by cheesing, independently the colours for
each set P,. 4

— Verifier for all red vertices will sead dummy qubits and thus performs break
operation.

— Verifier chooses the green graph to perform the computation.

— Verifier for the white graph sends dummy qubits for all added qubits af, and thus
generates white isolated qubits at each primary vertex set P,. Similarly for the
black graph the verifier sends dummy qubits for the primary qubits p; and thus
generates black isolated qubits at. each added vertex set A..

— The dummy qubits position set D is chosen as defined above (fixed by the trap-
colouring). 2

— A binary string s of length at most 3N (3c+1) represents the measurement outcomes.
It is initially set to.all zero’s.

— A sequence of ‘easurement angles, ¢ = (&)i<i<sn@e+n) With ¢ € A =
{0,7/4,--- 40w /4}, consistent with Mcomp:  We define ¢ (piys) to be the
measurement, angle/in MBQC, when corrections due to previous measurement
outcomes s are taken into account (the function depends on the specific base-
graph and(its flow, see e.g. [26]). We also set ¢; = 0 for all the trap and dummy
qubits. The verifier chooses a measurement order on the dotted base-graph D(G)
thathis consistent with the flow of the computation (this is known to prover). The
measurements within each set P,, A, of DT'(G) graph are ordered randomly.

<3N (3¢+ 1) random variables #; with value taken uniformly at random from A.

— 3N(3c + 1) random variables r; and |D| random variable d; with values taken
uniformly at random from {0, 1}.

— A fixed function C'(i, ¢;, 0;, 7, 8) = &i(¢ps, 8) +0;+7r; that for each non-output qubit
1 computes the angle of the measurement of qubit ¢ to be sent to the prover.

Page 12 of 30
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Protocol 2 Cont. VUBQC using dotted triple-graph

©CoO~NOUTA,WNPE

e Initial Step

— Verifier’s move: Verifier sets all the value in s to be 0 and prepares the input
qubits as
le) = X"1Z(0) ®...0 X“Z(6,)|I)

— x; are random variables with value uniformly at random from 40, 1}.
The remaining qubits are prepared in the following form

Vie D |d;)
Vig D HjeNc(i)ﬁD Z% |-+:)

and sends the prover all the 3N (3¢ 4 1) qubits in thererder of the labelling of the
vertices of the graph.

— Prover’s move: Prover receives 3N (3¢ 4+ 1Jisingle qubits and entangles them
according to DT'(G).

e Stepi: 1 <i<3N(3c+1)

— Verifier’s move: Verifier computes the angle §= C(i, ¢;, 6;,7;,s) and sends it to

&

the prover.

— Prover’s move: Prover meastires.qubit & with angle 9; and sends the verifier the
result b;.

— Verifier’s move: Verifier sets the value of s; in s to be b; + r;.

e Verification

— After obtaining the oufputgubits from the prover, the verifier measures the output
trap qubits with angle o= 0} + r,7 to obtain b;.

— Verifier accepts'if'b; = mpfor‘all the white (primary) and black (added) trap qubits
1.

— Verifier applies corrections according to measurement outcomes b; and secret
parameters 0;,%; at the output layer green qubits and obtains the final output.

Proof Sketeh. T beth verifier and prover follow the steps of protocol [1] then the prover
essentially (when pre-rotations are taken into account) applies the pattern MComp
at thergreen dotted base graph D(G), which by assumption performs the desired
computation (see also theorems 1 and 3 of [4]). Moreover, the isolated white and black
qubits.are/measured in the correct basis and thus the verifier receives b; = r; for the

traps and accepts the computation (for further details, see [Appendix BJ). n

As already stated, the protocol is e-verifiable if the probability of accepting an
incorrect output for any strategy of the prover is bounded by e. We follow the same
definitions as in [4], while for completion the exact meaning of “strategy of prover” and
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expressions for “incorrect output” and “accepting” are given in [Appendix C|
Theorem 3. (verification) Protocol is (2)-verifiable (for quantum or classical output).

Proof Sketch. The proof follows closely certain steps of the proof of theorem 8wof ref [4]:
Here we give an outline of the proof (details in [Appendix CJ).

The aim is to show that the probability that a malicious prover corrupts the
computation and succeeds in all traps (and thus the verifier ac¢epts thé output) is
bounded by e. To achieve this we follow five steps. In step#1 we, prove that any
deviation from the ideal protocol can be expressed in terms of sorfie Kraus operators
which are then written as linear combination of strings of Patili matrice$ (denoted as o;)
and the remaining of the proof is to see which of those attacks maximise the probability
of accepting an incorrect outcome.

In step 2 we note that there are some strings gj that.for any choice of the secret
parameters (trap positions, angles, etc) of the verifier do not eorrupt the computation
and thus they do not contribute to the probability of failure. The set of all other strings
o (that could corrupt the computation for some choice of’parameters) will be denoted
as F;. It is clear that a malicious prover, to optimise the chance to get an incorrect
outcome accepted, should only use attacks from the set E;. In this section, where we
consider the simplest protocol, a single non-trivial'attack could corrupt the computation
and the set E; consists of all the attacksyg’s that have in at least one position a non-
trivial attack. However, in the next seetion this changes. The technique to amplify the
success probability uses faultsfolerant encoding and thus the computation is corrupted
only if multiple errors occur and this leads to different set E;. For now we keep the
description general for as long as possible, so that it applies for the next section. After
the set Fj; is defined, in order to.compute an upper bound for the failure probability,
we simply compute the probability of not triggering any trap given that the attacks
used are all from the set B This is clearly an upper bound for the failure probability
(worse-case scenario), since in reality the fact that there exist some choices of the secret
parameters that agivemng € F; corrupts the computation does not mean that it corrupts
the computatiomin general. However, an upper bound € of the failure probability suffices
to prove that the protocol is e-verifiable.

In step 3 we exploitythe blindness of the malicious prover. The fact that they do
not know_the secret parameters restricts the attacks that contribute to attacks that are
a conveX combination of Pauli attacks. This is important since it eliminates “coherent”
type of attacks and resembles theorems in quantum key distribution (QKD) that reduce
cohierent attacks to collective by exploiting the symmetry of the states.

In step 4 we show that a malicious prover maximises the value of the bound of
failure probability if they perform an attack with exactly the fewest non-trivial attacks
that-are consistent with E; obtained from step 2. This is a single attack for the protocol
of this section (but different in Section [4.2)). It is easy to see that the greatest value is
obtained for a single o. In the next steps of the proof we find the maximum value of
our bound for an attack corresponding to the single optimal (for a malicious prover) o.

Page 14 of 30
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Finally, in step 5 we use the partition of the qubits to sets P, and Ag. Tthis
important to note, that within each of those sets there is exactly one computation
qubit and exactly one trap qubit. From previous steps we know that the bound of the
failure probability is highest if the malicious prover chooses to make a single non-trivial
attack. This attack happens at a qubit that belongs to either some set P, or some set
A.. The probability of hitting a trap given a single set is clearly independent, from the
other free parameters corresponding to this qubit (but not the probability té detect it in
general) and it goes as 1/|P,| or 1/|A.|. This leads to a bound forthe fa,\ilure probability
e=28/9. O

4. Amplification of the probability of success

In the previous section we gave a simple construction to directly obtain a verification
protocol with constant failure probability e. However; a verification protocol is successful
if the € of the failure probability can be made arbitrarily small. There are two techniques
that have been used to amplify the probability of su¢cessiof a verification protocol. The
first one is simpler both conceptually and in terms of experimental requirements, but
applies only in the case that the output ofithe quantum computation performed is
classical. The second applies for computations with quantum output as well. We will
use both techniques and show that starting with the dotted triple-graph construction
we obtain in both cases improvements:.

4.1. Amplification for classical output

In the case that a quantum computation has a classical output (e.g. solving classical
problems or sampling, etc) it sufficesfo have an e-verifiable protocol for any € < 1. This
€ can be boosted and made arbitrarily small by repeating the protocol sufficiently many
times and accepting only whensall repetitions agree. This results to an ¢ = ¢? which can
be made as small as.the security level required by choosing the number of repetitions
d suitably. This of course,implies an extra communication cost, for the multiple copies
prepared, which'seales as O(log %) leading to overall complexity being O(log %) x O(N).

By using the dotted triple-graph construction we can obtain a repetition protocol
where we only répeat/a constant number of times (and the number of repetitions depends
only on the security level). This is in contrast with the increasing number of repetitions
needed|in the Tepetition protocol used in [6] that was based on the brickwork-state
protoeol of [4]¢ It follows, that the dotted triple-graph repetition protocol requires
only a lindar number of qubits. As we will see in the next section this does not give
better.complexity from the general protocol (that allows for quantum output). However,
it has a number of practical advantages (easier to implement, smaller coefficient of
leading term, etc) which can be of importance in view of the quantum systems that are
being developed, such as the Networked-Quantum-Information-Technologies (NQIT)
[28]. Further details and an alternative construction applicable only for classical output
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can be found in [Appendix D]

4.2. Amplification for quantum output

We now turn to the general case, where the output of the computation ean be
quantum. Our main result is that our DTG construction leads to an exponentially-
secure verification protocol for quantum output with only linear overhead. Similar to
[4] we use a technique that encodes the computation in a fault-tolerant way in order to
amplify the probability of success of the protocol. The particular size-of the boosting
achieved depends on the fault-tolerant code that is used. Here we treat the protocol in
full generality.

The general idea is that the computation is encodedwwith fault-tolerant encoding,
while the traps remain single (non-encoded) qubits. Therefore, while a single error on
a trap leads to a rejection of the computation, to'corruptithe actual output of the
computation many errors on computation qubits.are required. The malicious prover
needs in the same time avoid hitting any single/trap and hit many computation qubits
in order to corrupt the output.

Protocol 3 Boosted Verifiable UBQC for gquantum output, using dotted triple-graph
and Fault-Tolerant Encoding

e Verifier chooses a base graph G and a measurement pattern MComp on the dotted
base graph D(G) that implements the.desired computation in a fault-tolerant way,
that can detect or correct etrors fewer than 6/2.

e Verifier follows steps of Protocol [1]

A S

Theorem 4. (Verification) Protocol@ 15 (g)d—vemﬁable for quantum or classical output,
where d = (mw, ¢1s the magimum degree of the base graph and 0 is the number of
errors tolerated on the base graph G.

Proof Sketch. The proof follows similar steps with [4]. However, because of our local
construction, the proof ¢hanges and we highlight here where our technique deviates.
Since the computation is'done using a fault-tolerant encoding, any deviation that affects
fewer than ¢ /2/computation qubits does not corrupt the output. It follows that attacks
that contribute,to the pg,;; have non-trivial Pauli’s in, at least, 0 /2 base—locationﬂ.
Here we wused the fact that in our construction the prover knows the partition of the
qubits with respect to their base-location and thus will necessarily attack at least ¢/2
base-locations since they wish to corrupt the computation. Using blindness (as in steps 3
and 4 ef proof of Theorem , we conclude that the fewer attacks (given that corruption

is possible) maximises py,;;. According to our construction, in § /2 base locations, there

)

3@erD) that are independently colourable locations by

éxist at least a collection S) of

* Tt is important to note here, that §/2 is the number of different base-locations with non-trivial attack,
and not the number of qubits with non-trivial attack.
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Theorem[I] A deviation in any one of those locations passes undetected with probability
less than 8/9 (as in Theorem 7 and this probability is independent for eachr of these

)
locations. This leads to a bound € = pgi5; < (3)2(2””. The full proof is givem=in

Appendix Ej O

Since the computation is done using a fault-tolerant encoding, theaumber of qubits
required scales accordingly. In particular, as in [4], there is an extra multiplicative cost
O(log 1), where € = (%)d, leading to overall complexity O(log +) xO(N) similarly with

the classical output case. =
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Appendix A. Proofs of dotted triple-graph construction

Appendiz A.1. Proof of Lemma

Proof. First we note that after the breakeperations on red added vertices, all the vertices
of different colours are disconneeted. This follows since edges connecting different colour
primary vertices were coloured by definition red, while all added vertices that were not
red are connected with same colour vertices. Then, we need to show that the graph of
each colour results to a graph identical to D(G). To see this note that for each vertex
v; of the base graph, there is@ white (black, green) vertex in P,. Then for each edge
e(vs, v;) of the base graph G, there is a unique white (black, green) added vertex in A,
that joins the whiteaveitex pof € P, and the white vertex p, € P,; (and similarly for
black and green). O

Appendiz A.2¢Proofrofdemma [

Proof. As the /dotting operation only introduces vertices connected to vertices in
P(D(G)), every wertex in A(D(G)) shares edges only with vertices in P(D(G)). Thus
when the vertices in P(D(G)) and their associated edges are removed by the break
operators, thewertices in A(D(G)) become disconnected. Similarly, since the dotting
operation removes all edges between vertices in P(D(G)), hence every vertex in P(D(G))
sharesyedges only with vertices in A(D(G)). Thus when the vertices in A(D(G)) and
their associated edges are removed by the break operators, the vertices in P(D(G))
become disconnected. O]
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Appendiz A.3. Proof of Lemma [3

Proof. First we prove that a collection of base-locations satisfying this condition, is ICL.
From ¢; Ne; = () we can see that (i) for all primary base-locations in £ no fieighbouring
base-location is in € and (ii) for each added base-location, the two neighbouring primary-
locations P, P, are not in & and neither is any other added base-location,set that has
neighbours either of P, P,,. In other words, the sets of neighbgurs of added base-
locations are disjoint. However, we already noted that a local-colouring of an added
base-location is equivalent with a local-colouring of the two neighboring primary base-
locations P, P,;. By replacing the local-colouring of added baseslocations with that of
the neighbouring primary base-locations, we reduce the local-¢elouring of the set £ to
that of a collection of local-colourings of primary base-léeations. This is ICL since by
the definition of trap-colouring no constraint is imposedibetweenthe colours of primary
sets.

To prove the converse consider two locations 4, 7 such that ¢; Ne; # (). Either one
is primary and the other is a neighbouring added base-laeation or ¢ and j are added
base-locations sharing a common neighbour k. In the first case it is clear that the choice
of colour at the primary set (say i) imposes constraints on the colours of the added
base-location j. In the second case, the choiserof colour at the added location i can
determine that of the neighbour loeation k (for example a white added vertex that is
connected with a primary vertex fixes,the eolour of that vertex to white). But then
fixing the colours of the primary base-location k in its turn imposes constraints for the
other added neighbour j, and thus a local-colouring of ¢+ and j may not be consistent
with a trap-colouring. O]

N
Appendix B. Proof of/correctness (Theorem [2))

Proof. To prove the c¢orrectness’of the protocol we assume that the prover is honest
and follows the instructions. This proof is very similar with [4]. We first consider the
effect that the dummy qubits have. Dummies are equivalent with Z measurement and
therefore the effectithey have is to break the graph at this particular vertex. In Protocol
the dummiés are placed at red vertices of a trap-colouring of the DT'(G) and on white
added-vertices and black primary-vertices. According to Lemma [I] and Lemma [2] this
results imhavingas€opy of the dotted graph (D(G)) at the green vertices, and isolated
qubits at the white primary vertices and black added vertices. Moreover, the quantum
statesthat the isolated qubits are is |+, ).

The nieasurements on different (disconnected) graphs do not affect each other, so
we eonsider separately the measurement pattern on the (green) dotted-graph D(G) and
the measurements in the isolated (trap) qubits.

The qubits in the computation graph (D(G)) are measured in the rotated basis
0; = ¢, +0;+mr;, while the graph is similarly rotated as each qubit (before the entangling
operations between the computation qubits) was in state |+4,). As in UBQC [26] this is
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identical with performing MComp to the non-rotated graph and results to the'correet
computation (by assumption), provided that the verifier, in order to account for the
extra mr; rotation, sets s; = b; & r; and uses s; to compute the next measurement angles.
The isolated traps (that are in state |+4,)) are measured in ¢; = 6; 4 mrangle (as
¢, = 0 for dummy and trap qubits) and give deterministically the outcome b; = r;."This
is precisely the outcome that the verifier needs to accept the computationtas correct.
Therefore, in the honest prover case, the verifier always accept the output (tfaps correct)
and as we saw in the previous paragraph, obtains as output theddeal (correct).
Finally, note that the dummy qubits are also measured. Howeve\r, since they are
disconnected from the rest qubits (do not affect them), and, their résult contributes
neither to the correct output nor to the accept/reject decision; the outcome of these
measurements is irrelevant. O

Appendix C. Proof of verification (Theorem

Proof. We now give some definitions taken from [4], before breaking the proof to five
steps and exploring the places that we differ. The output density operator of the protocol
is Bj(v) and is given by

Bj(v) = Trp (Z b+ el CoepQP (@7 10) (0] @ [T°) (&)

PIQIC] )b+ .| ) (C.1)

where we have the following definitions: 'The subscript j of the operator B, corresponds
to the strategy/deviation that the prever makes, and when j = 0 is the honest run where
there is no deviation (and thuas the operator {2 = I). The index v, collectively denotes
all the random choites made by the verifier, i.e. x,r,0,d and the positions of the traps
T (where the latter depends on the trap-colouring of the dotted triple-graph). When
required, we make the further distinction between vy (parameters related with the trap)
which are r;, 6,“and the trap positions, and vc = v \ vr (the remaining parameters).
The b’s are thie outcomes of the prover’s measurement, (c,.); = r; fori ¢ T and (¢.); =0
for t € T, thesubseript B denotes tracing-out the prover’s private registers. C,.
is the Pamli" operator acting on the quantum output, that maps the final outcome to
the correct onefdepending on the choices of random variables v and the computation
branehyb. wP is the unitary corresponding to implementing honestly the protocol. €2
is the deviation of the prover and is identity in the honest run. [¥**) = [M¥) ®; |62)
is the,initial state send by the verifier, that includes the quantum input and the |+4)
states which are jointly denoted as |M") and depend on the random choices, and the
|9) registers correspond to the measurement angles (that depend on the branch of the
computation b). Finally, |n) = |0;) if ¢ € O while |n) = |ry) otherwise and the ideal
state |V;qeal) (Yideall = Trigio\(ry}(Bo(v)) is the computation (green) output qubits
when trivial deviation 2 = I occurs.
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For simplicity, in this proof, we have assumed that the initial state is ptire and
that the computation P to be performed is unitary and therefore the honest ideal state
[Wideal) (Yideall is also pure.

The probability of failure of the protocol is when the protocol returns, “Aceept” but
the output is orthogonal to the honest ideal. This probability is given by

Pfail = Zp<y) Tr(Pil;lcomrectBJ'(V>> (C.2)

where

iyncorrect = (I- |\Ijideal> <\Ijideal|) Qe dn: ;"]
= P ®er [ni") (0" (C.3)

is the projection into the wrong subspace (orthogémal space to the correct ideal state)
while it still remains within the accept subspace (where'tlie traps succeed).

The proof has the following five stepss In step 1 we express the attack using Kraus
operators and Pauli matrices, in step 2'we show that in order to lie in the incorrect
subspace, at least one non-trivial attack te,one gubit (of the dotted triple-graph) is
required, and then we will replace themprojection to the incorrect subspace with this
restriction on the sum of allowed attacks. In step 3 we will exploit the blindness of
the prover to reduce the attack.to Pauli attacks. In step 4 we will show that the fewer
the non-trivial attacks the greaterithe probability for the adversary, and thus we will
restrict to the fewer allowed (attacks (aysingle one). Finally, in step 5 we will use a
suitable partition of the qubitsswhich/will then leads to a constant bound for the pg,;)-
Step 1: First we note that after tracing out the prover’s register, the unitary €2 becomes
a completely positive trace preserying map (CPTP), and can be expressed in terms of the
Kraus operators {x}, where y_, kalz = I. Moreover we express each Kraus operator
as linear combination of Pauli' operators x;, = >, ay;0; and Z,“ agiay,; = 1. The matrix
0; is a tensor preduct of Pauli matrices, where if we want to specify the Pauli acting on
qubit v we willrdenote itfas o;,. We then get

Pfail’= Zp(y) Tr(Pcorrect Bi(¥)

= Z Tr (ZP(V)O&M@Z]-(PL Qter |77§/T> <775T|) |b + Cr> <b|

b,i,5,k v

Co v P | UP) (UP

Plo,Cly o 1b) (b + il (C.4)

Step 2: Again following [4], we can see that only terms that satisfy

Tr(PLoyP [ 0% (| Plg;) # 0 (C.5)
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contribute to the pg,;). The terms that obey this are those necessarily within those that
|Bi| + |Ci| + | DP| > 1, which we will denote as i € F; (and similarly j € E;),4vhere the
sets are defined as:

A; = {v s.t. 04, = I and 7 qubit of the dotted triple-graph}
B; = {v s.t. 03, = X and v qubit of the dotted triple-graph}
C; = {v s.t. 0, =Y and v qubit of the dotted triple-graph}

~
D; = {v s.t. 0, = Z and ~y qubit of the dotted triplée-graph} (C.6)

and the superscript O denotes subset of those sets that the v is eutput qubit. In other
words, to corrupt the computation one either needs to flip.the outecome of a measured
qubit, or make any Pauli (other than the identity)f the attack is on the quantum
output.

We have now imposed that the attacks o; that contribute have at least one non-
trivial Pauli attack at a qubit of the DT(G). This is not agufficient condition to corrupt
the computation in general (and send it to.the P subspace), but is a necessary condition.
To see this, we note that if we consider a apwhere@ ¢ FE;, then there is no choice of
the secret parameters that would bring the stateiin the P, subspace. Here we take the
worse-case scenario, where we assumesthat if there is some choice of secret parameters
that a given attack could corrupt the ‘eomputation, then we assume that it already is
in the subspace P, and we only check what,is the probability that this attack did not
trigger any trap. For protocol [1]itis a single attack that could corrupt the computation.
We then replace the projection on thenP, subspace, with a restriction on the possible
attacks, i.e. at the sum we oanhave terms corresponding to attacks that belong to the
set E;. Note, that if the ¢omputation was encoded in an fault-tolerant way (as is done
in Section , then the set/F; requires greater number of non-trivial attacks. For now
we take the more conservative view.

We then obtainithe following expression:

Pragl S0 2 p(v) X Tr ((@uer ™) (™| @ |8') () (1)

kbl w
T
(Z am) P |wy (| P (Z akzaz') )
icE; i€lE;

where b = {bz‘}ieT a substring of b that excludes the value for the trap measurements
(andwe used that (n”" | |b;) = 0,1, )-

Step 3: The next step is to exploit the fact that summing over the secret parameters
of thewwerifier result to the prover being blind, and show that the only attacks that
contribute are Pauli attacks, i.e. attacks that oy, = o;, for all . Summing over v we
obtain
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Prail < DD adlp(vr) X (CR)

kywr i€E; ]EEJ

1% vr vr vT I
Tr (®teT\mT><m | o (®teT\m ) (7| @ter |0r) <5t|®Tr(I)>Uj>

As all Pauli matrices but the identity are traceless, all terms in the sum arézero unless

0ily = 0y apart from the case that v € T. Then we use the factsthat
~

D Te((n" o |ni™) (o[ o ™)) = 0 (C.9)
0,7t
unless o;; = o0j; in the case that ¢ € O and that for measured.traps it suffices to sum
over ¢, i.e. Y Tr((n;"|os [n/") (m;" o |n/")) = 0 unless o= 051, We then conclude
that only terms that contribute are those that o; =035 We thus obtain:
- 4

Dail < Z Z || ZP(T) H (ZP(@)IO(W)(@?\ Tijt |772/T>)2> (C.10)

k iEEi T tGT gt,Tt

where we broke the sum of vy to théehoice of positions 7', and the random choices of
0;, 1, and we have taken the product of all those terms corresponding to the various
white and black traps.

Step 4: In this step, we will prove that to maximise the value of the bound of the
probability of pg.s), the best strategy is,to do the fewer number of attacks allowed by
the constraint obtained at step-, which in our case, is a single attack. Then at the next
step we will bound this maximum-value. We have

Diail S Z Z || * £ (1) (C.11)

k. icE;

where £(5) =@ cr (T, 20D (7 e [107))?). From ¥ el = 1
we conclude/that! pe.;is maximised when |a;| = 0 for all i ¢ E;. Then we have a convex
combination of values f(i). Let f(m) = max;eg, f(i), then and it follows that if this is
maximum for the single value m, then by choosing |a;;| = 0 for all i # m the bound for
Prail 1S Maximised.

Prait < f(m) = max f(@)

< max > oM ]] (Z p(O)p(re) (" | oiye Int”T>)2> (C.12)

teT 0,7t
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In other words, we obtain a bound by considering a single o; that belongs to the set E;
and maximises the expression we have. The following expression involves a product of
positive numbers, that are all less or equal to unity:

11 (Zp(et)p(n)(m”ﬂ T \m”T>)2> (C.13)

tET et,T‘z

In particular we can see that the terms in the product of eq. areunity for all trap
positions that o, is trivial, i.e. oy ¢ {X, Y} if k is not output, orfo;, & {X,Y, Z} if k
is an output qubit. It is clear that this expression is bigger the moreterms containing
trivial attacks on traps. In other words, if we have two possible,attacks o; and oy,
where for all v that o;}, is non-trivial it is equal to g, (but there are v that oy, is
non-trivial while o;}, is trivial), then f(i) > f(i'). Therefore the term that maximises
Prail corresponds to an attack o; that has the fewest(possible; i.e. compatible with E;)
non-trivial terms. 5

From step 2 we obtained that the set E; has at least one non-trivial Pauli attack,
so it follows that the bound of the py,;; weicompute isinaximised when there is exactly
one non-trivial Pauli attack. It is important te note however, that the set E; will be
different in Section where we consider fault-tolerant encoding of the computation
and the corresponding o; will involve greater number of non-trivial attacks. In that
case, the set of attacks that can possiblyieorrupt the computation (and thus send it to
P, subspace) changes (i.e. F; differs).

Step 5: We will now use thepartition of the qubits of the dotted triple-graph, to the
subsets P,, A, corresponding to vertices and edges of the base graph. The way that
this partition is chosen doe$ notsreveal any new information to the prover and does not
depend on the choice of frapscolotiring, i.e. on the positions of the traps.

We have established that, thé optimal strategy for the prover in order to maximise
the value of the bound fer the pr; we compute, is to make a single non-trivial attack
at one qubit of the dotted triple-graph. Let us assume that this single position is
and we know that it belongs to either a set P, or a set A., depending on whether the
non-trivial attack is‘doné on a qubit belonging to a primary Set P,, or an added set A,
When it is not clear if theset is primary or added, we will use Fj which simply means

that Fjg =, if,8.is at a primary location and Fp = A., if 8 is at an added location.

es

We then break the p(7") which is the probability of different trap configurations,
usingsthe structure of the subsets P,, A., i.e. p(T) = p(t; € P, ,ts € P, ,t; €
A4, ---). Aherefore, given a single attack at set Fj, we can sum over all the other

sets (all the other positions do not appear in the remaining expression) and obtain
ZTp(T> = Ztﬁepﬁ Ztgépﬁ p(T) = Ztﬁng p(ts). We obtain

Piail < max DD plte)p(Bu,)plre,) (7| oisy 7). (C.14)

tﬁEFﬂ Gtﬁ,nﬁ
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It is important to note that o;;, is identity (or Z for qubits not in the output) if 3 #ig
while it is non-trivial otherwise, therefore (|Fjg| —1) terms of the sum will be unity, while
one term will be less than ondf] The above expression depends on whether the setyds
is output set, or in the case that is a measured set one on whether it is, a primary or
added set. It will be the prover that chooses which is the set of the attagk, and thus the
bound will be the highest of these values. We consider separately eachcasenWe define
the quantity

g(i,Fp) = Y > plta)p(0u,)p(re,) ()| oiges [mi)) (C.15)

tBEFtB 615/37”5

where the function g has explicit the dependence on which,set Fj3 does the non-trivial
attack belong to. In particular, we will denote Pflfl)3 if the non=trivial attack is on an
output set (note that output qubits are only primary), and By , if it is on a measured
primary set and A, o if it is on a measured addedrset. We will separately compute the
maximum of g(i, szz) 9(i, Py,,), 9(i; Ae,,) for i € E; and thébound will be the maximum
of those three.

We start with the output qubits

906:9) = fgrpo; SNt )

tg EPO Or,re

- 161X > > (1 S(IP2] = 1) + 1+ ((+ol o, |+9>)2>

t,T't

1
<A(16- PO 1 8)
< @6 4Po) - 1)+

1 )
) o

where we used that »5,((+el o |+4))? < 4 for o # T and that |[P0| = 3 since output
qubits are primary:

Now we/eonsider the measured qubits similarly (using Fiz to denote either primary
or added measured set), to’obtain

g('L, FB’) = ]_6|F6, Z Z Tt3| Uz\t,g |Tt3>)

t/gGFﬁ/ 0,7t
2
= 16|ng| Z (1| = 1) + 8- ({ras] oagy [r14))?)
=L (16 (Fy - 1))
~ 16|Fp| &

# It turns out that the not-unity term, is zero for measured qubits, while it can be up to 1/2 for output
qubits.
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1 8
=(1- < = (C.17)
( |FB’|> 9
where the last step the equality holds if the attack is on added qubits where |Fgi[s=
|Ac, | = 9. For primary measured sets P, , the bound is only (2/3) and thusiis lower:
It follows that the overall bound we obtain (worse-case) is

Pfail < (S) (C.18)

~

Since this bound is obtained when the attack is on a measured,(added) qubit, the bound
is the same when the output is fully classical.
O

Appendix D. Protocol for classical output

L
Protocol 4 Boosted Verifiable UBQC using dotted triple-graph for classical output
e Verifier chooses computation with ‘classical, deterministic output (e.g. decision

problem).

log e
log(8/9)
e For each i € {1,---,d} Verifier follows steps of Protocol [1 with random

different choices of secret parameters. If the verifier accepts the computation,

e Verifier chooses a number d, wheterd. = and the desired security level is e.

they register the classical eutput as O; and store it.

o [f the verifier rejected at ‘any single repetition of Protocol 1| they reject the overall
computation. If not, ghey sompare the classical outputs O; and if all of them are
identical, they accept this output as the output of the computation.

Theorem 5. (Verification) Protocol i8 (%)d—vem’ﬁable where the output is classical
and d is the number of repetitions.

Proof. We have multiple repetitions and if all of them return the same output O, then
the probability4hat this isnot the correct output is bounded by the probability that all
repetitions failed™(and resulted to the same deviation). Since the different repetitions
have the same outcome it means that if a single of those repetitions is successful then
theoutput ©@:is the correct output. From Theorem |3l we know that the probability that
a single repetition fails, is 8/9. Then the probability that all the d repetitions fail is
()" O

Insthe case of classical output, there is an alternative construction to the dotted
triple-graph that could decrease further the (linear) overhead. In particular, instead
of having the dotted triple-graph DT'(G) one could consider three copies of the dotted
base graph D(G). We will name this the three dotted copies construction. The one copy
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will be used for computation, while the other two for white traps (on primary yertices)
and black traps (on added vertices). This construction is global, in the senséthat the
decision of which vertices are in which graph is made from the beginning and cannet
be decided independently per base graph vertex v;. It follows that the location of the
traps is totally correlated globally and there is no way to amplify the suéeess probability
in the quantum output case. This is the reason we focused on the dotted triple-graph
construction for the quantum output case. For the classical output howevér, the three

dotted copies construction works.
~

Protocol 5 Boosted three dotted copies Verifiable UBQC fér, classical output

e Verifier chooses a computation that has classical and deterministic output (e.g. a

decision problem).

log e
log(2/3)

e For each i € {1,---,d} Verifier follows steps of Protocol using three
dotted-copies instead of dotted triplesgraph agd with random different

e Verifier chooses a number d, where d = and the.desired security level is e.

choices of secret parameters for every rum. If the verifier accepts the
computation, they register the classical output as/O; and store it.

e If the verifier rejected at any single repetition,of the modified Protocol[l], they reject

the overall computation. If notythey compare the classical outputs O; and if all of
them are identical, they accept this output as the output of the computation.

Theorem 6. (Three dotted-copies Verification) Protocol@ 18 (%)d—vemﬁable where the

output is classical and d is the number of repetitions.
N
Proof. Following the proof of Theorem [3| at step 2 in order to corrupt the computation

the prover needs to,make at least one non-trivial attack. However, the prover is blind
about which of the{three graphs is the computation, white and black trap graph.
Therefore, it has probabilitysd/3 that the attack coincides with a trap graph of the same
type of the attack location (i.e. if it attacks a primary vertex, then with probability
1/3 the attackswas on_aqubit that belongs in the white graph, while if the attack was
on an added vertex withiprobability 1/3 the attack was on a qubit that belongs in the
black graph). /For classical output the non-trivial attacks are {X,Y} only (all qubits
are measured), and thus the attack is deterministically detected when it hits a trap, as
(¢l oxywlny) = (ri ox/v |re) = 0. Therefore the probability of failure is pg; < 2/3.
To amplify this probability, we can simply repeat the protocol d times, and if all
classical outputs agree in all the runs then the probability that the computation was
corrupted-is bounded by pgyi; < (%)d. Moreover, the number of qubits required per
repetition, are 3|V(G)|+ 3|E(G)| < 3(1+4¢)|V(G). Both in terms of failure probability
and in terms of the (linear in both cases) number of qubits per repetition, the three
copies construction gives better result.
O
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Appendix E. Proof of verification for quantum output (Theorem 4]

Proof. We assume that there is a fault-tolerant encoding of the computation, thatwhen
done in MBQC, corrects or detects all errors that have fewer than 6 number of errors
when the computation is performed on the base graph G. Any operation on a measured
qubit, diagonal in the computational basis (o; € {I, Z}) does not alterthe omputation.
Therefore errors that can contribute to corrupting a single logical qubit, involve errors
o; € {X,Y} for measured qubits and o; € {X,Y, Z} for output qubits.

Considering the dotted base graph D(G), one can easily see that any (non-trivial)
error on an added qubit a,;, is equivalent with a local error on each of #he two primary
qubits that are neighbours p,,, p,, (see also [4]). If to corrupt a computation one needs &
errors on primary qubits of the base graph G, it follows that.to corrupt the computation
when done on the dotted base graph D(G) one need$ atpleastid/2 errors on qubits of
the dotted base graph D(G).

We now turn back to step 2 of the proof ofstheorem [3| and we see that the set
E; of attacks that could possibly corrupt the ¢omputation, should include non-trivial
attack in at least /2 different sets P,, A.{which collectively we call Fj). It is important
to note that within each of the sets Fj therenis a single computation-graph qubit and
therefore not only the prover needs to perform 4/2 non-trivial attacks, but they should
also be done on at least 0/2 different location sets. The prover of course could choose to
attack multiple qubits of the same set'Eg, but in order to hit at least /2 computation
qubits, the sets that they perform non-trivial attacks should also be at least §/2.

Any given attack o; is characterised by the set S; of locations on the dotted base
graph D(G), that it has at léast one mon-trivial attack, which in the case o; € E; it
means that |S;| > 6/2 .

Following step 3 and 4 of the.proof of theorem [3| we reach eq. (C.12). From this
expression we can again seeythat the fewer the positions of non-trivial attack (consistent
with E;) the greatest the value'of this bound is. We already know that we need at least
d/2 sets Fz with non=tzivial.attacks, so it follows that the maximum is achieved when
there are exactly 0/2 different sets Fz with exactly a single attack in each.

To proceedsfurther we need to decompose the probability of different configuration
of traps p(7}) toghis-oftindividual sets. This is not in general possible since there are
correlation between the traps of (neighbouring) sets. To this point we should note that
fixing afconfiguration of traps is identical with giving a trap-colouring as in definition
B

From Theorem (I} we know that given a collection \S; of §/2 locations on the dotted

5

base graph D(G) there are at least a collection S; of 3@ern) that are independently
s

colourablé locations, i.e. |S!| = (m} To obtain an upper bound on the failure

probability, we set 0, = I for all v that belong to locations in S; \ S;. This change
is non-decreasing for the expression for the bound given in eq. (C.12). Now the only
locations that have non-trivial attacks, are those in S; and we have
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|5il
Prail < rré%xH > ots) Y p(0i)p(re,) (), | oy I0f,))? ()
pA=1 tgeFs Gtﬂ,nﬁ

where we used the fact that p(T) = p(t; € P,,,ta € P,,,---,tx € Ag,,=5:) and for a
collection S! of independent colourable locations,

~
IS

|
Do) = p(ts) (E.2)

tgeS; \tp¢S; tges, \B=1

We can see this due to the fact that after summing all locations apart from those in S,
the probability for choosing the location of the trap withimeach set is independent and
thus the joint probability is simply their product. New, each térm in the product of eq.

(E.1]) is bounded by 8/9 as proven in the previous section.and therefore we obtain
&

Dail < (2) d (E.3)

where we define d = |5]| = [ 552+ O

(2¢+1)

As a final remark, we should note that the value d = | is the minimum

5
2(20+1)—|
number of ICL that exist and in particular cases this number can be greater and thus
the probability of success of ghe verification protocol also becomes greater for those

cases.
N

Appendix F. Consequences for existing verification protocols

The dotted triple-graph eonstruction can be used to improve a number of existing
verification protocols and here we give indicatively three of them. First we consider
the specific case where the computation is done using the Raussedorf-Harrington-Goyal
(RHG) [29] encoding and the related graph is G.. Following our construction instead of
the dotted-complete graphrof [4], we obtain the dotted triple-RHG graph DTG,. This
graph state haslinear number of qubits (as the maximum degree of the graph is 4). With
the same choices of parameters as in [4], it can detect or corrects any deviation that
has feéwer thand/2 errors. From our results of the previous section, it follows that we
obtain a linear-complexity verification protocol with exponential security bound given
by prinsS) .

The second application is that it can be used to improve verifiable fault-tolerant
protocols. Assuming that there are errors due to noise (non-adversarial), the protocols
given earlier in the text and in other VBQC protocols could face a problem. In particular,
honest errors due to noise could make trap measurement to fail and lead us to reject
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the output even in honest runs where the computation is not corrupted. Here we
should stress that both in this paper and in [4] the use of fault-tolerant encéding was
in order to amplify the security and not to correct the computation from errors caused
by honest noise. However, one can construct a fault-tolerant verification protocol, at
least for classical output, and one such example is presented in [I3]s The starting
graph used to obtain the fault-tolerant protocol of [I3] was the briekwork graph that
has a single trap. Then a fault-tolerant encoding was done followed by the repetition
technique used to amplify the success probability. However themmumber of repetitions
to maintain a constant level of security increased with the size of the a)mputation. By
using the dotted triple-brickwork instead, as the first step @f.the construction in [13],
we can achieve exponential security with a constant number of repetitions. This would
essentially bring down the number of qubits required from'Q(n?) to O(n).

The third application is that we can directly use the dotted triple-graph
construction for the verifiable measurement-only Protocols {9, [10]. In particular [9]
is essentially the online version of [4], and the teghnique to include traps in the graph is
equivalent. It follows that if the resource used instéad of 2 dotted-complete graph is a
dotted triple-RHG graph then the numberof qubits required will reduce from quadratic
to linear. In [I0] the verifier, instead of including traps, uses 2k + 1 copies of a universal
graph. In order to test the honesty of the prover itimakes stabiliser measurements to 2k
copies of the desired graph while performs:the computation on the final copy. However,
there is always at least a 1/(2k + 1) prebability that the computation is corrupted and
not detected (e.g. one picks one copy and attacks all the qubits of that copy). Using
the dotted triple-graph construetiony modified for the measurement-only protocols, this
probability can be made exponentiallyysmall while still using only linear number of
qubits. In other words in J10] & malic¢ious prover can choose one copy and corrupt all
its qubits without diminishing their chances compared to their chances when corrupting
a single qubit, as the positions of traps are correlated, i.e. a copy is either fully a test
copy or a computationeopy. On the other hand, in our local construction, for each

base-location, theschoice of éomputation and test qubits is independent.
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