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Abstract
In this paper, we investigate the effectiveness of speaker adap-
tation for various essential components in deep neural net-
work based speech synthesis, including acoustic models, acous-
tic feature extraction, and post-filters. In general, a speaker
adaptation technique, e.g., maximum likelihood linear regres-
sion (MLLR) for HMMs or learning hidden unit contributions
(LHUC) for DNNs, is applied to an acoustic modeling part
to change voice characteristics or speaking styles. However,
since we have proposed a multiple DNN-based speech synthe-
sis system, in which several components are represented based
on feed-forward DNNs, a speaker adaptation technique can
be applied not only to the acoustic modeling part but also to
other components represented by DNNs. In experiments us-
ing a small amount of adaptation data, we performed adaptation
based on LHUC and simple additional fine tuning for DNN-
based acoustic models, deep auto-encoder based feature extrac-
tion, and DNN-based post-filter models and compared them
with HMM-based speech synthesis systems using MLLR.
Index Terms: Statistical Parametric Speech Synthesis, Deep
Neural Network, Speaker Adaptation, Learning Hidden Unit
Contributor

1. Introduction
Statistical speech synthesis research has been significantly ad-
vanced thanks to deep neural networks (DNNs) with many hid-
den layers. For example, DNNs have been applied for acous-
tic modeling. Zen et al. used a DNN to learn the relationship
between input texts and extracted features instead of decision
tree-based state tying [1]. Restricted Boltzmann machines or
deep belief networks have been used to model output probabil-
ities of hidden Markov model (HMM) states instead of GMMs
[2]. Recurrent neural networks and long-short term memories
have been used for prosody modeling [3] and acoustic trajectory
modeling [4]. In addition, an auto-encoder neural network has
also been used to extract low dimensional excitation parameters
[5]. Furthermore a DNN-based probabilistic post-filter has also
proposed [6], where a DNN is used to model the conditional
probability of the spectral differences between natural and syn-
thetic speech so that the fine spectral structure lost during mod-
eling can be reconstructed at synthesis time.

In statistical parametric speech synthesis, changing char-
acteristics or speaking styles using a small amount of training
data is an important research topic. In HMM-based speech syn-
thesis the well-established methods called MLLR [7, 8] or con-
strained MLLR [9, 10] are frequently used for speaker or speak-
ing style adaptation. Moreover, various adaptation techniques

such as vocal tract length adaptation [11], eigen voice [12] and
clustering adaptive training [13] have also been proposed. In
DNN-based recognition and synthesis fields, several adaptation
techniques have been proposed, e.g., the use of speaker codes
or speaker i-vectors as additional inputs of DNNs [14, 15, 16],
training with regularization [17], multiple basis adaptation [18],
matrix factorization [19], and adaptation of hidden units outputs
with an additional small number of parameters [20, 21, 16].

In the meantime, since the DNN framework can be used
not only for the acoustic modeling but also other modules, we
have proposed a new speech synthesis system [22] where sev-
eral standard steps of the statistical speech synthesis includ-
ing the feature extraction from STRAIGHT spectral amplitudes
[23], acoustic modeling, smooth trajectory generation and spec-
tral post-filter are conducted using multiple DNNs. In [22], we
have constructed three feed-forward DNNs for performing these
standard steps in a data-driven way and confirmed that this sys-
tem effectively provides higher quality of synthetic speech.

In this paper, we investigate the effectiveness of the speaker
adaptation of several components of the above speech synthesis
system, including acoustic feature extraction, acoustic model-
ing and post-filtering. Since, as mentioned above, these com-
ponents are based on feed-forward DNNs, we can use the same
adaptation approaches of feed-forward DNNs as the acoustic
model adaptation for the adaptation of the feature extraction and
post-filter models. Most of the adaptation approaches for DNNs
reported in the past have been applied to an acoustic modeling
part [16]. In contrast, this paper analyzes the performance of
the speaker adaptation of different components and combined
ones and analyzes whether such adaptation techniques are as
effective as the adaptation of the acoustic models or not. For
performing speaker adaption of the feed-forward DNNs, LHUC
[21, 16] and simple additional fine tuning are performed using
a small amount of adaptation data, and we compare them with
HMM-based speech synthesis systems using MLLR in objec-
tive and subjective experiments.

The rest of this paper is organized as follows. Section 2
shows text-to-speech synthesis based on multiple DNNs. In
Section 3, the LHUC adaptation technique is described. The ex-
perimental conditions and results are shown in Section 4. Con-
cluding remarks and future work are presented in Section 5.

2. Text-to-speech Synthesis based on
Multiple DNNs

In this section, text-to-speech synthesis based on multiple
DNNs [22], which can perform all standard steps of the sta-
tistical parametric speech synthesis from end to end, is briefly



Figure 1: Procedure for constructing a DNN-based spectral model based on a
deep auto-encoder and a DNN-based acoustic model.
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post-filter. Training and post-filtering
procedures are also shown.

described. This system is based on three feed-forward DNNs,
i.e., DNN-based acoustic feature extraction, DNN-based acous-
tic modeling, and DNN-based post-filtering.

2.1. DNN-based Acoustic Feature Extraction

An auto-encoder is an artificial neural network that is used gen-
erally for learning a compressed and distributed representation
of a dataset. It consists of an encoder and a decoder. In the ba-
sic one-hidden-layer auto-encoder, the encoder maps an input
vector x to a hidden representation y as follows:

y = fθ(x) = s(Wx+ b), (1)

where θ = {W,b}. W and b represent an m× n weight ma-
trix and a bias vector of dimensionality m, respectively, where
n is the dimension of x. The function s is a non-linear trans-
formation on the linear mapping Wx+ b. The output of the
encoder y is then mapped to the output of the decoder z,. The
mapping is performed by a linear mapping followed by an arbi-
trary function t that employs an n ×m weight matrix W′ and
a bias vector of dimensionality n as follows:

z = gθ′(y) = t(W′y + b′), (2)

where θ′ = {W′,b′}. An auto-encoder can be made deeper
by stacking multiple layers of encoders and decoders to form a
deep architecture.

A deep auto-encoder allows us to extract robust low-
dimensional features automatically from high-dimensional
spectral envelopes in a non-linear, data-driven and unsupervised
way. In this paper, we apply the deep auto-encoder to log
STRAIGHT spectral envelopes for extracting low-dimensional
features based on the same way used in [22].

2.2. DNN-based Acoustic Model

In this work, we construct a DNN that directly synthesizes high-
dimensional spectral amplitudes from linguistic features with-
out using spectral envelope parameters such as mel-cepstrum
[22]. In this technique, we stack two DNNs, an auto-encoder
neural network for data-driven non-linear feature extraction
from the spectral amplitudes and another network for acoustic
modeling to train the DNN efficiently.

Fig. 1 shows the procedure for constructing the proposed
DNN-based spectral model. The steps of the proposed tech-
nique are as follows.

Step 1. Train a deep auto-encoder using spectral amplitudes
and extract bottleneck features.

Step 2. Train a DNN-based acoustic model using the bottle-
neck features extracted in Step 1.

Step 3. Stack the trained DNN-based acoustic model for bot-
tleneck features and the decoder part of the trained deep
auto-encoder as shown in Figure 1 and optimize the all
networks.

A DNN that represents the relationship between linguistic fea-
tures and spectra is constructed based on DNN-based spectral
feature extraction and a DNN-based acoustic model using the
bottleneck features. After this procedure, we can fine-tune the
DNN to minimize the error over the entire dataset using pairs of
linguistic features and spectral amplitudes in training data with
SGD.

2.3. DNN-based Post-filter in the Spectral Domain

A feed-forward DNN for probabilistic modeling of the differ-
ences between spectra of the synthesized and natural speech has
been proposed [6]. Fig. 2 shows the structure of the DNN based
post-filter. In this paper, the DNN is trained layer-by-layer
using two restricted Boltzmann machines (RBMs) [24] and a
Bernoulli bi-directional associative memory (BBAM) [25] as
shown in Figure 2. After this layer-wised pre-training, the DNN
for the post-filter is fine-tuned using backpropagation. This
model is directly applied to the high-dimensional spectral am-
plitudes.

3. Speaker Adaptation based on Learning
Hidden Unit Contributions (LHUC)

The LHUC technique has been proposed for speaker adaptation
in DNN-based speech recognition and synthesis [21]. LHUC is
an effective speaker adaptation technique with a small number
of adaptation parameters. In this technique, additional speaker
adaptation parameters for each hidden unit, r, are defined to
modify hidden layer outputs as follows:

hl
m = a(rlm) ◦ sl(Wl�hl−1

m ), (3)

where m, l, and ◦ represent a speaker index, a hidden layer in-
dex, and an element-wise multiplication, respectively. In this
paper, the function a is defined as a sigmoid with amplitude 2,
that is, a(c) = 2/(1 + exp(−c)) in a way similar to [21]. This
technique regards a(·) as a scaling factor of a hidden unit output



Figure 3: Network configurations in DNN and MDNN and adaptation components for each adapted system.

for a targeted speaker. Adaptation parameters can be updated
with the same manner used in [21], although the mean square
error (MSE) criterion is used as the loss function for our experi-
ment. Speaker adaptation using a very small amount of adapta-
tion data would be accomplished using LHUC nicely since the
total number of adaptation parameters required is much lower
compared with the number of all parameters included in the
DNN.

One of the advantages of this technique is that LHUC can be
applied to any trained feed-forward deep neural network. The
multiple DNN-based speech synthesis system described above
is based on three feed-forward neural networks, so LHUC can
be applied not only to the acoustic modeling part but also to
other components.

We compare the LHUC technique as well as the simple ad-
ditional fine tuning for the adaptation of DNN-based acoustic
models, deep auto-encoder based feature extraction, and DNN-
based post-filter models in the following experiments.

4. Experiments
We evaluated the proposed systems in objective and subjective
experiments using English databases. The database provided
for the Blizzard Challenge 2011 [26], which contains approxi-
mately 17 hours of speech data, comprising 12K utterances ut-
tered by a female speaker, was used for constructing base sys-
tems for speaker adaptation. Speaker adaptation was carried
out based on the base systems with a small amount of adapta-
tion data uttered by a different female speaker. A total of 116
utterances were used for test sets.

We constructed three base systems: HMM is a HMM-
based speech synthesis system with a GV technique [27], DNN
is a single DNN-based speech synthesis system with a sig-
nal processing-based post-filter for cepstrum vectors [28], and
MDNN is a multiple DNN-based speech synthesis system [22].

In addition, we have constructed eleven speaker adapted
systems: HMM-AM-MLLR, DNN-AM-FT, DNN-AM-LHUC,
MDNN-AM-FT, MDNN-AM-LHUC, MDNN-DEC-FT, MDNN-
DEC-LHUC, MDNN-PF-FT, MDNN-PF-LHUC, MDNN-ALL-
FT and MDNN-ALL-LHUC. The three components of each sys-
tem name refer to the base systems, adaptation parts and adapta-
tion techniques used for constructing each system, respectively.
In the system names, AM, DEC, PF and ALL represent adapta-

tion parts, i.e., acoustic modeling, decoder, post-filtering parts
and all networks, respectively. MLLR, FT and LHUC repre-
sent adaptation techniques, i.e., maximum likelihood linear re-
gression, a simple additional fine tuning and lerning hidden unit
contributions using the adaptation data, respectively. Three sys-
tems (HMM-AM-MLLR, DNN-AM-FT and DNN-AM-LHUC)
were conventional systems. For adaptation of a post-filtering
part, spectral features were synthesized through two DNNs for
the acoustic model and feature extraction using linguistic fea-
tures of adaptation data and then synthesized spectral features
and natural features included in the adaptation data were used.

Figure 3 shows the network configurations used in the DNN
and MDNN systems. This figure also shows network parts
adapted by each system. In the systems MDNN-AM-LHUC and
MDNN-DEC-LHUC, the hidden units of the bottleneck layer
were both adapted. Three consecutive spectral amplitudes were
used as the segmental input and output for the DNN-based post-
filter. During the overlap-add operation using the segmental
outputs of the post-filtering DNN, weighting coefficients were
0.25, 0.5, and 0.25 for previous, current and next frames respec-
tively.

For each waveform, we extracted its frequency spectra with
2049 FFT points. For each system, 60 dimensional spectral
features were extracted. Spectrum and cepstrum were both
frequency-warped using the Bark scale. The feature vectors
for HMM comprised 258 dimensions: 59 dimensional bark-
cepstral coefficients (plus the 0th coefficient), log F0, 25 dimen-
sional band aperiodicity measures, and their dynamic and ac-
celeration coefficients. For constructing the system DNN, con-
tinuous log F0 interpolated linearly for unvoiced regions and
voiced/unvoiced parameters were used as F0 parameters. Thus,
259 dimensional features were used as output features of the
DNN. To construct the system MDNN, 2049-dim frequency-
warped log spectra were used. The context-dependent labels
were built using the pronunciation lexicon Combilex [29]. The
linguistic features for DNN acoustic models comprised 382 di-
mensions. The linguistic features and spectral envelopes in the
training data were pre-normalized for training DNNs. The in-
put linguistic features were normalized to have zero-mean unit-
variance, whereas the output spectral amplitudes were normal-
ized to be within 0.0–1.0.

In this work, phoneme-level duration of test utterances was
obtained using forced alignment based on HMMs because we



Figure 4: Spectral distortion calculated from log spectra synthe-
sized by conventional systems (HMM-AM-MLLR, DNN-AM-FT
and DNN-AM-LHUC). The results of HMM (13.472) and DNN
(15.575) are excluded to make comparison easier.

want to focus on spectral adaptation. In the systems based on
HMM and DNN, synthesized mel-cepstral vectors were con-
verted into log spectra to calculate log spectral distortion and
synthesize waveform using a STRAIGHT vocoder. Note that
systems based on MDNN output only spectral information, so
we used other features, F0 and aperiodicity measures, synthe-
sized by systems based on HMM for utilizing the STRAIGHT
vocoder.

For subjective evaluation, MUSHRA tests were conducted
to evaluate the naturalness of synthesized speech. Natural
speech was used as a hidden top anchor reference. Fifty na-
tive English speaking subjects participated in the experiments.
Two sentences were randomly selected from the test set for each
subject. The experiments were carried out using headphones in
a soundproof room.

4.1. Experimental results

Figures 4 and 5 show objective results of each system. The re-
sults using 5, 10, 20, 50 100 150 and 200 utterances as adap-
tation data are shown in the figures. In all figures, HMM-
AM-MLLR and DNN-AM-FT are included as conventional tech-
niques for comparison with other systems.

4.1.1. Conventional adaptation methods of the acoustic models

It can be seen from Fig. 4, in which the results of the conven-
tional techniques (HMM-AM-MLLR, DNN-AM-FT and DNN-
AM-LHUC) are shown, that the result of HMM-AM-MLLR was
better than the other techniques. We first see that the log spec-
tral distortion of the base DNN model (15.575) was much larger
than that of the base HMM (13.472). It seems that this large dif-
ference between base systems (HMM and DNN) caused a worse
DNN adaptation performance. Also, the figure shows that the
result of DNN-AM-LHUC was the worst within the three sys-
tems. This system had the smallest number of adaptation pa-
rameters, which seems to have limited its capability to trans-
form high order spectral parameters compared with other ones.

4.1.2. Adaptation results of the multiple feed-forward DNNs

Next, Fig. 5 shows the results of the adapted systems based
on multiple feed-forward DNNs. The results of MDNN, HMM-
AM-MLLR and DNN-AM-FT are also included. First we can see
from the results that the distortion of MDNN (12.780) was much
smaller than the those of HMM (13.472) and DNN (15.575).
This indicates that a more robust system was constructed based

on multiple DNNs and a parameter generation with global vari-
ance or a signal processing based post-filtering used in HMM
and DNN would cause the larger distortion.

Second, the effectiveness of adaptation for each part, that
is, the acoustic modeling, the decoder and the post-filtering,
can be seen in Fig. 5(a), 5(b) and 5(c), respectively. Com-
pared to the results of the base system with MDNN, all adapted
systems output closer log spectra to that of the target speaker.
These results mean that speaker adaptation has been effectively
performed for all the components although there were different
tendencies among the results of each adaptation part.

Then, we can be seen from the Fig. 5(b) that the adapta-
tion of the decoder part was less effective than the other parts.
Moreover, using the simple fine-tuning with the larger amount
of adaptation data tended to reduce the distortion as seen in
the results of MDNN-AM-FT and MDNN-PF-FT, although such
the improvement of the distortion was not observed in MDNN-
DEC-FT.

Also, we can see that LHUC was effective for the speaker
adaptation using the much smaller amount of adaptation data in
MDNN-AM-LHUC and MDNN-PF-LHUC (excluding MDNN-
DEC-LHUC) compared with the systems using simple addi-
tional fine-tuning. In the adapted systems based on LHUC us-
ing a larger amount of data (50, 100, 150 and 100 utterances),
however, there were no improvements in any of the adaptation
parts.

Third, as shown in Fig. 5(d), systems with adaptation for
all parts (MDNN-ALL-FT and MDNN-ALL-LHUC) output the
closest log spectra to the target speaker in all adapted systems.
Similar to the results of MDNN-AM-LHUC and MDNN-PF-
LHUC, MDNN-ALL-LHUC performed effectively for the case
using the smaller amount of adaptation data.

4.1.3. Subjective evaluation results on the conventional adap-
tation methods of the acoustic models

As described above, we have observed improved spectral dis-
tortion. However, from informal listening, we perceived quality
degradation when we used some of the adapted systems. There-
fore, we decided to carry out subjective evaluation on the nat-
uralness of synthetic speech. Again, we used the MUSHRA
tests. For the listening tests, systems adapted with 10, 50 and
100 adaptation utterances were used.

In Fig. 6 the results on the conventional adaptation methods
of the acoustic models (HMM-AM-MLLR, DNN-AM-FT and
DNN-AM-LHUC) are shown. The systems without adaptation
(HMM, DNN) are also included for references.

It can be seen from the figure that the adapted systems syn-
thesize synthetic speech samples of a lower quality than those of
systems without adaptation, unfortunately. The systems based
on LHUC were rated the worst among the methods. In fact, we
have found that the system adapted by LHUC output muffled
voices compared to other methods. We can also see that the
DNN-AM-FT systems outperformed HMM-AM-MLLR systems
when the same number of adaptation utterances was used for
the adaptation. Finally, as expected, we can see that the qual-
ity of synthetic speech samples gradually became better when
we used a larger amount of adaptation data, expect for systems
adapted by LHUC.

4.1.4. Subjective evaluation results on the adapted multiple
feed-forward DNNs

Subjective evaluation results on the naturalness of the adapted
multiple feed-forward DNN systems are presented in Fig. 7.



(a) Acoustic modeling part (b) Decoder part

(c) Post-filtering part (d) All networks

Figure 5: Spectral distortion calculated from log spectra synthesized by adapted systems based on MDNN. Results of the systems
MDNN, HMM-AM-MLLR and DNN-AM-FT are also included in all figures.
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Figure 6: Subjective results of conventional systems (HMM-
AM-MLLR, DNN-AM-FT and DNN-AM-LHUC). In the test,
systems without adaptation (HMM and DNN) were also in-
cluded.

The systems without adaptation (HMM, MDNN) and the HMM-
based adapted system (HMM-AM-MLLR) are also included for
references.

From the figure, we can first see that the adapted MDNN
systems (MDNN-AM-FT, MDNN-DEC-FT, MDNN-PF-FT and
MDNN-ALL-FT)) based on fine tuning were rated lower than
HMM-AM-MLLR when the number of adaptation utterances
was 10. This implies that the optimization of multiple neural
networks using a very small amount of adaptation data is more
difficult than that of single DNN.

However, when the number of adaptation utterances used
was 50 or 100, the adaptation performance based on fine tuning

depended on the modules. As seen in Fig. 7(a), the MDNN-
AM-FT system outputs almost the same quality of synthetic
speech as HMM-AM-MLLR for the cases using 50 or 100 ut-
terances for the adaptation. As shown in Fig. 7(b), the per-
formance of speaker adaptation for the decoder part was rated
lower than HMM-AM-MLLR, similar to the objective results. In
contrast, from Fig. 7(c), we can see that systems with adap-
tation of the post-filtering part outperformed HMM-AM-MLLR
for the cases using the larger amount of adaptation data and the
difference was statistically significant when 100 adaptation ut-
terances were used.

Finally, Fig. 7(d) shows the results of speaker adaptation
of all the networks. The results are very similar to the speaker
adaptation of the post-filter models. However, the difference be-
tween the adapted multiple feed-forward DNN system MDNN-
ALL-FT and HMM-AM-MLLR became statistically less signifi-
cant. This simply means that the speaker adaptation of the de-
coder parts is less effective and therefore adapting all the net-
works canceled out improvements. These results lead us to
conclude that it seems to be reasonable to adapt the acoustic
modeling part and post filtering part for obtaining better speaker
adaptation performance.

5. Conclusions
We have investigated the effectiveness of speaker adaptation for
various essential components in DNN based parametric speech
synthesis, including acoustic models, acoustic feature extrac-
tion, and post-filters. The objective results showed that the
adaptation of each component can be effectively performed al-
though there were different tendencies among adaptation parts.



H
M

M

M
D

N
N

H
M

M
-A

M
-M

L
L

R

M
D

N
N

-A
M

-F
T

M
D

N
N

-A
M

-L
H

U
C

H
M

M
-A

M
-M

L
L

R

M
D

N
N

-A
M

-F
T

M
D

N
N

-A
M

-L
H

U
C

H
M

M
-A

M
-M

L
L

R

M
D

N
N

-A
M

-F
T

M
D

N
N

-A
M

-L
H

U
C

20

25

30

35

40

45

50

55

60
M

U
S

H
R

A

95% confidence interval
10 utts. 50 utts. 100 utts.

(a) Acoustic modeling part
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(b) Decoder part
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(c) Post-filtering part
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(d) All networks

Figure 7: Subjective results of adapted systems based on MDNN. In the test, systems without adaptation (HMM and MDNN) and the
conventional system (HMM-AM-MLLR) were also included in all figures.

We also evaluated the naturalness of synthetic speech generated
using the adapted multiple feed-forward DNN systems subjec-
tively and found that speaker adaptation is effective for the post-
filtering part and the system using the adapted post-filter out-
performed HMM-based speech synthesis with MLLR. Further,
we also found that LHUC degrades the naturalness of synthetic
speech regardless of the modules used and the speaker adapta-
tion of the decoder parts based on the fine tuning also resulted
in lower quality of synthetic speech.

Our future work includes average voice model training and
speaking style adaptation. Investigations as to why LHUC de-
grades the naturalness of synthetic speech is also our future
work.
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