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Abstract. In representation learning, it is often desirable to learn fea-
tures at different levels of scale. For example, in image data, some edges
will span only a few pixels, whereas others will span a large portion of
the image. We introduce an unsupervised representation learning method
called a composite denoising autoencoder (CDA) to address this. We ex-
ploit the observation from previous work that in a denoising autoencoder,
training with lower levels of noise results in more specific, fine-grained
features. In a CDA, different parts of the network are trained with dif-
ferent versions of the same input, corrupted at different noise levels. We
introduce a novel cascaded training procedure which is designed to avoid
types of bad solutions that are specific to CDAs. We show that CDAs
learn effective representations on two different image data sets.

Keywords: denoising autoencoders, unsupervised learning, neural net-
works.

1 Introduction

In most applications of representation learning, we wish to learn features at dif-
ferent levels of scale. For example, in image data, some edges will span only a
few pixels, whereas others, such as a boundary between foreground and back-
ground, will span a large portion of the image. Similarly, in speech data, different
phonemes and different words vary a lot in their duration. In text data, some
features in the representation might model specialized topics that use only a
few words. For example a topic about electronics would often use words such
as “big”, “screen” and “tv”. Other features model more general topics that use
many different words. Good representations should model both of these phenom-
ena, containing features at different levels of granularity.

Denoising autoencoders [28, 29, 12] provide a particularly natural framework
to formalise this intuition. In a denoising autoencoder, the network is trained
to be able to reconstruct each data point from a corrupted version. The noise
process used to perform the corruption is chosen by the modeller, and is an
important aspect of the learning process that affects the final representation.
On a digit recognition task, Vincent et al. [29] noticed that using a low level
of noise leads to learning blob detectors, while increasing it results in obtaining
detectors of strokes or parts of digits. They also recognise that either too low or
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too high level of noise harms the representation learnt. The relationship between
the level of noise and spatial extent of the filters was also noticed by Karklin
and Simoncelli [18] for a different feature learning model. Despite impressive
practical results with denoising autoencoders (e.g. [13, 23]), how to choose the
noise distribution is not fully understood.

In this paper, we introduce composite denoising autoencoders (CDA), in
which different parts of the network receive versions of the input that are cor-
rupted with different levels of noise. This encourages different hidden units of
the network to learn features at different scales. A key challenge is that finding
good parameters in a CDA requires some care, because naive training meth-
ods will cause the network to rely mostly on the low-noise corruptions, without
fully training the features for the high-noise corruptions, because after all the
low noise corruptions provide more information about the original input. We
introduce a training method specifically for CDA that sidesteps this problem.

On two different data sets of images, we show that CDAs learn significantly
better representations that standard DAs. In particular, we achieve to our knowl-
edge the best accuracy on the CIFAR-10 data set with a permutation invariant
model, outperforming scheduled denoising autoencoders [10].

2 Background

The core idea of learning a representation by learning to reconstruct artificially
corrupted training data dates back at least to the work of Seung [24], who
suggested using a recurrent neural network for this purpose. Using unsupervised
layer-wise learning of representations for classification purposes appeared later
in the work of Bengio et al. [3] and Hinton et al. [16].

The denoising autoencoder (DA) [28] is based on the same intuition as the
work of Seung [24] that a good representation should contain enough information
to reconstruct corrupted versions of an original input. In its simplest form, it
is a single-layer feed-forward neural network. Let x ∈ Rd be the input to the
network. The output of the network is a hidden representation y ∈ Rd′ , which is
simply computed as fθ(x) = h(Wx + b), where the matrix W ∈ Rd′×d and the
vector b ∈ Rd′ are the parameters of the network, and h is a typically nonlinear
transfer function, such as a sigmoid. We write θ = (W,b). The function f
is called an encoder because it maps the input to a hidden representation. In
an autoencoder, we have also a decoder that “reconstructs” the input vector
from the hidden representation. The decoder has a similar form to the encoder,
namely, gθ′(y) = h′(W′y + b′), except that here W′ ∈ Rd×d′ and b′ ∈ Rd. It
can be useful to allow the transfer function h′ for the decoder to be different
from that for the encoder. Typically, W and W′ are constrained by W′ = WT ,
which has been justified theoretically by Vincent [27].

During training, our objective is to learn the encoder parameters W and b.
As a byproduct, we will need to learn the decoder parameters b′ as well. We
do this by defining a noise distribution p(x̃|x, ν). The amount of corruption is
controlled by a parameter ν. We train the autoencoder weights to be able to
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reconstruct a random input from the training distribution x from its corrupted
version x̃ by running the encoder and the decoder in sequence. Formally, this
process is described by minimising the autoencoder reconstruction error with
respect to the parameters θ∗ and θ′

∗, i.e.,

θ∗, θ′
∗ = arg min

θ,θ′
E(X,X̃)

[
L
(
X, gθ′(fθ(X̃))

)]
, (1)

where L is a loss function over the input space, such as squared error. Typically
we minimize this objective function using SGD with mini-batches, where at each
iteration we sample new values for both the uncorrupted and corrupted inputs.

In the absence of noise, this model is known simply as an autoencoder or
autoassociator. A classic result [2] states that when d′ < d, then under certain
conditions, an autoencoder learns the same subspace as PCA. If the dimensional-
ity of the hidden representation is too large, i.e., if d′ > d, then the autoencoder
can obtain zero reconstruction error simply by learning the identity map. In a
denoising autoencoder, in contrast, the noise forces the model to learn interest-
ing structure even when there are a large number of hidden units. Indeed, in
practical denoising autoencoders, the best results are found with overcomplete
representations for which d′ > d.

There are several choices to be made here, including the noise distribution,
the transformations h and h′ and the loss function L. For the loss function L,
for continuous x, squared error can be used. For binary x or x ∈ [0, 1], as we
consider in this paper, it is common to use the cross entropy loss,

L(x, z) = −
D∑
i=1

(xi log zi + (1− xi) log (1− zi)) .

For the transfer functions, common choices include the sigmoid h(v) = 1
1+e−v

for both the encoder and decoder, or to use a rectifier h(v) = max(0, v) in the
encoder paired with sigmoid decoder.

One of the most important parameters in a denoising autoencoder is the
noise distribution p. For continuous x, Gaussian noise p(x̃|x, ν) = N(x̃; x, ν) can
be used. For binary x or x ∈ [0, 1], it is most common to use masking noise, that
is, for each i ∈ 1, 2, . . . d, we sample x̃i independently as

p(x̃i|xi, ν) =

{
0 with probability ν,
xi otherwise.

(2)

In either case, the level of noise ν affects the degree of corruption of the input. If
ν is high, the inputs are more heavily corrupted during training. The noise level
has a significant effect on the representations learnt. For example, if the input
data are images, masking only a few pixels will bias the process of learning the
representation to deal well with local corruptions. On the other hand, masking
many pixels will push the algorithm to use information from more distant regions.

It is possible to train multiple layers of representations with denoising autoen-
coders by training a denoising autoencoder with data mapped to a representation
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learnt by the encoder of another denoising autoencoder. This model is known as
the stacked denoising autoencoder [28, 29]. As an alternative to stacking, con-
structing deep autoencoders with denoising autoencoders was explored by Xie
et al. [30].

Although the standard denoising autoencoders are not, by construction, gen-
erative models, Bengio et al. [5] proved that, under mild regularity conditions,
denoising autoencoders can be used to sample from a distribution which consis-
tently estimates the data generating distribution. This method, which consists
of alternately adding noise to a sample and denoising it, yields competitive per-
formance in terms of estimated log-likelihood of the samples. An important con-
nection was also made by Vincent [27], who showed that optimising the training
objective of a denoising autoencoder is equivalent to performing score matching
[17] between the Parzen density estimator of the training data and a particular
energy-based model.

3 Composite Denoising Autoencoders

y1 y2

x̃ν1 x̃ν2

z

Fig. 1. A composite denoising autoencoder using two levels of noise.

Composite denoising autoencoders learn a diverse representation by leverag-
ing the observation that the types of features learnt by the standard denoising
autoencoders differ depending on the level of noise. Instead of training all of the
hidden units to extract features from data corrupted with the same level of noise,
we can partition the hidden units, training each subset of model’s parameters
with a different noise level.

More formally, let ν = (ν1, ν2, . . . , νS) denote the set of noise levels that is to
be used in the model. For each noise level νs the network includes a vector ys ∈
RDs of hidden units and a weight matrix Ws ∈ RDs×d. Note that different noise
levels may have different numbers of hidden units. We use D = (D1, D2, . . . DS)
to denote a vector containing the number of hidden units for each noise level.

When assigning a representation to a new input x, the CDA is very similar
to the DA. In particular, the hidden representation is computed as

ys = h(Ws x + bs) ∀s ∈ 1, . . . , S, (3)
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where as before h is a nonlinear transfer function such as the sigmoid. The full
representation y for x is constructed by concatenating the individual represen-
tations as y = (y1, . . . ,yS).

Where the CDA differs from the DA is in the training procedure. Given a
training input x, we corrupt it S times, once for each level of noise, yielding
corrupted vectors

x̃s ∼ p(x̃s|x, νs) ∀s. (4)

Then each of the corrupted vectors are fed into the corresponding encoders,
yielding the representation

ys = h(Ws x̃s + bs) ∀s ∈ 1, . . . , S. (5)

The reconstruction z is computed by taking all of the hidden layers as input

z = h′

(
S∑
s=1

W>
s ys + b′

)
, (6)

where as before h′ is a nonlinear transfer function, potentially different from
h. Finally given a loss function L, such as squared error, an update to the
parameters can be made by taking a gradient step on L(z,x).

This procedure can be seen as a stochastic gradient on an objective function
that takes the expectation over the corruptions:

E(X,X̃ν1 ,...,X̃νS )

"
L

 
X,h′

 
SX
s=1

W>
s h (Wsx̃νs + bs) + b′

!!#
, (7)

This architecture is illustrated in Figure 1 for two levels of noise, where we use
the different colours to indicate the weights in the network that are specific to a
single noise level.

3.1 Learning

A CDA could be trained by standard optimization methods, such as stochastic
gradient descent on the objective (7). As we will show, however, it is difficult to
achieve good performance with these methods (4.1). Instead, we propose a new
cascaded training procedure for CDAs, which we describe in this section.

Cascaded training is based on two ideas. First, previous work [10] found that
pretraining at high noise levels helps learning the parameters for the low noise
levels. Second, and more interesting, the problem with taking a joint gradient
step on (7) is that low noise levels provide more information about the original
input x than high noise levels, which can cause a training procedure to get stuck
in a local optimum in which it relies on the low noise features without using the
high noise features. Cascaded training first trains the weights that correspond
to high noise levels, and then freezes them before moving on to low noise levels.
This way the hidden units trained with lower levels of noise are trained to correct
what the hidden units associated with higher noise levels missed.
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y1 y2 y3

x̃ν1 x̃ν1 x̃ν1

z

(step 1)

y1 y2 y3

x̃ν1 x̃ν2 x̃ν2

z

(step 2)

y1 y2 y3

x̃ν1 x̃ν2 x̃ν3

z

(step 3)

Fig. 2. The cascaded training procedure for a composite denoising autoencoder with
three noise levels. We use the notation y1:3 = (y1,y2,y3). First all parameters are
trained using the level of noise ν1. In the second step, the blue parameters remain
frozen and the red parameters are trained using the noise ν2. Finally, in the third
step, only the green parameters are trained, using the noise ν3. This is more formally
described in Algorithm 1.
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Algorithm 1 Training the composite denoising autoencoder
for R in 1, . . . , S do

for KR steps do
Randomly choose a training input x
Sample x̃s ∼ p(·|x, νs) for s ∈ {1, 2, . . . , R− 1}
Sample x̃s ∼ p(·|x, νR) for s ∈ {R,R+ 1, . . . , S}
Compute ys for all s as in (5)
Compute reconstruction z as in (6)
Take a gradient step

Ws ←Ws − α∇WsL(z,x)

bs ← bs − α∇bsL(z,x)

b′ ← b′ − α∇b′L(z,x)

for s ∈ {R,R+ 1, . . . S}
end for

end for

Putting these ideas together, cascaded training works as follows. We assume
that the noise levels are ordered so that ν1 > ν2 > · · · > νS . Then the first step
is that we train all of the parameters W1 . . .WS ,b1, . . .bS ,b′, but using only
the noise level ν1 to corrupt all S copies x̃1 . . . x̃S of the input. Once this is done,
we freeze the weights W1,b1 and we do not alter them again during training.
Then we train the weights W2 . . .WS ,b2 . . .bS ,b′, where the corrupted input
x̃1 is as before corrupted with noise ν1, and the S− 1 corrupted copies x̃2 . . . x̃S
are all corrupted with noise ν2. We repeat this process until at the end we
are training the weights WS ,bS ,b′ using the noise level νS . This process is
illustrated graphically in Figure 2 and in pseudocode in Algorithm 1. To keep
the exposition simple, this algorithm assumes that we employ SGD with only
one training example per update, although in practice we use mini-batches.

The composite denoising autoencoder builds on several ideas and intuitions.
Firstly, our training procedure can be considered an application of the idea of
curriculum learning [4, 14]. That is, we start by training all units with high noise
level, which serves as a form of unsupervised pretraining for the units that will
be trained later with lower levels of noise, giving them a good starting point
for further optimisation. We experimentally show that the training of a denois-
ing autoencoder learning with data corrupted with high noise levels needs less
training epochs to converge, therefore, it can be considered an easier problem.
This is shown in Figure 3. Secondly, we are inspired by multi-column neural
networks (e.g. Ciresan et al. [7]), which achieve excellent performance for super-
vised problems. Finally, our work is similar in motivation to scheduled denoising
autoencoders [10], which learn a diverse set of features thanks to the training
procedure which involves using a sequence of levels of noise. Composite denoising
autoencoders achieve this goal more explicitly thanks to their training objective.
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Fig. 3. Classification results with the CIFAR-10 data set yielded by representations
learnt with standard denoising autoencoders and data corrupted with two different
noise levels. Dashed lines indicate the errors on the validation set. The stars indicate
the test errors for the epochs at which the validation errors had its lowest value. The
DA trained with high noise level learns faster at the beginning but stops to improve
earlier. See section 4 for the details of the experimental setup.

3.2 Recovering the Standard Denoising Autoencoder

If, for every training example, the corrupted inputs x̃νi were always identical,
[W1, . . . ,WS ] were initialised randomly from the same distribution as W in
the standard denoising autoencoder, bi and b′ were initalised to 0 and Vi were
constrained to be Vi = WT

i , then this model is exactly equivalent to the stan-
dard denoising autoencoder described in section 2. Therefore, it is natural to
incrementally corrupt the training examples shown to the composite denoising
autoencoders in such a way that when all the noise levels are the same, this
equivalency holds. For example, when working with masking noise, consider two
noise levels νi and νj such that νi > νj . Denote the random variables indicat-
ing the presence of corruption of a pixel in a training datum by Cνi and Cνj .
Assuming Cνj ∼ Bernoulli(νj), we want Cνi ∼ Bernoulli(νi), such that when
Cνj = 1 then also Cνi = 1. It can be easily shown that this is satisfied when
Cνi = max(Cνj + Cνj→νi , 1), where Cνj→νi ∼ Bernoulli(νi−νj1−νj ). We use this
incremental noising procedure in all our experiments.

4 Experiments

We used two image recognition data sets to evaluate the CDA, the CIFAR-10
data set [19] and a variant of the NORB data set [21]. To evaluate the quality of
the learnt representations, we employ a procedure similar to that used by Coates
et al. [8] and by many other works1. That is, we first learn the representation in

1 We do not use any form of pooling, keeping our setup invariant to the permutation
of the features.
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an unsupervised fashion and then use the learnt representation within a linear
classifier as a measure of its quality. For both data sets, in the unsupervised
feature learning stage, we use masking noise as the corruption process, a sig-
moid encoder and decoder and cross entropy loss (Equation 2) following Vincent
et al. (2008, 2010). To do optimisation, we use stochastic gradient descent with
mini-batches. For the classification step, we use L2-regularised logistic regression
with the regularisation parameter chosen to minimise the validation error. Ad-
ditionally, with the CIFAR-10 data set, we also trained a single-layer supervised
neural network using the parameters of the encoder we learnt in the unsuper-
vised stage as an initialisation. When conducting our experiments, we first find
the best hyperparameters using the validation set, then merge it with the train-
ing set, retrain the model with the hyperparameters found in the previous step
and report the error achieved with this model.

We implemented all neural network models using Theano [6] and we used
logistic regression implemented by Fan et al. [9]. We followed the advice of Glorot
and Bengio [11] on random initialisation of the parameters of our networks.

4.1 CIFAR-10

This data set consists of 60000 colour images spread evenly between ten classes.
There are 50000 training and validation images and 10000 test images. Each
image has a size of 32 × 32 pixels and each pixel has three colour channels,
which are represented with a number in {0, . . . , 255}. We divide the training
and validation set into 40000 training instances and 10000 validation instances.
The only preprocessing step we use is dividing the intensity of every pixel by
255 to get numbers in [0, 1].

In our experiments with this data set we trained autoencoders with the total
number of 2000 hidden units (undercomplete representation) and 4000 hidden
units (overcomplete representation).

Fig. 4. Example filters (columns of the matrix W) learnt by standard denoising au-
toencoders with ν = 0.1 (left) and ν = 0.5 (right).
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Training the Baselines The simplest possible baseline, logistic regression
trained with raw pixel values, achieved 59.4% test error. To get the best possible
baseline denoising autoencoder we explored combinations of different learning
rates, noise levels and numbers of training epochs. For 2000 hidden units we
considered ν ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and for 4000 hidden units we also
additionally considered ν = 0.15. For both sizes of the hidden layers we tried
learning rates ∈ {0.01, 0.02, 0.04}. Each model was trained for up to 2000 training
epochs and we measured the validation error every 50 epochs. The best baselines
we got achieved the test errors of 40.71% (2000 hidden units) and 38.35% (4000
hidden units).

Concatenating Representations Learnt Independently To demonstrate
that diversity in noise levels improves the representation, we evaluate represen-
tations yielded by concatenating the representations from two different DAs,
trained independently. We will combine DAs trained with noise levels ν ∈
{0.1, 0.2, . . . , 0.5} for each noise level training three DAs with different random
seeds. Denote parameters learnt by a DA with the noise level ν and using the
random seed R by

(
W(R,ν),b(R,ν),b

′(R,ν)
)

and denote by Eklij the classification
error on the test set yielded by the concatenating the representations of two in-
dependently trained DAs, the first trained with random seed Rk and noise level
νi, and the second trained by random seed Rl and noise level νj . For each pair
of noise levels (νi, νj), we measure the average error across random seeds, that

is, Ēij = 1

2(K2 )

(∑
k 6=l E

kl
ij + Eklji

)
. The results of this experiment are shown in

Figure 5. For every ν we used, it was optimal to concatenate the representation
learnt with ν with a representation learnt with a different noise level. To under-
stand this intuition, we visually examine features from DAs with different noise
levels (Figure 4). From this figure it can be seen that features at higher noise
levels depend on larger regions of the image. This demonstrates the benefit of
using a more diverse representation for classification.

Comparison of CDA to DA The CDA offers freedom to choose the number
of noise levels, the value νs for each noise level, and the number Ds of hidden
units at each noise level.

For computational reasons, we limit the space of possible combinations of
hyperparameters in the following manner (of course, expanding the search space
would only make our results better). We considered models containing up to four
different noise levels. We first consider only the models with two noise levels and
hidden units divided equally between them. For 2000 total hidden units, we con-
sider all possible pairs of noise levels drawn from the set {0.5, 0.4, 0.3, 0.2, 0.1, 0.05}.
Once we have found the value of ν that minimizes that validation error for
D1 = D2, we try splitting hidden units such that the ratio D1 : D2 = 1 : 3
or D1 : D2 = 3 : 1. Similarly, for four noise levels, we consider the following
sets of noise levels ν ∈ {(0.5, 0.4, 0.3, 0.2), (0.4, 0.3, 0.2, 0.1), (0.3, 0.2, 0.1, 0.05)}.
We select the value of ν that has lowest validation error for an equal split
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noise level, the first set of representations
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Fig. 5. Classification errors for representations constructed by concatenating represen-
tations learnt independently.

D1 = · · · = D4, and then try splitting the hidden units with different ratios:
D1 : D2 : D3 : D4 = 3 : 1 : 1 : 1, D1 : D2 : D3 : D4 = 9 : 1 : 1 : 1 and the
permutations of these ratios. As for the learning rate, we train each of the cas-
caded DAs with the learning rate that had the best validation error for the first
noise level ν1. The models were trained for up to 500 epochs at each consecutive
noise level and we computed the validation error every 50 training epochs. Note
that when training with four noise levels, it is possible that the lowest validation
error occurs before the training procedure has moved on to the final noise level.
In this circumstance, it is possible that the final model will have only two or
three noise levels instead of four.

We trained the models with 4000 hidden units the same way, except that we
used different sets of noise levels for this higher number of hidden units. This is
because our experience with the baseline DAs was that units with 4000 hidden
units do better with lower noise levels. For the CDAs with four noise levels,
we compared three difference choices for ν: (0.4, 0.3, 0.2, 0.1), (0.3, 0.2, 0.1, 0.05),
and (0.2, 0.15, 0.1, 0.05). For the models with two noise levels the values were
drawn from {0.4, 0.3, 0.2, 0.15, 0.1, 0.05}.

For either number of hidden units, we find that CDAs perform better than
simple DAs. The best models with 2000 hidden units and 4000 hidden units we
found achieved the test errors of 38.86% and 37.53% respectively, thus yielding
a significant improvement over the representations trained with a standard DA.
These results are compared to the baselines in Table 1. It is also noteworthy
that a CDA performs better than concatenating two indepedently trained DAs
with different noise levels (cf. Figure 5).
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Table 1. Classification errors of standard denoising autoencoders and composite de-
noising autoencoders.

hidden units best DA test error best CDA test error
2000 ν = 0.2 40.71% ν = (0.3, 0.2, 0.1), D = (500, 500, 1000) 38.86%
4000 ν = 0.1 38.35% ν = (0.3, 0.05), D = (1000, 3000) 37.53%

Comparison of Optimization Methods One could consider several simpler
alternatives to the cascaded training procedure from Section 3.1. The simplest al-
ternative, which we call joint SGD, is to train all of the model parameters jointly,
at every iteration sampling each corrupted input x̃s using its corresponding noise
level νs. This is simply SGD on the objective (7). A second alternative, which
we call alternating SGD, is block coordinate descent on (7), where we assign
each weight matrix Ws to a separate block. In other words, at each iteration we
choose a different parameter block Ws, and take a gradient update only on Ws

(note that this requires computing a corrupted input x̃s for all noise levels νs).
Neither of these simpler methods try to prevent undertraining of the parameters
for the high noise levels in the way that cascaded training does.

Figure 6 shows a comparison of joint SGD, alternating SGD, and our cas-
caded SGD methods on a CDA with four noise levels ν = (0.4, 0.3, 0.2, 0.1)
and D = (500, 500, 500, 500). We ran both joint SGD and cascaded SGD until
they converged in validation error, and then we ran alternating SGD until it
had made the same number of parameter updates as joint SGD. This means
that alternating SGD was run for four times as many iterations as joint SGD,
because alternating SGD only updates one-quarter of the parameters at each
iteration. Cascaded SGD was stopped early when it converged according to vali-
dation error. The vertical dashed lines in the figure indicate the epochs at which
alternating SGD switched between parameter blocks.

From these results, it is clear that the cascaded training procedure is signif-
icantly more effective than either joint or alternating SGD. Joint SGD seems
to have converged to much worse parameters than cascaded SGD. We hypoth-
esize that this is because the parameters corresponding to the high noise levels
are undertrained. To verify this, in Figure 7 we show the features learned by a
composite CDA with joint training at two different noise levels. Note that at
the higher noise level (at right) there are many filters that are mostly noise; this
is not observed at the lower noise or to the same extent in an standard DA.
Alternating SGD seems to converge fairly slowly. It is possible that its error
would continue to decrease, but even after 8000 iterations its solution is still
much worse than that found by cascading SGD after only 3500 iterations.

We have made similar comparisons for other choices of ν and found a similar
difference in performance between joint, alternating, and cascaded SGD. One
exception to this is that alternating SGD seems to work much better on models
with only two noise levels (S = 2) than those with four noise levels. In those
situations, the performance of alternating SGD often equals, but usually does
not exceed, that of cascaded SGD.
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Fig. 6. Classification errors achieved by three different methods of optimising the ob-
jective in (7).

Fig. 7. Example filters (columns of the matrix W) learnt by composite denoising au-
toencoders with ν = 0.1 (left) and ν = 0.4 (right) when all the parameters were opti-
mise using joint SGD. While the filters associated with ν2 = 0.1 have managed to learn
interesting features, many of these associated with ν1 = 0.4 remained undertrained.
These hard to interpret filters are much more rare with cascaded SGD.

Fine-tuning We also trained a supervised single-layer neural network using pa-
rameters of the encoder as the initialisation of the parameters of the hidden layer
of the network. This procedure is known as fine-tuning. We did that for the best
standard DAs and CDAs with 4000 hidden units. The learning rate, the same for
all parameters, was chosen from the set {0.00125, 0.00125 ·2−1, . . . , 0.00125 ·2−4}
and the maximum number of training epochs was 2000 (we computed the val-
idation error after each epoch). We report the test error for the combination
of the learning rate and the number of epochs yielding the lowest validation
error. The results are shown in Table 3. Fine-tuning makes the performance of
DA and CDA much more similar, which is to be expected since the fine-tuning
procedure is identical for both models. However, note that the result achieved
with a standard denoising autoencoder and supervised fine-tuning we present
here is an extremely well tuned one. In fact, its error is lower than any previ-
ous result achieved by a permutation-invariant method on the CIFAR-10 data
set. Our best model, yielding the error of 35.06% is, by a considerable margin,



14 Krzysztof J. Geras, Charles Sutton

more accurate than any previously considered permutation-invariant model for
this task, outperforming a variety of methods. A summary of the best results
reported in the literature is shown in Table 2.

Table 2. Summary of the results on CIFAR-10 among permutation-invariant methods.

Model Test error

Composite Denoising Autoencoder 35.06%
Scheduled Denoising Autoencoder [10] 35.7%

Zero-bias Autoencoder [22] 35.9%
Fastfood FFT [20] 36.9%

Nonparametrically Guided Autoencoder [25] 43.25%
Deep Sparse Rectifier Neural Network [12] 49.52%

Table 3. Test errors on CIFAR-10 data set for the best DA and CDA models trained
without supervised fine-tuning and their fine-tuned versions.

DA CDA
no fine-tuning fine-tuning no fine-tuning fine-tuning

38.35% 35.30% 37.53% 35.06%

4.2 NORB

To show that the advantage of our model is consistent across data sets, we
did the same experiment use a variant of the small NORB normalized-uniform
data set [21], which contains 24300 examples for training and validation and
24300 test examples. It contains images of 50 toys belonging to five generic
categories: animals, human figures, airplanes, trucks, and cars. The 50 toys are
evenly divided between the training and validation set and the test set. The
objects were photographed by two cameras under different lighting conditions,
elevations and azimuths. Every example consists of a stereo pair of grayscale
images, each of size 96× 96 pixels whose intensities are represented as a number
∈ {0, . . . , 255}. We transform the data set by taking the middle 64 × 64 pixels
from both images in a pair and dividing the intensity of every pixel by 255 to
get numbers in [0, 1]. The simplest baseline, logistic regression using raw pixels,
achieved the test error of 42.32%.

In the experiments with learning the representations with this data set we
used the hidden layer with 1000 hidden units and adapted the set up we used for
CIFAR-10. To find the best possible standard DA we considered all combinations
of the noise levels ∈ {0.1, 0.2, 0.3, 0.4} and the learning rates ∈ {0.005, 0.01, 0.02}.
The representation learnt by the best denoising autoencoder yielded 18.75% test
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error when used with logistic regression. By contrast, a composite denoising
autoencoder with ν = (0.4, 0.3, 0.2, 0.1) and D = (250, 250, 250, 250) results in a
representation that yields a test error of 17.03%.

5 Discussion

We introduced a new unsupervised representation learning method, called a com-
posite denoising autoencoder, by modifying the standard DA so that different
parts of the network were exposed to corruptions of the input at different noise
levels. Naive training procedures for the CDA can get stuck in bad local optima,
so we designed a cascaded training procedure to avoid this. We showed that
CDAs learned more effective representations than DAs on two different image
data sets.

A few pieces of prior work have considered related techniques. In the context
of RBMs, the benefits of learning a diverse representation was also noticed by
Tang and Mohamed [26], achieving diversity by manipulating the resolution of
the image. Also, ensembles of denoising autoencoders, where each member of
the ensemble is trained with a different level or different type of noise, have been
considered by Agostinelli et al. [1]. This work differs from ours because in their
method all DAs in the ensemble are trained independently, whereas we show
that training the different representations together is better than independent
training. The cascaded training procedure has some similarities in spirit to the
incremental training procedure of Zhou et al. [31], but that work considered
only DAs with one level of noise. Usefulness of varying the level of noise during
training of neural nets was also noticed by Gulcehre et al. [15], who add noise
to the activation functions. Our training procedure also resembles the walkback
training suggested by Bengio et al. [5], however, we do not require our training
loss to be interpretable as negative log-likelihood. Understanding the relative
merits of walkback training, scheduled denoising autoencoders and composite
denoising autoencoders would be an interesting future challenge.
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