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Abstract. One of the main applications of probabilistic model checking
is to decide whether the probability of a property of interest is above or
below a threshold. Using statistical model checking (SMC), this is done
using a combination of stochastic simulation and statistical hypothesis
testing. When the probability of interest is very small, one may need
to resort to rare-event simulation techniques, in particular importance
sampling (IS). However, IS simulation does not yield 0/1-outcomes, as
assumed by the hypothesis tests commonly used in SMC, but likelihood
ratios that are typically close to zero, but which may also take large
values.
In this paper we consider two possible ways of combining IS and SMC.
One involves a classical IS-scheme from the rare-event simulation litera-
ture that yields likelihood ratios with bounded support when applied to
a certain (nontrivial) class of models. The other involves a particular hy-
pothesis testing scheme that does not require a-priori knowledge about
the samples, only that their variance is estimated well.

1 Introduction

One of the main applications of statistical model checking (SMC) [13,19] is the
use of computer simulation and hypothesis testing to determine whether some
probability p in a model is larger or smaller than a given probability threshold p0.
Thus, several suitable hypothesis tests have been developed by various authors
to test the hypothesis p > p0 against p < p0, and they are implemented in
different tools; for an overview see [16]. These can be combined easily with
simulation experiments in which each sample yields a Bernoulli random variable
(representing whether the event of interest was observed or not).

In the rare-event context, where the probability p is extremely small, stan-
dard simulation is not efficient since observing the target event would require
an excessively large number of samples. Techniques to estimate such small prob-
abilities include importance sampling and splitting/restart, both going back to
the early days of computing [11]. Recently there has been much interest in ap-
plying such techniques in the statistical model checking context, as witnessed
by various PhD theses [3, 10, 14] and associated publications. These techniques



have in common1 that the simulation samples no longer yield Bernoulli random
variables, i.e., the outcomes are no longer restricted to {0, 1}; in fact their distri-
bution may be highly asymmetric. It is a challenging goal to combine rare-event
simulation techniques with hypothesis testing schemes in such a way that sound
statistical conclusions can be obtained within reasonable simulation time.

In this short paper, we explore the options of extending hypothesis tests
to importance sampling. In Section 2, we investigate existing tests and the as-
sumptions they make on the samples. Based on that, we consider two options:
upper-bounding the likelihood ratio in Section 3, and using the normal approxi-
mation in Section 4. We provide a numerical illustration in Section 5, and brief
conclusions in Section 6.

2 Generalizability of existing hypothesis tests

Almost all existing hypothesis tests for statistical model checking fit in a rela-
tively simple framework, cf. [16]. Independent samples Xi ∈ {0, 1} are generated

for i = 1, 2, ... . The test statistic after N samples is ZN =
∑N
i=1Xi −Np0. The

test draws a conclusion when (N,ZN ) leaves the so-called critical area; then
ZN > 0 is evidence for the hypothesis H1, which asserts that p > p0. Conversely,
ZN < 0 is evidence for the hypothesis H−1, which asserts that p < p0. The shape
of the boundaries of the critical area varies from test to test, and is chosen such
that confidence levels are upheld; i.e., the probability of errors of the first2 kind
(accepting the wrong hypothesis) and the second kind (finishing undecided, as
some tests can do) are upper-bounded by, e.g. 5% for a 95% confidence level.
Some tests decide after a fixed number N samples have been drawn (fixed sam-
ple size tests, often related to confidence interval calculation), whereas others
are sequential, meaning that after every new sample the test decides whether
a conclusion can be drawn or more samples are needed. Another difference be-
tween tests is how they behave if p is closer to p0 than some indifference level:
class-I tests no longer live up to their confidence guarantee, class-II will tend
to terminate undecided, while class-III will insist on drawing more and more
samples until a confident conclusion can be drawn. For an overview of tests, and
much more detail about their properties, see [16,20].

So far it was assumed that Xi is an indicator: in each simulation replication
the event of interest either does or does not occur, and we are interested in its
probability. In case the target event is rare, Xi = 0 for all or almost all samples,

1 For importance sampling this is obvious. For splitting, one common implementa-
tion (e.g., [7]) produces each independent sample as the sum of the weights of all
target-reaching offspring of an initial particle, so clearly these samples are no longer
Bernoulli. Other variants exist which do this differently, with their own complica-
tions for hypothesis testing. However, this is outside the scope of this short paper.

2 Note that “first” and “second” kind are a bit different here than in most hypothesis
testing literature, since we have two hypotheses to be tested (p > p0 and p < p0),
besides the null hypothesis (p = p0). See Section 2.2 in [16].



leading to an unusable estimator. One popular solution for this is importance
sampling (see e.g. [11]), where the probability distributions in the model are
modified to make the target event more likely, while keeping track of a so-
called likelihood ratio by which the events need to be weighed. Effectively then,
Xi takes on either the value 0 or the likelihood ratio value, so it is no longer
restricted to {0, 1}. The Xi will typically be very small (representing the rarity
of the event), but may take any non-negative real number. Their mean is still p,
the probability of interest; however, their variance, which was p(1 − p) in the
Bernoulli case, may be totally different. Thus, we need to reconsider whether
the hypothesis tests are still valid when the Xi are no longer Bernoulli. Table 1
provides an overview. (A similar comparison, but for confidence intervals rather
than hypothesis tests, is found in Chapter 2 of [3].)

The table’s third column lists conditions on the samples Xi that are used
in the derivation or correctness proof of the respective test. As we see, about
half of the tests explicitly assume that Xi is an indicator function, which is
no longer the case when importance sampling is used. For some of these tests
(SPRT and Darling-Robbins), it is crucial that there are indeed only two possible
outcomes; for some others, the proof can be generalized to any Xi as long as
they are bounded. This is the first option we will explore. In [4], one approach
for bounding likelihood ratios was discussed, but it required rather complicated
and model-dependent proofs. In Section 3, we show bounded likelihood ratio for
a more general class of models and a well-known importance sampling scheme.
In fact, our method and model class is similar to [2], where also an upper bound
for the likelihood ratios is guaranteed; however, their upper bound is 1, which
would lead to very conservative (and thus inefficient) hypothesis tests.

The other tests have normality listed in the third column. This means that
these tests rely on the Central Limit Theorem: for sufficiently large N , ZN
becomes approximately normally distributed, so the normal distribution can be
used to set decision thresholds such that confidence levels are upheld. This holds
for any distribution of the Xi with finite variance, but suffers from the problem
of needing to know when N is large enough. The lack of restrictions on Xi makes
these tests attractive for use with importance sampling, and we explore this in
Section 4, where we will find that only Chow-Robbins can be used.

3 Bounded likelihood ratios in multicomponent systems

As discussed in the previous section, several hypothesis tests can still be applied
if the likelihood ratios returned by the IS scheme can be bounded from above.
Although it is difficult to construct such bounds in general, there are restricted
modelling classes in which this is more straightforward. In this section we dis-
cuss the modelling class of multicomponent systems, with a particular focus on

3 The actual bound on which this is based, is due to Hoeffding [9], but since literature
and tools frequently refers to this as Chernoff’s, we choose to mention both names
here.



the Distributed Database System (DDS). We consider the probability that, af-
ter the first component has failed, such a system reaches a system failure state
before all components are repaired. This probability is interesting because it
appears in expressions for other performance measures such as the system unre-
liability, unavailability and mean time to failure — in those expressions it is the
only quantity that is difficult to estimate. We focus on the specific IS scheme
of Balanced Failure Biasing (BFB), a classic IS scheme [18] for highly reliable
Markovian systems, although the result of equation (1) holds in more general
cases.

The general set-up of a multicomponent system is as follows. The system
consists of d component types; let D = {1, . . . , d}. Let x be the state of the
Markov chain, where the i-th entry xi (with i ∈ D) is the number of failed
components of type i. Here, xi takes values in 0, ..., ni, where ni is the number of
components of type i needed to trigger system failure. The initial state is given by
x0, which is a d-dimensional zero-valued vector. The failure rate of components
of type i is denoted by λi(x), and their repair rate is µi(x) ∀i ∈ D,x ∈ Nd. Note
that these rates are state-dependent — e.g., in the DDS example, the failure
rate of components of type i depends on how many components of type i are

Test class conditions on Xi generalisable to
non-Bernoulli?

SPRT I Xi ∈ {0, 1} no: assumes hypotheses describe
entire outcome distribution.

Gauss-SSP I sum of many Xi is
approximately
normally distributed

no: sample variance under
p = p0 ± δ is needed

Gauss-CI II sum of many Xi is
approximately
normally distributed

no: sample variance under p = p0
is needed

Chow-Robbins II sum of many Xi is
approximately
normally distributed

yes: only variance under the true p
is needed, which can be estimated
during the simulation

Chernoff-Hoeff-
ding3-CI

II Xi ∈ {0, 1} yes: to any bounded Xi.

Azuma III Xi ∈ {0, 1} yes: to any bounded Xi.

Darling-Robbins III Xi ∈ {0, 1} no: D-R theorem is about entire
distributions, not expectations.

Table 1. Overview of existing hypothesis tests for SMC (from [16]) and their require-
ments w.r.t. the samples Xi



still operational. The exit rate of a state x ∈ Nd is given by

η(x) =
∑
j∈D

(λj(x) + µj(x)) .

Let ei, i ∈ D, be a vector of length d filled with d− 1 zeros and a 1 at position i,
and x0 the initial state. The probability of a ‘straight’ path (see [15]) leading to
failure of component type i ∈ D:

ni−1∏
j=0

λi(x0 + jei)

η(x0 + jei)
.

Using IS, we simulate under different failure rates λ∗i (x) and repair rates
µ∗i (x). Assume (without loss of generality) that the rates are normalized such
that the exit rates are the same under the new measure. Then the likelihood
ratio of a straight path leading to failure of component type i ∈ D is given by

ni−1∏
j=0

λi(x0 + jei)

λ∗i (x0 + jei)
.

We define Lmax as the largest of these likelihood ratios:

Lmax = max
i∈D

ni−1∏
j=0

λi(x0 + jei)

λ∗i (x0 + jei)
.

To avoid the rare-event problem, λ∗i (x0 + jei) > λi(x0 + jei), so Lmax is typ-
ically smaller than 1. However, since the exit rates are the same, it must hold
that µ∗i (x0 + jei) < µi(x0 + jei), so if a µ-transition takes place the likelihood
ratio increases. However, for every µ-transition there must be an accompanying
λ-transition that took place earlier, since we started in the state where all com-
ponents were operational. Let ι ∈ D be the component type in which there’s
a failure — for every time the µι-transition there has to be a λι-transition to
compensate, or else the system cannot end up in a failure state. Also, for the
component types i for which the system doesn’t fail, the µi-transition can only
be fired if a spurious (i.e., not contributing to the rare event) λi-transition has
been fired.

This leads to the following proposition, which is trivial to prove using the
above line of reasoning. Let X ′ be the set of states reachable from the initial
state x0. If

maxx∈X′ λi(x)

minx∈X′ λ∗i (x)

maxx∈X′ µi(x)

minx∈X′ µ∗i (x)
≤ 1 (1)

then the values of the likelihood ratios are bounded from above by Lmax.
We will now consider what this means specifically for the application of BFB

to the DDS. First, BFB is defined ∀i ∈ D as

λ∗i (x)

η(x)
=

 1/nf (x) if nr(x) = 0,
0 if nf (x) = 0,

(2nf (x))−1 if failure and nr(x) > 0,



for failure transitions and

µ∗i (x)

η(x)
=

 0 if nr(x) = 0,
1/nr(x) if nf (x) = 0,

(2nr(x))−1 if repair and nf (x) > 0.

for repair transitions. Here, nf (x) is the amount of failures enabled in state x,
nr(x) is the amount of repairs and p ∈ (0, 1), where p = 1

2 is a typical choice.
The benchmark parameters of the DDS, as used for example in [17], are as

follows. There are d = 9 component types — one set of processors, two sets of
disk controllers and 6 sets of disks. We have ni = 2 for all i ∈ D. Let λ = 1/6000,
and xi the number of operational components of type i. Then the failure rate
for type i is 3(2 − xi)λ if type i consists of processors or disk controllers, and
(4 − xi)λ if type i consists of disks. The repair rate µi is 1 if xi > 0. We are
interested in the rare event that after the first component has failed, we reach
the system failure state before returning to x0.

The quantities involved in (1) are as follows:

– maxx∈X′ λi(x) = 6 · 1
6000 , namely the failure rates of processors and disk

controllers if they all are operational;
– maxx∈X′ µi(x) = 1, in fact µi(x) for all component types and all x ∈X ′;
– minx∈X′ λ∗i (x) ≥ 1

2d minx∈X′ ηi(x) ≥ 1
2d , because in all states in X ′ at least

one repair is enabled, meaning that the exit rate must be at least 1;
– minx∈X′ µ∗i (x) ≥ 1

2d minx∈X′ ηi(x) ≥ 1
2d for similar reasons.

Hence, the expression on the left in (1) evaluates to 4d2/1000 = 0.364 < 1, so
BFB has bounded likelihood ratios in the DDS. Note that this is the maximum
contribution of a single cycle, not the likelihood ratio on a complete path.

As a side note: if x0 were a valid state, then minx∈X′ λ∗i (x) would be very
small as η(x0) is very small. However, since we are interested in reaching failure
before full repair, we have no so-called high-probability cycles [8].

Regarding Lmax, this is achieved on the ‘straight’ paths involving failure
of processors or disk controllers. In particular, straightforward computations
show that Lmax = 6

671 ·
9
7 ≈ 0.0114967. Using the approach underlying the

Chernoff-Hoeffding bound, we obtain the expression α = 2e−2w
2N2/(Lmax)2 , for

the confidence interval half-width w and confidence level α after having drawn
N samples, which leads to:

w =

√
log

(
2

α

)
· (Lmax)2

2N
.

We will compare this confidence interval to the one obtained using the Central
Limit Theorem in Section 5.

4 CLT-based tests for importance sampling

Before we discuss the use of CLT-based tests for importance sampling, we will
first spend a few words on the validity of the normality assumption in an Im-
portance Sampling context.



4.1 Correctness of CLT-based tests

All hypothesis tests based on the central limit theorem rely on the assumption
that the number of samples N is large enough to warrant the use of the CLT;
i.e., that the distribution of ZN is sufficiently close to normal. This does not just
hold for hypothesis tests, but also for establishing confidence intervals around
a point estimate. However, in general there is no way of knowing when N is
sufficiently large.

The fact that there is no way of being sure that N is large enough, has caused
many practitioners to prefer other, more rigorous tests. Indeed, in the Bernoulli
case, there are good alternatives as noted earlier. Then again, precisely in the
Bernoulli case, one may be able to make slight adjustments to the CLT interval
to make it conservative (e.g. [1, 5]).

However, in many cases using the CLT is the only option, and generally
accepted as such by practitioners. One such case is using standard (i.e., not
importance sampling) simulation to estimate the mean of a non-Bernoulli, and
in general not a-priori bounded, random variable, such as a waiting time in a
queueing model. At any finite N , one has no assurance that there cannot still
later come a very rare, very large Xi that will significantly change the estimate
of the mean and variance. The practitioner simply trusts this will not happen,
based on his/her understanding of the model.

When using importance sampling with a good change of measure, the dis-
tribution of the likelihood ratios will not have a long tail, and the CLT can
give a good estimate of the mean and a confidence interval around it. However,
a bad change of measure may lead to a distribution of likelihood ratios which
does have a long tail, having very large values occurring very rarely, requiring
very large N . Among importance sampling practitioners, it is customary to do
one’s best to make a good change of measure (e.g., one with such nice properties
as asymptotic efficiency or bounded normal approximation, cf. [12]), and then
apply the CLT to obtain a confidence interval.

We argue that using a CLT-based hypothesis test with importance sampling
simulation is not fundamentally different or more “dangerous” than using the
CLT to obtain a confidence interval. In either case, one makes a statement about
being e.g. 95% sure that the true value is in some interval. So if obtaining con-
fidence intervals from the CLT is deemed reliable in some importance sampling
simulation, then hypothesis tests based on the CLT should also be considered
reliable.

4.2 Suitability of CLT-based tests for importance sampling

As listed in Table 1, there are several hypothesis tests based on the CLT. Unfor-
tunately, some of those require knowledge of the estimator variance as a function
of the probability p of interest. This is used to compute in advance how many
samples N will be enough to draw the right conclusion with the prescribed con-
fidence level even in the worst (most difficult) case, which typically occurs when
p is at or near p0. In the Bernoulli case, the estimator variance can indeed be



computed for any given p. But in the importance sampling case, this is generally
impossible. In fact, the question in that case is meaningless, since for a given p
(without further information) there can be many different distributions for Xi,
with different variances.

The only test from the table which does not require knowing variance as
a function of p, is the Chow-Robbins test. This test is based on a theorem by
Chow and Robbins [6] which says that if one wants a confidence interval of pre-
determined width, one can just keep adding samples and increase N until the
CLT indicates that this width has been reached, based on the observed sample
variance. This is made into a hypothesis test by simulating long enough so that
the half-width of the confidence interval on ZN is less than ζN , where ζ is an
indifference level: if |p−p0| < ζ, one is willing to accept that the test’s probability
of terminating conclusively may be less than the specified confidence level (e.g.,
95 %).

4.3 Extension of the Chow-Robbins test to class I and III

The Chow-Robbins test as discussed above is a class-II test: it risks terminating
inconclusively if p is near p0. However, the same principle can be used to form a
class-I or class-III test, as described briefly below.

For a class-I test, the requirement is that the probability of accepting the
wrong hypothesis is less than α if |p − p0| ≥ δ, where 1 − α is the confidence
level of the test and δ the indifference level. This can be achieved by choosing
the confidence interval halfwidth of ZN to be δN and its level to be 1 − 2α.
One easily verifies that then if |p− p0| = δ (the hardest case) the probability of
accepting the wrong hypothesis is at most α.

A crude class-III test can be constructed by concatenating class-II tests as
follows. The ith (for i = 1, 2, . . . ) class-II test is given probability of error of
first kind αi = α/2i, indifference level ζi = ζ/2i, and probability of error of
second kind (i.e., taking no decision) βi = β; here α is the desired probability
of wrong conclusion of the resulting class-III test, and β and ζ are parameters
to be chosen. Then apply the first test (i = 1). If it draws a conclusion, that
is the final conclusion. If it finishes undecided, apply test 2, with new samples,
and so on, until a conclusion is drawn. Clearly, the total probability of drawing
a wrong conclusion is upperbounded by

∑N
i=1 αi = α, as required, and the fact

that ζi → 0 makes sure a conclusion is eventually reached.

5 Numerical results

In this section we present numerical results to illustrate the results of Section 3.
Since all tests that we are still considering are based on confidence intervals, we
show results on confidence interval coverage levels here, rather than results on
hypothesis test decision correctness (which would be equivalent).

In particular we present three tables. Table 2 displays sample 95% confidence
intervals created using both the CLT and the Chernoff-Hoeffding bound using



N MC-Gauss MC-Ch.-Hffd. BFB-Gauss BFB-Ch.-Hffd.

10 — [-4.295E-1, 4.295E-1] [-3.295E-6, 3.080E-5] [-4.924E-3, 4.951E-3]
30 — [-2.480E-1, 2.480E-1] [-1.406E-6, 4.479E-6] [-2.849E-3, 2.852E-3]
100 — [-1.358E-1, 1.358E-1] [6.295E-5, 7.950E-4] [-1.132E-3, 1.990E-3]
300 — [-7.841E-2, 7.841E-2] [4.278E-4, 9.915E-4] [-1.918E-4, 1.611E-3]
1000 — [-4.295E-2, 4.295E-2] [3.315E-4, 5.787E-4] [-3.867E-5, 9.488E-4]
3000 [2.754E-5, 2.639E-3] [-2.346E-2, 2.613E-2] [4.396E-4, 5.925E-4] [2.309E-4, 8.011E-4]
10000 [6.184E-5, 9.382E-4] [-1.308E-2, 1.408E-2] [4.858E-4, 5.701E-4] [3.718E-4, 6.841E-4]
30000 [5.068E-4, 1.160E-3] [-7.008E-3, 8.674E-3] [4.850E-4, 5.328E-4] [4.187E-4, 5.990E-4]
100000 [3.357E-4, 6.043E-4] [-3.825E-3, 4.765E-3] [4.943E-4, 5.203E-4] [4.579E-4, 5.567E-4]

Table 2. Sample 95% confidence intervals generated using both the Gaussian approxi-
mation and the Chernoff-Hoeffding bound for several values of N . This is done for both
standard Monte Carlo (MC) simulation and Balanced Failure Biasing (BFB). The con-
fidence intervals are for estimates for p in the benchmark DDS. For both methods, the
results in each row are based on the same sample, but results in the lower columns
are not continuations of the previous samples. The Gaussian confidence intervals are
asymptotically narrower, but for small values they are prone to being incorrect. The
true probability equals 5.0285E-4.

both standard Monte Carlo and Balanced Failure Biasing. Table 3 displays cov-
erage statistics, i.e., simulation estimates of the probability that the confidence
interval contains the true probability (this should at least be equal to the confi-
dence level). We compare BFB to similar results for standard Monte Carlo (MC)
simulation, which is based on Bernoulli samples.

As we can see in Table 2, both standard MC simulation and BFB produce
confidence intervals for small values forN that are unreliable (either because they
are completely uninformative or wrong), but for high values of N the confidence
intervals are narrower than for those based on the Chernoff-Hoeffding bound. For
MC, if no likelihood ratios had the value 1 then we cannot construct a mean-
ingful confidence interval. However, this is possible using the Chernoff-Hoeffding
bound. Note that for MC better methods for constructing confidence intervals
exist such as the Agresti-Coull interval and the exact binomial (Clopper-Pearson)
confidence interval. For BFB with small samples sizes, it is reasonably likely that
only very small likelihood ratios are observed, leading to confidence intervals
that do not contain the true probability using the CLT. However, if we use the
Chernoff-Hoeffding bound the confidence intervals are sufficiently conservative.

In Table 3, we display coverage statistics. In particular, we conduct N1 sim-
ulation experiments, where in each experiment we use N2 samples to create a
confidence interval and then check whether this interval contains the true prob-
ability. For the case of MC Gauss, two ways of treating the (rather likely) case
where all simulation runs result in 0: it can be counted as giving a confidence in-
terval of [−∞,∞] and thus indeed containing the true value, but since [−∞,∞]
is totally uninformative, from a practical point of view it makes more sense to
not count it as a correct confidence interval. Only for very large values of N2

will the coverage of MC Gauss approach 95%. BFB Gauss’s coverage approaches



N2 MC Gauss 1 MC Gauss 2 MC Ch.-Hffd. BFB Gauss BFB Ch.-Hffd.

10 0.0043 ± 0.0013 1.0000 ± 0.0000 1.0000 ± 0.0000 0.4298 ± 0.0097 1.0000 ± 0.0000
30 0.0116 ± 0.0021 1.0000 ± 0.0000 1.0000 ± 0.0000 0.8153 ± 0.0076 1.0000 ± 0.0000
100 0.0463 ± 0.0041 1.0000 ± 0.0000 1.0000 ± 0.0000 0.8907 ± 0.0061 1.0000 ± 0.0000
300 0.1384 ± 0.0068 1.0000 ± 0.0000 1.0000 ± 0.0000 0.9341 ± 0.0049 1.0000 ± 0.0000
1000 0.3886 ± 0.0096 0.9998 ± 0.0003 1.0000 ± 0.0000 0.9458 ± 0.0044 1.0000 ± 0.0000
3000 0.7830 ± 0.0081 0.9991 ± 0.0006 1.0000 ± 0.0000 0.9502 ± 0.0043 1.0000 ± 0.0000
10000 0.8742 ± 0.0065 0.8777 ± 0.0064 1.0000 ± 0.0000 0.9470 ± 0.0044 1.0000 ± 0.0000

Table 3. Coverage results for the DDS benchmark setting.N1 = 10000. In MC Gauss 1,
a sample with only zeroes is counted as producing an incorrect interval, while in MC
Gauss 2, it is counted as producing a correct (but non-informative) interval of [−∞,∞].

95% much earlier. As we can see, the Chernoff-Hoeffding-based results are much
more reliable than the Gauss-based results.

Note that the good performance of the methods based on the CLT for high
N2 justified their use as discussed in Section 4. Of course, it depends on the
application when N2 is high ‘enough’, whereas the Chernoff-Hoeffding-based
methods are safe regardless of the choice of N2. On the other hand, the Chernoff-
Hoeffding-based methods clearly are rather conservative and thus such a test
would take more simulation effort than strictly needed to come to a conclusion
with the requisite confidence level.

6 Conclusions

In this short paper we have considered the options for hypothesis tests for im-
portance sampling Two approaches seem promising: tests which work if the
likelihood ratio is upper bounded, and tests based on the Chow-Robbins the-
orem if the normal approximation is known to be applicable (i.e., the number
of samples high enough). For the former we have shown that for a particular
class of models the well-known BFB heuristic indeed has an upper bound on the
likelihood ratio. Two obvious lines for future work are (i) finding more general
ways of constructing changes of measure with provably bounded likelihood ratio,
and (ii) finding ways of establishing whether the normal approximation is indeed
applicable.
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