
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CARMA Eclipse plug-in: A tool supporting design and analysis of
Collective Adaptive Systems
Citation for published version:
Hillston, J & Loreti, M 2016, CARMA Eclipse plug-in: A tool supporting design and analysis of Collective
Adaptive Systems. in 13th International Conference on Quantitative Evaluation of SysTems (QEST 2016).
Lecture Notes in Computer Science, vol. 9826, Springer, Cham, Quebec City, Canada, pp. 167-171, 13th
International Conference on Quantitative Evaluation of SysTems , Quebec City, Canada, 23/08/16. DOI:
10.1007/978-3-319-43425-4_12

Digital Object Identifier (DOI):
10.1007/978-3-319-43425-4_12

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
13th International Conference on Quantitative Evaluation of SysTems (QEST 2016)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/80784208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-43425-4_12
https://www.research.ed.ac.uk/portal/en/publications/carma-eclipse-plugin-a-tool-supporting-design-and-analysis-of-collective-adaptive-systems(ae0e9fc1-d15b-4e0d-b370-413c86867258).html


CARMA Eclipse plug-in: A tool supporting design and
analysis of Collective Adaptive Systems?

Jane Hillston1 and Michele Loreti2

1 Laboratory for Foundations of Computer Science, University of Edinburgh
2 Dipartimento di Statistica, Informatica, Applicazioni “G. Parenti", Università di Firenze

Abstract. Collective Adaptive Systems (CAS) are heterogeneous populations of
autonomous task-oriented agents that cooperate on common goals forming a col-
lective system. This class of systems is typically composed of a huge number of
interacting agents that dynamically adjust and combine their behaviour to achieve
specific goals. Existing tools and languages are typically not able to describe
the complex interactions that underpin such systems, which operate in a highly
dynamic environment. For this reason, recently, new formalisms have been pro-
posed to model CAS. One such is CARMA, a process specification language that
is equipped with linguistic constructs specifically developed for modelling and
programming systems that can operate in open-ended and unpredictable environ-
ments. In this paper we present the CARMA Eclipse plug-in, a toolset integrated
in Eclipse, developed to support the design and analysis of systems specified in
CARMA.

1 Introduction

Collective adaptive systems (CAS) typically consist of very large numbers of compo-
nents which exhibit autonomic behaviour depending on their properties, objectives and
actions. Decision-making in such systems is complicated and interaction between their
components may introduce new and sometimes unexpected behaviours. CAS are open,
in the sense that components may enter or leave the collective at any time. Compo-
nents can be highly heterogeneous (machines, humans, networks, etc.) each operating
at different temporal and spatial scales, and having different (potentially conflicting) ob-
jectives. We are still far from being able to design and engineer real collective adaptive
systems, or even specify the principles by which they should operate.

Existing tools and languages are challenged by the complex and evolving interaction
patterns that occur within CAS. Nevertheless, the pervasive yet transparent nature of
these applications makes it of paramount importance that their behaviour is thoroughly
assessed during their design, prior to deployment, and throughout their lifetime.

Within the QUANTICOL project3, the definition of a formal language to capture
CAS has been investigated. Our objective was to develop a coherent, integrated set
of linguistic primitives, methods and tools to build systems that can operate in open-
ended, unpredictable environments. We named this language CARMA, Collective Adap-
tive Resource-sharing Markovian Agents. CARMA combines the lessons we learnt from
? This work is partially supported by the EU project QUANTICOL, 600708.
3 http://www.quanticol.eu



other stochastic process algebras such as PEPA [8], EMPA [2], MTIPP [7] and MoD-
EST [3], with those learnt from languages specifically designed to model CAS, such
as SCEL [5], the AbC calculus [1], PALOMA [6], and the Attributed Pi calculus [9],
which feature attribute-based communication and explicit representation of locations.

To support analysis of CARMA models a prototype simulator has been also de-
veloped. This software tool, which has been written in Java, can be used to perform
stochastic simulation and will also form the basis for implementing further analysis
techniques in the future. An Eclipse plug-in, integrating an editor, static analysis tools
and various views on a model, has also been developed. Using this plug-in, CARMA sys-
tems can be specified by means of an appropriate high-level language, which is mapped
to the CARMA process algebra to enable qualitative and quantitive analysis of CAS.

In this paper we first briefly describe the basic ingredients of CARMA. After that an
overview of the CARMA Eclipse plug-in and its features is provided.

2 CARMA in a nutshell

CARMA is a new stochastic process algebra for the representation of systems developed
in the CAS paradigm [4]. The language offers a rich set of communication primitives,
and exploits attributes, captured in a store associated with each component, to enable
attribute-based communication. For example, for many CAS systems the location is
likely to be one of the attributes. Thus it is straightforward to model systems in which,
for example, there is limited scope of communication, or interaction is restricted to co-
located components, or where there is spatial heterogeneity in the behaviour of agents.

A CARMA system consists of a collective operating in an environment. The collec-
tive is a multiset of components that models the behaviour of a system; it is used to
describe a group of interacting agents. The environment models all those aspects which
are intrinsic to the context where the agents are operating. The environment mediates
agent interactions. This is one of the key features of CARMA. It is not a centralised
controller but rather something more pervasive and diffusive — the physical context of
the real system — which is abstracted within the model to be an entity which exercises
influence and imposes constraints on the different agents in the system. The role of the
environment is also related to the spatially distributed nature of CAS — we expect that
the location where an agent is will have an effect on what an agent can do.

A CARMA component captures an agent operating in the system. It consists of a
process, that describes the agent’s behaviour, and of a store, that models its knowledge.
A store is a function which maps attribute names to basic values.

Processes located within a CARMA component interact with other components via
a rich set of communication primitives. Specifically, CARMA supports both unicast and
broadcast communication, and permits locally synchronous, but globally asynchronous
communication. Distinct predicates (boolean expressions over attributes), associated
with senders and potential receivers are used to filter possible interactions. Thus, a com-
ponent can receive a message only when its store satisfies the target predicate. Similarly,
a receiver also uses a predicate to identify accepted sources. The execution of communi-
cating actions takes time, which is assumed to be an exponentially distribution random
variable whose parameter is determined by the environment.



Fig. 1: A screenshot of the CARMA Eclipse plug-in.

3 CARMA Eclipse plug-in

An Eclipse plug-in for supporting the specification and analysis of CAS in CARMA has
been developed. A screenshot of the plug-in is presented in Figure 1.

The CARMA Eclipse plug-in is available at http://quanticol.sourceforge.net/. At the
same site detailed installation instructions can be found together with a set of case
studies that shows how CAS can be modelled and verified with the provided tool.

The CARMA Eclipse plug-in provides a rich editor for CAS specification using an
appropriate high-level language, called the CARMA Specification Language (CASL).
This high-level language is not intended to add to the expressiveness of CARMA, which
we believe to be well-suited to capturing the behaviour of CAS, but rather to ease the
task of modelling for users who are unfamiliar with process algebra and similar formal
notations. Each CARMA specification provides definitions for: structured data types
and the relative functions; prototypes of components occurring in the system; systems
composed by collective and environment; and the measures, that identify the relevant
data to measure during simulation runs.

Given a CARMA specification, the CARMA Eclipse Plug-in automatically generates
the Java classes needed to simulate the model. This generation procedure can be spe-
cialised to different kinds of simulators. Currently, a simple ad-hoc simulator is used.
The simulator provides generic classes for representing models to be simulated. To per-
form the simulation each model provides a collection of activities each of which has its
own execution rate. The simulation environment applies a standard kinetic Monte-Carlo
algorithm to select the next activity to be executed and to compute the execution time.
The execution of an activity triggers an update in the simulation model and the simula-
tion process continues until a given simulation time is reached. From a CARMA spec-
ification, these activities correspond to the actions that can be executed by processes
located in the system components. Indeed, each such activity mimics the execution of



Fig. 2: CARMA Eclipse Plug-In: Experiment Results View.

a transition of the CARMA operational semantics. Specific measure functions can be
passed to the simulation environment to collect simulation data at given intervals. To
perform statistical analysis of collected data the Statistics package of Apache Commons
Math Library is used4.

The results are reported within the Experiment Results View (see Figure 2). Two pos-
sible representations are available. The former, on the left side of Figure 2, provides a
graphical representation of collected data; the latter, on the right side of Figure 2, shows
average and standard deviation of the collected values, which correspond to the mea-
sures selected during the simulation set-up, and are reported in a tabular form. These
values can then be exported in CSV format.

References

1. Y. Abd Alrahman, R. De Nicola, M. Loreti, F. Tiezzi, and R. Vigo. A Calculus for Attribute-
Based Communication. In Proceedings of the 30th Annual ACM Symposium on Applied Com-
puting, Salamanca, Spain, April 13-17, 2015, pages 1840–1845, 2015.

2. M. Bernardo and R. Gorrieri. A Tutorial on EMPA: A Theory of Concurrent Processes with
Nondeterminism, Priorities, Probabilities and Time. Theoretical Computer Science, 202(1-
2):1–54, 1998.

3. H.C. Bohnenkamp, P.R. D’Argenio, H. Hermanns, and J-P. Katoen. MODEST: A composi-
tional Modeling Formalism for Hard and Softly Timed Systems. IEEE Trans. Software Eng.,
32(10):812–830, 2006.

4. L. Bortolussi, R. De Nicola, V. Galpin, S. Gilmore, J. Hillston, D. Latella, M. Loreti, and
M. Massink. CARMA: Collective Adaptive Resource-Sharing Markovian Agents. In Proc. of
the Workshop on Quantitative Analysis of Programming Languages 2015, 2015.

5. R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi. A Formal Approach to Autonomic Sys-
tems Programming: The SCEL Language. TAAS, 9(2):7, 2014.

6. C. Feng and J. Hillston. PALOMA: A Process Algebra for Located Markovian Agents. In
Quantitative Evaluation of Systems - 11th International Conference, QEST 2014, Florence,
Italy, September 8-10, 2014., volume 8657 of LNCS, pages 265–280. Springer, 2014.

7. H. Hermanns and M. Rettelbach. Syntax, Semantics, Equivalences and Axioms for MTIPP.
In U. Herzog and M. Rettelbach, editors, Proc. of 2nd Process Algebra and Performance
Modelling Workshop, 1994.

8. J. Hillston. A Compositional Approach to Performance Modelling. CUP, 1995.
9. M. John, C. Lhoussaine, J. Niehren, and A.M. Uhrmacher. The Attributed Pi Calculus. In

Proc. of Computational Methods in Systems Biology, volume 5307 of LNBI, pages 83–102,
2008.

4 http://commons.apache.org


