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We concentrate our study on a recent process algebra – PALOMA – intended to capture interactions
between spatially distributed agents, for example in collective adaptive systems. New agent-based
semantic rules for deriving the underlying continuous time Markov chain are given in terms of State
to Function Labelled Transition Systems. Furthermore we define a bisimulation with respect to an
isometric transformation of space allowing us to compare PALOMA models with respect to their
relative rather than absolute locations.

1 Introduction

PALOMA (Process Algebra for Located Markovian Agents) [?, ?] is a novel stochastic process algebra
which captures the behaviour of agents who are distributed in space and whose interactions are affected
by their relative positions. This model can be thought to capture many modern systems where, for exam-
ple, the range of communication may be limited for devices using wireless communication technologies
or some areas may be known “dead zones” from which no communication is possible. In this paper we
consider what it means for two agents to be equivalent, taking into consideration both their behaviour and
their location, and develop the formal underpinnings to allow such equivalence to be rigorously studied.

The notion of Markovian bisimulation has become standard for stochastic process algebras, but as
we will discuss, applied naively this approach to equivalence checking is too strong, leaving little op-
portunity for a notion of equivalence that is not isomorphism. Instead here we consider equivalence of a
component within the context of a given system. This supports the idea of being able to substitute one
component, perhaps with a more efficient implementation, for another within a given system even though
they may not exhibit exactly the same behaviour in arbitrary contexts. Similarly, when we come to con-
sider the spatial aspects of behaviour our notion of equivalence aims to capture the relative positions of
components, rather than their absolute locations.

In this brief paper we aim to give the intuition and ideas behind our bisimulation, without giving all
the definitions. The rest of the paper is structured as follows. In Section 2 we give a brief introduction
to the PALOMA modelling language, while the semantics of the language is outlined in Section 3. In
Section 4 we discuss a notion of equivalence based on equivalent relative positions and behaviours. We
present our conclusions and discuss further work in Section 5.

2 PALOMA language

In this section we give a brief introduction to PALOMA; the interested reader is referred to [?, ?] for
more details. The spatial distribution of agents is a key feature of PALOMA models and we assume that
there exists a finite set of locations, Loc and all agent expressions in PALOMA are parameterised by a
location ` ∈ Loc, indicating the current location of the agent.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Stochastic and Spatial Equivalences for PALOMA

The grammar of the language is as follows:

π ::= !!(α,r)@IR{ #»

` } | ??(α, p)@Wt{w} | !(α,r)@IR{ #»

` } | ?(α, p)@Pr{q} | (α,r)

S(`) ::= π.S′(`′) | S1(`)+S2(`) | C

P ::= S(`) | P‖P

The two-level grammar, defines individual agents S(`), whose behaviours are specified by the actions
they can undertake, with possible alternatives, and model components P, which are comprised of parallel
compositions of agents. The behaviour of individual agents are given by actions of five distinct types:

Unicast output !!(α,r)@IR{ #»

` }: Unicast is for point-to-point communication between a pair of agents
and is included in the language to model contention for resources in systems. Each unicast output
message has a label, α , and a rate r, that determines the rate at which the output is performed.
The message is sent to locations specified by the set

#»

` ∈ 2Loc interpreted as the influence range.
Any agent located within that range, which enables the corresponding α-labelled unicast input
action, is eligible to receive the action — that is, the label α is used to identify agents that can
communicate with each other. Unicast actions are blocking meaning that the sending agent can
only proceed when there is a eligible receiver.

Unicast input ??(α, p)@Wt{w}: Each eligible receiver of a unicast message α must be located within
the specified influence range, and each will have an associated weight w. The weights are used
to define a probability distribution over the eligible receivers, i.e. if there are i potential receivers,
each with weight wi and W = ∑i wi then the probability that the jth agent receives the message
is w j/W . Once the message is received the receiving agent may or may not act on the message
(reflecting message failure, corruption etc.) with the specified probability p i.e. with probability
1− p the agent will not act on the message received. If this occurs the message is lost — it is not
the case that it is subsequently assigned to one of the other eligible receivers.

Broadcast output !(α,r)@IR{ #»

` }: As its name suggests, a broadcast action allows its sender to influ-
ence multiple other agents. As with the unicast output action, a broadcast output message labelled
α is sent with a specified influence range

#»

` and at a specified rate r. All agents with broadcast
input prefix on label α located within that range may receive the message. Moreover the output
proceeds regardless of whether there are any eligible receivers so broadcast output is non-blocking
for the sender.

Broadcast input ?(α, p)@Pr{q}: Each eligible receiver of a broadcast message α must be located
within the specified input range. Each such agent has a likelihood of receiving the message,
recorded in the probability q. For example, agents closer to the sender may be more likely to
receive the message. Each agent independently decides whether the broadcast is received or not
(Bernoulli trials). As with unicast input, the receiving agent may or may not act on the message
with the specified probability p i.e. with probability 1− p the agent will not act on the message
received.

Spontaneous action (α,r): These actions do not represent a communication but rather an individual
action by the agent which may change the state of the agent, for example, its location. These can
also be thought of as broadcast output actions whose influence range is the empty set.

All rates are assumed to be parameters of exponential distributions, meaning that the underlying stochas-
tic model of a PALOMA model is a continuous time Markov chain (CTMC).
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Example 2.1. Consider agents Transmitter and Receiver such that

Receiver(`) := ??(message, p)@Wt{v}.Receiver(`)

Transmitter(`) := !!(message,r)@IR{ #»

` }.Transmitter(`)

where ` denotes the current location of the agent and
#»

` denotes a set of locations in the range of the
unicast message emitted by action message. In a system where no agent sends a message agent Receiver
does not perform any action. On the other hand if there is a component, say Tranmitter, that outputs a
message and the location of Receiver is in the influence range of the message then Receiver performs
message with a rate dependent on the rate at which Transmitter unicasts message and the probability that
Receiver receives it. Similarly, if the component Transmitter does not have a recipient for the message,
it remains blocked and never performs an action.

2.1 Conditional exit rates and probabilities

Notions of equivalence in process algebras, such as bisimulation [?], are typically based on the idea of
a pair of agents each being able to match the behaviour of the other. In the case of stochastic process
algebras such as PEPA, not only the type of action but also the rates at which they occur must in some
sense be matched [?]. In order to make similar definitions for PALOMA we need to define some auxiliary
functions which, given a syntactic expression, extract information about the rates and probabilities which
may be exhibited by the term. Space limitations do not allow us to present all of them here, but we present
those for unicast, which is the most involved case, to give the reader an impression of how we proceed.

Denote the set of all sequential components of PALOMA parametrised by their location by CS and
the set of model components by C . Let the set of action labels be defined as Lab and the set of action
types as Type = {!!,??, !,?, ·}, where the interpretation of the symbols is clear, corresponding to the
action types discussed above. Let Act denote the set of all actions. The actions in the set Act = Type×
Lab are defined by their label and their type. Let A be the set of all syntactically defined actions.
Define the function ΠAct : A → Act as a projection returning the label of the action with its type, e.g.
ΠAct(??(α, p)@Wt{v}) = ??α . Similarly define the projection ΠLab : Act→ Lab returning just the label
of the action and the function ΠType : Act→ Type returning the type of an action.

Denote by ΠLoc the function returning the set of locations spanned by a model component.

ΠLoc(S1(`1)‖ · · · ‖Sn(`n)) =
n⋃

i=1

{`i}

Note that in the case of sequential components ΠLoc will result in a singleton set — the location of the
sequential component.

Suppose Sys= S1(`1)‖· · ·‖Sn(`n)∈C for n∈N+. Let the function seq return the set of all sequential
components of Sys in a set of locations L.

seq(Sys,L) = {Si(`i) |ΠLoc(Si(`i)) ∈ L}

2.1.1 Context unaware definitions

When we consider a PALOMA component in isolation we can use the syntax to find the potential rate,
weight or probability associated with this component and a given action. Similar functions are defined for
each form of prefix. From the point of view of the originator of a unicast action, the important measure
is the rate at which the action is preformed.
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Definition 2.1. For all α ∈ Lab, a ∈A ,
#»

` ∈ 2Loc, and S ∈ CS define the function s!!
α returning the rate

of a unicast output action labelled α as follows.

s!!
α

(
!!(β ,r)@IR{ #»

` }.S(`)
)
=

{
r for α = β

0 otherwise

s!!
α (a.S(`)) = 0 if ΠType(a) 6= !!

s!!
α (S1(`)+S2(`)) = s!!

α(S1(`))+ s!!
α(S2(`))

Example 2.2. Consider the following components

Tester(`0) := (message,r).Tester(`0)

Transmitter(`0) := !!(message,r).Transmitter(`0)

Receiver(`1) := ??(message, p)@Wt{v}.Receiver(`1)

Based on these definitions we can find:

s!!
message(Tester(`0)+Transmitter(`0)) = 0+ r = r s!!

message(Receiver(`1)) = 0

The rest of the context unaware definitions are given in a similar vein and just extract necessary
syntactic information from the component definitions. Specifically we define the following functions:

Unicast influence range ΠUniIR(S,α): Given that S has a unicast output prefix with label α , the func-
tion returns the influence range of unicast message α defined in the prefix. Otherwise, the function
returns the empty set /0.

Weight function wα(S): For a sequential component S the function wα(S) is defined similarly to s!!
α with

base case wα (??(α, p)@Wt{w}.S) = w. In addition we define the weight function over parallel
compositions and sets of sequential components by summing over the weights for each sequential
component in the parallel composition or set.

Probability function p??
α (S): This is again similar to s!!

α with base case p??
α (??(α, p)@Wt{w}.S) = p.

Example 2.3. Consider the following sequential components.

Transmitter(`0) := !!(message,r)@IR{ #»

` }.Transmitter(`0)

Receiver1(`1) := ??(message, p)@Wt{wr1}.Receiver1(`1)

Receiver2(`2) := ??(message,q)@Wt{wr2}.Receiver2(`2)

For the system given by Sys = Transmitter(`0)‖Receiver1(`1)‖Receiver2(`2) the weight for receiving
a unicast message message is calculated as

wmessage(Sys) = wmessage(Transmitter(`0)‖Receiver1(`1)‖Receiver2(`2)) = wr1 +wr2

2.2 Context-aware conditional exit rates

Unfortunately the syntactic information alone is not sufficient to determine the rate at which an action
will be witnessed in a PALOMA system. The spatial aspect, as captured by the influence range, plays an
important role in determining both which actions are possible and potentially their rates and probabilities.
Thus we also define some context-dependent functions.
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Definition 2.2. Let α be an action label in Lab. Define the rate at which the component S(`) ∈ CS is
capable of unicasting a message labelled α to a location `′ as follows:

uα(`
′, !!(β ,r)@IR{ #»

` }.S(`)) =

{
s!!

α(!!(β ,r)@IR{ #»

` }.S(`)) if `′ ∈ΠUniIR(S(`),α) and α = β

0 otherwise

uα(`
′,S1(`)+S2(`)) = uα(`

′,S1(`))+uα(`
′,S2(`))

Definition 2.3. Suppose P = S1(`1)‖ · · · ‖Sn(`n) ∈ C for n ∈N+ is a model component with Si(`i) ∈ CS

for all 1≤ i≤ n. Let Sys be any other system serving as context. Let uα(`,Sys,P) be the rate at which a
model component P unicasts a message labelled α to location ` in the context of Sys, defined as

uα(`,Sys,P) = ∑
S∈seq(P)

uα(`,S)×1>0{wα (seq(Sys‖P, ΠUniIR(S,α)))}

where 1>0(x) =

{
1 x > 0
0 otherwise

For each sequential component S of P we calculate the total weight over the components in the influence
range of S. The indicator function 1>0 is set to 1 if this weight is greater than 0 — meaning there
are eligible receivers in the influence range. The rate at which P unicasts a message α to location ` is
then defined as the sum of rates at which each sequential component S of P is capable of said unicast
multiplied by the indicator function ensuring that the blocking nature of unicast is taken into account.

The next definition deals with determining the probability of a sequential component receiving the
unicast message.
Definition 2.4. Let S1(`) and S2(`

′) be sequential components and Sys ∈ C any model component.
Suppose !!(α,r)@IR{ #»

` }.S′2(`′′) is a prefix guarded term in the expression of S2(`
′). Then we define

the probability of S1(`) receiving a unicast message with label α from S2(`
′), when composed in parallel

with Sys and S2(`
′), to be:

pα(S1(`),Sys,S2(`
′)) =

{ wα (S1(`))

wα (seq(Sys‖S1(`),
#»
` ))

if ` ∈ #»

`

0 otherwise

Once similar definitions have been defined for broadcast and spontaneous actions we are in a position
to define the context-aware exit rate.
Definition 2.5. Let Sys ∈ C be a system in which the component S ∈ CS appears. Let a ∈ A be any
action with label α . Define the context-aware exit rate R for agents by the following:

Ra(Sys,S(`0)) =



sα(S(`0)) if ΠType(a) = ·
bα(S(`0)) if ΠType(a) = !
bα(`0,Sys)p?

α(S(`0)) if ΠType(a) = ?
max

`∈ΠLoc(Sys)
{uα(`,Sys,S(`0))} if ΠType(a) = !!

∑
T∈Seq(Sys)

uα(`0,Sys,T )pα(S(`0),Sys,T )p??
α (S(`0)) if ΠType(a) = ??

Now consider a model component P = S1(`1)‖ · · · ‖Sn(`n) with Si(`i) ∈ CS for all 1≤ i≤ n (n ∈ N) and
suppose it is a part of the system Sys. Then define

Ra(Sys,P) =
n

∑
i=1

Ra(Sys‖ (P\Si(`i)),Si(`i))
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where P\Si(`i) denotes the model component P with Si(`i) removed.

Finally we define the rate at which action a ∈ Act is performed over a set of locations.

Definition 2.6. Consider a model component P = S1(`1)‖ · · · ‖Sn(`n) with Si(`i) ∈ CS for all 1 ≤ i ≤ n
(n ∈ N) and suppose it is a part of the system Sys. Let L be a set of locations of interest. We define
Ra(L,Sys,P), the rate at which action a is performed by P in locations L, within the context of system
Sys to be:

Ra(L,Sys,P) = ∑
S∈ seq(P,L)

Ra(Sys‖ (P\S),S)

3 Semantics

The definition of the semantics of PALOMA will proceed in the FuTS (State to Function Labelled Tran-
sition Systems) framework as presented in [?]. In general, the transition rules in FuTSs are given as
triplets s λ f where s denotes a source state, λ the label of the transition and f the continuation func-
tion associating a value of suitable type to each state s′. The shorthand [s1 7→ v1, · · · ,sn 7→ vn] is used to
denote a function f such that f (si) = vi for i = 1, · · ·n. This kind of functional treatment of transition
rules is going to allow us to give more concise definitions of semantic rules as many possible branches
of model evolutions can be captured within a single rule.

In the case of PALOMA semantics we are going to define the set of states as the set of all model com-
ponents C . For convenience, the treatment of semantic rules is split into two steps where the following
types of transition relations are considered separately:

Capability relation Denoted by s λ

c f where f : C → [0,1]. The aim is to describe actions that a
defined model component is capable of and introduce probabilities for all possible states resulting
from the said action firing. For example, a component including a prefix for unicast input will
be capable of the unicast input action firing with some probability dependent on the context. The
function f will assign a probability for possible continuation states.

Stochastic relation Denoted by s λ

s f where f : C →R≥0. These rules are used to generate the CTMC
and thus need to assign rates to each available transition.

As mentioned in Section 2, the calculation of rates of actions for each component depend the system they
appear in (a PALOMA model component) and thus we use Sys as a place-holder for any such PALOMA
model component serving as context. In the following, we use P1 ≡ P2 to denote that model components
P1 and P2 are syntactically equivalent.

3.1 Capability relations

The only capability relations of interest here are ones for broadcast and unicast input actions as these are
the only ones that can either succeed or fail depending on the rest of the context system Sys.

The labels λc, of the FuTSs rules are given by the following grammar where α ∈ Lab denotes the
action labels:

λc ::= (?α,
#»

` ,Sys) Broadcast input

| (??α,
#»

` ,Sys) Unicast input
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BrIn ?(α, p)@Pr{q}.S (?α,
#»
` ,Sys)

c f if ΠLoc (?(α, p)@Pr{q}.S) ∈ #»
` f (s) =


pq if s≡ S
1− pq if s≡ ?(α, p)@Pr{q}.S
0 otherwise

UniIn ??(α, p)@Wt{w}.S (??α,
#»
` ,Sys)

c f if ΠLoc (??(α, p)@Wt{w}.S) ∈ #»
`

f (s) =



wp
wα (Seq)

if s≡ S

w(1− p)
wα (Seq)

if s≡ ??(α, p)@Wt{w}.S

0 otherwise

where Seq = seq(Sys,
#»
` )

P1
(?α,

#»
` ,Sys)

c f1 P2
(?α,

#»
` ,Sys)

c f2
BrSystem

P1 ‖P2
(?α,

#»
` ,Sys)

c g
g(s) =

{
f1(P′1) f2(P′2) if s≡ P′1 ‖P′2
0 otherwise

S1
(??α,

#»
` ,Sys)

c f1 S2
(??α,

#»
` ,Sys)

c f2
ParllelUniIn

S1 ‖S2
(??α,

#»
` ,Sys)

c g
g(s) =


f1(S′1) if s≡ S′1 ‖S2

f2(S′2) if s≡ S1 ‖S′2
0 otherwise

P1
λc

c f
Choice

P1 +P2
λc

c f

P2
λc

c f

P1 +P2
λc

c f

P λc
c f X := P

Constant
X λc

c f

Figure 1: Capability rules for communication

The semantic rules given in Figure 1 use the definitions from Section 2 to extract necessary informa-
tion from the syntactic definitions of components.

The rules BrIn and UniIn are the primitive rules describing the capability of sequential components
to perform a broadcast or unicast input action, respectively, given the set of locations

#»

` denoting the
influence range of the message and a context system Sys. In both cases the function f , which is defined
over all states, gives the probability of a transition to each state given the action has fired. For BrIn the
calculation only depends on the parameters p and q given explicitly in the syntactic definition of the
component. For UniIn the likelihood of the component receiving the message, w

wα (Sys) , is calculated on
the basis that there may be many eligible receivers of the given message in Sys.

The rule BrSystem is used to deal with parallel compositions of model components that can act as
broadcast message receivers. Note that the outcomes of all the broadcast input actions in a system are
independent of each other. Thus the probability of P1 ‖P2 transitioning to P′1 ‖P′2 due to a broadcast input
action is the product of the probabilities of P1 and P2 respectively making the corresponding transitions.

For unicast input actions the rule ParllelUniIn is just saying that no two components can perform the
unicast input on the same label simultaneously.

3.2 Stochastic relations

Firstly we need to define a set of labels for stochastic relations. It will be necessary to carry around
the set of locations

#»

` in the labels to distinguish between actions having the same label and type but
affecting a different set of components due to their influence range. In addition, including the system Sys
in the labels ensures that the communication rules are only applied to components in the same system.
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The set of labels for stochastic relations is thus defined as follows:

λs ::= (α, /0, Sys) Spontaneous action

| (!α,
#»

` ,Sys) Broadcast communication

| (!!α,
#»

` ,Sys) Unicast communication

The stochastic rules are summarised in Figure 2. Firstly we have rules Br, Uni and SpAct that just
define the primitive rules for all spontaneous actions and give the rates at which the defined transitions
can happen. For the rule Uni the side-condition is needed to ensure that there are eligible receivers
available in the system.

The rules BrCombo and UniPair are to combine the capability rules with stochastic rules to give rates
of system state transitions that are induced by broadcast or unicast message passing. BrCombo takes as
premise the existence of components S and P such that S can perform the broadcast communication
action defined by stochastic relations and P is capable of broadcast input. The rate at which the parallel
composition S ‖P reaches the next state S′ ‖P′ is given by the function f ⊗ g which is defined as the
product of f applied to the S′ and g applied to P. The unicast case is treated similarly.

Br !(α,r)@IR{ #»
` }.S (!α,

#»
` ,Sys)

s [S 7→ r]

Uni !!(α,r)@IR{ #»
` }.S (!!α,

#»
` ,Sys)

s [S 7→ r] if there exists S such that S (??α,
#»
` ,Sys)

c f

SpAct (α,r).S (α, /0,Sys)
s [S 7→ r]

(a) Primitive rules

S (!α,
#»
` ,Sys)

s f P (?α,
#»
` ,Sys)

c g
BrCombo

S‖P (!α?,
#»
` ,Sys) f ⊗g

( f ⊗g)(s) =

{
f (S′)g(P′) if s≡ S′ ‖P′

0 otherwise

S (!!α,
#»
` ,Sys)

s f P (??α,
#»
` ,Sys)

c g
UniPair

S‖P (!!α,
#»
` ,Sys)

s f ⊗g
( f ⊗g)(s) =

{
f (S′)g(P′) if s≡ S′ ‖P′

0 otherwise

(b) Combining with capabilities

P1
λs

s f
Parallel

P1 ‖P2
λs

s f ⊗ Id
( f ⊗ Id)(s) =

{
f (P′1) if s≡ P′1 ‖P2

0 otherwise

P2
λs

s f

P1 ‖P2
λs

s Id⊗ f
(Id⊗ f )(s) =

{
f (P′2) if s≡ P1 ‖P′2
0 otherwise

P1
λs

s f
Choice

P1 +P2
λs

s f

P2
λs

s f

P1 +P2
λs

s f

P λs
s f X := P

Constant
X λs

s f

(c) Rules for composition

Figure 2: Stochastic rules for rates

Suppose we want to derive a CTMC for the evolution of the model component Sys. For that we need
to consider all enabled stochastic transition rules from Sys. The CTMC has a transition from the state Sys
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to Sys′ if there is a transition Sys λs
s f such that f (Sys) 6= 0. The next step is to consider all transitions

from Sys′ and so on recursively until no new states are discovered and the full CTMC is generated.

4 Equivalence relations

Firstly we will briefly cover a naive attempt to define a bisimulation on sequential components of
PALOMA to demonstrate why it is not entirely trivial to deal with spatial properties of PALOMA mod-
els. The approach that allows us to relax the conditions on spatial properties of defined models will be
described in more detail.

In terms of semantic rules introduced in Section 3 we are going to say that S a−→ S′ holds if there is a
stochastic transition Sys λs

s f and a system Sys′ such that S′ ∈ seq(Sys′) and f (Sys′) 6= 0. In addition
the label λs is required to be such that

λs =


(α, /0, Sys) if a = α

(!α,
#»

` , Sys) if a =?α∨!α
(!!α,

#»

` , Sys) if a =??α∨!!α

As the behaviour of the PALOMA sequential component is parametrised by its location the natural
interpretation would be to consider locations as an inherent part of a component’s state. This would lead
to the following definition, making use of the syntax-derived rate function defined in Section 2.
Definition 4.1. Let Sys ∈ C be any model component serving as a context. A binary relation RSys is a
bisimulation over sequential components if, and only if, (S(`1),T (`2)) ∈RSys implies, for all a ∈ Act

1. Ra(Sys,S(`1)) = Ra(Sys,T (`2)).

2. `1 = `2.

3. S(`1)
a−→ S′(`′1) implies for some T ′(`′2), T (`2)

a−→ T ′(`′2) and (S′(`′1),T
′(`′2)) ∈RSys.

4. T (`2)
a−→ T ′(`′2) implies for some S′(`′1), S(`1)

a−→ S′(`′1) and (S′(`′1),T
′(`′2)) ∈RSys.

This definition would give rise to an equivalence relation on PALOMA components with respect to
the underlying context system. However, Definition 4.1 has some limitations due to the restrictive way
in which location is treated, and we will not pursue it further. Specifically, two sequential components
which have identical behaviour in different locations will be considered non-equivalent in this setting.
This would lead to a very strict equivalence being defined on the model components of PALOMA. A
more interesting idea is to shift to considering relative locations between the sequential components.
This will be explored in the following subsection.

4.1 Relative locations

In order to consider relative locations between sequential components we need a notion of distance
between the components. Thus we consider the case where Loc denotes a metric space. Specifically we
will consider the Euclidean plane R2 (extensions to different metric spaces are immediate).

The notion we make use of in the following discussion is that of isometries – that is, maps between
metric spaces that preserve the distances between points. In particular we are interested in the set of
Euclidean plane isometries of which we have four types: translations, rotations, reflections and glide
reflections. Denote the set of Euclidean plane isometries by E(2).

The first definition we are going to give mimics the Definition 4.1 but allows the locations of the
sequential components under consideration to differ by an element in E(2).
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Definition 4.2. Let φ ∈ E(2) and Sys ∈ C a system component serving as context. A binary relation
Rφ ,Sys is a bisimulation with respect to φ over components if, and only if, (S(`1),T (`2))∈Rφ ,Sys implies,
for all a ∈ Act, that

1. Ra(Sys,S(`1)) = Ra(Sys,T (`2)).

2. φ(`1) = `2.

3. S(`1)
a−→ S′(`′1) implies for some T ′(`′2), T (`2)

a−→ T ′(`′2) and (S′(`′1),T
′(`′2)) ∈Rφ ,Sys.

4. T (`2)
a−→ T ′(`′2) implies for some S′(`′1), T (`2)

a−→ S′(`′1) and (S′(`′1),T
′(`′2)) ∈Rφ ,Sys.

In this definition for sequential components the location plays little role. The situation becomes more
interesting when we attempt to extend the definition to model components C of PALOMA.

Definition 4.3. Let φ ∈ E(2) and Sys ∈ CS a model component serving as context. A binary relation
Rφ ,Sys is a bisimulation with respect to φ over model components if, and only if, (P,Q) ∈Rφ ,Sys implies,
for all a ∈ Act and all sets of locations L

1. Ra(L,Sys,P) = Ra(φ(L),Sys,Q).

2. P a−→ P′ implies for some Q, Q a−→ Q′ and (P′,Q′) ∈Rφ ,Sys.

3. Q a−→ Q′ implies for some P′, P a−→ P′ and (P′,Q′) ∈Rφ ,Sys.

From the definition we can easily see that any component is bisimilar to itself and that conditions are
symmetric – meaning we have (P,Q) ∈Rφ ,Sys =⇒ (Q,P) ∈Rφ ,Sys – and that transitivity holds. To be
able to define a bisimilarity as the largest bisimulation over the components would require us to verify
that a union of bisimulations is again a bisimulation.

Definition 4.4. Two model components P1,P2, defined over R2 are considered bisimilar with respect
to context system Sys, denoted P1 ∼Sys P2 if there exists an isometry φ ∈ E(2) and a corresponding
bisimulation Rφ ,Sys such that (P1,P2) ∈Rφ ,Sys.

The simplest case we can consider is bisimilarity with respect to empty context system Sys denoted
by /0. We illustrate this in the following example.

Example 4.1.

Transmitter(`0) := !!(message move,r)@IR{all}.Transmitter(`1)

Transmitter(`1) := !!(message move,r)@IR{all}.Transmitter(`0)

Receiver(`1) := ??(message move, p)@Wt{v}.Receiver(`0)

Receiver(`0) := ??(message move,q)@Wt{v}.Receiver(`1)

For this example take `0 = (−1,0) and `1 = (1,0). The two systems we are going to analyse are

Scenario1 := Transmitter(`0)‖Receiver(`1)

Scenario2 := Transmitter(`1)‖Receiver(`0)

It is clear that the systems are symmetric in the sense that if the locations in Scenario1 are reflected
along the y-axis we get Scenario2. Denote the reflection along the y-axis as φ . This give φ(`0) = `1 and
φ(`1) = `0.

It it intuitively clear that the two systems behave in the same way up to the starting location of the
Transmitter and Receiver in both systems. Thus it makes sense to abstract away the absolute locations
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and consider the given systems observationally equivalent up to spatial transformation φ . In the fol-
lowing we verify that applying Definition 4.3 to these examples indeed agrees with the intuition. The
two systems are considered on their own with no additional context – that is the Sys in Definiton 4.3
becomes /0.

R!!message move(`0, /0,Scenario1) = r R??message move(`1, /0,Scenario2) = rp

and

R!!message move(φ(`0), /0,Scenario1) = R!!message move(`1, /0,Scenario1) = r

R??message move(φ(`1), /0,Scenario2) = R!!message move(`0, /0,Scenario2) = rp

As the rest of the rates are 0 then the first condition in Definition 4.3 holds. To get the second and
third conditions requires verifying that the rates also match for derivatives of the systems Scenario1 and
Scenario2. This is not going to be done here but one can easily see that the same symmetries are going
to hold throughout the evolution of the systems and thus the Definition 4.4 would give that

Scenario1 ∼ /0 Scenario2

In the example we gave no additional context to the systems under study but the Definition 4.3 allows
for reasoning about the equivalence of the two components in the context of any given system. The
following example demonstrates that components being equivalent with respect to one context system
does not imply equivalence with respect to other contexts.

Example 4.2.

Transmitter(`0) := !!(message,r)@IR{all}.Transmitter(`0)

Receiver(`0) := ??(message,r)@IR{all}.Receiver(`0)

Sys := Transmitter(`0)

It can be verified that according to Definition 4.3 we have

Transmitter ∼ /0 Receiver

as neither component can perform an action due to the blocking nature of unicast communication. On
the other hand we have

Transmitter 6∼Sys Receiver

as the system Transmitter(`0)‖Transmitter(`0) would not perform an action while in Transmitter(`0)‖
Receiver(`0) we have unicast communication happening.

5 Conclusions and Future Work

The paper introducing the PALOMA language in its current form [?] concentrated on the fluid analysis
of CTMCs defined on population counts and gave semantic rules for generating a model in the Multi-
message Multi-class Markovian Agents Model framework [?]. In order to have a rigorous foundation for
bisimulation definitions we have introduced the new agent level semantics in the FuTSs framework [?].
Several other process algebras that capture the relative locations of interacting entities have been devel-
oped. In relation to systems biology there is, for example, SpacePi [?] where locations are defined in
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real coordinate spaces and for wireless networks there is, for example, CWS [?] which makes no restric-
tions on the notion of location that can be used. However, there is very little work exploring notions of
equivalence for spatially distributed systems.

We presented an idea for a bisimulation of PALOMA models which allows us to abstract away
explicitly defined locations of PALOMA components and use relative locations of sequential components
as the basis of the model comparison. This idea relies on working over the Euclidean plane and being
able to apply isometries to the model components of PALOMA leaving the relative spatial structure of
the model components intact. As the behaviour of PALOMA components is dependent on the context in
which they appear thus definitions of equivalences are given in terms of the context system.

The bisimulation ideas presented are intended to serve as a grounding for further development of
model comparison and analysis methods for systems with explicitly defined spatial location. From the
modelling and simulation perspective the aim of equivalence relations is to provide formal ways of reduc-
ing the state space of the underlying CTMC by allowing us to swap out components in the model for ones
generating a smaller state space while leaving the behaviour of the model the same up to some equiv-
alence relation. In particular, it is useful to consider such equivalence relations that induce a lumpable
partition at the CTMC level.
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