

Edinburgh Research Explorer

Semantics for probabilistic programming: higher-order
functions, continuous distributions, and soft constraints
Citation for published version:
Staton, S, Yang, H, Heunen, C, Kammar, O & Wood, F 2016, Semantics for probabilistic programming:
higher-order functions, continuous distributions, and soft constraints. in LICS '16 Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, New York, USA, pp. 525-534, 31st
Annual ACM/IEEE Symposium on Logic in Computer Science, New York City, United States, 5/07/16. DOI:
10.1145/2933575.2935313

Digital Object Identifier (DOI):
10.1145/2933575.2935313

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
LICS '16 Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/80784196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2933575.2935313
https://www.research.ed.ac.uk/portal/en/publications/semantics-for-probabilistic-programming-higherorder-functions-continuous-distributions-and-soft-constraints(d7bf4f7a-663f-49cb-9f4e-5c184566a989).html

Semantics for probabilistic programming: higher-order
functions, continuous distributions, and soft constraints

Sam Staton Hongseok Yang
Frank Wood

University of Oxford

Chris Heunen
University of Edinburgh

Ohad Kammar
University of Cambridge

Abstract
We study the semantic foundation of expressive probabilistic pro-
gramming languages, that support higher-order functions, continu-
ous distributions, and soft constraints (such as Anglican, Church,
and Venture). We define a metalanguage (an idealised version of
Anglican) for probabilistic computation with the above features,
develop both operational and denotational semantics, and prove
soundness, adequacy, and termination. They involve measure the-
ory, stochastic labelled transition systems, and functor categories,
but admit intuitive computational readings, one of which views
sampled random variables as dynamically allocated read-only vari-
ables. We apply our semantics to validate nontrivial equations un-
derlying the correctness of certain compiler optimisations and in-
ference algorithms such as sequential Monte Carlo simulation. The
language enables defining probability distributions on higher-order
functions, and we study their properties.

1. Introduction
Probabilistic programming is the idea to use programs to specify
probabilistic models; probabilistic programming languages blend
programming constructs with probabilistic primitives. This helps
scientists express complicated models succinctly. Moreover, such
languages come with generic inference algorithms, relieving the
programmers of the nontrivial task of (algorithmically) answering
queries about their probabilistic models. This is useful in e.g. ma-
chine learning.

Several higher-order probabilistic programming languages have
recently attracted a substantial user base. Some languages (such
as Infer.net [21], PyMC [26], and Stan [33]) are less expressive
but provide powerful inference algorithms, while others (such as
Anglican [34], Church [12], and Venture [20]) have less efficient
inference algorithms but more expressive power. We consider the
more expressive languages, that support higher-order functions,
continuous distributions, and soft constraints. More precisely, we
consider a programming language (§3) with higher-order functions
(§6) as well as the following probabilistic primitives.

Sampling The command sample(t) draws a sample from a distri-
bution described by t, which may range over the real numbers.

Soft constraints The command score(t) puts a score t (a positive
real number) on the current execution trace. This is typically
used to record that some particular datum was observed as being
drawn from a particular distribution; the score describes how
surprising the observation is.

Normalization The command norm(u) runs a simulation algo-
rithm over the program fragment u. This takes the scores into
account and returns a new, normalized probability distribution.
The argument to sample might be a primitive distribution, or

a distribution defined by normalizing another program. This is
called a nested query, by analogy with database programming.

Here is a simple example of a program. We write gauss(µ, σ)
for the Gaussian probability distribution whose density function is
density gauss(a, (µ, σ)) = 1

σ
√

2π
exp(− (a−µ)2

2σ2).

1 norm(
2 letx = sample(gauss(0.0, 3.0)) in
3 score(density gauss(5.0, (x, 1.0));
4 return(x < 4.5))

(1)

Line 2 samples x from a prior Gaussian distribution. The soft con-
straint on Line 3 expresses the likelihood of the observed data, 5.0,
coming from a Gaussian given the prior x. Line 4 says that what we
are actually interested in is a boolean random variable over the sam-
ple space. Line 1 calculates a posterior distribution for the return
value, using the prior and the likelihood. In this example we can
precisely calculate that the posterior distribution on {true, false}
has p(true) = 0.5.

Languages like this currently lack formal exact semantics. The
aim of this paper is to provide just such a foundation as a basis
for formal reasoning. Most expressive probabilistic programming
languages are explained in terms of their Monte Carlo simulation
algorithms. The simplest such algorithm, using importance and
rejection sampling, is the de facto semantics against which other
algorithms are ‘proved approximately correct’. Such ‘semantics’
are hard to handle and extend.

We provide two styles of semantics, operational and denota-
tional. For first-order probabilistic programs, the denotational se-
mantics is straightforward: types are interpreted as measurable
spaces, and terms are interpreted as measurable functions (§4). Op-
erational semantics is more complicated. For discrete distributions,
an operational semantics might be a probabilistic transition system,
but for continuous distributions, it must be a stochastic relation (la-
belled Markov process). We resolve this by equipping the set of
configurations with the structure of a measurable space (§5).

The advantage to the operational semantics is that it is easily
extended to higher-order programs (§7). Denotational semantics for
higher-order programs poses a problem, because measurable spaces
do not support the usual β/η theory of functions: they do not form
a Cartesian closed category (indeed, RR does not exist as a measur-
able space [3]). Earlier semantics deal with this by either excluding
higher-order functions or considering only discrete distributions.
We resolve this by moving from the category of measurable spaces,
where standard probability theory takes place, to a functor category
based on it (§8). The former embeds in the latter, so we can still
interpret first-order concepts. But the functor category does have
well-behaved function spaces, so we can also interpret higher-order
concepts. Moreover, by lifting the monad of probability distribu-

1 2016/5/6

tions [11] to the functor category, we can also interpret continuous
distributions. Finally, we can interpret observations by considering
probability distributions with continuous density, irrespective of the
categorical machinery (§9).

The denotational semantics is sound and adequate with respect
to the operational semantics (§5.3,8.3), which means one can use
the denotational model to directly check program equations whilst
respecting computational issues. For example:

• we demonstrate a key program equation for sequential Monte
Carlo simulation (§4.1);

• we show that every term of first-order type is equal to one
without λ-abstractions or application, and hence is interpreted
as a measurable function (Proposition 8.3).

2. Preliminaries
We recall basic definitions and facts of measure theory.

Definition 2.1. A σ-algebra on a set X is a family Σ of subsets
of X , called measurable (sub)sets, which contains X and is closed
under complements and countable unions. A measurable space is a
set with a σ-algebra.

A measure on a measurable space (X,Σ) is a function p : Σ→
[0,∞] such that p(∅) = 0 and p(

⋃
i∈N Ui) =

∑
i∈N p(Ui) for each

sequence U1, U2, . . . of disjoint measurable sets. A probability
measure or probability distribution is a measure p with p(X) = 1.

In the paper we use a few important constructions for measur-
able spaces. The first is to make a setX into a measurable space by
taking the full powerset of X as Σ, yielding a discrete measurable
space. When X is countable, a probability distribution on (X,Σ)
is determined by its values on singleton sets, that is, by specifying
a function p : X → [0, 1] such that

∑
x∈X p(x) = 1.

The second construction is to combine a collection of measur-
able spaces (Xi,Σi)i∈I by sum or product. The underlying sets are
the disjoint union

∑
i∈I Xi and product

∏
i∈I Xi of sets. The mea-

surable sets in the sum are
∑
i∈I Ui for Ui ∈ Σi. The σ-algebra of

the product is the smallest one containing all the subsets
∏
i∈I Ui

where Ui ∈ Σi equals Xi but for a single index i.
For the third, the real numbers form a measurable space (R,ΣR)

under the smallest σ-algebra that contains the open intervals; the
measurable sets are called Borel sets. Restricting to any measurable
subset gives a new measurable space, such as the space R≥0 of
nonnegative reals and the unit interval [0, 1].

The fourth construction is to make the set P (X) of all proba-
bility measures on a measurable space (X,ΣX) into a measurable
space, by letting ΣP (X) be the smallest σ-algebra containing the
sets {p ∈ P (X) | p(U) ∈ V } for all U ∈ ΣX and V ∈ Σ[0,1].

Definition 2.2. Let (X,ΣX), (Y,ΣY) be measurable spaces. A
function f : X → Y is measurable if f -1(U) ∈ ΣX for U ∈ ΣY .

We can push forward a measure along a measurable function:
if p : ΣX → [0, 1] is a probability measure on (X,ΣX) and
f : X → Y is a measurable function, then q(U) = p(f -1(U))
is a probability measure on (Y,ΣY).

Definition 2.3. A stochastic relation between measurable spaces
(X,ΣX) and (Y,ΣY) is a function r : X ×ΣY → [0, 1] such that
r(x,−) : ΣY → [0, 1] is a probability distribution for all x ∈ X ,
and r(−, V) : X → [0, 1] is measurable for all V ∈ ΣY .

Giving a stochastic relation from (X,ΣX) to (Y,ΣY) is equiva-
lent to giving a measurable function (X,ΣX) → (P (Y),ΣP (Y)).
Stochastic relations r : X ×ΣY → [0, 1] and s : Y ×ΣZ → [0, 1]
compose associatively to (s◦r) : X×ΣZ → [0, 1] via the formula

(s ◦ r)(x,W) =

∫
Y

s(y,W) r(x,dy).

Finally, for a predicate ϕ, we use the indicator expression [ϕ] to
denote 1 if ϕ holds, and 0 otherwise.

3. A first-order language
This section presents a first-order language for expressing Bayesian
probabilistic models. The language forms a first-order core of a
higher-order extension in Section 6, and provides a simpler setting
to illustrate key ideas. The language includes infinitary type and
term constructors, constant terms for all measurable functions be-
tween measurable spaces, and constructs for specifying Bayesian
probabilistic models, namely, operations for sampling distributions,
scoring samples, and normalizing distributions based on scores.
This highly permissive and slightly unusual syntax is not meant
to be a useful programming language itself. Rather, its purpose is
to serve as a semantic metalanguage to which a practical program-
ming language compiles, and to provide a mathematical setting for
studying high-level constructs for probabilistic computation.

Types The language has types

A,B ::= R | P(A) | 1 | A× B |
∑
i∈I

Ai

where I ranges over countable sets. A type A stands for a mea-
surable space JAK. For example, R denotes the measurable space
of reals, P(A) is the space of probability measures on A, and 1
is the (discrete) measurable space on the singleton set. The other
type constructors correspond to products and sums of measurable
spaces. Notice that countable sums are allowed, enabling us to ex-
press usual ground types in programming languages via standard
encoding. For instance, the type for booleans is 1 + 1, and that for
natural numbers

∑
i∈N 1.

Terms We distinguish typing judgements: Γ d̀ t : A for deter-
ministic terms, and Γ p̀ t : A for probabilistic terms (see also
e.g. [19, 25, 29]). In both, A is a type, and Γ is a list of variable/type
pairs. Variables stand for deterministic terms.

Intuitively, a probabilistic term Γ p̀ t : A may have two kinds
of effects: during evaluation, t may sample from a probability
distribution, and it may score the current execution trace (typically
according to likelihood of data). Evaluating a deterministic term
Γ d̀ t : A does not have any effects.

Sums and products The language includes variables, and stan-
dard constructors and destructors for sum and product types.

Γ, x : A,Γ′ d̀ x : A
Γ d̀ t : Ai

Γ d̀ (i, t) :
∑
i∈I Ai

Γ d̀ t :
∑
i∈I Ai (Γ, x : Ai z̀ ui : B)i∈I

Γ z̀ case t of {(i, x)⇒ ui}i∈I : B
(z ∈ {d, p})

Γ d̀ ∗ : 1

Γ d̀ tj : Aj for all j ∈ {0, 1}
Γ d̀ (t0, t1) : A0 × A1

Γ d̀ t : A0 × A1

Γ d̀ πj(t) : Aj
In the rules for sums, I may be infinite. In the last rule, j is 0 or 1.
We use some standard syntactic sugar, such as false and true for the
injections in the type bool = 1 + 1, and if for case in that instance.

Sequencing We include the standard constructs (e.g. [19, 22]).

Γ d̀ t : A
Γ p̀ return(t) : A

Γ p̀ t : A Γ, x : A p̀ u : B
Γ p̀ let x = t in u : B

Where A = 1, we write (t;u) for letx = t inu.

Language-specific constructs The language has constant terms
for all measurable functions.

Γ d̀ t : A
Γ d̀ f(t) : B

(f : JAK→ JBK measurable) (2)

2 2016/5/6

In particular, all the usual distributions are in the language, in-
cluding the Dirac distribution dirac(x) concentrated on outcome
x, the Gaussian distribution gauss(µ, σ) with mean µ and stan-
dard deviation σ, the Bernoulli distribution bern(p) with success
probability p, the exponential distribution exp(r) with rate r, and
the Beta distribution beta(α, β) with parameters α, β.1 For exam-
ple, from the measurable functions 42.0: 1 → R, e(−) : R → R,
gauss : R× R→ P (R) and < : R× R→ 1 + 1 we can derive:

Γ d̀ 42.0: R
Γ d̀ t : R
Γ d̀ e

t : R
Γ d̀ µ : R Γ d̀ σ : R

Γ d̀ gauss(µ, σ) : P(R)

Γ d̀ t : R Γ d̀ u : R
Γ d̀ t < u : bool

The following terms form the core of our language.

Γ d̀ t : P(A)

Γ p̀ sample(t) : A
Γ d̀ t : R

Γ p̀ score(t) : 1

The first term samples a value from a distribution t. The second
multiplies the score of the current trace with t. Since both of these
terms express effects, they are typed under p̀ instead of d̀.

The reader may think of the score of the current execution trace
as a state, but it cannot be read, nor changed arbitrarily: it can
only be multiplied by another score. The argument t in score(t) is
usually the density of a probability distribution at an observed data
point. For instance, recall the example (1) from the Introduction:

norm(letx = sample(gauss(0.0, 3.0)) in
score(density gauss(5.0, (x, 1.0)); return(x < 4.5))

An execution trace is scored higher when x is closer to the datum 5.
When the argument t in score(t) is 0, this is called a hard

constraint, meaning ‘reject this trace’; otherwise it is called a soft
constraint. In the discrete setting, hard constraints are more-or-less
sufficient, but even then, soft constraints tend to be more efficient.

Normalization Two representative tasks of Bayesian inference
are to calculate the so-called posterior distribution and model evi-
dence from a prior distribution and likelihood. Programs built from
sample and score can be thought of as setting up a prior and a like-
lihood. Consider the following program:

let x = sample(bern(0.25)) in
let y = (if x then return 5.0 else return 2.0) in
score(density exp(0.0, y)); return(x)

Here the prior y comes from the Bernoulli distribution, and the
likelihood concerns datum 0.0 coming from an exponential distri-
bution with rate y. Recall that density exp(0.0, y) = y. So there
are two execution traces, returning either true, with probability
0.25 and score 5.0, or false, with probability 0.75 and score 2.0.

The product of the prior and likelihood gives an unnormalized
posterior distribution on the return value: (true 7→ 0.25·5=1.25,
false 7→ 0.75·2=1.5). The normalizing constant is the average
score: (0.25·5 + 0.75·2) = 2.75, so the posterior is (true 7→
1.25
2.75
≈0.45, false 7→ 1.5

2.75
≈0.55). The average score is called the

model evidence. It is a measure of how well the model encoded by
the program matches the observation.

Note that the sample x = true matches the datum better, so the
probability of true goes up from 0.25 to 0.45 in the posterior.

In our language we have a term norm(t) that will usually con-
vert a probabilistic term t into a deterministic value, which is its
posterior distribution together with the model evidence.

Γ p̀ t : A
Γ d̀ norm(t) : (R× P(A)) + 1 + 1

1 Usually, gauss(0.0, 0.0) is undefined, but we just let gauss(0.0, 0.0) =
gauss(0.0, 1.0), and so on, to avoid worrying about this sort of error.

If the model evidence is 0 or ∞, the conversion fails, and this is
tracked by the ‘+1+1’.

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. The basic idea can be traced back a long
way (e.g. [17]) but our treatment of score and norm appear to be
novel. As described, types A are interpreted as measurable spaces
JAK. A context Γ = (x1 : A1, . . . , xn : An) is interpreted as the
measurable space JΓK def

=
∏n
i=1JAiK of its valuations.

• Deterministic terms Γ d̀ t : A are interpreted as measurable
functions JtK : JΓK→ JAK, providing a result for each valuation
of the context.

• Probabilistic terms Γ p̀ t : A are interpreted as measurable
functions JtK : JΓK → P (R≥0 × JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

Informally, if (Ω, p : Ω→[0, 1]) is the prior sample space of the pro-
gram (specified by sample), and l : Ω→R≥0 is the likelihood (spec-
ified by score), and r : Ω→ JAK is the return value, then a measure
in P (R≥0 × JAK) is found by pushing forward p along (l, r).

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, JΓ, x : A,Γ′ d̀ x : AK(γ, a, γ′) def

= a,
and JΓ d̀ f(t) : AK(γ)

def
= f(JtK(γ)) for measurable f : JAK→ JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions JΓK→ JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(γ)(U)
def
= [(1, JtK(γ)) ∈ U],

which denotes a Dirac distribution, and Jletx = t inuK(γ)(V) is∫
R≥0×JAK

(
JuK(γ, x)

({
(s, b)

∣∣ (r · s, b)∈V }))(JtK(γ)(d(r, x))
)
.

As we will explain shortly, these interpretations come from treating
P (R≥0 × (−)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K

The last two equestions assume the standard conditions on free
variables of u, v and t. The last equation justifies a useful program
optimisation technique [34, §5.5].

Language-specific constructs We use the monad:

Jsample(t)K(γ)(U)
def
= JtK(γ)({a | (1, a) ∈ U})

Jscore(t)K(γ)(U)
def
= [(max(JtK(γ), 0), ∗) ∈ U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gauss(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bern(0.5))K

s
letx = sample(gauss(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalization We interpret norm(t) as follows. Each probabil-
ity measure p on (R≥0 × X) induces an unnormalized posterior
measure p̄ on X: let p̄(U) =

∫
R≥0×U

r p(d(r, x)). As long as the
average score p̄(X) is not 0 or ∞, we can normalize p̄ to build

3 2016/5/6

a posterior probability measure on X . This construction forms a
natural transformation ιX : P (R≥0×X)→ (R×P (X)) + 1 + 1

ιX(p)
def
=

(1, ∗) if p̄(X) = 0

(2, ∗) if p̄(X) =∞(
0,
(
p̄(X), λU. p̄(U)

p̄(X)

))
otherwise

(3)

Let Jnorm(t)K(γ)
def
= ι(JtK(γ)). Here are some examples:

s
norm(letx = sample(gauss(0.0, 3.0)) in

score(density gauss(5.0, (x, 1.0)); return(x < 4.5))

{

=
(
0, (xxx, bern(0.5))

)
s
norm

(
let x = sample(bern(0.25)) in
(if x then score(5.0) else score(2.0)); return(x)

){
=
(
0, (2.75, bern(5

11
))
)

Jnorm
(
letx = sample(exp(1.0)) in score(ex)

)
K = (2, ∗)

s
norm

(
letx = sample(beta(1, 3))
in score(x); return(x)

) {
=

s
norm

(
score(1

1+3
);

sample(beta(2, 3))
){

The fourth equation shows how infinite model evidence errors can
arise when working with infinite distributions. In the last equation,
the parameter x of score(x) represents the probability of true
under bern(x). The equation expresses the so called conjugate-
prior relationship between Beta and Bernoulli distributions, which
has been used to optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

(
R≥0 × (−)

)
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1], [? , §6]). Recall that a commutative monad
(T, η, µ, σ) in general comprises an endofunctor T together with
natural transformations ηX : X → T (X), µX : T (T (X)) →
T (X), σX,Y : X×T (Y)→ T (X×Y) satisfying some laws [16].
Using this structure we interpret return and let following Moggi [22]:

JΓ p̀ return(t) : AK(γ)
def
= ηJAK

(
JtK(γ)

)
JΓ p̀ letx = t inu : BK(γ)

def
=µJBK

(
T (JuK)

(
σJΓK,JAK(γ, JtK(γ))

))
Concretely, we make P (R≥0 × (−)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R≥0, ·, 1) with the monoid monad transformer.

(We record a subtle point about ι (3). It is not a monad mor-
phism, and we we cannot form a commutative monad of all mea-
sures because the Fubini property does not hold in general.)

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalize and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

Jnorm(letx = t in (score(u); v))K
= Jnorm(case (norm(letx = t in score(u); return(x))) of 1

(0, (e, d))⇒ score(e); letx = sample(d) in v 2
| (1, ∗)⇒ score(0); return(w) 3
| (2, ∗)⇒ letx = t in (score(u); v))K 4

Let us explain the right hand side. Line 1 renormalizes the program
after the score, and in non-exceptional execution returns the model
evidence e and a new normalized distribution d. Line 2 immediately
records the evidence e as a score, and then resamples d, using

the resampled value in the continuation v. Line 3 propagates the
error of 0: w is a deterministic term of the right type whose choice
does not matter. Finally, line 4 detects an infinite evidence error,
and undoes the transformation. This error does not arise in most
applications of sequential Monte Carlo simulation.

5. Operational semantics
In this section we develop an operational semantics for the first-
order language. There are several reasons to consider this, even
though the denotational semantics is arguably straightforward.
First, extension to higher-order functions is easier in operational
semantics than in denotational semantics. Second, operational se-
mantics conveys computational intuitions that are obscured in the
denotational semantics. We expect these computational intuitions
to play an important role in studying approximate techniques for
performing posterior inference, such as sequential Monte Carlo, in
the future.

Sampling from probability distributions complicates opera-
tional semantics. Sampling from a discrete distribution can im-
mediately affect control flow. For example, in the term

letx= sample(bern(0.5)) in if x then return(1.1) else return(8.0)

the conditional depends on the result of sampling the Bernoulli
distribution. The result is 1.1 with probability 0.5 (cf. [5, §2.3]).

Sampling a distribution on R introduces another complication.
Informally, there is a transition

sample(gauss(0.0, 1.0)) −→ return(r)

for every real r, but any single transition has zero probability. We
can assign non-zero probabilities to sets of transitions; informally:

Pr
(
sample(gauss(0.0, 1.0)) −→ {return(r) | r ≤ 0}

)
= 0.5.

To make this precise we need a σ-algebra on the set of terms, which
can be done using configurations rather than individual terms.
A configuration is a closure: a pair 〈t, γ〉 of a term t with free
variables and an environment γ giving values for those variables
as elements of a measurable space. (See also [13, §3], [? , §3].)

Sampling a distribution p on R+R exhibits both complications:

letx = sample(p) in casex of (0, r)⇒ return(r + 1.0)

|(1, r)⇒ return(r − 1.0)
(4)

The control flow in the case distinction depends on which sum-
mand is sampled, but there is potentially a continuous distribution
over the return values. We handle this by instantiating the choice
of summand in the syntax, but keeping the value of the summand
in the environment, so that expression (4) can make a step to the
closure

〈 let x = return(0, y) in
casex of (0, r)⇒ return(r + 1.0)

|(1, r)⇒ return(r − 1.0)

, y 7→ 42.0〉.

A type is indecomposable if it has the form R or P(A), and a
context Γ is canonical if it only involves indecomposable types.

Configurations Let z ∈ {d, p}. A z-configuration of type A is a
triple 〈Γ, t, γ〉 comprising a canonical context Γ, a derivable term
Γ z̀ t : A, and an element γ of the measurable space JΓK. We
identify contexts that merely rename variables, such as

〈(x : R, y : P(R)), f(x, y), (x 7→ 42.0, y 7→ gauss(0.0, 1.0))〉
≈〈(u : R, v : P(R)), f(u, v), (u 7→ 42.0, v 7→ gauss(0.0, 1.0))〉.
We call d-configurations deterministic configurations, and p-config-
urations probabilistic configurations; they differ only in typing. We
will abbreviate configurations to 〈t, γ〉 when Γ is obvious.

4 2016/5/6

Values v in a canonical context Γ are well-typed deterministic
terms of the form

v, w ::= xi | ∗ | (v, w) | (i, v) (5)

where xi is a variable in Γ. Similarly, a probabilistic term t in
context Γ is called probabilistic value or p-value if t ≡ return(v0)
for some value v0. Remember from Section 4 that the denotational
semantics of values is simple and straightforward.

Write Cond(A) and Conp(A) for the sets of deterministic and
probabilistic configurations of type A, and make them into measur-
able spaces by declaring U ⊆ Conz(A) to be measurable if the set
{γ ∈ JΓK | 〈t, γ〉 ∈ U} is measurable for all judgements Γ z̀ t : A.

Conz(A) =
∑
(Γ,t)

Γ canonical,
Γ z̀ t : A

JΓK (6)

Further partition Conz(A) into ConVz(A) and ConNz(A)
based on whether a term in a configuration is a value or not:

ConVd(A) = {〈Γ, t, γ〉 ∈ Cond(A) | t is a value}
ConNd(A) = {〈Γ, t, γ〉 ∈ Cond(A) | t is not a value}
ConVp(A) = {〈Γ, t, γ〉 ∈ Conp(A) | t is a p-value}
ConNp(A) = {〈Γ, t, γ〉 ∈ Conp(A) | t is not a p-value}

Particularly well-behaved values are the ordered values Γ d̀ v : A,
where each variable appears exactly once, and in the same order as
in Γ.

Lemma 5.1. Consider a canonical context Γ, a type A, an ordered
value Γ d̀ v : A, and the induced measurable function

JvK : JΓK→ JAK.

The collection of all such functions for given A is countable, and
forms a coproduct diagram.

Proof. By induction on the structure of types. The key fact is that
every type is a sum of products of indecomposable ones, because
the category of measurable spaces is distributive, i.e. the canonical
map

∑
i∈I(A× Bi)→ A×

∑
i∈I Bi is an isomorphism.

For example, A = (R× bool) + (R× R) has 3 ordered values,
first (x : R d̀ (0, (x, true)) : A), second (x : R d̀ (0, (x, false)) : A),
and third (x : R, y : R d̀ (1, (x, y)) : A), inducing a canonical mea-
surable isomorphism R + R + R× R ∼= JAK.

Evaluation contexts We distinguish three kinds of evaluation
contexts: C[−] is a context for a deterministic term with a hole for
deterministic terms; D[−] and E [−] are contexts for probabilistic
terms, the former with a hole for probabilistic terms, the latter with
a hole for deterministic terms.
C[−] ::= (−) | πj C[−] | (C[−], t) | (v, C[−]) | (i, C[−])

| case C[−] of {(i, x)⇒ ti}i∈I | f(C[−])

D[−] ::= (−) | let x = D[−] in t

E [−] ::= D[return[−]] | D[sample[−]] | D[score[−]]

| case D[−] of {(i, x)⇒ ti}i∈I

(7)

where t, ti are general terms and v is a value.

5.1 Reduction
Using the tools developed so far, we will define a measurable
function for describing the reduction of d-configurations, and a
stochastic relation for describing that of p-configurations:

−→ : ConNd(A)→ Cond(A),

−→ : ConNp(A)× ΣR≥0×Conp(A) → [0, 1],

parameterised by a family of measurable functions

νA : Conp(A)→
(
R≥0 × P (JAK)

)
+ 1 + 1 (8)

indexed by types A.

Reduction of deterministic terms Define a type-indexed family
of relations −→ ⊆ ConNd(A) × Cond(A) as the least one that is
closed under the following rules.

〈Γ, πj(v0, v1), γ〉 −→ 〈Γ, vj , γ〉

〈Γ, case (i′, v) of {(i, x)⇒ ti}i∈I , γ〉 −→ 〈Γ, ti′ [v/x], γ〉

〈Γ, f(w), γ〉 −→ 〈(Γ,Γ′), v, (γ, γ′)〉
(w a value ∧ Γ′ d̀ v : A an ordered value ∧ f(JwK(γ)) = JvK(γ′))

〈Γ, norm(t), γ〉 −→ 〈(Γ, x:R, y:P(B)), (0, (x, y)), γ[x 7→r, y 7→p]〉
(A=P(B) ∧ νB(〈Γ, t, γ〉) = (0, (r, p)) ∧ x, y 6∈ dom(Γ))

〈Γ, norm(t), γ〉 −→ 〈Γ, (i, ∗), γ〉
(A=P(B) ∧ νB(〈Γ, t, γ〉) = (i, ∗), i ∈ {1, 2})

〈Γ, t, γ〉 −→ 〈Γ′, t′, γ′〉
〈Γ, C[t], γ〉 −→ 〈Γ′, C[t′], γ′〉

(C[−] is not (−))

The rule for f(w) keeps the original context Γ and the closure γ
because they might be used in the continuation, even though they
are not used in v. The rules obey the following invariant.

Lemma 5.2. If 〈Γ, t, γ〉 −→ 〈Γ′, t′, γ′〉, then Γ′ = (Γ,Γ′′) and
γ′ = (γ, γ′′) for some Γ′′ and γ′′ ∈ JΓK′′.

Proof. By induction on the structure of derivations.

This lemma allows us to confirm that our specification of a relation
−→ ⊆ ConNd(A) × Cond(A) is well-formed (‘type preserva-
tion’).

Proposition 5.3. The induced relation is a measurable function.

Proof. There are three things to show: that the relation is entire
(‘progress’); that the relation is single-valued (‘determinacy’); and
that the induced function is measurable. All three are shown by
induction on the structure of terms. The case of application of
measurable functions crucially uses Lemma 5.1.

Reduction of probabilistic terms Next, we define the stochastic
relation −→ for probabilistic terms, combining two standard ap-
proaches: for indecomposable types, which are uncountable, use
labelled Markov processes, i.e. give a distribution on the measur-
able set of resulting configurations; for decomposable types (sums,
products etc.), probabilistic branching is discrete and so a transition
system labelled by probabilities suffices.

Proposition 5.4. Let (Xi)i∈I be an indexed family of measurable
spaces. Suppose we are given:

• a function q : I → [0, 1] that is only nonzero on a countable
subset I0 ⊆ I , and such that

∑
i∈I0 q(i) = 1;

• a probability measure qi on Xi for each i ∈ I0.

This determines a probability measure p on
∑
i∈I Xi by

p(U) =
∑
i∈I q(i) qi({a | (i, a) ∈ U})

for U a measurable subset of
∑
i∈I Xi,

We will use three entities to define the desired stochastic relation
−→ : ConNp(A)× ΣR≥0×Conp(A) → [0, 1].

5 2016/5/6

Pr(〈Γ, E [t], γ〉 −→ (Γ′, E [t′]))
def
=
[
〈Γ, t, γ〉 −→ 〈Γ′, t′, γ′〉

]
Pr(〈Γ,D[t], γ〉 −→ (Γ′,D[t′]))

def
= Pr(〈Γ, t, γ〉 −→ (Γ′, t′))

Pr(〈Γ, letx = return(v) in t, γ〉 −→ (Γ, t[v/x]))
def
= 1

Pr(〈Γ, case (j, v) of {(i, x)⇒ ti}i∈I , γ〉 −→ (Γ, tj [v/x]))
def
= 1

Pr(〈Γ, score(v), γ〉 −→ (Γ, return(∗))) def
= 1

Pr(〈Γ, sample(v), γ〉 −→ ((Γ,Γ′), return(v′)))

def
=

{
JvK(γ)({Jv′K(γ′) | γ′ ∈ JΓ′K}) if Γ′ d̀ v

′ : A ordered

0 otherwise

Pr(〈Γ, E [t], γ〉 −→(Γ′,E[t′]) U)
def
= [〈Γ, t, γ〉 −→ 〈Γ′, t′, γ′〉 ∧ γ′ ∈U]

Pr(〈Γ,D[t], γ〉 −→(Γ′,D[t′]) U)
def
= Pr(〈Γ, t, γ〉 −→(Γ′,t′) U)

Pr(〈Γ, letx = return(v) in t, γ〉 −→(Γ,t[v/x]) U)
def
= [γ ∈ U]

Pr(〈Γ, case (j, v) of {(i, x)⇒ ti}i∈I , γ〉−→Γ,tj [v/x]U)
def
= [γ ∈U]

Pr(〈Γ, score(v), γ〉 −→(Γ,return(∗)) U)
def
= [γ ∈ U]

Pr(〈Γ, sample(v), γ〉 −→((Γ,Γ′),return(v′)) U)

def
=

JvK(γ)({Jv′K(γ′) | γ′ ∈ JΓ′K ∧ (γ, γ′) ∈ U})
JvK(γ)({Jv′K(γ′) | γ′ ∈ JΓ′K})

Sc(〈Γ, E [t], γ〉) def
= 1 Sc(〈Γ,D[t], γ〉) def

= Sc(〈Γ, t, γ〉)

Sc(〈Γ, sample(v), γ〉) def
= 1

Sc(〈Γ, score(v), γ〉) def
= max(JvK(γ), 0)

Sc(〈Γ, letx = return(v) in t, γ〉) def
= 1

Sc(〈Γ, case (j, v) of {(i, x)⇒ ti}i∈I , γ〉)
def
= 1

Figure 1. Entities used to define reduction of probabilistic terms

1. A countably supported probability distribution on the set
{(Γ, t) | Γ p̀ t : A} for each C ∈ ConNp(A). We write
Pr(C −→ (Γ, t)) for the probability of (Γ, t).

2. A probability measure on the space JΓK for eachC ∈ ConNp(A)
and (Γ, t) with Pr(C −→ (Γ, t)) 6= 0. Write Pr(C −→Γ,t U)
for the probability of a measurable subset U ⊆ JΓK.

3. A measurable function Sc: ConNp(A) → R≥0, representing
the score of the one-step transition relation. (For one-step tran-
sitions, the score is actually deterministic.)

These three entities are defined by induction on the structure of the
syntax of A-typed p-configurations in Figure 1. We combine them
to define a stochastic relation as follows.

Proposition 5.5. The map ConNp(A) × ΣR≥0×Conp(A) → [0, 1]

that sends (C,U) to Pr(C −→ U), defined as∑
(Γ,t)

Pr
(
C −→ (Γ, t)

)
Pr
(
C −→Γ,t {γ | (Sc(C), 〈Γ, t, γ〉)∈U}

)
,

is a stochastic relation.

Proof. For each p-configuration C = 〈 , t, 〉, use induction on t
to see that the probability distribution Pr

(
C −→ (−)

)
on pairs

(Γ′, t′) and the distribution Pr(C −→(−) (−)) indexed by such
pairs satisfy the conditions in Proposition 5.4. It follows that the
partial evaluation Pr(C −→ (−)) of the function in the statement
is a probability measure, so it suffices to establish measurability of
the other partial evaluation Pr((−) −→ U). Recall that ConNp(A)
is defined in terms of the sum of measurable spaces, and that all
p-configurations in each summand have the same term. Finally,
use induction on the term shared by all p-configurations in the
summand to see that the restriction of Pr((−) −→ U) to each
summand is measurable.

5.2 Termination
To see that the reduction process terminates, we first define the
transitive closure. This is subtle, as sampling can introduce count-
ably infinite branching; although each branch will terminate, the
expected number of steps to termination can be infinite.

We use the deterministic transition relation to define an evalu-
ation relation ⇓ ⊆ Cond(A) × ConVd(A), by setting C ⇓ D if
∃n.C ⇓n D, where

C ⇓0 C
(C ∈ ConVd(A))

D ⇓n E C −→ D

C ⇓n+1 E

To define evaluation for probabilistic configurations, we need sub-
stochastic relations: functions f : X × ΣY → [0, 1] that are
measurable in X , satisfy f(x, Y) ≤ 1 for every x ∈ X , and
are countably additive in Y , i.e. f(x,

⋃
i∈N Ui) =

∑
i∈N f(Ui)

for a sequence U1, U2, . . . of disjoint measurable sets. Thus a
stochastic relation (as in Definition 2.3) is a sub-stochastic relation
with f(x, Y) = 1. Define a sub-stochastic relation

Pr(− ⇓ −) : Conp(A)× ΣR≥0×ConVp(A) → [0, 1]

by Pr(C ⇓ U)
def
=
∑
n Pr(C ⇓n U), where Pr(C ⇓0 U) is given

by [(1, C) ∈ U], and Pr(C ⇓n+1 U) is∫
(r,D)

Pr(D ⇓n {(s, E) | (r · s, E) ∈ U}) Pr(C −→ d(r,D)).

Proposition 5.6 (Termination). Evaluation of deterministic terms
is a function: ∀C.∃D.C ⇓ D. Evaluation of probabilistic terms is
a stochastic relation: ∀C.Pr(C ⇓ (R≥0 × ConVp(A))) = 1.

Proof. By induction on the structure of terms.

Termination comes from the omission of recursion in our lan-
guage. We do so for now, because our semantic model does not yet
handle higher-order recursion, and probabilistic while-languages
are already well-understood (e.g. [17]). (See also the discussion
about domain theory in §8.)

5.3 Soundness
For soundness, extend the denotational semantics to configurations:

• define sd : Cond(A)→ JAK by 〈Γ, t, γ〉 7→ JtK(γ);
• define sp : Conp(A) × ΣR≥0×JAK → [0, 1] similarly by

(〈Γ, t, γ〉, U) 7→ JtK(γ)(U). We may also use this stochastic re-
lation as a measurable function sp : Conp(A)→P (R≥0× JAK);

• define sV p : ConVp(A)→ JAK by 〈Γ, return(v), γ〉 7→ JvK(γ).
Note that in this first-order language, sV p is a surjection which
equates two value configurations iff they are related by weak-
ening, contraction or exchange of variables.

Assumption 5.7. Throughout this section we assume that the nor-
malization function ν on configurations (8) is perfect, i.e. it corre-
sponds to ι, the semantic normalization function (3):

νA(〈Γ, t, γ〉) = ιJAK(sp(〈Γ, t, γ〉)).

6 2016/5/6

Lemma 5.8 (Context extension). Let z ∈ {d, p}. Suppose that
〈Γ, t, γ〉 and 〈(Γ,Γ′), t, (γ, γ′)〉 are configurations in Conz(A).
Then sz(〈Γ, t, γ〉) = sz〈(Γ,Γ′), t, (γ, γ′)〉.

Proposition 5.9 (Soundness). The following diagrams commute
(in the category of measurable functions, and stochastic relations,
respectively).

ConNd(A) sd
**one-step

reduction ��
JAK

Cond(A)
sd

44

ConNp(A)
sp //

one-step
reduction ��

R≥0 × JAK

R≥0 × Conp(A)
id×sp
// R≥0 × R≥0 × JAK

multiplication

OO

Proof. By induction on the structure of syntax. The inductive steps
with evaluation contexts use the extension Lemma 5.8, which ap-
plies by the invariant Lemma 5.2.

Adequacy The denotational semantics is adequate, in the sense:

JtK(∗) = P (R≥0 × sV p)
(
Pr(〈∅, t, ∗〉 ⇓ (−))

)
for all p̀ t : A.

That is, the denotation JtK(∗) is nothing but pushing forward the
probability measure Pr(〈∅, t, ∗〉 ⇓ (−)) from the operational se-
mantics along the function sV p. This adequacy condition holds be-
cause Proposition 5.9 ensures that(∑
k≤n

Pr(〈∅, t, ∗〉 ⇓k {(r, C) | (r, sV p(C)) ∈ U})
)
≤ JtK(∗)(U)

for all n and U , and Proposition 5.6 then guarantees that the left-
hand side of this inequality converges to the right-hand side as n
tends to infinity.

6. A higher-order language
This short section extends the first-order language with functions
and thunks [18], allowing variables to stand for program fragments.
In other words, ‘programs are first-class citizens’.

Types Extend the grammar for types with two new constructors.

A,B ::= R | P(A) | 1 | A× B |
∑
i∈I

Ai | A⇒ B | T(A)

Informally, A ⇒ B contains deterministic functions, and T(A)
contains thunked (i.e. suspended) probabilistic programs. Then
A⇒ T(B) contains probabilistic functions. A type is measurable
if it does not involve⇒ or T, i.e. if it is in the grammar of Section 3.

Terms Extend the term language with the following rules. First,
the usual abstraction and application of deterministic functions:

Γ, x : A d̀ t : B
Γ d̀ λx. t : A⇒ B

Γ d̀ t : A⇒ B Γ d̀ u : A
Γ d̀ t u : B

Second, we have syntax for thunking and forcing (e.g. [18, 22, 25]).

Γ p̀ t : A
Γ d̀ thunk(t) : T(A)

Γ d̀ t : T(A)

Γ p̀ force(t) : A

All the rules from Section 3 are also still in force. For rule (2) to
still make sense, we only include constant terms for measurable
functions f : JAK→ JBK between measurable types A and B.

Examples One reason for higher types is to support code struc-
turing. The separate function types and thunk types allow us to be
flexible about calling conventions. For example, sampling can be
reified as the ground term

d̀ λx. thunk(sample(x)) : P(A)⇒ T(A),

which takes a probability measure and returns a suspended program
that will sample from it. On the other hand, to reify the normaliza-
tion construction, we use a different calling convention.

d̀ λx. norm(force(x)) : T(A)⇒ R× P(A) + 1 + 1

This function takes a suspended probabilistic program and returns
the result of normalizing it.

Example: higher-order expectation Higher types also allow us
to consider probability distributions over programs. For an exam-
ple, consider this term.

Eh
def
= λ(d, f) : T(A)× (A⇒ R).

case (norm(let a = force(d) in score(f(a)))) of
(0, (e, y))⇒ e
| (1, ∗)⇒ 0.0 | (2, ∗)⇒ 0.0

It has type T(A) × (A ⇒ R) ⇒ R. Intuitively, given a thunked
probabilistic term t and a function f that is nonnegative, Eh treats
t as a probability distribution on A, and computes the expectation
of f on this distribution. Notice that A can be a higher type, so
Eh generalises the usual notion of expectation, which has not been
defined for higher types because the category of measurable spaces
is not Cartesian closed.

7. Higher-order operational semantics
In this section we consider operational semantics for the higher-
order extension of the language. In an operational intuition, force(t)
forces a suspended computation t to run. For example,

d̀ thunk(sample(gauss(0.0, 1.0))) : T(R)

is a suspended computation that, when forced, will sample the
normal distribution.

Assumption 7.1. From the operational perspective it is unclear
how to deal with sampling from a distribution over functions. For
this reason, in this section, we only allow the type P(A) when A is a
measurable type. We still allow probabilistic terms to have higher-
order types, and we still allow T(A) where A is higher-order.

7.1 Reduction
We now extend the operational semantics from Section 5 with
higher types. Values (5) are extended as follows.

v ::= . . . | λx.t | thunk(t)

Evaluation contexts (7) are extended as follows.

C[−] ::= . . . | C[−] t | v C[−] E [−] ::= . . . | D[force[−]]

There are two additional redexes: (λx.t) v and force(thunk(t)).
The deterministic transition relation is extended with this β-rule:

〈Γ, (λx.t) v, γ〉 −→ 〈Γ, t[v/x], γ〉.
Extend the probabilistic transition relation with the following rules.

Pr
(
〈Γ, force(thunk(t)), γ〉 −→ (Γ, t)

)
= 1

Pr
(
〈Γ, force(thunk(t)), γ〉 −→(Γ,t) U

)
= [γ ∈ U]

Sc(〈Γ, force(thunk(t)), γ〉) = 1

7.2 Termination
The evaluation relations for deterministic and probabilistic con-
figurations of the higher-order language are defined as in Sub-
section 5.2. The resulting rewriting system still terminates, even
though configurations may now include higher-order terms.

Proposition 7.2 (Termination). Evaluation of deterministic terms
is a function: ∀C.∃D.C ⇓ D. Evaluation of probabilistic terms is
a stochastic relation: ∀C.Pr(C ⇓ (R≥0 × ConVp(A))) = 1.

7 2016/5/6

Proof. We sketch an invariant of higher-order terms that implies the
termination property, formulated as unary logical relations via sets

R(Γ z̀ A) ⊆ {t | Γ z̀ t : A},
Rv(Γ z̀ A) ⊆ {t | Γ z̀ t : A ∧ t a z-value},

for each canonical context Γ, type A, and z ∈ {d, p}, defined by:

R(Γ d̀ A) = {t | ∀γ. 〈Γ, t, γ〉 ⇓ 〈Γ′, t′, γ′〉 ∧ t′ ∈ Rv(Γ′ d̀ A)}
R(Γ p̀ A) = {t | ∀γ.Pr(〈Γ, t, γ〉 ⇓

(R≥0 ×
∑

Γ′Rv(Γ′ p̀ A)× JΓ′K)) = 1}

Rv(Γ p̀ A) = {return(v) | v ∈ Rv(Γ d̀ A)}
Rv(Γ d̀ A) = {x | (x : A) ∈ Γ} for A indecomposable
Rv(Γ d̀ 1) = {∗}

Rv(Γ d̀ A1 × A2) = {(v1, v2) | ∀j. vj ∈ Rv(Γ d̀ Aj)}

Rv(Γ d̀

∑
Ai) = {(i, v) | v ∈ Rv(Γ d̀ Ai)}

Rv(Γ d̀ T (A)) = {thunk(t) | t ∈ R(Γ p̀ A)}
Rv(Γ d̀ A⇒ B) = {λx.t | ∀Γ′ ⊇ Γ, u ∈ Rv(Γ′ d̀ A).

t[u/x] ∈ R(Γ′ d̀ B)}
Induction on the structure of a term Γ, x1 : A1, . . . xn : An z̀ t : B
for z ∈ {d, p} now proves that vi ∈ Rv(Γ d̀ Ai) for i = 1, . . . , n
implies t[~v/~x] ∈ R(Γ z̀ B).

8. Higher-order denotational semantics
This section gives denotational semantics for the higher-order lan-
guage, without using Assumption 7.1. We are to interpret the new
constructs T(A), thunk, and force. We will interpret probabilis-
tic judgements as Kleisli morphisms JΓK → T (JAK) for a certain
monad T , and set JT(A)K def

=T (JAK), so thunk and force embody
the correspondence of maps JΓK→ T (JAK) and JΓK→ JT(A)K.

On which category can the monad T live? Interpreting λ-
abstraction and application needs a natural ‘currying’ bijection be-
tween morphisms JΓK×R→ R and morphisms JΓK→ JR⇒ RK.
But measurable functions cannot do this: it is known that no mea-
surable space JR⇒ RK can support such a bijection [3].

We resolve the problem of function spaces by embedding the
category of measurable spaces in a larger one, where currying
is possible, and that still has the structure to interpret the first
order language as before. As the larger category we will take a
category of functors Measop → Set from a category Meas
of measurable spaces and measurable functions to the category
Set of sets and functions. This idea arises from two traditions.
First, we can think of a variable of type R as a read-only memory
cell, as in the operational semantics, and functor categories have
long been used to model local memory (e.g. [23]). Second, the
standard construction for building a Cartesian closed category out
of a distributive one is based on functor categories (e.g. [28]).

Other models of higher-order programs Semantics of higher-
order languages with discrete probability are understood well. For
terminating programs, there are set-theoretic models based on a dis-
tributions monad, and for full recursion one can use probabilistic
powerdomains [14] or coherence spaces [9]; our higher-order deno-
tational semantics could be enriched in domains to support recur-
sion. It is also plausible one could model continuous distributions in
domain theory, since it supports computable real analysis (e.g. [8]);
this could be interesting because computability is subtle for proba-
bilistic programming (e.g. [1]). Nonetheless, we contend it is often
helpful to abstract away computability issues when studying prob-
abilistic programming languages, to have access to standard theo-
rems of probability theory to justify program transformations.

8.1 Semantic model
Fix a category Meas of measurable spaces and measurable func-
tions that is essentially small but large enough for the purposes of
Section 4. For example, Meas could be the category of standard
Borel spaces [4, 32]: one can show that JAK is standard Borel by in-
duction on A, and the class of all standard Borel spaces is countable
up to measurable isomorphism.

In Section 4 we interpreted first-order types A as measur-
able spaces JAK. We will interpret higher-order types A as func-
tors LAM : Measop → Set. Informally, when A is a first-order
type and Γ is a first-order context, we will have LAM(JΓK) ∼=
Meas(JΓK, JAK) ≈ {t | Γ d̀ t : A}. For a second order type
(A⇒ B), we will have

LA⇒ BM(JΓK) ∼= Meas(JΓK×JAK, JBK) ≈ {t | Γ, x : A d̀ t : B}

so that β/η equality is built in. To put it another way, LAM(Rn) mod-
els terms of type A having n read-only real-valued memory cells.

Lemma 8.1. For a small category C with countable sums, con-
sider the category C of countable-product-preserving functors
Cop → Set, and natural transformations between them.

• C has all colimits;
• C is Cartesian closed if C has products that distribute over

sums;
• There is a full and faithful embedding y : C → C, given by
y(c)

def
=C(−, c), which preserves limits and countable sums.

Proof. See e.g. [28, §7], or [15, Theorems 5.56 and 6.25]. The
embedding y is called the Yoneda embedding.

For a simple example, consider the category CSet of countable
sets and functions. It has countable sums and finite products, but is
not Cartesian closed. Because every countable set is a countable
sum of singletons, the category CSet is equivalent to Set.

Our semantics for the higher-order language will take place in
the category Meas. Note that products in Meas are pointwise,
e.g. (F ×G)(X) = F (X)×G(X) for all F,G ∈Meas and all
X ∈ Meas, but sums are not pointwise, e.g. (1 + 1) ∈ Meas
is the functor that assigns a measurable space X to the set of its
measurable subsets. This is essential for y to preserve sums.

Distribution types We have to interpret distribution types P(A)
in our functor category Meas. How can we interpret a probability
distribution on the type R⇒ R? We can answer this pragmatically,
without putting σ-algebra structure on the set of all functions. If
JR ⇒ RK were a measurable space, a random variable valued
in JR ⇒ RK would be given by a measurable space (X,ΣX),
a probability distribution on it, and a measurable function X →
JR⇒ RK. Despite there being no such measurable space JR⇒ RK,
we can speak of uncurried measurable functionsX×R→ R. Thus
we might define a probability distribution on JR⇒ RK to be a triple(

(X,ΣX), f : X × R→ R, p : ΣX → [0, 1]
)

of a measurable space (X,ΣX) of ‘codes’, a measurable function f
where we think of f(x, r) as ‘the function coded x evaluated at r’,
and a probability distribution p on the codes. These triples should
be considered modulo renaming the codes. This is exactly the
notion of probability distribution that arises in our functor category.

Lemma 8.2. For a small category C with countable sums:

• any functor F : C → C extends to a functor F : C → C
satisfying F ◦ y ∼= y ◦ F , given by

F (G)(b) =
(∑

a
G(a)×C

(
b, F (a)

))
/∼

8 2016/5/6

where the equivalence relation ∼ is the least one satisfying
(a′, x, Fg ◦ f) ∼ (a,Gg(x), f);

• similarly, any functor F : C × C → C in two arguments
extends to a functor F : C×C→ C, with F ◦(y×y) ∼= y◦F :

F (G,H)(c) =
(∑

a,bG(a)×H(b)×C
(
c, F (a, b)

))
/∼

• any natural transformation α : F → G between functors
F,G : C → C lifts to a natural transformation α : F → G,
and similarly for functors C×C→ C;

• and this is functorial, i.e. G ◦ F ∼= G ◦ F and β ◦ α = β ◦ α.

Proof. F (G) is the left Kan extension of G along F , see e.g. [15].
Direct calculation shows F (G) preserves products if G does.

Thus the commutative monads P and T = P (R≥0 × (−)) on
Meas lift to commutative monads P and T ∼= P (yR≥0 × (−))
on Meas. The latter monad captures the informal importance-
sampling semantics advocated by the designers of Anglican [34].

8.2 Conservativity
We interpret the types of the higher order language as objects in
Meas using its categorical structure.

L
∑
i∈I AiM

def
=
∑
i∈ILAiM LRM def

=yR LP(A)M def
=P (LAM)

LA× BM def
= LAM× LBM L1M def

= 1 LT(A)M def
=T (LAM)

LA⇒ BM def
= LAM⇒ LBM

We extend this interpretation to contexts.

Lx1 : A1, . . . , xn : AnM def
=
∏n
i=1LAiM

Deterministic terms Γ d̀ t : A are interpreted as natural transfor-
mations LΓM→ LAM in Meas, and probabilistic terms Γ p̀ t : A as
natural transformations LΓM → T LAM, by induction on the struc-
ture of terms as in Section 4. Application and λ-abstraction are
interpreted as usual in Cartesian closed categories [27]. Thunk and
force are trivial from the perspective of the denotational semantics,
because LTAM = T LAM. To interpret norm(t), use Lemma 8.2 to
extend the normalization functions T (X)→ R≥0×P (X)+1+1
between measurable spaces (3) to natural transformations T (F)→
y(R≥0)× P (F) + 1 + 1.

Note that all measurable types A have a natural isomorphism
LAM ∼= yJAK. This interpretation conserves the first-order seman-
tics of Section 4:

Proposition 8.3. For z ∈ {d, p}, and first-order Γ and A:

• for first-order Γ z̀ t, u : A, JtK = JuK if and only if LtM = LuM;
• every term Γ z̀ t : A has LtM = LuM for a first-order Γ z̀ u : A.

Proof. We treat z = d; the other case is similar. By induction on the
structure of terms, LtM = yJtK : LΓM→ LAM. The first point follows
from faithfulness of y; the second from fullness and (2).

One interesting corollary is that the interpretation of a term of
first-order type is always a measurable function, even if the term in-
volves thunking, λ-abstraction and application. This corollary gives
a partial answer to a question by Park et. al. on the measurability
of all λ-definable ground-type terms in probabilistic programs [25]
(partial because our language does not include recursion).

8.3 Soundness
The same recipe as in Section 5.3 will show that the higher-order
denotational semantics is sound and adequate with respect to the
higher-order operational semantics. This needs Assumption 7.1.

A subtle point is that configuration spaces (6) involve uncount-
able sums: the set of terms of a given type is uncountable, but y
only preserves countable sums. This is not really a problem because
only countably many terms are reachable from a given program.

Definition 8.4. For a type A, the binary reachability relation ∗d
on {(Γ, t) | Γ d̀ t : A∧Γ canonical} is the least reflexive and tran-
sitive relation with (Γ, t) ∗d (Γ′, u) if 〈Γ, t, γ〉 −→ 〈Γ′, u, γ′〉
for γ ∈ JΓK, γ′ ∈ JΓ′K. Similarly, ∗p is the least reflexive
and transitive relation on {(Γ, t) | Γ p̀ t : A ∧ Γ canonical} with
(Γ, t) ∗p (Γ′, u) if Pr

(
〈Γ, t, γ〉 −→ (Γ′, u)

)
6= 0 for γ ∈ JΓK.

Proposition 8.5. Let z ∈ {d, p}. For any closed term z̀ t : A, the
set of reachable terms {(Γ, u) | (∅, t) ∗z (Γ, u)} is countable.

Proof. One-step reachability is countable by induction on terms.
Since all programs terminate by Proposition 7.2, the reachable
terms form a countably branching well-founded tree.

We may thus restrict to the configurations built from a countable
set U of terms that is closed under subterms and reachability.
Extend the denotational semantics in Meas to configurations by
defining sd : y(Cond(A))→ LAM, sp : y(Conp(A))→ T LAM, and
sV p : y(ConVp(A))→ T LAM; use the isomorphisms

y(Conz(A)) ∼=
∑

(Γ z̀ t:A)∈U

LΓM

to define sd, sp, sV p by copairing the interpretation morphisms
LΓ d̀ t : AM : LΓM→ LAM and LΓ p̀ u : AM : LΓM→ T (LAM).

Proposition 8.6 (Soundness). The following diagrams commute.

y(ConNd(A))
sd
++

y(reduction)
��

LAM

y(Cond(A))
sd

33

y(ConNp(A)) sp
++

y(reduction)
��

T LAM

T (Conp(A)) µ·T (sp)

33

Adequacy It follows that the higher denotational semantics re-
mains adequate, in the sense that for all probabilistic terms p̀ t : A,

LtM1(∗) = (T (sV p))1

(
Pr(〈∅, t, ∗〉 ⇓ (−))

)
.

Adequacy is usually only stated for first-order types. At first-order
types A the function sV p does very little, since global elements
of LAM correspond bijectively with value configurations modulo
weakening, contraction and exchange in the context. At higher
types, the corollary still holds, but sV p is not so trivial because we
do not reduce under thunk or λ.

9. Continuous densities
In most examples, the argument t to score(t) is a density function
for a probability distribution. When scores are based on density
functions, this makes the relationship between score and sample
tighter than we have expressed so far. Our language easily extends
to accommodate such distributions. We just add a collection density
types to the syntax.

D ::= R | bool | N | 1 | D× D A ::= · · · | D(D)

The D in this grammar denotes a measurable space that: (i) carries
a separable metrisable topology that generates the σ-algebra; and
that (ii) comes with a chosen σ-finite measure µD. An example
is R with its usual Euclidean topology and the Lebesgue measure
(which maps each interval to its size).

The type D(D) denotes a measurable space JD(D)K of continu-
ous functions f : JDK → R≥0 with

∫
X
f dµD = 1. The σ-algebra

of JD(D)K is the least one making {f | f(x) ≤ r} measurable for
all (x, r) ∈ JDK× R≥0.

9 2016/5/6

A density type D(D) comes with two measurable functions

ev : JD(D)K× JDK→ R≥0 ev(f, x) = f(x)

dist : JD(D)K→ JP(D)K dist(f)(U) =

∫
U

f dµD

Note that measurability of ev relies on continuity of the den-
sities [3]. The usual way of imposing a soft constraint based
on a likelihood can be encoded in our first-order language as
score(ev(f, x)), where the datum x is observed with a probability
distribution with density f . Thus the categorical machinery used
to interpret higher-order functions is not needed for such soft con-
straints.

There is a limit to this use of continuity: probability measures
produced by norm(t) need not have continuous density. For exam-
ple, norm(return(42.0)) produces a discontinuous Dirac measure.

Probability densities are often used by importance samplers.
The importance sampler generates samples of f ∈ JD(R)K by first
sampling from a proposal distribution g where sampling is easy,
and then normalizing those samples x from g according to their
importance weight f(x)/g(x). This works provided the support of
g is R, e.g. g = density gauss(x, (0.0, 1.0)).

Jnorm(sample(dist(f)))K =
r
norm(letx = sample(dist(g)) in score(ev(f,x)

ev(g,x)
); return(x))

z

Density types can be incorporated into the higher order lan-
guage straightforwardly. The only subtlety is that denotational se-
mantics now needs the base category to contain JD(D)K.

10. Conclusion and future work
We have defined a metalanguage for higher-order probabilistic pro-
grams with continuous distributions and soft constraints, and pre-
sented operational and denotational semantics, together with use-
ful program equations justified by the semantics. One interest-
ing next step is to use these tools to study other old or new lan-
guage features and concepts (such as recursion, function memoisa-
tion [30], measure-zero conditioning [5], disintegration [2, 31], and
exchangeability [10, 20, 34]) that have been experimented with in
the context of probabilistic programming. Another future direction
is to formulate and prove the correctness of inference algorithms,
especially those based on Monte Carlo simulation, following [13].

Acknowledgments
We thank T. Avery, I. Garnier, T. Le, K. Sturtz, and A. Westerbaan.
This work was suppoted by the EPSRC, a Royal Society University
Fellowship, An Institute for Information & communications Tech-
nology Promotion (IITP) grant funded by the Korea government
(MSIP, No. R0190-15-2011), DARPA PPAML, and the ERC grant
‘causality and symmetry — the next-generation semantics’.

References
[1] N. L. Ackerman, C. E. Freer, and D. M. Roy. Noncomputable condi-

tional distributions. In LiCS, 2011.
[2] N. L. Ackerman, C. E. Freer, and D. M. Roy. On computability and

disintegration, 2015. URL http://arxiv.org/abs/1509.02992.
[3] R. J. Aumann. Borel structures for function spaces. Illinois Journal of

Mathematics, 5:614–630, 1961.
[4] S. K. Berberian. Borel spaces. World Scientific, 1988.
[5] J. Borgström, A. D. Gordon, M. Greenberg, J. Margetson, and J. van

Gael. Measure transformer semantics for Bayesian machine learning.
LMCS, 9(3):11, 2013.

[6] E.-E. Doberkat. Stochastic Relations: Foundations for Markov Tran-
sition Systems. Chapman & Hall, 2007.

[7] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo
Methods in Practice. Springer, 2001.

[8] A. Edalat and M. H. Escardó. Integration in Real PCF. Inf. Comput. ,
160:128–166, 2000.

[9] T. Ehrhard, C. Tasson, and M. Pagani. Probabilistic coherence spaces
are fully abstract for probabilistic PCF. In POPL, 2014.

[10] C. E. Freer and D. M. Roy. Computable de Finetti measures. Ann.
Pure Appl. Logic, 163(5):530–546, 2012.

[11] M. Giry. A categorical approach to probability theory. Categorical
Aspects of Topology and Analysis, 915:68–85, 1982.

[12] N. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.
Tenenbaum. Church: a language for generative models. In UAI, 2008.

[13] C. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel. A provably correct
sampler for probabilistic programs. In FSTTCS, 2015.

[14] C. Jones and G. D. Plotkin. A probabilistic powerdomain of evalua-
tions. In LiCS, 1989.

[15] G. M. Kelly. Basic concepts of enriched category theory. CUP, 1982.
[16] A. Kock. Monads on symmetric monoidal closed categories. Archiv

der Mathematik, XXI:1–10, 1970.
[17] D. Kozen. Semantics of probablistic programs. Journal of Computer

and System Sciences, 22:328–350, 1981.
[18] P. B. Levy. Call-by-push-value: A subsuming paradigm. In TLCA’02.
[19] P. B. Levy, J. Power, and H. Thielecke. Modelling environments in

call-by-value programming languages. Inf. Comput., 185(2), 2003.
[20] V. K. Mansinghka, D. Selsam, and Y. N. Perov. Venture: a higher-order

probabilistic programming platform with programmable inference.
2014. URL http://arxiv.org/abs/1404.0099.

[21] T. Minka, J. Winn, J. Guiver, and D. Knowles. Infer.NET 2.4, Mi-
crosoft Research Cambridge, 2010.

[22] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):
55–92, 1991.

[23] F. J. Oles. Type algebras, functor categories and block structure. In
Algebraic methods in semantics. CUP, 1984.

[24] B. Paige and F. Wood. A compilation target for probabilistic program-
ming languages. In ICML, 2014.

[25] S. Park, F. Pfenning, and S. Thrun. A probabilistic language based on
sampling functions. ACM TOPLAS, 31(1):171–182, 2008.

[26] A. Patil, D. Huard, and C. J. Fonnesbeck. PyMC: Bayesian stochastic
modelling in Python. Journal of Statistical Software, 35, 2010.

[27] A. M. Pitts. Categorical logic. In Handbook of Logic in Computer
Science, volume 5. OUP, 2000.

[28] J. Power. Generic models for computational effects. TCS, 364(2):
254–269, 2006.

[29] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In POPL, 2002.

[30] D. M. Roy, V. Mansinghka, N. Goodman, and J. Tenenbaum. A
stochastic programming perspective on nonparametric Bayes. In
ICML Workshop on Nonparametric Bayesian, 2008.

[31] C.-C. Shan and N. Ramsey. Symbolic Bayesian inference by lazy
partial evaluation, 2016.

[32] S. M. Srivastava. A course on Borel sets. Springer, 1998.
[33] Stan Development Team. Stan: A C++ library for probability and

sampling, version 2.5.0, 2014. URL http://mc-stan.org/.
[34] F. Wood, J. W. van de Meent, and V. Mansinghka. A new approach to

probabilistic programming inference. In AISTATS, 2014.
[35] H. Yang. Program transformation for probabilistic programs, 2015.

Presentation at DALI.

10 2016/5/6

