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A powerful approach is proposed for the characterization of chaotic signals. It is based on the combined
use of two classes of indicators: (i) the probability of suitable symbolic sequences (obtained from the
ordinal patterns of the corresponding time series); (ii) the width of the corresponding cylinder sets. This
way, much information can be extracted and used to quantify the complexity of a given signal. As an
example of the potentiality of the method, I introduce a modified permutation entropy which allows for
quantitative estimates of the Kolmogorov-Sinai entropy in hyperchaotic models, where other methods
would be unpractical. As a by-product, estimates of the fractal dimension of the underlying attractors are
possible as well.
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Since the discovery of deterministic chaos, the problem
of distinguishing irregular deterministic from stochastic
dynamics has attracted the interest of many scientists who
have thereby proposed different approaches. An effective
method consists in quantifying the diversity of the trajec-
tories of a given length that are generated by a dynamical
system. Bandt and Pompe proposed a simple procedure,
based on the classification of sequentially sampled time
series according to their relative order [1]. The growth rate
kP of the corresponding permutation entropy can be indeed
easily computed without any prior work. In fact, the
permutation entropy has been widely used in many con-
texts: see, e.g., Refs. [2–6]. The weakness of this approach
is the lack of a quantitative correspondence with rigorously
defined observables such as the Kolmogorov-Sinai (KS)
entropy hKS, which expresses the growth rate of the entropy
required to characterize trajectories of a given length [7]. In
1D and 1D-like maps, it has been proved that kP is equal to
hKS [8,9]. Unfortunately, kP is affected by so strong finite-
size corrections as to make extrapolations questionable.
In fact, it is generally difficult to obtain directly reliable
estimates of hKS. Its computation requires partitioning the
phase space into cells so that any trajectory can be encoded
as a symbolic sequence. However, only generating parti-
tions ensure a correct estimate of hKS [10]: generic
partitions give lower bounds, whose quality is unknown.
Effective procedures to construct generating partitions have
been developed for two-dimensional maps (or, equiva-
lently, for three-dimensional continuous-time attractors).
They are based on the so-called primary homoclinic
tangencies which have to be connected in a suitable order
[11] (when the dynamics is dissipative) and symmetry lines
which allow splitting the stability islands [12] (when the
dynamics is Hamiltonian). In any case the procedure
requires much work, including an accurate identification
of stable and unstable manifolds. Even worse, extensions to
higher dimensions are not available. Alternative approaches

have been proposed, based on various types of symbolic
encoding (see, e.g., Refs. [13–15]), none of which, goes,
however, beyond two-dimensional maps. Given such diffi-
culties, some researchers have proposed various combina-
tions of different indicators [16,17]. However, such
strategies do not go that far, as they rely on the same
background information: the probability of different sym-
bolic sequences.
In this Letter, I show that substantial progress can be

made by taking into account information so far overlooked:
“dispersion” among trajectories characterized by the same
ordinal sequence. I illustrate the power of the idea by
presenting a method which allows obtaining quantitative
estimates of hKS even in dynamical systems characterized
by more than one positive Lyapunov exponent (LE).
Models.— I start introducing four dynamical systems of

increasing complexity used here as a test bed: (i) the Hénon
map [zðtþ 1Þ ¼ a − zðtÞ2 þ bzðt − 1Þ, for a ¼ 1.4 and
b¼0.3]; (ii) the Rössler model [_z1¼ z2−z3; _z2¼ z1þaz2;
_z3 ¼ bþ z3ðz1 − cÞ, with a ¼ 1=2, b ¼ 2, c ¼ 4]; (iii) a
generalized 3D Hénon (GH) map [zðtþ 1Þ ¼ a−
zðt − 1Þ2 − bzðt − 2Þ, with a ¼ 1.5 and b ¼ 0.29] [18];
(iv) the Mackey-Glass model f_z ¼ 2zðt − tdÞ=½1þ zðt−
tdÞ10� − z; with td ¼ 3.3g.
Let zðtÞ denote a scalar variable; it is sampled every T

time units, so that zn ¼ zðt ¼ TnÞ. Next, consider a moving
time window of length m. An example is given in Fig. 1:
the top red curve is a trajectory of the Mackey-Glass
system, while the green dots represent the sampled points (a
window of length m ¼ 6 is there considered, with T ¼ 1).
Such a specific sequence is encoded as (3,2,1,5,4,6):
each single number denotes the ordinal position (from
the smallest to the largest point within the window itself),
so that the “1” in position 3 means that the third element
within the window is the smallest one. The trajectories can
be grouped according to their symbolic sequence. Given
the probabilities pi of all the sequences of length m, one
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can determine the “permutation entropy” KPðmÞ ¼
−hlogpii. Its growth rate kP ¼ ½KPðmþ 1Þ − KPðmÞ�=T
is often used as a proxy for hKS.
In Fig. 1, I have plotted 100 randomly sampled trajec-

tories all encoded as (3,2,1,5,4,6) (the scale is irrelevant).
They are basically grouped in a bundle of variable width:
the dispersion of ziðjÞ (1 ≤ j ≤ m) measures the uncer-
tainty in the position j, for the given ith symbolic sequence.
Here below I show that the dispersion of z can be used
to characterize a time series. I propose to consider the
standard deviation σiðjÞ of the variable z measured in the
jth position of the window corresponding to the ith
sequence. Simulations show that σiðjÞ strongly varies with
i; it is therefore necessary to to average this observable
over the elements of the partition: for reasons that will
become clear later, I propose to average its logarithm. The
results for the Hénon map are reported in Fig. 2 for different
values of the window length m (after rescaling m to unit
length). The average hln σiðjÞi is computed by weighting
each sequence according to its probability pi. It varies
along the window and, more important, it decreases upon
increasing m.
This is not accidental. In purely stochastic signals, the

dispersion decreases as a power law with m. Given, for

example, a sequence of m random variables uniformly
distributed in the unit interval, σiðjÞ, i.e., the fluctuations of
the jth variable (after reordering) is at most of order 1=

ffiffiffiffi

m
p

.
In Fig. 3, I plot the dependence of hln σiðmÞi on the window
length m for the above mentioned dynamical systems.
Straight lines correspond to power laws; the dashed line
exemplifies a 1=m2 dependence, a behavior approximately
followed in all cases.
The different scaling behavior of hln σiðmÞi provides a

first evidence of the usefulness of the concept of dispersion,
as it alone allows distinguishing deterministic from sto-
chastic signals. Going beyond this preliminary observation,
in this Letter, I show that the combined use of σ together
with the standard permutation entropy makes it also
possible to obtain accurate estimates of hKS in purely
deterministic contexts.
In this perspective, it is necessary to recall the definition

of Kolmogorov-Sinai entropy. Consider an N-dimensional
variable xðtÞ which evolves in time and denote with Ci a
cylinder in RN ×R of width εi and time length τ, centered
around some trajectory xðt0Þ for t < t0 < tþ τ; let also
piðεi; τÞ denote the probability that a generic trajectory
of length τ is fully contained in Ci. By then covering
RN × ½t; tþ τ� with nonoverlapping cylinders of width εi,
one can introduce the entropy Hðε; τÞ ¼ −hpi lnpiðεi; τÞi
(ε without subscripts denotes a generic average width) and
thereby the Kolmogorov-Sinai entropy as

hKS ¼ −lim
ε→0

lim
τ→∞

Hðε; τÞ
τ

; ð1Þ

where the infinite-time limit is to be taken first. The ε → 0
limit is needed to avoid underestimations of hKS (as
mentioned in the introduction, this is not required in the
case of generating partitions). From a computational point
of view, it is convenient to determine the derivative
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z
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FIG. 1. 100 trajectories of the Mackey-Glass model charac-
terized by the same ordinal pattern (3,2,1,5,4,6) (see the text for
more details). The dashed lines identify the sampling times. One
trajectory is arbitrarily shifted to better show the ordering of the
sampled points (green dots).
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FIG. 2. Average dispersion of the Hénon maps for m ¼ 8, 12,
16, and 20 (from top to bottom). The window length is rescaled to
allow for a clearer comparison [u ¼ ðj − 1=2Þ=m].
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FIG. 3. The average logarithm of the largest dispersion σiðmÞ
along a window of length m for various dynamical systems.
Circles, squares, triangles, and crosses refer to the Hénon map,
Rössler attractor, GH map, and Mackey-Glass model, respec-
tively. The dashed line illustrates a 1=m2 decrease.
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h ¼ ½Hðε; τ þ ΔÞ −Hðε; τÞ�=Δ

as it converges faster than H=τ for increasing τ.
The Pesin relationship between hKS and the Lyapunov

exponents is based on the formula (see Refs. [19,20])

piðεi; τÞ ≈ εDi
i exp½−Λiτ�;

where Di and Λi are the fractal dimension and the sum
of the positive finite-time Lyapunov exponents associated
with the ith symbolic sequence [21]. Upon averaging over
all cylinders, one obtains

Hðε; τÞ ¼ −Dhln εii þ Λτ ð2Þ

where D is the information dimension and Λ the sum of
the positive Lyapunov exponents. The limit ε → 0 has been
implicitly taken since the LEs, by definition, refer to
infinitesimal perturbations. Equation (2) implies that
h ¼ Λ, which is nothing but the Pesin formula.
By now going back to the permutation entropy, we can

identify Hðε; τÞ with KPðσ; mTÞ, provided that a mean-
ingful mapping between εi and σi is established.
Rigorously speaking, εi is determined in the original
N-dimensional phase space, while σi refers to the mea-
sured, scalar, variable. However, we can safely identify the
two observables, since the embedding theorem proved by
Takens [22], ensures the existence of a one-to-one mapping
between the original and the embedding variables (at least
when the window length m is sufficiently large). In the
context of the permutation entropy, σi is not given a priori,
but self-determined by the ordering procedure and depends
on the symbolic sequence: this is the reason why I have
introduced a subscript to denote the width εi. In order to
complete the identification of εi with σiðjÞ, one should
notice that the latter indicator depends on j, i.e., on the
position along the window where it is determined. The
theoretical argument invoked to derive the Pesin formula
requires that εi is the maximal distance between two
trajectories characterized by the same symbolic sequence.
Accordingly, I propose the identification of σiðmÞ with εi,
since in all cases I have investigated, the maximal cylinder
width is attained in the mth position.
The most important property of σiðmÞ is that it decreases

upon increasing the window length (see Fig. 3). This
implies that εi in Eq. (2) does depend on τ (or, equivalently,
onm) and this invalidates the direct connection between kP
and Λ (and thereby with hKS). A clean relationship can
be reestablished by introducing the relative permutation
entropy

~KPðmÞ ¼ KPðmÞ þDhlog σiðmÞi;

where the dependence of σ on time is spelled out. The
structure of Eq. (3) justifies the choice of averaging the

logarithm of σi. A reliable estimate of hKS is obtained by
taking the derivative ~kP ¼ ½ ~KPðmþ 1Þ − ~KPðmÞ�=T that is
cleansed of the time dependence of σ.
Validation.— The results obtained for four different

models are summarized in Fig. 4. I start from the Hénon
map, whose analysis is plotted in panel (a). In this case,
there is only one positive LE, λ1 ≈ 0.4192, so that hKS
coincides with λ1. The fractal (information) dimension D,
is equal to 1.258…, as obtained from the Kaplan-Yorke
formula. The derivatives kP and ~kP reported in Fig. 4(a) are
both determined by referring to a time intervalΔ equal to 2.
The results indicate that ~kP, provides relatively accurate
estimates already for τ ¼ 9 (here m ¼ τ). The second
model I have studied is the Rössler attractor, selecting
the parameter values in such a way that the dynamics is not
phase coherent, to make the attractor as different as possible
from that of the Hénon map. Since time is continuous, it is
necessary to fix the sampling interval T. I have chosen
T ¼ 1, which is about 1=8th of the main periodicity, but
allows for an appreciable variation of z1 (up to 1=5 of its
whole range). In this case, there is again not only one
positive LE (λ1 ≈ 0.1208), but also a vanishing one, which
does not contribute to the KS-entropy, but indirectly to the
correction term, affecting the dimension which isD ≈ 2.05.
The results are plotted in Fig. 4(b). The red curve and the
blue circles have been obtained by sampling z1ðtÞ, while
the green curve and the stars correspond to z3ðtÞ. The
agreement proves the approach is robust: there is no
problem of variable selection. The asymptotic value of
the KS entropy is achieved for m ¼ τ ¼ 10, where the
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FIG. 4. Finite-size estimates of the Kolmogorov Sinai entropy.
The solid curves correspond to the derivative kP of the permu-
tation entropy; symbols to the derivative ~kP of the relative entropy
Eq. (3). The four panels report the results for: (a) Hénon map,
(b) Rössler attractor, (c) GH map, and (d) Mackey-Glass model.
In all cases the horizontal black dashed line corresponds to the KS
entropy estimated as the sum of the positive Lyapunov exponents.
The triangles in panel (b) correspond to ~kP for three different
levels of observational noise: 0.01, 0.005, 0.002 (from top to
bottom).
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permutation entropy estimates are still five times larger
than expected.
After validating the method in well known setups, I

turned my attention to models characterized by two positive
Lyapunov exponents, where no direct information is
available. The first is another discrete-time system, the
GH map, where λ1 ≈ 0.1179, and λ2 ≈ 0.0577, so that the
KS entropy is 0.1756…, while the dimension is D ≈ 2.12;
~kP exhibits a convincing agreement with the theoretical
expectations, although for m ¼ 13 there are still deviations
of order 25% (to be, however, compared with the 6-times
larger overestimation of the traditional method). Finally, I
have studied the Mackey-Glass equation. This is a model
with delayed interactions; i.e., the phase space is infinite
dimensional. For the parameter value I have selected
λ1 ≈ 0.0617 and λ2 ≈ 0.0234, so that hKS ≈ 0.0862, and
the Kaplan-Yorke dimension is D ≈ 3.73. By looking
at Fig. 4(d), one can see that a remarkable agreement is
found already for τ ¼ 9 (the sampling time T has been
fixed equal to 1).
Since the goal of the simulations was to validate the

approach, all studies have been performed using enough
data points to ensure sufficiently small errors. In the
perspective of future applications, it is important to have
an idea of the required number of points. In the Mackey-
Glass attractor (the model affected by the largest devia-
tions), 3 × 105 points are sufficient to ensure a 1% accuracy
for τ ¼ 10 of both the entropy and the logarithm of the
corresponding box size. This number grows exponentially
with τ, becoming of the order of 107 for τ ¼ 14, but it
should be noticed that τ ¼ 10 is sufficient to ensure a
reliable estimate of hKS. Furthermore, the convergence of
both quantities is monotonic (upon increasing the length of
the time series); it follows a power law so that extrapolation
methods can be used to improve the accuracy of the
asymptotic value (see, e.g., Ref. [23]).
Experimental data are typically affected by observational

noise. As a result, the Kolmogorov-Sinai entropy becomes,
strictly speaking, infinite. Therefore, it is important to
understand how noise affects the scaling of entropy over
different (temporal and observational) resolutions. As a
minimal test I have simulated the Rössler attractor by
adding a uniform noise distributed within the interval
½−δ;þδ� [for δ ¼ 0.01, 0.005, and 0.002—see the triangles
in Fig. 4(b)]. The finite-size estimates of hKS increase with
the size of the noise (as expected), but the resulting values
are still much below the maximal values obtained for
random signals (around 2.74 for τ ¼ 15).
Altogether, the time dependence of the cylinder width

helps to resolve an ostensible paradox: finite partitions
typically tend to underestimate the KS entropy, because
they are unable to discriminate all of the different trajecto-
ries. Nevertheless, the permutation entropy overestimates
hKS: this is because part of the entropy increase is a
spurious effect induced by the implicit refinement of the

phase-space partition. The modified definition herein
proposed gets rid of such a contribution.
The results for hlog σiðmÞi reported in Fig. 3 and

theoretical arguments for purely random signals show that
σ decreases as a power law, σ ≈m−γ . By combining this
observation with the assumption that this is the major
source of finite-size corrections (at least in a suitable range
of m values), one can claim that ~KPðmÞ ¼ K0 þ Λm and
thereby write

KPðmÞ ¼ K0 þ ΛmþDγ lnm: ð3Þ

This equation suggests, at the same time, that the derivative
of the standard permutation entropy eventually converges
to Λ, but also that it is affected by strong (logarithmic in the
window length) corrections. They make the estimation of
the asymptotic value prohibitive.
So far I have shown that accurate estimates of hKS can be

obtained without the need of explicitly partitioning the
phase space, but this requires the knowledge of the fractal
dimension D. Now I show that this obstacle can be
overcome. With reference to Eq. (3), I replace D with an
unknown parameter d and thereby introduce ~KPðm; dÞ
[ ~KPðm; 0Þ is the usual permutation entropy]. So long as
d < D, the derivative ~kPðm; dÞ converges to the asymptotic
value from above, while a convergence from below is
expected when d > D. Therefore,D can be estimated as the
d value such that ~kPðm; dÞ is independent of m. With this
idea in mind, one can go to the initial data and determine
~kPðm; dÞ in a suitable range of m values for different d
values. A linear fit of the last seven points for the Hénon
and Roessler attractors shows that the average derivative of
~kðm; dÞ changes sign for d ≈ 1.13 and d ≈ 1.9, respectively.
For the GH map, the change of sign occurs for d ≈ 1.56,
while for the Mackey Glass model, I obtain d ≈ 3.8. All
values are close to the expected estimates of the dimension,
with the exception of the generalized Hénon map, whose
dimension is underestimated by about 0.6. This is under-
standable, since from Fig. 4(c) one can see that such a
dynamical system is the only one where the convergence of
~kP is not perfect. The reason is probably a slow conver-
gence of the dimension itself to its asymptotic value: in
other words, it is reasonable to interpret the value d ¼ 1.56
as the finite-size dimension of the attractor on the scales
that are accessed by the numerical analysis.
Altogether, I have shown that the information contained

in the permutation entropy can be complemented by the
dispersion σ of trajectories characterized by the same
ordinal sequence to provide a more complete description
of the time series. In the case of deterministic signals,
the two notions are combined into a a single indicator,
which provides reliable estimates of the Kolmogorov-Sinai
entropy even in the case of multiple positive Lyapunov
exponents. Preliminary studies suggest that this approach
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can be used also as a zero-knowledge tool for the estimation
of the fractal dimension. Such achievements are possible
because the increase of the window length corresponds to
the simultaneous increase of both the embedding dimen-
sion [24] and of the resolution in phase space. I am
confident that σ can be profitably used also for a better
characterization of (partially) stochastic signals. The results
reported in Fig. 3 provide encouraging evidence of quan-
titative differences between stochastic and deterministic
signals. Further progress can be made by introducing
proper indicators which take into account the scaling
dependence of σ on noise.
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