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Abstract 

Computation offloading has been used and studied extensively in relation to mobile devices. 

That is because their relatively limited processing power and reliance on a battery render the 

concept of offloading any processing/energy-hungry tasks to a remote server, cloudlet or 

cloud infrastructure particularly attractive. However, the mobile device’s tasks that are 

typically offloaded are not time-critical and tend to be one-off. We argue that the concept can 

be practical also for continuous tasks run on more powerful cyber-physical systems where 

timeliness is a priority. As case study, we use the process of real-time intrusion detection on a 

robotic vehicle. Typically, such detection would employ lightweight statistical learning 

techniques that can run onboard the vehicle without severely affecting its energy 

consumption. We show that by offloading this task to a remote server, we can utilse 

approaches of much greater complexity and detection strength based on deep learning. We 

show both mathematically and experimentally that this allows not only greater detection 

accuracy, but also significant energy savings, which improve the operational autonomy of the 

vehicle. In addition, the overall detection latency is reduced in most of our experiments. This 

can be very important for vehicles and other cyber-physical systems where cyber attacks can 

directly affect physical safety. In fact, in some cases, the reduction in detection latency thanks 

to offloading is not only beneficial but necessary. An example is when detection latency 

onboard the vehicle would be higher than the detection period, and as a result a detection run 

cannot complete before the next one is scheduled, increasingly delaying consecutive 

detection decisions. Offloading to a remote server is an effective and energy-efficient 

solution to this problem too. 

Keywords 

 Computation offloading;  

 Intrusion detection;  

 Energy efficiency;  

 Detection latency;  

 Cyber-physical systems;  

 Vehicular security 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/80783942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction 

Offloading computation tasks from a user’s device to a remote server, cloudlet or cloud can 

have multiple benefits. It can allow the utilisation of more powerful and more flexible 

computing resources and can provide an on-demand service, while also dramatically reducing 

the energy cost on the user’s device. For these reasons, it has evolved into common practice 

for mobile devices. We argue that for largely the same reasons, the concept of computational 

offloading can be extremely useful for demanding, real-time and continuous tasks required by 

more powerful yet still resource-constrained and time-critical cyber-physical systems, such as 

vehicles. Yet, the approach remains largely unexplored. In the context of smart cities, it is 

anticipated that in the near future, the majority of vehicles on the road will benefit from 

various forms of constant connectivity with smart city infrastructures, as well as with each 

other. Already a wide range of vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) 

technologies for safety and comfort have been developed, with some already deployed 

operationally. However, the dependence on V2I and V2V communications generates several 

new cyber threats to vehicles operating in smart cities. Protection against a wide range of 

evolving smart city cyber threats may be impractical if relying only on the vehicle’s onboard 

processing systems, because of the adverse impact it would have on energy efficiency and 

latency. This makes computation offloading highly relevant in this context. 

As proof of concept, we focus on the provision of high-performance intrusion detection for a 

robotic vehicle with limited processing resources and a requirement for low detection latency. 

A key challenge here is that to be meaningful the task needs to be performed continuously, 

which can be highly impractical for a battery-powered robotic vehicle. At the same time, it 

needs to provide a detection decision in time before it receives the next data to analyse. This 

is also a major challenge for advanced detection mechanisms that exhibit high detection 

latency and become impractical if they detect an attack after it has physically damaged the 

vehicle, e.g. through a command injection attack that disables or selectively engages the 

brakes on one side. Here, we develop a prototype system to demonstrate that it is possible to 

employ offloading in this case to reduce not only the energy cost but also the overall time 

taken to complete the task, even when the additional networking and processing overheads 

are taken into account. In several cases experimented with, reducing detection latency is not 

only useful, but necessary to ensure that detection can still be technically practical for a real-

time system. 

The practicality of computation offloading relies generally on two factors: performance and 

energy cost. For the particular task, performance relates to overall detection latency. In the 

onboard detection case, this effectively corresponds to the time it takes to complete the 

computation for detection (Fig. 1: top). In the offloading case, it includes the time it takes to 

send the data to the server over the network, the server to complete the computation and the 

time to receive the result back from the server (Fig. 1: bottom). However, the usual 

assumption in modelling offloading is that the latter delay is insignificant in comparison to 

the first two due to the difference in size between the data transmitted for offloading and the 

response. In our case, the response is simply a binary value (1 being an attack and 0 a non-

attack). 
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Fig. 1.  

To ensure continuous coverage, the periodic detection interval needs to be roughly equal to the periodic 

data collection interval. In the offloading case (bottom), the delay of transmitting the dataset over the 

network needs to be taken into account. 

Figure options 

 

As energy is power times time, the energy cost due to detection depends on the additional 

power consumed on the vehicle when running the detection computation onboard, as well as 

the time taken to complete it. In the offloading case, it also includes the energy cost of 

transmitting the data to the remote server, as transmission power consumption tends to be 

higher than idle operation power consumption. As with time, the energy cost of receiving the 

response can also be disregarded. 

The key contributions of this work are: (i) A proof of concept prototype for computation 

offloading to provide a vehicle with access to high-end machine learning algorithms, with a 

case-study in deep learning for intrusion detection, (ii) a mathematical model of the 

difference in energy costs between onboard and offloaded computation for continuous 

periodic tasks, which is validated experimentally, and (iii) an experimental evaluation of the 

energy consumption and detection latency for a robotic vehicle by offloading deep learning-

based detection mechanisms of low, moderate and high complexity. 

2. Related work 

Computation offloading has been thoroughly studied for mobile devices, in terms of both 

performance and energy efficiency, but to a very limited extent for IoT and cyber-physical 

systems, especially with regards to energy efficiency. The following is a brief overview of 

related work in these three areas. 

2.1. Computation offloading for mobile devices 

For mobile devices, offloading decisions are typically based on server speed, network 

bandwidth, available memory, server loads, and the amount of data needed to exchange 

between servers and mobile systems. Offloading for mobile devices may be performed with 

respect to methods, tasks, virtual machines (VMs), and applications. Most implementations, 

such as CloneCloud, Phone2Cloud, Cuckoo, COMET and MAUI, focus on identifying tasks 

that can be offloaded at runtime to improve performance and on how this offloading can be 

achieved. 
 

From the perspective of energy efficiency, offloading is beneficial when the required energy 

to run an application exclusively on a mobile device is greater than the sum of the energy 

consumed to transmit the data to the cloud and the energy required by the mobile device 

whilst it is waiting for the cloud server to finish the computation. Of course, the quality of the 

network connection of the mobile device can significantly impact the efficiency of 

computation offloading. Therefore, for meaningful energy savings, the input data 

transmission needs to be low and the cloud servers need to have sufficiently greater 

computation power than the mobile device. Energy-aware scheduling of the executions of 
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offloaded computation into the cloud has also been studied in Zhang et al., where a mobile 

application is represented by a sequence of tasks that formulate a linear topology and they 

solve a minimum-energy task scheduling problem as a constrained shortest path problem on a 

directed acyclic graph. The energy cost of additional communication for offloading has been 

addressed in Geng et al. in order to make more energy-efficient offloading decisions in 

cellular networks. Also, computation offloading as a service for mobile devices has been 

suggested by Shi et al. to bridge the gaps between the offloading demands of mobile devices 

and the general computing resources, such as VMs, provided by commercial cloud providers. 

Offloading the computation to more powerful machines has been proven to be beneficial for 

various real world mobile applications. For example, CloneCloud has demonstrated savings 

in energy consumption for virus scanning, image search, and behaviour profiling, where 

naturally the savings were greater with better network bandwidth (faster data transmission) 

and larger input sizes (more complex computation). Cuckoo has exhibited improved energy 

consumption for an object recognition application (from photos taken using the phone’s 

camera) and COMET for various benchmarks including a chess game, an image editor and 

tools for mathematics. 

2.2. Computation offloading for IoT systems 

The concept of offloading for IoT systems, has been limited to IoT mobile applications, in the 

context of smart-cities applications, which effectively is the same research related to mobile 

offloading as in the previous section. For example, Mazza et al. propose a mechanism of 

offloading parts of smart-city applications to the best access point rather than the nearest one, 

based on a utility function which describes the Quality of Service in terms of energy cost, 

computational time and throughput. Rachuri also proposes an offloading mechanism for 

mobiles based on a multi-criteria (energy, latency and data rate) decision theory, which 

classifies tasks and dynamically adapts to changes such as mobile battery status and users 

data plan allowance. The mechanism is tested in the context of smart-building mobile 

applications. Interestingly, this work also utilises the concept of sensing offloading, where 

phone sensing tasks are offloaded to an infrastructure of sensors in smart-buildings to further 

save energy on the devices.  However, this may reduce the practicality of using mobile 

devices in the first place. 

Offloading for IoT systems is also used for facilitating authentication and authorisation. For 

example, Hummen et al. have utilised it to improve the practicality and applicability of the 

Datagram TLS protocol in IoT applications by offloading to a delegation server its most 

demanding task, which is the public-key cryptography required for the connection 

establishment. Compared to the standard public-key-based handshake, they have shown that 

offloading can reduce memory overhead by 64%, computations by 97% and network 

transmissions by 68%, but there was no evaluation of the reductions in energy costs. 

2.3. Computation offloading for cyber-physical systems 

While both IoT and cyber-physical systems are paradigms based on networked embedded 

systems as the core technology, and the concepts are largely overlapping, the former focuses 

more on sensing and the related data analytics, while the latter focuses more on time-critical 

interaction with the physical environment. Given the importance that physical impact has in 

cyber-physical intrusion detection, we look at the related section of the literature for 



offloading for cyber-physical systems separately here. First steps have been taken in 

introducing offloading to cyber-physical systems, usually in relation to vehicular systems and 

external servers. An example is the work by Nimmagadda et al., which describes the real-

time task of a robot’s object recognition and tracking offloaded to a server if the offloading 

response time (server execution time plus data transfer time) is less than the local execution 

time. More recently, Toma and Chen proposed a decision mechanism for hard real-time 

embedded systems that selects what and when to offload to a server, by taking into 

consideration also timing constraints such as local execution time and offloading response 

time. They further adopt their scheme to reserve resources in the server to ensure the 

offloading latency. To validate their mechanism, they used an image-processing application 

in a robot system. 

Wang et al. addressed the issue of reducing mobile data traffic while maintaining good QoS 

by offloading mobile data traffic of vehicles with the use of Wi-Fi and VANET technologies 

rather than using cellular networks. Liu et al. investigated the impact of components that are 

unreliable, in terms of their timing, and suggest a method for utilising them, by estimating 

their worst case response time. Finally, in Wan et al., VMCIA is an architecture for 

integrating vehicular systems and mobile cloud computing, which can also be used for 

computation offloading. 

Contrary to mobile device offloading, the related work for cyber-physical systems places 

emphasis only on the time-sensitivity of offloading for vehicles, focusing on latency benefits 

and not in energy efficiency. This is a significant omission because vehicles are 

fundamentally constrained by their energy source and rate of energy consumption not only 

for their mobility and autonomy, but also for their use of advanced computation algorithms 

with high processing demands. We address this omission here with a mathematical model, a 

prototype implementation and thorough experimental evaluation. We start in Section 3 with a 

description of the testbed and the prototype implementation for studying the feasibility of 

offloading a vehicle’s high-end intrusion detection. The corresponding mathematical model is 

detailed in Section 4, followed by the experimental evaluation in Section 5. 

3. Offloaded intrusion detection prototype 

In this section, we detail the experimental setup, including the robotic vehicle that requires 

real-time intrusion detection, the server to which intrusion detection will be offloaded, the 

details of the intrusion detection process and the networking configuration allowing the 

exchange of the offloaded data between the vehicle and the server. To demonstrate the 

feasibility of offloading high-end intrusion detection that is not normally available to cyber-

physical systems due to its heavy processing, we employ deep learning of low, moderate and 

high complexity. 

3.1. The vehicle 

The vehicle that we have used for development and experimentation is a four-wheel-drive 

robotic vehicle controlled via an on-board Intel Atom computer running the Linux Fedora 32-

bit operating system. In terms of specifications, the processor is a dual-core Intel Atom D525 

at 1.8 GHz with 1 MB L2 Cache and 2 GB DDR3 memory at 1066 MHz. An Arduino micro-

controller is responsible for driving the motors. The vehicle also carries a USB pan and tilt 

camera for situational awareness and remote navigation. Standard magnetic encoders are 
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fitted to the two rear wheel motors providing the angular position and speed of the vehicle. 

The vehicle is controlled remotely by a client-server application that functions by relaying 

commands in real-time over a TCP socket to the vehicle control board via wired Ethernet or 

802.11g/n Wi-Fi interface. The vehicle TCP server listens on port 7000 for incoming client 

connections and once a connection is established, the operator is then able to issue commands 

to the vehicle’s respective controllers. The client TCP connection persists for the duration of 

vehicle operation and control. 

Different attacks have different impacts on the computation, communication and physical 

operations of the robot. In particular, the physical impact is not only an adverse effect of a 

cyber-physical attack, but also an indication and potentially a signature of the attack, hence 

an opportunity for detection. Monitoring and analysing these physical features has been 

shown to improve the performance of a system designed to detect cyber attacks against a 

vehicle. 

3.2. The server for task offloading 

Offloading is carried out on a mid-range Dell PowerEdge R430 1U rack server equipped with 

Intel Xeon E5-2640 v3 processor (2.6 GHz, 20 M Cache), 16 GB RDIMM 2133 MT/s Dual 

Rank memory and a Broadcom 5720 Quad Port 1 GBE network card. 

3.3. The continuous task to be offloaded 

The deep learning based detection employed here is a binary classification mechanism aiming 

to determine whether the host system is under attack or not. By studying a supervised set of 

collected sensor and actuator data, a deep neural network model can see patterns of high-level 

abstractions in input data through a complex architecture of non-linear transformations of the 

data. As the data is collected in time sequence, we are applying a Recurrent Neural Network, 

which is highly suitable for capturing temporal behaviour. To deal with the problem of 

vanishing gradient, we have applied the Long Short Term Memory technique to remember 

significant features for an arbitrary length of time. For the Deep Learning prototyping, we 

used the Python neural network library Keras to run on top of the TensorFlow/Theano 

library. After a training phase that takes several hours, we produce two output files: the deep 

learning model architecture and weight values, which can then be used to run the binary 

classification process of the intrusion detection in real-time either onboard the vehicle or 

offloaded to a server. 

To be meaningful, the task of intrusion detection needs to run continuously. For the particular 

type of classification, continuous operation means running at periodic intervals roughly equal 

to the intervals used for collection of the data for the features used for the classification 

(Fig. 1). This ensures that there are no “blind spots” in the classification process, and if it 

misses a cyber attack it will be because of the classification method’s inaccuracy, not because 

the corresponding data were not used in any detection interval. 

3.4. The networking configuration of offloading 

The network testbed consists of three discrete modules, an 802.11n wireless local area 

network (WLAN), a point to point wide area network (WAN) and a remote server. The 

WLAN provides the vehicle with mobile connectivity to a local network gateway conducting 
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port forwarding between the vehicle and the deep learning server for offloading, through an 

SSH tunnel over the WAN. Using the client-side URL transfer library libcurl and PyCURL 

(Python Interface to libcurl), the vehicle offloads detection tasks by uploading sensor data 

samples, at interval period T   (for which we try five different values: 

T=0.5s ,T=0.5s,T=1s,T=1s,T=2s,T=2s,T=5sT=5s and T=10sT=10s) to an Apache 

HTTPS service on the deep learning server. The HTTPS protocol was selected to perform 

client-server data transfer to provide a secure, reliable and energy efficient communication 

channel. Specifically, HTTP over SSLv3 provides data confidentiality and integrity of HTTP 

payloads containing vehicle sensor data, whilst HTTPs native reuse of existing persistent 

connections, data transfer pipelining and automatic data compression optimises TCP 

performance and packet transfer speed. 

All data communication between the vehicle and remote server is vehicle initiated, through 

use of python scripts making calls to the libcurl library. The scripts operate as a set of 

continual loops. On initiation, a sensor sample is retrieved and transferred via an HTTP 

POST to the deep learning server. If the POST is successful, another loop is then spawned, 

continually polling the server with HTTP GET requests until a detection result is successfully 

retrieved. On receipt of the detection result, the next sensor sample is then collected and the 

HTTP data transfer process is repeated (Fig. 2). 
 

Fig. 2.  

The network architecture used for offloading. 

 

4. Energy saving model for offloaded intrusion detection 

We denote n as the number of data points collected in real-time for the intrusion detection 

process, and τ as the interval at which each data point is collected. As the process of detection 

is continuous rather than one-off, we estimate energy costs for a period T, which corresponds 

to a window of n   data points, as T=nτT=nτ. We denote as tc and Pv the average time to 

complete the detection and power consumption of the vehicle respectively when it carries out 

the detection onboard. tc is not a constant but a function, which may be modelled differently 

for different tasks or systems. Here, it depends primarily on the complexity of the detection 

approach and the data size dn of the dataset of the most recent n data points collected, where 

d is the data size for one data point. Also, Pi is the power consumption of the vehicle when 

idle, and Px when transmitting data to the server. We can consider Pv, Pi and Px as relatively 

static values for a vehicle like ours. We have confirmed this experimentally. As an example, 

see Fig. 3 showing Pv against time in representative runs of the deep learning algorithm on 

the vehicle at a configuration of low complexity and for different values of n. Between the 

five different configurations, the average value ranges between 61.15 W and 62.58 W. For 

simplicity, for our mathematical model’s application, we use the average values for the 

duration of all five runs, as measured experimentally. The assumption that the power 

consumption is relatively static across time and across different values of n may not hold in 

systems that experience significant variability. For example, Pv may vary noticeably over 

time if computation involves multiple phases of continuously varying processing needs; Pi 

may vary a lot while the vehicle operates on uneven terrain, and Px could vary due to network 

variability (e.g., due to increased radio channel contention). Our setup is, on purpose, 
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relatively simple, to facilitate the evaluation of the proof of concept before expanding into 

factors of potential variability in future work. 

 

Fig. 3.  

Power consumption on vehicle against time for representative runs of the deep learning algorithm on 

the vehicle at a configuration of low complexity and for different values of n. 

The energy saving ΔE for a detection period T is the energy Ev consumed on the vehicle if the 

detection is run onboard minus the energy Eo consumed on the vehicle if the detection is 

offloaded. If the complexity of the task is sufficiently low so that the time tc it takes to 

complete is lower than the period (T ≥ tc), then the energy cost Ev in a period T includes the 

energy cost of running the detection onboard for time tc   and the energy cost of idle operation 

for the remaining time of T−t c T−tc. Otherwise, Ev is the energy cost of running the detection 

onboard for time T. In the offloading case, in accordance with the usual representation in the 

task offloading literature, the length of time for the wireless transmission can be modelled 

simply as , where dn is the size of the data transmitted and rx the wireless transmission 

rate. Eo   includes the energy cost of wirelessly transmitting the data to the server for time  

and the energy cost of idle operation for the remaining time of  (Table 1).  

 

 
 

 

 

Table 1.  

List of symbols. 

Symbol Description 

T Detection period 

n Number of data points collected in period T 

d Data size for one data point 

τ Interval at which each data point is collected 

Pv Average power consumption of the vehicle when detection is run onboard 

Pi Average power consumption of the vehicle when idle 

Px Average power consumption of the vehicle when transmitting data to server 

tc Time to complete detection when it is run onboard 

rx Wireless transmission rate 

Ev Energy consumed on the vehicle when detection is run onboard 

Eo Energy consumed on the vehicle when detection is offloaded 
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Symbol Description 

ΔE Energy saving in a detection period T 

γ, β Linear regression coefficients for tc   following simple t c =γ d n+β tc=γdn+β format 

1 [ . ] 1[.] 1 [X]=1 1[X]=1 if X is true and 0 otherwise 

Where 1[X]=11[X]=1 if X is true and 0 otherwise. 

With regards to the particular application of real-time detection, the T < tc case is highly 

impractical, because it means that detection runs are effectively queued, introducing to 

subsequent runs an additional queuing delay, which is continuously increasing towards 

infinity. So, we can consider the T ≥ tc case as the only practical one and simplify Eq. (3) as:  

 

 

Note that the vehicle is technically never idle, because it is moving and receiving commands 

from its operator continuously. However, for terminology purposes and in conformance with 

the computation offloading literature, by “idle” here we refer to the state where the vehicle is 

not carrying out specifically detection-related processing or detection-related transmission. 

Also, for simplicity, we take into account only the power to transmit and not to receive the 

detection response, as the latter is practically insignificant and can be considered as part of 

the idle state for a robotic vehicle like ours which is continuously receiving data from its 

operator, but is transmitting only when necessary. 

The type of model that is appropriate for estimating time tc depends on the algorithm (or set 

of algorithms) utilised by the intrusion detection mechanism, as well as the architecture of the 

processing system. For the vehicle and intrusion detection mechanism at hand, we have 

observed experimentally that tc is highly linear against the size of the input data dn utilised 

(Fig. 4), following a simple t c =γdn+βtc=γdn+β format, where {γ,β}∈R{γ,β}∈R depend on 

the complexity of the deep learning configuration. Simple linear regression on experimental 

measurements yields {γ,β} l o w ={0.0003,−0.0982}{γ,β}low={0.0003,−0.0982} for the 

lower complexity case we experimented with, 

{γ,β} m o d e r a t e ={0.0004,−0.1665}{γ,β}moderate={0.0004,−0.1665} for the moderate 

case, and {γ,β} h i g h ={0.0007,−0.3134}{γ,β}high={0.0007,−0.3134} for the higher 

complexity one. The particular three cases are explained in Sections 5.1–5.3. 

 

Fig. 4.  

Onboard computation time vs. input data size for deep learning models of different complexity, 

illustrating the linearity of tc. 

 

As a result, for the particular periodic task of real-time deep learning detection of cyber 

attacks based on the n data points in a period T, Eq. 5 becomes:  
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As a result, for the particular periodic task of real-time deep learning detection of cyber 

attacks based on the n data points in a period T, Eq. 5 becomes:  

Equation. 

We validate this model by comparing with experimental results in Section 5.4. 
 

5. Experimental evaluation 

Here, we evaluate experimentally the practicality of offloading for intrusion detection based 

on deep learning models of low, moderate and high complexity. Their complexity loosely 

depends on the number of features measured in the vehicle, as well as the number of neurons 

in the deep learning model. The precise parameters of these three deep learning model 

configurations (number of features and number of neurons) were chosen experimentally so as 

to be meaningful in terms of detection accuracy, as well as relatively practical in terms of the 

time taken to train each model and the time needed to produce a detection result when tested. 

We have experimented with configurations of much higher complexity too, but they required 

several days of training, yet did not produce any noticeable improvement in detection 

accuracy in our case. Although the details of the detection approaches are beyond the scope 

of this paper, for context, we provide a brief summary of the attack and the detection. 

We employ a command injection attack, which in previous research has been shown to be 

particularly difficult to detect with lightweight detection mechanisms. For consistency, we 

employ the same settings and scenario as in Vuong et al., where the vehicle receives 

commands from its legitimate operator to move forward, and at the same time receives rogue 

“stop” or “turn left” commands from an attacker. As a result, the vehicle exhibits both 

inconsistent cyber behaviour and intermittent physical jittering during the attack. The 

detection provided in Vuong et al. is based on a decision tree-based approach, which runs 

comfortably on the vehicle but achieves an accuracy rate of only 72.8%. Although this is not 

within the scope of this paper, to illustrate the motivation for employing a higher complexity 

approach, we report that with deep learning, our detection method exceeds 85% accuracy. 

Fig. 5 shows the setup of the command injection attack scenario and offloaded detection. 
 

In our experiments, we have used τ=0.02s ,τ=0.02s,d=60d=60 bytes and n varying between 

25 and 500 data points in a period T  , ranging correspondingly between 0.5 s and 10 s. The 

transmission rate is rx=125000rx=125000 bytes/s. See Table 2 for quick reference. 

 

Table 2.  

Evaluation parameters. 

Parameter Value 

τ 0.02 s 

T 0.5 s, 1 s, 2 s, 5 s, 10 s 

n 25, 50, 100, 250, 500 

d 60 bytes 
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Parameter Value 

Pv 61.99 W 

Pi 55.93 W 

Px 59.34 W 

rx 125,000 bytes/s 

γ, β 
low: {0 .0 0 0 3 ,−0 .0 9 82 } , {0.0003,−0.0982}, moderate: 

{0 .0 0 04 ,−0 .1 6 65 } , {0.0004,−0.1665}, high: {0 .0 0 0 7 ,−0 .3 13 4  

 

5.1. Low complexity detection 

Here, the deep learning-based detection takes into account only nine features collected on the 

vehicle and a relatively simple neural network design with 600 hidden neurons. In Fig. 6, the 

break-even line corresponds to the points where the detection latency would be equal to the 

detection period. Any value higher than this line renders detection technically impractical, 

because if it is higher than the detection period, it introduces an infinitely increasing queuing 

delay to subsequent detection runs.2 From the particular perspective, we see in Fig. 6 that 

detection of low complexity is practical in all cases when run onboard. However, with the 

exception of the n=25n=25 case, detection latency is reduced dramatically when offloaded. 

In fact, the greater the number of data points, the greater the benefit of offloading in terms of 

detection latency reduction. This was expected as the shorter the time it takes to complete a 

task, the lower the benefit of offloading it to a server, because of the impact of the network 

delay. 

 

Fig. 6.  

Detection latency in the case of low complexity detection. The break-even line corresponds to the 

points where the detection latency would be equal to the detection period. 

 

5.2. Moderate complexity detection 

Here, the deep learning-based detection takes into account 9 features and a more complex 

neural network design with 800 hidden neurons. In Fig. 7, we observe that with the exception 

of the first case (n=25n=25), where detection latency is lower than the period T, in all other 

cases it is marginally impractical when run onboard, but practical in all cases when offloaded. 

Again, the greater the number of data points, the greater the benefit of offloading. 

 

Fig. 7.  

Detection latency in the case of moderate complexity detection. The break-even line corresponds to the 

points where the detection latency would be equal to the detection period. 

Fig. 8.  

Detection latency in the case of high complexity detection. The break-even line corresponds to the 

points where the detection latency would be equal to the detection period. 
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5.3. High complexity detection 

Here, the deep learning-based detection takes into account 45 features and a more complex 

neural network design with 1000 hidden neurons. In Fig. 8, we observe that detection of high 

complexity is impractical in all cases when run onboard, but only in the first case 

(n=25n=25) when offloaded. Again, the greater the number of data points, the greater the 

benefit of offloading. 

5.4. Energy saving 

Here, we test the validity of the model presented in Section 4 by comparing its prediction 

with our energy measurements from actual experimental runs (Fig. 9). For the energy costs 

between onboard and offloaded detection to be comparable (and thus the saving 

measurements of offloading to be meaningful), both onboard and offloaded detection cases 

need to be technically practical. For this reason, we perform our comparison on the low 

complexity detection case, which meets this requirement. Fig. 9 shows that the prediction 

based on the model is very close to the real measurements on the testbed. The left vertical 

axis corresponds to the energy saving over a period T=nτ,T=nτ, while the right vertical axis 

corresponds to the vehicle’s total energy saving over 24 h (86,400 s) of continuous operation, 

estimated as . While ΔE (which corresponds to one period) is linear against n, note 

that the total energy saving over 24 h is not, because it involves a division by n. 

 

Fig. 9.  

Comparison of mathematical model and experimental measurements for low complexity detection (left 

vertical axis: duration T; right vertical axis: duration 24 h). 

 

Based on Eq. 6, offloading is beneficial in terms of energy efficiency if ΔE > 0, which 

solving for n corresponds to:  

 

 

For the average power consumption values measured in our experiments, this yields n > 5.54 

for the low complexity case, n > 7.02 for medium, and n   > 7.51 for high. So, the lowest 

numbers of data points for which offloading would be beneficial for energy efficiency are 

n=6,n=6,n=8n=8 and n=8n=8 respectively, which are considerably lower than the 

minimum required by the deep learning approach to provide a meaningful detection result 

(experimentally observed to be around n=25,n=25, hence the lowest value chosen in the 

experiments reported here). This explains why offloading reduces the energy consumption on 

the vehicle in all our experiments. 

The main strength of offloading such a task is that, in most cases, the vehicle benefits from 

both reduced energy costs and reduced detection latency at the same time. This is illustrated 

in Fig. 10, which displays the experimental results in terms of total energy consumption 
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against detection latency achieved for onboard and offloaded detection, for the low, moderate 

and high complexity cases (although the latter two are not practical in terms of latency when 

run onboard). Each arrow displays the change of energy consumption and latency values 

when moving from onboard to offloaded detection. Where the arrow’s direction points 

towards the bottom left, offloading has achieved both targets (lower energy consumption and 

lower latency). We see that, from the perspective of the vehicle, the experiments have shown 

that energy was saved in all cases, as was also predicted by our mathematical model. Overall 

detection latency increases for n=25n=25 and n=50n=50 in low complexity, and for 

n=25n=25 in high complexity detection), but is reduced in all other cases. 

 

Fig. 10.  

Energy consumption vs. detection latency for onboard and offloaded detection. Each arrow displays the 

change of energy consumption and latency values from onboard to offloaded detection. 

 

In terms of selecting optimal n, the mathematical model shows that energy saving of a 

continuously operated detection over a period of 24 h is monotonically increasing against n. 

So, the larger the n   the better. However, in practice, both mathematical model and energy 

measurements agree that it levels off between n=150n=150 and n=250,n=250, and from 

then on, any improvements in long-term energy efficiency are marginal. Also, n is at the 

same time a key parameter of the accuracy of the deep learning algorithm because it 

represents the amount of data available to take a detection decision. So, in practice, the 

identification for optimal value should take into account both energy efficiency and accuracy. 

This is part of our future work. 

6. Conclusions 

Intrusion detection for time-critical cyber-physical systems, such as vehicles, has been 

traditionally limited to lightweight techniques because they are constrained by their 

timeliness and energy efficiency requirements. Detecting that a vehicle is under a cyber 

attack after the attack has caused physical damage is impractical. Similarly, running a 

processing-heavy detection algorithm that would reduce considerably the operational 

autonomy of the vehicle by increasing its energy consumption is again impractical. We have 

produced a mathematical model which estimates the energy cost of a continuous deep 

learning based detection and allows identifying the minimum number of data points used by 

the detection algorithm where offloading saves energy. For the particular robotic vehicle and 

remote offloading server experimented with, this was always the case, as the minimum 

required was considerably lower than the minimum needed by the detection algorithm. In 

terms of overall detection latency, we have also observed significant improvement, but in our 

analysis and experiments, we have assumed a simple network which introduces network 

delay that is rather consistent. So, although we took the network delay into account, our focus 

was on the variations of the latency introduced by the detection itself. This can be a 

reasonable assumption for networks controlled by the same operators as the vehicle, but 

would be too optimistic in scenarios where the network is a general-purpose network not 

under the same users’ control (e.g., over the Internet if using a remote cloud). In future work, 

we will take into account a variety of more diverse network configurations (including multi-

hop connections) and unstable or volatile network conditions and study how and to what 

extent they affect the practicality of offloading. 



Performing a highly demanding task continuously (as in this case, intrusion detection based 

on deep learning) may not always be a wise use of resources even if offloaded to a server. For 

example, we have shown that to ensure that it is completed in time in every detection period, 

deep learning based detection may need to be limited to low complexity approaches. One 

method that may be more practical is to employ a traditional lightweight alternative, such as 

decision-tree based detection, in continuous mode, and only trigger offloaded deep learning 

analysis to confirm detection when an attack is suspected or to determine its type or likely 

impact. Such hybrid approaches are commonly used measures for improving efficiency. The 

problem remains though that if the initial lightweight detection exhibited false negatives, then 

it could fail to trigger the deep learning phase in cases of actual attacks. In that case, the 

benefits of offloading are rendered irrelevant. Minimising false negatives is an open research 

problem for cyber-physical system security in general, which we are also working towards by 

developing low-latency deep learning binary classification methods. 

 


