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Abstract 

Individual variability in drug response is a key challenge in current clinical practice and in 

drug discovery and development. Pharmacological response is closely associated with drug 

concentration at the site of action and therefore knowledge of drug pharmacokinetics is vital 

to delivering effective therapy. In addition to genetic polymorphisms, environmental factors 

also play an important role in determining drug efficacy, safety, metabolism and 

pharmacokinetics. The newly emerging field of pharmacometabonomics uses information 

from pre-dose metabolite profiles to predict individual drug responses, can be sensitive to 

both genetic and environmental factors and thus has great promise to help the future delivery 

of personalized medicine. This article introduces pharmacometabonomics and covers its 

application to the prediction of pharmacokinetics. 

 

Editorial 

Personalised or stratified therapy is a key goal for 21st century medicine in order to maximize 

therapeutic efficacy and minimize the likelihood of adverse drug reactions for groups of 

patients. In addition, personalised medicine has the potential to substantially enhance the 

process of drug discovery and development. [1] Thus far, personalized medicine has been 

mainly based on pharmacogenomics (PG), where an individual’s genetic profile is used to 
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predict the clinical outcome of drug treatment.[2] There are now numerous PG studies 

associating human genetic polymorphisms with drug effects. The best-recognized examples 

are genetic polymorphisms of drug-metabolizing enzymes such as cytochrome P450 

isoenzymes, N-acetyl transferases, sulfotransferases, and glucuronosyl-transferases.[3] 

Although genetic variation is a well-recognised factor contributing to drug response 

variability, the achievement of “individualized drug therapy” for a wide range of diseases is 

unlikely using genomic knowledge alone. This is because inter-individual variation in drug 

response is influenced by the complex interplay between genetic and environmental factors 

including nutritional status, lifestyle, age, gender, diseases, gut microbiota and co- or pre-

administration of other drugs. These factors can significantly impact the pharmacokinetic 

(PK) characteristics of a drug including the processes of absorption, distribution, metabolism 

and excretion (ADME) and thereby cause inter-individual variation in drug effects.  

 

In an alternative but complementary approach, pharmacometabonomics has now been applied 

to predict the efficacy, safety, metabolism and PK of drugs. Pharmacometabonomics is an 

extension of metabonomics [4] and is defined as ‘the prediction of the outcome (for example, 

efficacy or toxicity) of a drug or xenobiotic intervention in an individual based on a 

mathematical model of pre-intervention metabolite signatures’. In a pharmacometabonomics  

study, the metabolite profiles in pre-dose biofluid samples (typically urine or blood plasma) 

from a group of subjects are analysed by technologies such as nuclear magnetic resonance 

(NMR) spectroscopy or mass-spectrometry (MS), the latter typically hyphenated with a 

separation technology. Multivariate statistical analysis methods, such as principal 

components analysis (PCA) or partial least squares (PLS), are then used to analyse the pre-

dose metabolite profiles to discover statistically significantly different sub-groups of subjects 

whose post-dose outcomes, such as levels of efficacy or degree of drug metabolism, are 

different from those of other sub-groups.[5] Preferably, the predictive model is created on a 

training set of subjects and then tested in an independent, ‘external’ validation set.  

 

Pharmacometabonomics was initially discovered in a study on a group of 75 Sprague-Dawley 

rats. It was shown that pre-dose urinary metabolite profiles could be used to predict the 

metabolism and the hepatotoxic effects of the analgesic paracetamol.[6] Subsequently, this 

approach was demonstrated in humans in a study of the metabolism of the same drug 

paracetamol [7] and a clear relationship was found between the volunteers’ pre-dose, urinary, 

endogenous metabolite profiles and the post-dose metabolism of the drug. NMR-based 
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analysis revealed that human volunteers excreting relatively large amounts of the microbial 

co-metabolite para-cresol sulfate in their pre-dose urines tended to have a lower ratio of 

paracetamol sulphate to paracetamol glucuronide in their post-dose urines than individuals 

with low amounts of pre-dose urinary para-cresol sulfate.[7] Para-cresol-sulfate is a 

metabolite produced from the hepatic sulfonation of para-cresol, which itself is generated by 

gut bacteria, particularly Chlostridium species. Paracetamol and para-cresol have similar 

molecular structures and both compete for sulfation via the same human sulphotransferase 

enzymes, particularly SULT1A1. [8,9] This study demonstrated that the sulfonation of 

paracetamol (and potentially any other drug) can be restricted by competition from para-

cresol, and also demonstrated the critical role of the gut microbiome in human drug 

metabolism.  

 

Since its initial discovery,[6] pharmacometabonomics has been increasingly applied in both 

preclinical and clinical studies to predict drug safety, efficacy, metabolism and 

pharmacokinetics.[10] The potential of pharmaco-metabonomics in predicting the PK profile 

of a drug was first demonstrated in a study by Yoon et al. for the commonly used 

immunosuppressive drug, tacrolimus. [11] The efficacy of this drug is associated with a 

narrow therapeutic index combined with a large degree of variability in patient blood levels. 

Therefore, it is important to predict the PK of tacrolimus in order to minimise adverse drug 

reactions. Tacrolimus was administrated to 29 healthy, Korean males (75 ug/kg, oral) whilst 

controlling food intake and environmental conditions. Liquid chromatography-mass 

spectroscopy (LC-MS) analysis of the pre-dose urines of these volunteers resulted in 

detection of 1,256 metabolic ions, among which 42 key metabolic features were shown to be 

closely correlated with the drug’s PK in terms of the area under the curve (AUC). Using LC-

MS/MS along with database searching, 28 metabolites were identified and subsequently used 

to reconstruct a hypothetical metabolic network. To generate a more clinically applicable 

model, four metabolites (cortisol, acetyl-arginine, phosphoethanolamine, and 1-

methylguanosine), with high contributions to the PLS model and representing four major 

metabolic pathways, were selected for predicting the AUC of tacrolimus. The new model 

successfully classified individuals into high, medium, and low AUC groups. This study 

demonstrated the potential of pharmacometabonomics to predict PK. 

 

Kaddurah-Daouk et al used an LC-MS approach to show that pre-dose plasma levels of the 

bile acids chenodeoxycholic acid and deoxycholic acid were correlated to post-treatment 
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simvastatin levels in a broader study using pharmacometabonomics methodology to predict 

statin efficacy.[12]  

 

Liu et al. applied pharmacometabonomics to predict the pharmacokinetic characteristics of 

triptolide in male Sprague−Dawley rats.[13] Triptolide is a major bioactive diterpenoid 

triepoxide that possesses a variety of anti-inflammatory, immunosuppressive and anti-tumor 

properties and has been used for centuries in traditional Chinese medicine for the treatment of 

immune-related diseases.[13] The clinical application of triptolide, however, is restricted by 

its narrow therapeutic index and high toxicity. Groups of rats were treated with one of three 

diets: normal, calorie-restricted or high fat diet, and then administered triptolide (0.60 or 1.80 

mg/kg oral). Gas chromatography (GC)-MS analysis of the pre-dose serum detected 267 

metabolite ions, of which 85 were identified. Multivariate regression analysis showed that 

the predose serum concentrations of creatinine and glutamate were linearly negatively 

correlated to postdose triptolide plasma maximal concentration (Cmax) and AUC values.   

 

The same group employed GC-MS analysis of pre-dose plasma to predict the 

pharmacokinetics of atorvastatin (oral, 20 mg/kg) in 48 healthy volunteers hospitalized at 

clinical research units with strict control over diet and environment.[14] Atorvastatin is an 

HMG-CoA reductase inhibitor that is generally used to lower levels of low-density 

lipoprotein cholesterol (LDL-C) in plasma and reduce the risk for coronary artery disease 

(CAD).  The pharmacokinetics of atorvastatin vary considerably between individuals and 

hence its therapeutic efficacy is also variable.[15] The initial PLS multivariate analysis, 

conducted on 181 measured metabolite ions and 16 physiological and biochemical 

parameters from individuals in a training set (n = 36), revealed 63 and 57 variables which 

were highly correlated with atorvastatin Cmax, and AUC respectively. Subsequently, sets of 

17 and 12 key metabolites with high contributions to the initial PLS model and significant 

correlation to pharmacokinetic parameters, were selected to construct a refined model that 

could predict individualized Cmax and AUC, respectively. This refined model allowed the 

prediction of the PK parameters of 12 other healthy volunteers in a validation set (with 

correlation coefficients of r = 0.83 for Cmax and r = 0.87 for AUC) and could also successfully 

classify individual pharmacokinetic responses into subgroups.   

 

The group of Barin-Le Guellec et al recently reported the use of GC-MS-based 

pharmacometabonomics to predict the clearance of methotrexate (MTX) in a cohort of 62 
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adult patients being treated for lymphoid malignancies.[16] Variable PK of MTX is known to 

be responsible for serious patient toxicities, even death, and over-exposure can occur even in 

the same patient between MTX treatment courses, thus indicating that genetic factors per se 

are not responsible for all of the variability observed.[16] In a well-designed study utilising 

internal and external validation of the models, the pre-dose urine levels of 28 metabolites 

were shown to be predictive of MTX clearance with mean prediction error and precision of 

0.4% and 21% respectively. An orthogonal PLS discriminant analysis model showed a partial 

separation between patients with normal or delayed MTX elimination and whilst the 

specificity was excellent (93%), sensitivity was poor (42%) and model improvements would 

be required for clinical utility of this element. The model for the prediction of MTX clearance 

is however expected to have clinical utility and also gave insights into the underlying 

mechanisms of MTX excretion, including the role of organic anion transporters.[16] 

 

Pharmacometabonomics, though still an emerging technology, has shown significant promise 

in the prediction of drug efficacy, safety and metabolism, in addition to the prediction of PK. 

Around 20 studies of pharmacometabonomics in humans have now been reported [17] in 

addition to pre-clinical studies. The major advantage of this technology is that it can 

inherently take into account both genetic and environmental influences in its predictive 

models. The existing studies clearly demonstrate the potential of pharmacometabonomics to 

help predict variation in pharmacokinetics and thereby to facilitate the delivery of 

personalised drug therapy. Further investigations will be required to demonstrate the broader 

utility of this approach for the general patient population and also to follow and predict 

optimal long term treatment.[18] It is clear that pharmacometabonomics is complementary to 

pharmacogenomics and therefore the integration of the two technologies will be both 

powerful [19] and could provide more insight into mechanisms underlying individual 

variation in drug response. 
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