
On the Transformation Capability of Feasible
Mechanisms for Programmable Matter
Othon Michail1, George Skretas2, and Paul G. Spirakis3

1 Department of Computer Science, University of Liverpool, UK
Othon.Michail@liverpool.ac.uk

2 Computer Engineering and Informatics Department, Patras University, Greece
skretas@ceid.upatras.gr

3 Department of Computer Science, University of Liverpool, UK & CTI
P.Spirakis@liverpool.ac.uk

Abstract
In this work, we study theoretical models of programmable matter systems. The systems under
consideration consist of spherical modules, kept together by magnetic forces and able to perform
two minimal mechanical operations (or movements): rotate around a neighbor and slide over
a line. In terms of modeling, there are n nodes arranged in a 2-dimensional grid and forming
some initial shape. The goal is for the initial shape A to transform to some target shape B

by a sequence of movements. Most of the paper focuses on transformability questions, meaning
whether it is in principle feasible to transform a given shape to another. We first consider the
case in which only rotation is available to the nodes. Our main result is that deciding whether
two given shapes A and B can be transformed to each other, is in P. We then insist on rotation
only and impose the restriction that the nodes must maintain global connectivity throughout
the transformation. We prove that the corresponding transformability question is in PSPACE
and study the problem of determining the minimum seeds that can make feasible, otherwise
infeasible transformations. Next we allow both rotations and slidings and prove universality: any
two connected shapes A, B of the same order, can be transformed to each other without breaking
connectivity. The worst-case number of movements of the generic strategy is Ω(n2). We improve
this to O(n) parallel time, by a pipelining strategy, and prove optimality of both by matching
lower bounds. In the last part of the paper, we turn our attention to distributed transformations.
The nodes are now distributed processes able to perform communicate-compute-move rounds.
We provide distributed algorithms for a general type of transformations.

Keywords and phrases programmable matter, transformation, reconfigurable robotics, shape
formation, complexity, distributed algorithms

1 Introduction

Programmable matter refers to any type of matter that can algorithmically change its physical
properties. For a concrete example, imagine a material formed by a collection of spherical
nanomodules kept together by magnetic forces. Each module is capable of storing (in some
internal representation) and executing a simple program that handles communication with
nearby modules and that controls the module’s electromagnets, in a way that allows the
module to rotate or slide over neighboring modules. Such a material would be able to adjust
its shape in a programmable way. Other examples of physical properties of interest for real
applications would be connectivity, color [26, 5], and strength of the material.

There are already some first impressive outcomes towards the development of program-
mable materials (even though it is evident that there is much more work to be done in
the direction of real systems), such as programmed DNA molecules that self-assemble into

© Othon Michail, George Skretas, and Paul G. Spirakis;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Liverpool Repository

https://core.ac.uk/display/80783156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

desired structures [29, 13] and large collectives of tiny identical robots that orchestrate resem-
bling a single multi-robot organism (Kilobot system) [30]. Other systems for programmable
matter include [20, 23]. Ambitious long-term applications of programmable materials include
molecular computers, collectives of nanorobots injected into the human circulatory system
for monitoring and treating diseases, or even self-reproducing and self-healing machines.

Apart from the fact that systems work is still in its infancy, there is also an apparent lack
of unifying formalism and theoretical treatment. Still there are some first theoretical efforts
aiming at understanding the fundamental possibilities and limitations of this prospective.
The area of algorithmic self-assembly tries to understand how to program molecules (mainly
DNA strands) to manipulate themselves, grow into machines and at the same time control
their own growth [13]. The theoretical model guiding the study in algorithmic self-assembly
is the Abstract Tile Assembly Model (aTAM) [34, 28] and variations. Recently, a model,
called the nubot model, was proposed for studying the complexity of self-assembled structures
with active molecular components [35]. Another very recent model, called the Network
Constructors model, studied what stable networks can be constructed by a population of
finite-automata that interact randomly like molecules in a well-mixed solution and can
establish bonds with each other according to the rules of a common small protocol [27].
The development of Network Constructors was based on the Population Protocol model of
Angluin et al. [2], that does not include the capability of creating bonds and focuses more on
the computation of functions on inputs. A very interesting fact about population protocols
is that they are formally equivalent to chemical reaction networks (CRNs), “which model
chemistry in a well-mixed solution and are widely used to describe information processing
occurring in natural cellular regulatory networks” [14]. Also the recently proposed Amoebot
model, “offers a versatile framework to model self-organizing particles and facilitates rigorous
algorithmic research in the area of programmable matter” [10, 12, 11]. Other related work
includes mobile and reconfigurable robotics [6, 24, 32, 19, 33, 8, 7, 4, 37, 1, 36], puzzles
[9, 21], and passive systems [2, 3, 27, 18, 34, 28]. See the Appendix for more details on these
areas.

It seems that the right way for theory to boost the development of more refined real
systems is to reveal the transformation capabilities of mechanisms and technologies that are
available now, rather than by exploring the unlimited variety of theoretical models that are not
expected to correspond to a real implementation in the near future. In this paper, we follow
such an approach, by studying the transformation capabilities of models for programmable
matter, which are based on minimal mechanical capabilities, easily implementable by existing
technology.

1.1 Our Approach
We study a minimal programmable matter system consisting of n cycle-shaped modules,
with each module (or node) occupying at any given time a cell of the 2D grid (no two nodes
can occupy the same cell at the same time). Therefore, the composition of the programmable
matter systems under consideration is discrete. Our main question throughout is whether an
initial arrangement of the material can transform (either in principle, e.g., by an external
authority, or by itself) to some other target arrangement. In more technical terms, we are
provided with an initial shape A and a target shape B and we are asked whether A can be
transformed to B via a sequence of valid transformation steps. Usually, a step consists either
of a valid movement of a single node (in the sequential case) or of more than one nodes at
the same time (in the parallel case). We consider two quite primitive types of movement.
The first one, called rotation, allows a node to rotate 90° around one of its neighbors either

O. Michail, G. Skretas, and P. G. Spirakis 3

clockwise or counterclockwise and the second one, called sliding, allows a node to slide by one
position “over” two neighboring nodes. Both movements succeed only if the whole direction
of movement is free of obstacles (i.e., other nodes blocking the way). More formal definitions
are provided in Section 2. One part of the paper focuses on the case in which only rotation is
available to the nodes and the other part studies the case in which both rotation and sliding
are available. The latter case has been studied to some extent in the past in the, so called,
metamorphic systems [16, 17, 15], which makes those studies the closest to our approach.

For rotation only, we introduce the notion of color-consistence and prove that if two
shapes are not color-consistent then they cannot be transformed to each other. On the
other hand color-consistence does not guarantee transformability as there is an infinite set of
pairs (A, B) such that A and B are color consistent but still they cannot be transformed
to each other. At this point, observe that if A can be transformed to B then the inverse
is also true, as all movements considered in this paper are reversible. We distinguish two
main types of transformations: those that are allowed to break the connectivity of the
shape during the transformation and those that are not and call the corresponding problems
Rot-Transformability and RotC-Transformability. Our main result regarding
Rot-Transformability is that Rot-Transformability ∈ P. To prove polynomial-time
decidability, we prove that two shapes A and B are transformable to each other iff both
have at least one movement available. Therefore, transformability reduces to checking the
availability of a movement in the initial and target shapes.

We next study RotC-Transformability, in which again the only available movement is
rotation, but now connectivity of the material has to be preserved throughout the transform-
ation. The property of preserving the connectivity is expected to be a crucial property for
programmable matter systems, as it allows the material to maintain coherence and strength,
to eliminate the need for wireless communication, and, finally, enables the development
of more effective power supply schemes, in which the modules can share resources or in
which the modules have no batteries but are instead constantly supplied with energy by
a centralized source (or by a supernode that is part of the material itself). Such benefits
can lead to simplified designs and potentially to reduced size of individual modules. We
first prove that RotC-Transformability ∈ PSPACE. The rest of our results here are
strongly based on the notion of a seed. This stems from the observation that a large set of
infeasible transformations become feasible by introducing to the initial shape an additional,
and usually quite small, seed; i.e., a small shape that is being attached to some point of the
initial shape. We investigate seeds that could serve as components capable of traveling the
perimeter of an arbitrary connected shape A. Such shapes are very convenient as they are
capable of “simulating” the universal transformation techniques that are possible if we have
both rotation and sliding movements available (discussed in the sequel). To this end, we
prove that all seeds of size ≤ 4 cannot serve for this purpose, by proving that they cannot
even walk the perimeter of a simple line shape. On the other hand, we manage to show that
a 6-seed succeeds, and this provides a first indication, that there might be a large family
of shapes that can be transformed to each other with rotation only and without breaking
connectivity.

Next, we consider the case in which both rotation and sliding are available and insist
on connectivity preservation. We first provide a proof that this combination of simple
movements is universal w.r.t. transformations, as any pair of connected shapes A and B of
the same order, can be transformed to each other without ever breaking the connectivity
throughout the transformation (a first proof of this fact had already appeared in [15]).
This generic transformation requires Θ(n2) sequential movements in the worst case. By a

4 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

potential-function argument we show that no transformation can improve on this worst-
case complexity for some specific pairs of shapes and this lower bound is independent of
connectivity preservation; it only depends on the inherent transformation-distance between
the shapes. To improve on this, either some sort of parallelism must be employed or more
powerful movement mechanisms, e.g., movements of whole sub-shapes in one step. We
investigate the former approach, and prove that there is a pipelining general transformation
strategy that improves the time to O(n) (parallel time). We also give a matching Ω(n) lower
bound. On the way, we also show that this parallel complexity is feasible even if the nodes are
labeled, meaning that individual nodes must end up in specific positions of the target-shape.

Finally, we assume that the nodes are distributed processes able to perform communicate-
compute-move rounds (where a movement can be both rotation and sliding) and provide
distributed algorithms for a general type of transformations.

Section 2 brings together all definitions and basic facts that are used throughout the paper.
In Section 3, we study programmable matter systems equipped only with rotation movement.
In Section 4, we insist on rotation only, but additionally require from the material to maintain
connectivity throughout the transformation. In Section 5, we investigate the combined effect
of rotation and sliding movements. Section 6 focuses on distributed transformations having
access to both rotation and sliding.

2 Preliminaries

The programmable matter systems considered in this paper operate on a 2-dimensional
square grid, with each position (or cell) being uniquely referred to by its x ≥ 0 and y ≥ 0
coordinates. Such a system consists of a set V of n modules, called nodes throughout. Each
node may be viewed as a spherical module fitting inside a cell of the grid. At any given time,
each node u ∈ V occupies a cell o(u) = (ox(u), oy(u)) = (i, j) and no two nodes may occupy
the same cell. At any given time t, the positioning of nodes on the grid defines an undirected
neighboring relation E(t) ⊂ V ×V , where {u, v} ∈ E iff ox(u) = ox(v) and |oy(u)−oy(v)| = 1
or oy(u) = oy(v) and |ox(u)− ox(v)| = 1, that is, if u and v are either horizontal or vertical
neighbors on the grid, respectively. A more informative way to define the system at a given
time t, and thus often more convenient, is as a mapping Pt : N≥0 × N≥0 → {0, 1} where
Pt(i, j) = 1 iff cell (i, j) is occupied by a node.

At any given time t, P−1
t (1) defines a shape. Such a shape is called connected if E(t)

defines a connected graph. A connected shape is called convex if for any two occupied cells,
the line that connects their centers does not pass through an empty cell. We call a shape
discrete-convex if for any two occupied cells, belonging either to the same row or the same
column, the line that connects their centers does not pass through an empty cell; i.e., in the
latter we exclude diagonal lines. We call a shape compact if it has no holes.

In general, shapes can transform to other shapes via a sequence of one or more movements
of individual nodes. Time consists of discrete steps (or rounds) and in every step, zero or
more movements may occur. In the sequential case, at most one movement may occur per
step, and in the parallel case any number of “valid” movements may occur in parallel. 1 We
consider two types of movements: (i) rotation and (ii) sliding. In both movements, a single
node moves relative to one or more neighboring nodes as we just explain.

1 By “valid”, we mean here subject to the constraint that their whole movement paths correspond to
pairwise disjoint sub-areas of the grid.

O. Michail, G. Skretas, and P. G. Spirakis 5

A single rotation movement of a node u is a 90° rotation of u around one of its neighbors.
Let (i, j) be the current position of u and let its neighbor be v occupying the cell (i− 1, j)
(i.e., lying below u). Then u can rotate 90° clockwise (counterclockwise) around v iff the cells
(i, j +1) and (i−1, j +1) ((i, j−1) and (i−1, j−1), respectively) are both empty. By rotating
the whole system 90°, 180°, and 270°, all possible rotation movements are defined analogously.
A single sliding movement of a node u is a one-step horizontal or vertical movement “over” a
horizontal or vertical line of (neighboring) nodes of length 2. In particular, if (i, j) is the
current position of u, then u can slide rightwards to position (i, j + 1) iff (i, j + 1) is not
occupied and there exist nodes at positions (i− 1, j) and (i− 1, j + 1) or at positions (i + 1, j)
and (i + 1, j + 1), or both. Precisely the same definition holds for up, left, and down sliding
movements by rotating the whole system 90°, 180°, and 270° counterclockwise, respectively.

Let A and B be two shapes. We say that A transforms to B via a movement m (which
can be either a rotation or a sliding), denoted A

m→ B, if there is a node u in A such that if
u applies m, then the shape resulting after the movement is B (possibly after rotations and
translations of the resulting shape, depending on the application). We say that A transforms
in one step to B (or that B is reachable in one step from A), denoted A→ B, if A

m→ B for
some movement m. We say that A transforms to B (or that B is reachable from A) and write
A B, if there is a sequence of shapes A = C0, C1, . . . , Ct = B, such that Ci → Ci+1 for all
i, 0 ≤ i < t. We should mention that we do not always allow m to be any of the two possible
movements. In particular, in Sections 3 and 4 we only allow m to be a rotation, as we there
restrict attention to systems in which only rotation is available. We shall clearly explain
what movements are permitted in each part of the paper. Observe now that both rotation
and sliding are reversible movements, a fact that we use extensively in our results. Based on
this, it can be proved that the relation ‘ ’ is a partial equivalence relation. When the only
available movement is rotation, there are shapes in which no rotation can be performed. If
we introduce a null rotation, then every shape may transform to itself by applying the null
rotation, and ‘ ’ becomes an equivalence relation.

The following are the main transformation problems that are considered in this work:
Rot-Transformability. Given an initial shape A and a target shape B (usually both
connected), decide whether A can be transformed to B (usually, under translations and
rotations of the shapes) by a sequence of rotation only movements.
RotC-Transformability. Special case of Rot-Transformability, where A and B are
connected shapes and connectivity must be preserved throughout the transformation.
RS-Transformability. Variant of Rot-Transformability in which both rotation and
sliding movements are available.
Minimum-Seed-Determination. Given an initial shape A and a target shape B determine
a minimum-size seed and an initial positioning of that seed relative to A that makes the
transformation from A to B feasible.

3 Rotation

In this section, the only permitted movement is 90° rotation around a neighbor. Our main
result in this section is that Rot-Transformability ∈ P.

Consider a black and red checkered coloring of the 2D grid. Any shape S may be viewed
as a colored shape consisting of b(S) blacks and r(S) reds. Call two shapes A and B color-
consistent if b(A) = b(B) and r(A) = r(B) and call them color-inconsistent otherwise. Call a
transformation from a shape A to a shape C color-preserving if A and C are color consistent.

I Observation 1. The rotation movement is color-preserving. Formally, A C (restricted to

6 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

rotation only) implies that A and C are color-consistent. In particular, every node beginning
from a black (red) position of the grid, will always be on black (red, respectively) positions
throughout a transformation.

Based on this property of the rotation movement, we may call each node black or red
throughout a transformation, based only on its initial coloring. Observation 1 gives a partial
way to determine that two shapes A and B cannot be transformed to each other by rotations.

I Proposition 1. If two shapes A and B are color-inconsistent, then it is impossible to
transform one to the other by rotations only.

I Proposition 2. There is a generic connected shape, called line-with-leaves, that has a
color-consistent version for any connected shape.

Proof. Consider a bi-color line starting with a black node and ending to a black node, such
that all k blacks are exhausted. To do this, k− 1 reds are needed in order to alternate blacks
and reds on the line. Next, “saturate” every black by adding as many red nodes as it can fit
around it (note that the maximum degree of every node in our model is 4). J

Based on this, we now show that the inverse of Proposition 1 is not true, that is, it does
not hold that any two color-consistent shapes can be transformed to each other by rotations.

I Proposition 3. There is an infinite set of pairs (A, B) of connected shapes, such that A

and B are color-consistent but cannot be transformed to each other by rotations only.

Proof. For shape A, take a rhombus in which no node is able to rotate (see Appendix for a
figure). By Proposition 2, any such A has a color-consistent shape B from the family of line-
with-leaves shapes, such that B 6= A. We conclude that A and B are distinct color-consistent
shapes which cannot be transformed to each other, and there is an infinite number of such
pairs, as the number of black nodes of A can be made arbitrarily large. J

Propositions 1 and 3 give a partial characterization of pairs of shapes that cannot be
transformed to each other. Observe that the impossibilities proved so far, hold for all possible
transformations based on rotation only, including those that are allowed to break connectivity.

The next theorem states that the inclusion between RotC-Transformability and
Rot-Transformability is strict, that is, there are strictly more feasible transforma-
tions if we allow connectivity to break. We prove this by showing that there is a feasible
transformation, namely folding a spanning line in half, in Rot-Transformability\RotC-
Transformability.

I Theorem 1. RotC-Transformability ⊂ Rot-Transformability.

Aiming at a general transformation, we ask whether there is some minimal addition to a
shape that would allow it to transform. The solution turns out to be as small as a 2-line seed
(or bi-color pair) lying initially somewhere “outside” the boundaries of the shape. Based on
the above assumptions, we prove that any pair of color-consistent connected shapes A and B

can be transformed to each other. The idea is to exploit the fact that the 2-line can move
freely in any direction and to use it in order to extract from A another 2-line. In this way, a
4-line seed is formed, which can also move freely in all directions. Then we use the 4-line as a
transportation medium for carrying the nodes of A, one at a time. We exploit these mobility
mechanisms to transform A into a uniquely defined shape from the line-with-leaves family of
Proposition 2. But if any connected shape A with an extra 2-line can be transformed to its
color-consistent line-with-leaves version with an extra 2-line, then this also holds inversely

O. Michail, G. Skretas, and P. G. Spirakis 7

due to reversibility, and it follows that any A can be transformed to any B by transforming A

to its line-with-leaves version LA and then inverting the transformation from B to LB = LA.

I Theorem 2. If connectivity can break and there is a 2-line seed provided “outside” the
initial shape, then any pair of color-consistent connected shapes A and B can be transformed
to each other by rotations only.

Proof. Without loss of generality (due to symmetry and the 2-line’s unrestricted mobility),
it suffices to assume that the seed is provided somewhere below the lowest row l occupied
by the shape A. We show how A can be transformed to LA with the help of the seed. We
define LA as follows: Let k be the cardinality of the minority color, let it be the black color.
As there are at least k reds, we can create a horizontal line of length 2k, i.e., u1, u2, . . . , u2k,
starting with a black, i.e., u1 is black, and alternating blacks and reds. In this way, the
blacks are exhausted. The remaining ≤ (3k + 1)− k = 2k + 1 reds are then added as leaves of
the black nodes, starting from the position to the left of u1 and continuing counterclockwise,
i.e., below u1, below u3, ..., below u2k−1, above u2k−1, above u2k−3, and so on. This gives
the same shape from the line-with-leaves family, for all color-consistent shapes (observe that
the leaf to the right of the line is always placed). LA shall be constructed on rows l − 5 to
l − 3 (not necessarily inclusive), with u1 on row l − 4 and a column j preferably between
those that contain A.

First, extract a 2-line from A, from row l, so that the 2-line seed becomes a 4-line seed.
To see that this is possible for every shape A of order at least 2, distinguish the following
two cases: (i) If the lowest row has a horizontal 2-line, then the 2-line can leave the shape
without any help and approach the 2-seed. (ii) If not, then take any node u of row l. As
A is connected and has at least two nodes, u must have a neighbor v above it. The only
possibility that the 2-line u,v is not free to leave A is when v has both a left and a right
neighbor, but this can be resolved with the help of the 2-line.

To transform A to LA, given the 4-line seed, do the following:
While the minority color (color chosen for u1) is still present in A:

If on the current lowest row occupied by A, there is a 2-line that can be extracted
alone and move towards LA, then perform the shortest such movement that attaches
the 2-line to the right endpoint of LA’s line u1, u2,
If not, then use the 4-line to extract a single node from the lowest row of A. If that
node fits to the right endpoint of LA’s line, place it there, otherwise, transfer it to an
unoccupied position below row l − 7 to be used later.

Once the minority color has been exhausted from A, alternate the two colors until u2k−3
has been placed (u2k−1 and u2k will only be placed in the end as they are part of the 4-line).
To do this, use the 4-line to transfer nodes from A and from the “repository” maintained
below LA. When this occurs, if there are no more nodes left, run the termination phase,
otherwise transfer the remaining nodes with the 4-line, one after the other, and attach
them around the line of LA, beginning from the position to the left of u1 counterclockwise,
as decribed above (skipping the position u2k).
Termination phase: the line-with-leaves is ready, apart from positions u2k−1, u2k which
require a 2-line from the 4-line. If the position above u2k−1 is empty, then extract a
2-line from the 4-line and transfer it to the positions u2k−1, u2k. This completes the
transformation. If the position above u2k−1 is occupied by a node u2k+1, then place the
whole 4-line vertically with its lowest endpoint on u2k. Then rotate the top endpoint
counterclockwise, to move above u2k+1, then rotate u2k+1 clockwise around it to move to
its left, then rotate the node above u2k counterclockwise to move to u2k−1, and finally

8 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

restore u2k+1 to its original position. This completes the construction (the 2-line that
always remains can be transferred in the end to a predefined position).

J

The natural next question is to what extent can the 2-line seed assumption be dropped.
Clearly, by Proposition 3, this cannot be always possible. The following lemma gives a
sufficient and necessary condition for dropping the 2-line seed assumption.

I Lemma 3. A 2-seed can be extracted from a shape iff a single rotation move is available
on the shape.

I Theorem 4. Rotation-Transformability ∈ P.

Proof. By Lemma 3, if the input shapes are not equal, then it suffices to check if both have
an available movement. These checks can be easily performed in polynomial time. J

4 Rotation and Connectivity Preservation

In this section, we restrict our attention to transformations that transform a connected shape
A to one of its color-consistent connected shapes B, without ever breaking the connectivity of
the shape on the way. As already mentioned in the introduction, connectivity preservation is
a very desirable property for programmable matter, as, among other positive implications, it
guarantees that communication between all nodes is maintained, it minimizes transformation
failures, requires less sophisticated actuation mechanisms, and increases the external forces
required to break the system apart.

We begin by proving that RotC-Transformability can be decided in deterministic
polynomial space.

I Theorem 5. RotC-Transformability is in PSPACE.

As already shown, the connectivity-preservation constraint increases the class of infeasible
transformations. A convenient turnaround in such cases, is to introduce a suitable seed
that can assist the transformation. For example, we can circumvent the impossibility of
folding a line u1, u2, . . . , un in half, by adding a 3-line seed v1, v2, v3, horizontally aligned
over nodes u3, u4, u5 of the line. Interestingly, adding the seed over nodes u4, u5, u6 would
not work. Therefore, the problem that we are facing in such cases, is to find a minimum
seed and a placement of that seed, that can enable the otherwise infeasible transformation
(Minimum-Seed-Determination problem). In the rest of this section, we try to identify a
minimum seed that can walk the perimeter of any shape, hoping that it will be able to move
nodes gradually to a predetermined position, in order to transform the initial shape into a
line-with-leaves (as in Theorem 2, but without ever breaking connectivity this time). 2

I Theorem 6. Any (≤ 4)-seed, cannot traverse the perimeter of a line.

I Theorem 7. A 6-seed can traverse the perimeter of a discrete-convex shape without
breaking the connectivity.

2 Another way to view this, is as an attempt to simulate the universal transformations based on combined
rotation and sliding (presented in Section 5), in which single nodes are able to walk the perimeter of
the shape.

O. Michail, G. Skretas, and P. G. Spirakis 9

5 Rotation and Sliding

In this section, we study the combined effect of rotation and sliding movements. We begin by
proving that rotation and sliding together, are transformation-universal, meaning that they
can transform any given shape to any other shape of the same size without ever breaking the
connectivity during the transformation.

I Theorem 8. Let A and B be any connected shapes, such that |A| = |B| = n. Then A and
B can be transformed to each other by rotations and slidings, without breaking the connectivity
during the transformation.

Proof. It suffices to show that any connected shape A can be transformed to a spanning line
L by rotations and slidings only and without breaking connectivity during the transformation.
If we show this, then A can be transformed to L and B can be transformed to L (as A and B

have the same order, therefore correspond to the same spanning line L), and by reversibility
of these movements, A and B can be transformed to each other via L.

Pick the rightmost column of the grid containing at least one node of A, and consider
the lowest node of A in that column. Call that node u. Observe that all cells to the right of
u are empty. Let the cell of u be (i, j). The final constructed line will start at (i, j) and end
at (i, j + n− 1).

The transformation is partitioned into n− 1 phases. In each phase k, we pick a node from
the original shape and move it to position (i, j + k), that is, to the right of the right endpoint
of the line formed so far. In phase 1, position (i, j + 1) is a cell of the perimeter of A. So,
even if it happens that u is a node of degree 1, it can be proved that there must be another
such node v ∈ A that can walk the whole perimeter of A′ = A− {v}. As u 6= v, (i, j + 1) is
also part of the perimeter of A′, therefore, v can move to (i, j + 1) by rotations and slidings.
But A′ is connected, A′ ∪ {(i, j + 1)} is also connected, and also all intermediate shapes were
connected, because v moved on the perimeter and, therefore, it never disconnected from the
rest of the shape during its movement.

In general, the transformation preserves the following invariant. At the beginning of phase
k, 1 ≤ k ≤ n− 1, there is a connected shape S(k) (where S(1) = A) to the left of of column
j (j inclusive) and a line of length k − 1 starting from position (i, j + 1) and growing to the
right. Restricting attention to S(k), there is always a v 6= u that could move to position
(i, j + 1) if it were not occupied. This implies that before the final movement that places
it on (i, j + 1), v must have been in one of (i + 1, j) and (i + 1, j + 1), if we assume that v

always walks in the clockwise direction. Observe now that from each of these positions v can
perform zero or more right slidings above the line in order to reach the position above the
right endpoint of the line. When this occurs, a final clockwise rotation makes v the new right
endpoint of the line. The only exception is when v is on (i + 1, j + 1) and there is no line to
the right of (i, j) (this implies the existence of a node on (i + 1, j), otherwise connectivity of
S(k) would have been violated). In this case, v just performs a single downward sliding to
become the right endpoint of the line. J

I Theorem 9. The transformation of Theorem 8 requires Θ(n2) movements in the worst
case.

Theorem 9 shows that the above generic strategy is slow in some cases, as is the case of
transforming a ladder shape into a spanning line. A ladder is defined as a shape of the form
(i, j), (i− 1, j), (i− 1, j + 1), (i− 2, j + 1), (i− 2, j + 2), (i− 3, j + 2), We shall now show
that there are pairs of shapes for which any strategy and not only this particular one, may
require a quadratic number of steps to transform one shape to the other.

10 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

I Definition 10. Define the potential of a shape A as its minimum “distance” from the line
L, where |A| = |L|. The distance is defined as follows: Consider any placement of L relative
to A and any pairing of the nodes of A to the nodes of the line. Then sum up the Manhattan
distances 3 between the nodes of each pair. The minimum sum between all possible relative
placements and all possible pairings is the distance between A and L and also A’s potential.

Observe that the potential of the line is 0 as it can be totally aligned on itself and the
sum of the distances is 0.

I Lemma 11. The potential of a ladder is Θ(n2).

Proof. We prove it for horizontal placement of the line, as the vertical case is symmetric.
Any such placement leaves either above or below it at least half of the nodes of the ladder
(maybe minus 1). W.l.o.g. let it be above it. Every two nodes, the height increases by 1,
therefore there are 2 nodes at distance 1, 2 at distance 2,. . ., 2 at distance n/4. Any matching
between these nodes and the nodes of the line gives for every pair a distance at least as large
as the vertical distance between the ladder’s node and the line, thus, the total distance is at
least 2 · 1 + 2 · 2 + ... + 2 · (n/4) = 2 · (1 + 2 + ... + n/4) = (n/4) · (n/4 + 1) = Θ(n2). We
conclude that the potential of the ladder is Θ(n2). J

I Theorem 12. Any transformation strategy based on rotations and slidings and performing
a single movement per step, requires Θ(n2) steps to transform a ladder into a line.

Proof. To show that Ω(n2) movements are needed to convert the ladder to a line, it suffices
to observe that the difference in their potentials is that much and that one rotation or one
sliding can decrease the potential by at most 1. J

I Remark. The above lower bound is independent of connectivity preservation. It is just a
matter of the total distance based on single distance-one movements.

Finally, it is interesting to observe that such lower bounds can be computed in polynomial
time, because there is a polynomial-time algorithm for computing the distance between two
shapes.

I Proposition 4. Let A and B be connected shapes. Then their distance d(A, B) can be
computed in polynomial time.

To give a faster transformation either pipelining must be used (allowing for more than one
movement in parallel) or more complex mechanisms that move sub-shapes consisting of many
nodes, in a single step. We follow the former approach, by allowing an unbounded number
of rotation and/or sliding movements to occur simultaneously in a single step (though, in
pairwise disjoint areas).

I Proposition 5. There is a pipelining strategy that transforms a ladder into a line in O(n)
parallel time.

Proof. Number the nodes of the ladder 1 through n starting from the top and following the
ladder’s connectivity until the bottom-right node is reached. These gives an even-numbered
upper diagonal and an odd-numbered lower diagonal. Node 1 moves as in Theorem 8. Any
even node 2 ≤ w < n− 1 starts moving as long as its upper odd neighbor has reached the
same level as w (e.g., node 2 first moves after node 1 has arrived to the right of node 3).

3 The Manhattan distance between two points (i, j) and (i′, j′) is given by |i− i′|+ |j − j′|.

O. Michail, G. Skretas, and P. G. Spirakis 11

Any odd node 1 < z < n starts moving as long as its even left neighbor has moved one level
down (e.g., node 3 first moves after node 2 has arrived to the right of 5). After a node starts
moving, it moves in every step as in Theorem 8 (but now many nodes can move in parallel,
implementing a pipelining strategy). It can be immediately observed that any node i starts
after at most 3 movements of node i− 1 (actually, only 2 movements for even i), so after,
roughly, at most 3n steps, node n− 2 starts. Moreover, a node that starts, arrives at the
right endpoint of the line after at most n steps, which means that after at most 4n = O(n)
steps, all nodes have taken their final position in the line. J

Proposition 5 gives a hint that pipelining could be a general strategy to speed-up
transformations. We next show how to generalize this technique to any possible pair of
shapes.

I Theorem 13. Let A and B be any connected shapes, such that |A| = |B| = n. Then there
is a pipelining strategy that can transform A to B (and inversely) by rotations and slidings,
without breaking the connectivity during the transformation, in O(n) parallel time.

Proof. The transformation is a pipelined version of the sequential transformation of Theorem
8. Now, instead of picking an arbitrary next candidate node of S(k) to walk the perimeter of
S(k) clockwise, we always pick the rightmost clockwise node vk ∈ S(k), that is, the node that
has to walk the shortest clockwise distance to arrive at the line under formation. This implies
that the subsequent candidate node vk+1 to walk, is always “behind” vk in the clockwise
direction and is either already free to move or is enabled after vk’s departure. Observe that
after at most 3 clockwise movements, vk cannot block any more the way of vk+1 on the
(possibly updated) perimeter. Moreover, the clockwise move of vk+1, only introduces a gap
in its original position, therefore it only affects the structure of the perimeter “behind” it.
The strategy is to start the walk of node vk+1 as soon as vk is no longer blocking its way.
As in Proposition 5, once a node starts, it moves in every step, and again any node arrives
after at most n movements. It follows, that if the pipelined movement of nodes cannot be
blocked in any way, after 4n = O(n) steps all nodes must have arrived at their final positions.
Observe now that the only case in which pipelining could be blocked is when a node is sliding
through a (necessarily dead-end) “tunnel” of height 1. To avoid this, the nodes shortcut
the tunnel, by visiting only its first position (i, j) and then simply skipping the whole walk
inside it (that walk would just return them to position (i, j) after a number of steps). J

We next show that even if A and B are labeled shapes, that is, their nodes are assigned
the indices 1, . . . , n (uniquely, i.e., without repetitions), we can still transform the labeled A

to the labeled B with only a linear increase in parallel time. We only consider transformations
in which the nodes never change indices in any way (e.g., cannot transfer them, or swap
them), so that each particular node of A must eventually occupy (physically) a particular
position of B (the one corresponding to its index).

I Corollary 14. The labeled version of the transformation of Theorem 13 can be performed
in O(n) parallel time.

An immediate observation is that a linear-time transformation does not seem satisfactory
for all pairs of shapes. To this end, take a square S and rotate its top-left corner u, one
position clockwise, to obtain an almost-square S′. Even though, a single counter-clockwise
rotation of u suffices to transform S′ to S, the transformation of Theorem 13 may go all the
way around and first transform S′ to a line and then transform the line to S. In this particular
example, the distance between S and S′, according to Definition 10, is 2, while the generic

12 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

transformation requires Θ(n) parallel time. So, it is plausible to ask if any transformation
between two shapes A and B can be performed in time that grows as a function of their
distance d(A, B). We show that this cannot always be the case, by presenting two shapes A

and B with d(A, B) = 2, such that A and B require Ω(n) parallel time to be transformed to
each other.

I Proposition 6. There are two shapes A and B with d(A, B) = 2, such that A and B

require Ω(n) parallel time to be transformed to each other.

6 Distributed Transformations with Rotation and Sliding

In this section, we study the RS-Transformability problem in distributed systems and
propose an algorithm that transforms a large family of shapes into a spanning line.

I Theorem 15. The Compact Line algorithm can transform any compact shape into a
spanning line.

Algorithm description: The operation of the algorithm is split into 3 stages. The first
stage consists of the leader starting from a random node. It sets the orientation for the
current node by marking ports 0,1,2,3 as “north”,“east”,“south”,“west” respectively. It then
sends the orientation to all neighbours. All nodes receiving the orientation change their
ports to coincide with the one the leader defined, and then propagate the message to their
neighbours.

In the second stage the leader searches for the rightmost node. It begins by broadcasting
two messages to all neighbours: tick and num. The tick message consists of the direction
the message was sent to. The num message is a number which starts as 0 and each time it
is propagated through nodes, we add the following number: 0 for north, +1 for east, 0 for
south and −1 for west. When a non leader node receives these messages, it propagates them
to its neighbours after appending up, right, down, left, for neighbours 0,1,2,3 respectively, to
the tick message and after adding the number to the num message following the method
mentioned above. The node also sends a message called ack to the node who sent the tick
and num. It then stores the node (path node) who sent the tick and marks himself. When
a marked node receives a tick-num message it sends them to the path node along with an
ack message. When the leader receives a num-tick message, it compares the num it received
with the num′ it has in store. If the one it received is bigger, it replaces the num′ with num
and keeps the tick′ message it received. Now, if the leader does not receive an ack for two
consecutive rounds it starts following the path it has stored in the variable named line. Once
it reaches the destination it marks the current node and starts moving west, marking all
nodes in its path. It then returns to the node it marked first. The leader has now marked a
designated line where it will move all other nodes to. This ends stage 2.

The third stage consists of a loop being performed until all nodes form a line. The leader
moves randomly to nodes checking if they are on the correct line (flag = 1). If it finds one
and it receives a message flag′ = 1, it marks it. If it finds one and it does not receive a
message flag = 1, it checks two things. First it checks if the node has only one neighbour.
Secondly it checks if the node has two neighbours not opposite to each other. If it does
complete the second requirement, it sends a qu message to one of them asking it if the 2
nodes who are neighbours to it (the leader), have another common neighbour. The node
then answers approve or reject. If any of those two checks are true (one neighbour, approve)
the leader travels in a random fashion. Once it receives a message flag′ = 1, it marks the
node. This completes the description of the loop.

O. Michail, G. Skretas, and P. G. Spirakis 13

References

1 Greg Aloupis, Nadia Benbernou, Mirela Damian, Erik D Demaine, Robin Flatland, John
Iacono, and Stefanie Wuhrer. Efficient reconfiguration of lattice-based modular robots.
Computational geometry, 46(8):917–928, 2013.

2 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. Distributed Computing,
18(4):235–253, March 2006.

3 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279–304, November 2007.

4 Zack Butler, Keith Kotay, Daniela Rus, and Kohji Tomita. Generic decentralized control
for lattice-based self-reconfigurable robots. The International Journal of Robotics Research,
23(9):919–937, 2004.

5 Xuli Chen, Li Li, Xuemei Sun, Yanping Liu, Bin Luo, Changchun Wang, Yuping Bao,
Hong Xu, and Huisheng Peng. Magnetochromatic polydiacetylene by incorporation of
fe3o4 nanoparticles. Angewandte Chemie International Edition, 50(24):5486–5489, 2011.

6 Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Solving the
robots gathering problem. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 1181–1196. Springer, 2003.

7 Alejandro Cornejo, Fabian Kuhn, Ruy Ley-Wild, and Nancy Lynch. Keeping mobile ro-
bot swarms connected. In Proceedings of the 23rd international conference on Distributed
computing, DISC’09, pages 496–511, Berlin, Heidelberg, 2009. Springer-Verlag.

8 Shantanu Das, Paola Flocchini, Nicola Santoro, and Masafumi Yamashita. Forming
sequences of geometric patterns with oblivious mobile robots. Distributed Computing,
28(2):131–145, April 2015.

9 Erik D Demaine. Playing games with algorithms: Algorithmic combinatorial game theory.
In International Symposium on Mathematical Foundations of Computer Science, pages 18–
33. Springer, 2001.

10 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: amoebot–a new model for programmable
matter. In Proceedings of the 26th ACM symposium on Parallelism in algorithms and
architectures (SPAA), pages 220–222, 2014.

11 Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa W Richa, Christian
Scheideler, and Thim Strothmann. On the runtime of universal coating for programmable
matter. In International Conference on DNA-Based Computers, pages 148–164. Springer,
2016.

12 Zahra Derakhshandeh, Robert Gmyr, Andréa W Richa, Christian Scheideler, and Thim
Strothmann. An algorithmic framework for shape formation problems in self-organizing
particle systems. In Proceedings of the Second Annual International Conference on Nano-
scale Computing and Communication, page 21. ACM, 2015.

13 David Doty. Theory of algorithmic self-assembly. Communications of the ACM, 55:78–88,
2012.

14 David Doty. Timing in chemical reaction networks. In Proc. of the 25th Annual ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 772–784, 2014.

15 Adrian Dumitrescu and János Pach. Pushing squares around. In Proceedings of the twen-
tieth annual symposium on Computational geometry, pages 116–123. ACM, 2004.

16 Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Formations for fast loco-
motion of metamorphic robotic systems. The International Journal of Robotics Research,
23(6):583–593, 2004.

14 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

17 Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Motion planning for meta-
morphic systems: Feasibility, decidability, and distributed reconfiguration. IEEE Transac-
tions on Robotics and Automation, 20(3):409–418, 2004.

18 Yuval Emek and Jara Uitto. Dynamic networks of finite state machines. In Interna-
tional Colloquium on Structural Information and Communication Complexity, pages 19–34.
Springer, 2016.

19 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed computing by oblivi-
ous mobile robots. Synthesis lectures on distributed computing theory, 3(2):1–185, 2012.

20 Kyle Gilpin, Ara Knaian, and Daniela Rus. Robot pebbles: One centimeter modules for
programmable matter through self-disassembly. In Robotics and Automation (ICRA), 2010
IEEE International Conference on, pages 2485–2492. IEEE, 2010.

21 Robert A Hearn and Erik D Demaine. PSPACE-completeness of sliding-block puzzles
and other problems through the nondeterministic constraint logic model of computation.
Theoretical Computer Science, 343(1-2):72–96, 2005.

22 Camille Jordan. Cours d’analyse de l’École polytechnique, volume 1. Gauthier-Villars et
fils, 1893.

23 Ara N Knaian, Kenneth C Cheung, Maxim B Lobovsky, Asa J Oines, Peter Schmidt-
Neilsen, and Neil A Gershenfeld. The milli-motein: A self-folding chain of programmable
matter with a one centimeter module pitch. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1447–1453. IEEE, 2012.

24 Evangelos Kranakis, Danny Krizanc, and Euripides Markou. The mobile agent rendezvous
problem in the ring. Synthesis Lectures on Distributed Computing Theory, 1(1):1–122, 2010.

25 Harold W Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

26 Yunfeng Lu, Yi Yang, Alan Sellinger, Mengcheng Lu, Jinman Huang, Hongyou Fan, Raid
Haddad, Gabriel Lopez, Alan R Burns, Darryl Y Sasaki, et al. Self-assembly of mesoscopic-
ally ordered chromatic polydiacetylene/silica nanocomposites. Nature, 410(6831):913–917,
2001.

27 Othon Michail and Paul G. Spirakis. Simple and efficient local codes for distributed stable
network construction. Distributed Computing, 29(3):207–237, 2016.

28 Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares. In Proceedings of the 32nd annual ACM symposium on Theory of computing
(STOC), pages 459–468, 2000.

29 Paul WK Rothemund. Folding dna to create nanoscale shapes and patterns. Nature,
440(7082):297–302, 2006.

30 Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-assembly
in a thousand-robot swarm. Science, 345(6198):795–799, 2014.

31 Walter J Savitch. Relationships between nondeterministic and deterministic tape complex-
ities. Journal of computer and system sciences, 4(2):177–192, 1970.

32 Masahiro Shibata, Toshiya Mega, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu
Masuzawa. Uniform deployment of mobile agents in asynchronous rings. In Proceedings of
the 2016 ACM Symposium on Principles of Distributed Computing, pages 415–424. ACM,
2016.

33 Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Formation
of geometric patterns. SIAM J. Comput., 28(4):1347–1363, March 1999.

34 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of
Technology, June 1998.

35 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng
Yin. Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In

O. Michail, G. Skretas, and P. G. Spirakis 15

Proceedings of the 4th conference on Innovations in Theoretical Computer Science, pages
353–354. ACM, 2013.

36 Yukiko Yamauchi, Taichi Uehara, and Masafumi Yamashita. Brief announcement: pattern
formation problem for synchronous mobile robots in the three dimensional euclidean space.
In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, pages
447–449. ACM, 2016.

37 Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric
Klavins, and Gregory S Chirikjian. Modular self-reconfigurable robot systems [grand chal-
lenges of robotics]. IEEE Robotics & Automation Magazine, 14(1):43–52, 2007.

	Introduction
	Our Approach

	Preliminaries
	Rotation
	Rotation and Connectivity Preservation
	Rotation and Sliding
	Distributed Transformations with Rotation and Sliding

