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AREA

D. J. SIXSMITH

Abstract. We study the dynamics of a collection of families of transcenden-

tal entire functions which generalises the well-known exponential and cosine
families. We show that for functions in many of these families the Julia set,

the escaping set and the fast escaping set are all spiders’ webs of positive area.

This result is unusual in that most of these functions lie outside the Eremenko-
Lyubich class B. This is also the first result on the area of a spider’s web.

1. Introduction

Suppose that f : C → C is a transcendental entire function. The Fatou set
F (f) is defined as the set of points z ∈ C such that (fn)n∈N is a normal family
in a neighbourhood of z. Since F (f) is open, it consists of at most countably
many connected components, called Fatou components. The Julia set J(f) is the
complement in C of F (f). An introduction to the properties of these sets was given
in [4].

For a general transcendental entire function the escaping set

I(f) = {z : fn(z)→∞ as n→∞}

was first studied in [10], where it was shown, for example, that J(f) = ∂I(f). The
set I(f) now plays a key role in the study of complex dynamics. It was asked in
[10] whether I(f) has only unbounded components, and this remains a major open
problem known as Eremenko’s conjecture.

The fast escaping set A(f) is a subset of I(f). It was introduced in [5], and was
defined in [20] by

(1.1) A(f) = {z : there exists ` ∈ N such that |fn+`(z)| ≥Mn(R, f), for n ∈ N}.

Here, the maximum modulus function M(r, f) = max|z|=r |f(z)|, for r ≥ 0, Mn(r, f)
denotes repeated iteration of M(r, f) with respect to the variable r, and R > 0 is
such that M(r, f) > r, for r ≥ R. The set A(f) also now plays a key role in
the study of complex dynamics, in particular in relation to partial progress on
Eremenko’s conjecture. We refer to [20] for a detailed account of the properties of
A(f).

Following [20], we also define the related sets

(1.2) AR(f) = {z : |fn(z)| ≥Mn(R, f), for n ∈ N},

where R > 0 is such that M(r, f) > r, for r ≥ R.
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We study the families of transcendental entire functions defined, for q ∈ N, by

Eq = {f : f(z) =

q−1∑
k=0

ak exp(ωkq z), where ak 6= 0 for k ∈ {0, 1, · · · , q − 1}},

where ωq = exp(2πi/q) is an qth root of unity. We set

E =

∞⋃
q=1

Eq.

The families E1 and E2 are both well-known. E1 is the exponential family

{f : f(z) = λ exp(z), λ 6= 0},
and E2 is the cosine family

{f : f(z) = γ exp(z) + δ exp(−z), γ 6= 0, δ 6= 0}.
The first part of this paper concerns the size of J(f) ∩ A(f), for f ∈ E . The

size of the Julia sets of functions in E1 and E2 was considered by McMullen [16].
In particular he showed that if f ∈ E1, then J(f) has Hausdorff dimension equal
to 2; see, for example, [12] for a definition of Hausdorff dimension. McMullen also
showed that though there are many functions f ∈ E1 such that J(f) has area equal
to zero, if f ∈ E2, then J(f) has positive area. In fact, it can be seen from an
analysis of the construction in McMullen’s paper that if f ∈ E2, then J(f) ∩ A(f)
has positive area. Our first main result is a generalisation of this fact to the case
q ≥ 2.

Theorem 1.1. Suppose that f ∈ Eq, for q ≥ 2. Then J(f) ∩ A(f) has positive
area.

Most papers on the size of J(f) concern functions in the class B, or, more
generally, functions with a logarithmic tract; see below for definitions of these
concepts. It is straightforward to show that E1 ∪ E2 ⊂ B. We show in Lemma 8.2
below that functions in Eq, for q ≥ 3, do not have a logarithmic tract. It follows
that E ∩ B = E1 ∪ E2, and that Theorem 1.1 is relatively unusual in that it applies
to functions without a logarithmic tract.

The Eremenko-Lyubich class, B, is the class of transcendental entire functions
for which the set of singular values is bounded. There are many results on the size
of J(f), and its subsets, for functions in class B. For example, it was shown in [26]
that if f ∈ B, then J(f) has Hausdorff dimension strictly greater than one.

As noted in [7], the class B can be generalised to the class of functions with
a logarithmic tract; see Section 8 for the definition of a logarithmic tract. For
example, the result of [26] was generalised to functions with a logarithmic tract in
[3]. McMullen’s result on functions in E2 was strengthened to some functions with
a logarithmic tract in [1]. Although there are some interesting similarities between
our results and those of [1], it does not seem possible to apply the approach of [1]
to functions without a logarithmic tract.

An important paper which concerns the size of J(f)∩ I(f) for functions f which
need not have a logarithmic tract is that of Bergweiler and Karpińska [6]. We dis-
cuss the relationship between Theorem 1.1 and the results in [6] in Section 2.

The second part of this paper concerns the structure of J(f) ∩ A(f), for f ∈ E .
Devaney and Krych [8] studied the Julia set of many functions in E1; note [11]
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that for functions in class B, I(f), and hence A(f), is a subset of J(f). They
showed that the Julia set of one of these functions is a closed set consisting of an
uncountable union of disjoint unbounded curves. Devaney and Tangerman [9] first
used the name Cantor bouquet for this structure, and showed that there is a large
class of functions, including many exponentials such as f(z) = 1

4e
z, for which the

Julia set is a Cantor bouquet. For a general study of Cantor bouquets, including a
precise definition, we refer to [2].

Schleicher and Zimmer [23] studied the whole of E1, and showed that every point
in the escaping set of any function in this family lies on an unbounded curve in
the escaping set. Rottenfusser and Schleicher [22] showed that the same is true
for functions in E2. Rempe, Rippon and Stallard [18] showed that these facts also
apply to J(f) ∩A(f).

We show that if f ∈ Eq, for q ≥ 3, then J(f) ∩ A(f) has a structure known as
a spider’s web. A set E is defined in [20] as a spider’s web if it is connected and
there exists a sequence of bounded simply connected domains (Gn)n∈N such that

∂Gn ⊂ E, Gn ⊂ Gn+1, for n ∈ N, and
⋃
n∈N

Gn = C.

Suppose that f is a transcendental entire function, and that R > 0 is such that
M(r, f) > r, for r ≥ R. It was shown in [20] that if AR(f) is a spider’s web, then
so are A(f) and I(f). In [20, Section 8] many examples of transcendental entire
functions f such that AR(f) is a spider’s web were given. Further examples were
given in [17], and also in [25] which gave the relatively simple example

g(z) = cos z + cosh z,

for which AR(g) is a spider’s web. We observe that g ∈ E4. Our second main
theorem is a generalisation of this observation.

Theorem 1.2. Suppose that f ∈ Eq, for q ≥ 3, and that R > 0 is such that
M(r, f) > r, for r ≥ R. Then each of

AR(f), A(f), I(f), J(f) ∩AR(f), J(f) ∩A(f), J(f) ∩ I(f), and J(f)

is a spider’s web.

We note that Theorem 1.2 cannot be extended to q ∈ {1, 2} since if f ∈ B, then
AR(f) is not a spider’s web; see [20, Theorem 1.8] reproduced in Lemma 8.1 below.

It follows from Bergweiler and Karpińska’s result [6, Theorem 1.1], applied to
examples in [20] and [25], that there are transcendental entire functions, f , for
which I(f) and J(f) are spiders’ webs with Hausdorff dimension equal to 2. The
following is an immediate corollary of Theorem 1.1 and Theorem 1.2, and shows
that there are transcendental entire functions for which these sets are spiders’ webs
of positive area.

Corollary 1.1. Suppose that f ∈ Eq, for q ≥ 3. Then A(f), I(f) and J(f) are
spiders’ webs of positive area.

Remark 1. Theorem 1.1 and Theorem 1.2 can be applied to a more general class
of transcendental entire functions. In particular the results of these theorems hold
if f is a transcendental entire function such that, for some q ≥ 3,

f(z) =

q−1∑
k=0

ak exp(bkz), where akbk 6= 0 for k ∈ {0, 1, · · · , q − 1},
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and that

arg(bk) < arg(bk+1) < arg(bk) + π, for k ∈ {0, 1, · · · , q − 2},

and finally that

arg(b0) < arg(bq−1)− π.
Here, we choose the value of the argument to lie in [0, 2π). However, the proofs of
these facts are slightly more complicated, and the symmetries of the transcendental
entire functions in E , together with the natural generalisation of the exponential
and cosine families, seem to make E the most interesting sub-class of this more
general class.

The structure of this paper is as follows. First, in Section 2, we briefly discuss
the paper of Bergweiler and Karpińska mentioned earlier. In Section 3 we prove a
sufficient condition for a point to be in the Julia set. This may be of independent
interest. In Section 4 we show that if f is a function in Eq, for q ≥ 3, then there
are large areas of the plane in each of which f behaves like a single exponential.
This enables us to deduce that there is a large area of the plane in which f is
conformal in any square of a certain fixed side. Section 5 concerns distortion and
nonlinearity, and we use a result and construction of McMullen [16, Proposition 3.1]
to show that the distortion of the iterates of f is bounded above in these squares.
These two facts about the behaviour of f in these squares enable us to estimate
the dimension of the Julia set even though f lies outside B. In Section 6 we prove
Theorem 1.1, and in Section 7 we prove Theorem 1.2. Finally, in Section 8 we give
some definitions and prove a result regarding logarithmic tracts.

2. Results of Bergweiler and Karpińska

Bergweiler and Karpińska [6, Theorem 1.1] showed that there exists a large class
of functions, many of which are outside of the class B, for which J(f) ∩ I(f) has
Hausdorff dimension equal to 2. Their proof of the following result used several ideas
in a novel manner, including the Ahlfors islands theorem, a result of McMullen,
and the construction of a large set of points in which the size of the logarithmic
derivative is tightly constrained.

Theorem 2.1. Suppose that f is a transcendental entire function, and that there
exist A,B,C, r0 > 1 such that

(2.1) A logM(r, f) ≤ logM(Cr, f) ≤ B logM(r, f), for r ≥ r0.

Then J(f) ∩ I(f) has Hausdorff dimension equal to 2.

We first show that if f ∈ E , then f satisfies the hypotheses of Theorem 2.1, and
hence J(f) ∩ I(f) has Hausdorff dimension equal to 2.

Lemma 2.1. Suppose that f ∈ E. Then there exist A,B,C, r0 > 1 such that (2.1)
holds.

Proof. Recall that f(z) =
∑q−1
k=0 ak exp(ωkq z), for some q ∈ N. We note first that

M(r, f) ≤ er
q−1∑
k=0

|ak|, for r > 0.
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We claim that

M(r, f) ≥ |f(r)| ≥ 1

2
|a0|er, for large r.

This is immediate for q ∈ {1, 2}, and follows from Lemma 4.1, below, for q ≥ 3.
We deduce that there exist constants α1, α2 ∈ R such that

(2.2) r + α1 ≤ logM(r, f) ≤ r + α2, for large r.

The lemma follows easily from (2.2). �

In proving Theorem 1.1, we show that for functions in Eq, for q ≥ 2, the con-
clusion of Theorem 2.1 can be strengthened in two ways. Firstly that I(f) can
be replaced by A(f), and secondly that J(f) ∩ A(f) has positive area rather than
Hausdorff dimension 2.

We also use the following result of Bergweiler and Karpińska [6, Theorem 4.5].

Lemma 2.2. Suppose that f is a transcendental entire function, and that there
exist A,B,C, r0 > 1 such that (2.1) holds. Then f has no multiply connected Fatou
components.

The following is an immediate consequence of Lemma 2.1 and Lemma 2.2.

Corollary 2.1. Suppose that f ∈ E. Then f has no multiply connected Fatou
components.

3. A sufficient condition for a point to be in the Julia set

The main result of this section shows that, in general, an escaping point with a
certain orbit is either in a multiply connected Fatou component or in the Julia set.
This result may well be known, but we are not aware of a reference.

Theorem 3.1. Suppose that f is a transcendental entire function and that z0 ∈ I(f).
Set zn = fn(z0), for n ∈ N. Suppose that there exist λ > 1 and N ≥ 0 such that

(3.1) f(zn) 6= 0 and

∣∣∣∣zn f ′(zn)

f(zn)

∣∣∣∣ ≥ λ, for n ≥ N.

Then either z0 is in a multiply connected Fatou component of f , or z0 ∈ J(f).

For ζ ∈ C and ρ > 0, we define a disc

B(ζ, ρ) = {z : |z − ζ| < ρ},
and a circle

C(ζ, ρ) = {z : |z − ζ| = ρ}.
To prove Theorem 3.1, we use the following, which follows straightforwardly from
of a result of Hayman [13, Theorem 4.13].

Lemma 3.1. Suppose that f is analytic in B(z0, r), and that 0 < R < r|f ′(z0)|/4.
Then there exists R′ > R such that C(f(z0), R′) ⊂ f(B(z0, r)).

The following corollary is immediate, since, by [19, Lemma 4.2], the image of
a simply connected Fatou component is contained in a simply connected Fatou
component. This corollary can be seen as a Koebe 1

4 theorem for simply connected
Fatou components, with no requirement of univalence.
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Corollary 3.1. Suppose that f is a transcendental entire function, that U is a
simply connected Fatou component of f , and that U1 is the Fatou component con-
taining f(U). Suppose also that z0 ∈ U , that r > 0 is such that B(z0, r) ⊂ U , and
that f ′(z0) 6= 0. Then

B

(
f(z0),

r|f ′(z0)|
4

)
⊂ U1.

If U is a Fatou component such that U ∩ I(f) 6= ∅, then U ⊂ I(f) by normality.
We call a Fatou component in I(f) escaping. We deduce from Corollary 3.1 that
there is an upper bound on the absolute values of the logarithmic derivatives of
the iterates of a transcendental entire function in a compact subset of a simply
connected escaping Fatou component.

Lemma 3.2. Suppose that f is a transcendental entire function, that U is a simply
connected escaping Fatou component of f , and that K is a compact subset of U .
Then there exist C = C(K) > 0 and N = N(K) ∈ N such that∣∣∣∣ (fn)′(z)

fn(z)

∣∣∣∣ ≤ C, for n ≥ N, z ∈ K.

Proof. Fix a value of w ∈ J(f). Choose N ∈ N such that

|fn(z)| > |w|, for n ≥ N, z ∈ K.

Let δ = δ(K) > 0 be sufficiently small that B(z, δ) ⊂ U , for all z ∈ K. We claim
that

(3.2)

∣∣∣∣ (fn)′(z)

fn(z)

∣∣∣∣ ≤ 8

δ
, for n ≥ N, z ∈ K.

To prove this, let n ≥ N and z ∈ K. We may assume that (fn)′(z) 6= 0, since
otherwise there is nothing to prove. We apply Corollary 3.1 to fn and deduce that

B

(
fn(z),

δ

4

∣∣∣∣ (fn)′(z)

fn(z)

∣∣∣∣ |fn(z)|
)
⊂ F (f), for n ≥ N, z ∈ K.

Equation (3.2) follows, since w /∈ F (f). This completes the proof. �

We now prove Theorem 3.1.

Proof of Theorem 3.1. Suppose that z0 ∈ I(f) and that there exist λ > 1 and
N ∈ N such that (3.1) holds. Taking a subsequence if necessary, we may assume
that N = 0 and that z0 6= 0. Suppose also that z0 is in a simply connected Fatou
component of f .

We apply Lemma 3.2 withK = {z0}, and deduce that the sequence
(∣∣∣ (fn)′(z0)

fn(z0)

∣∣∣)
n∈N

is bounded above. However, this is a contradiction since, by the chain rule,∣∣∣∣ (fn)′(z0)

fn(z0)

∣∣∣∣ =
1

|z0|

∣∣∣∣z0 f ′(z0)

f(z0)

∣∣∣∣ ∣∣∣∣z1 f ′(z1)

f(z1)

∣∣∣∣ · · · ∣∣∣∣zn−1 f ′(zn−1)

f(zn−1)

∣∣∣∣ ≥ λn

|z0|
, for n ∈ N.

�
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4. The behaviour of f ∈ Eq, for q ≥ 3

Let f ∈ Eq, for some q ≥ 3. Recall that f(z) =
∑q−1
k=0 ak exp(ωkq z), and that

ωq = exp(2πi/q). We construct q large sets, in each of which f behaves like a single
exponential, and then prove several useful inequalities on the size of f and its deriva-
tives in these sets. We use these results later to construct a set K ⊂ J(f) ∩ A(f),
of positive area, in a similar manner to the constructions in [14] and [16].

We note that functions of the form considered in this paper are part of a more
general class known as exponential polynomials. See, for example, [21] for an early
paper on this class. However, we have not been able to identify the precise esti-
mates we require about such functions in earlier work, and so we give all the detail
necessary for a self-contained account of our results.

Choose a value of σ such that

(4.1) 0 < σ <
1

8
√

2
.

Fix a value of η > 4/σ and note that η > 8. Fix also a value of τ sufficiently large
that

(4.2) τ ≥ 1

2 sin(π/q)
log

4qηmax{|ak| : 0 ≤ k ≤ q − 1}
min{|ak| : 0 ≤ k ≤ q − 1}

> 0.

Suppose that ν > 0 is large compared to τ . Let P (ν) be the interior of the
regular q-gon centred at the origin and with vertices at the points

ν

cos(π/q)
exp

(
(2k + 1)iπ

q

)
, for k ∈ {0, 1, · · · , q − 1}.

Define the domains
(4.3)

Qk =

{
z exp

(
(1− 2k)iπ

q

)
: Re(z) > 0, | Im(z)| < τ

}
, for k ∈ {0, 1, · · · , q − 1}.

Roughly speaking, each Qk can be obtained by rotating a half-infinite horizontal
strip of width 2τ around the origin until a vertex of P (ν) is positioned centrally in
the strip.

Set

(4.4) R(ν) = C \

(
P (ν) ∪

q−1⋃
k=0

Qk

)
.

The set R(ν) consists of q unbounded simply connected components, which are
arranged rotationally symmetrically. We label these Rp(ν), for p ∈ {0, 1, · · · , q−1},
where R0(ν) has unbounded intersection with the positive real axis, and Rp+1(ν)
is obtained by rotating Rp(ν) clockwise around the origin by 2π/q radians; see
Figure 1.

We now prove a result which shows that if ν is sufficiently large, then f behaves
very like a single exponential in each component of R(ν).

Define transcendental entire functions ψp, for p ∈ {0, 1, · · · , q − 1}, by

(4.5) ψp(z) =
f(z)

ap exp(ωpqz)
− 1.
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Figure 1. An illustration of the sets in the case q = 5.

Lemma 4.1. Suppose that q ≥ 3 and that f ∈ Eq. Suppose that η, τ , Rp(ν), R(ν)
and ψp are as defined above, for p ∈ {0, 1, · · · , q−1}. Then there exists ν′ > 0 such
that the following holds. Suppose that ν ≥ ν′. Then

(4.6) max{|ψp(z)|, |ψ′p(z)|, |ψ′′p (z)|} ≤ 1/η, for z ∈ Rp(ν), p ∈ {0, 1, · · · , q − 1}.
Moreover, there exists a constant ε0 ∈ (0, 1), independent of ν, such that, for all
z ∈ R(ν),

(4.7) |f ′(z)| > 2,

(4.8)

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ < 2,

(4.9)

∣∣∣∣z f ′(z)f(z)

∣∣∣∣ > 2,

and finally

(4.10) |f(z)| > max{eε0ν ,M(ε0|z|, f)}.

Proof. For p ∈ {0, 1, · · · , q − 1}, define Γp(ν) = ∂P (ν) ∩ ∂Rp(ν), and let Γ′p(ν) be
the unbounded line formed by continuing Γp(ν) to infinity in both directions.

The following elementary observation relates the moduli of the summands in
f to the geometry of Figure 1. Since | exp(z)| = eRe(z), the value of |a0 exp(z)|
is determined only by the signed perpendicular distance from z to Γ′0(ν). By an
obvious argument from symmetry, the value of |ap exp(ωpqz)| is similarly determined
by the signed perpendicular distance from z to Γ′p(ν), for p ∈ {1, 2, · · · , q − 1}.
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Suppose that z ∈ R0(ν). We claim that, for all sufficiently large values of ν, we
have that

(4.11) |a0 exp(z)| ≥ 4qη|ap exp(ωpqz)|, for p ∈ {1, 2, 3, · · · , q − 1}.
It follows immediately from the observation above that we may choose ν′ > 0, large
compared to τ , and sufficiently large that

|a0 exp(z)| ≥ 4qη|ap exp(ωpqz)|, for z ∈ R0(ν), ν ≥ ν′ and p ∈ {2, 3, · · · , q − 2}.
It remains to consider the cases p = 1 and p = q − 1.

Suppose then that p = 1. We refer to Figure 2, in which z is at a point labeled D.
Here the lines Γ′0(ν) and Γ′1(ν) are shown as solid lines. We are interested, by the
observations above, in the difference between the perpendicular distance from z to
Γ′1(ν) – which is the distance CD on the diagram – and the perpendicular distance
from z to Γ′0(ν) – which is the distance AD on the diagram. We also show, in
dashed, the line through z parallel to the sides of Q1, and the intersections of this
line with Γ′0(ν), at the point B, and Γ′1(ν), at the point X. The angles ∠ADB and
∠CDB are quickly seen to be equal to π/q. A straightforward geometric exercise
shows that BX ≥ 2τ tan(π/q). Hence

AD − CD = BD cos(π/q)−XD cos(π/q) = BX cos(π/q) ≥ 2τ sin(π/q).

Figure 2. An illustration of the geometry in the case q = 5 and
p = 1.

The estimate (4.11) in the case p = 1 follows because, by (4.2), we deduce that

| exp(z)|
| exp(ωqz)|

≥ 4qηmax{|ak| : 0 ≤ k ≤ q − 1}
min{|ak| : 0 ≤ k ≤ q − 1}

.



10 D. J. SIXSMITH

The case p = q − 1 is very similar. This completes the proof of (4.11).

We deduce that

(4.12) |a0 exp(z)| ≥ 4η

q−1∑
k=1

|ak exp(ωkq z)|, for z ∈ R0(ν).

It follows from (4.12) that

|ψ0(z)| =

∣∣∣∣∣
∑q−1
k=1 ak exp(ωkq z)

a0 exp(z)

∣∣∣∣∣ ≤
∑q−1
k=1 |ak exp(ωkq z)|
|a0 exp(z)|

≤ 1

4η
, for z ∈ R0(ν).

Similarly, by differentiating,

|ψ′0(z)| =

∣∣∣∣∣
∑q−1
k=1 ak(ωkq − 1) exp(ωkq z)

a0 exp(z)

∣∣∣∣∣ ≤
∑q−1
k=1 |2ak exp(ωkq z)|
|a0 exp(z)|

≤ 1

2η
, for z ∈ R0(ν),

and finally, differentiating again,

|ψ′′0 (z)| =

∣∣∣∣∣
∑q−1
k=1 ak(ωkq − 1)2 exp(ωkq z)

a0 exp(z)

∣∣∣∣∣ ≤ 1

η
, for z ∈ R0(ν).

This proves (4.6) for z ∈ R0(ν), and (4.6) follows by similar arguments in the do-
mains Rp(ν), for p ∈ {1, 2, · · · , q − 1}, choosing ν′ larger if necessary.

For the rest of the lemma, we may assume for simplicity that z ∈ R0(ν) and
ν ≥ ν′, since the result for z in another component of R(ν) follows similarly. From
(4.5) we deduce that

f(z) = a0e
z(1 + ψ0(z)),

(4.13) f ′(z) = a0e
z(1 + ψ0(z) + ψ′0(z)),

and

f ′′(z) = a0e
z(1 + ψ0(z) + 2ψ′0(z) + ψ′′0 (z)).

Hence, taking ν′ larger than the value taken earlier, if necessary, it follows from
the choice of η and from (4.6) that if z ∈ R0(ν) and ν ≥ ν′, then

|f ′(z)| > |a0e
z|

2
> 2,

|f ′′(z)|
|f ′(z)|

=
|1 + ψ0(z) + 2ψ′0(z) + ψ′′0 (z)|

|1 + ψ0(z) + ψ′0(z)|
<

1 + 4/η

1− 2/η
< 2,∣∣∣∣z f ′(z)f(z)

∣∣∣∣ = |z| |1 + ψ0(z) + ψ′0(z)|
|1 + ψ0(z)|

> |z|1− 2/η

1 + 1/η
> 2,

and

|f(z)| > |a0e
z|

2
=
|a0|eRe(z)

2
> e

1
2ν .

Equations (4.7), (4.8), (4.9) and the first part of the maximum in (4.10) follow.
For the second part of the maximum in (4.10), we may suppose that

0 < ε0 <
1

2
cos

π

q
,
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in which case ε0|z| ≤ 1
2 Re(z). We deduce that

M(ε0|z|, f) ≤
q−1∑
k=0

|ak|eε0|z| ≤ e
1
2 Re(z)

q−1∑
k=0

|ak|.

The result follows, once again taking ν′ larger if necessary. �

We also require the following lemma which is a simplified version of [15, Theo-
rem 4.24].

Lemma 4.2. Suppose that B ⊂ C is a square of side s, that g : B → C is analytic,
and that g′(z) 6= 0, for z ∈ B. Suppose also that

s sup
z∈B

∣∣∣∣g′′(z)g′(z)

∣∣∣∣ ≤ 1√
2s+ 1

.

Then g is conformal in B.

The following corollary of these results is central to the proof of Theorem 1.1.

Lemma 4.3. Suppose that q ≥ 3 and that f ∈ Eq. Suppose that B ⊂ R(ν′) is a
square of side σ, where R(ν′) is as defined in (4.4), ν′ is as defined in Lemma 4.1,
and σ is as defined in (4.1). Then f is conformal in B.

Proof. This follows from (4.1) and (4.8), and from Lemma 4.2. �

5. Distortion and nonlinearity

In this section we give some preliminary definitions and results that will be used
in the proof of Theorem 1.1. Suppose that D is a bounded subset of C, and that
f is a map which is analytic in a neighbourhood of D. We say that f has bounded
distortion on D if there exist constants c, C > 0, depending only on f , such that

(5.1) c <
|f(x)− f(y)|
|x− y|

< C, for x, y ∈ D,x 6= y.

We define the distortion of f in D by

L(f |D) = inf{C/c : (c, C) satisfies (5.1)}.

It is well-known that if f and g are transcendental entire functions, then

(5.2) L(f |D) = L(f−1|f(D))

(5.3) L(f ◦ g|D) ≤ L(f |g(D))L(g|D)

and finally

(5.4)
area(f(A) ∩ f(D))

area(f(D))
≤ L(f |D)2

area(A ∩D)

area(D)
, for A ⊂ D.

Here area denotes plane Lebesgue measure.
Following McMullen [16], we define the nonlinearity of f in D by

N(f |D) =

(
sup
z∈D

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣)diam(D),

where diam denotes Euclidean diameter. We use the following lemma [24, Lemma 2.1].
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Lemma 5.1. Suppose that f is a transcendental entire function. Suppose also that
D is a square such that N(f |D) < 1

4 and such that f is conformal in a neighbourhood
of D. Then L(f |D) ≤ 1 + 8N(f |D).

We observe that [16] uses a similar result but with L(f |D) ≤ 1 + O(N(f |D)),
which would also be sufficient for our purposes.

We require the following result, which is a detailed version of [16, Proposi-
tion 3.1]. Since this result is central to our work, and the proof in [16] is relatively
brief, we give complete details.

Lemma 5.2. Suppose that f is a transcendental entire function, and there exists
a set U ⊂ C and constants α > 1 and M > 0 such that

(5.5) |f ′(z)| > α and

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ < M, for z ∈ U.

Suppose also that there exists s ∈ (0, (4
√

2M)−1) such that if B ⊂ U is a square of
side s, then f is conformal in a neighbourhood of B. Suppose finally that (Bn)n∈N
is a sequence of squares of side s, such that

Bn ⊂ U and Bn+1 ⊂ f(Bn), for n ∈ N.

For n ∈ N, let φn be the inverse branch of f which maps f(Bn) to Bn, and set
Dn = φ1 ◦ φ2 ◦ · · · ◦ φn(f(Bn)). Then there exists λ = λ(M, s, α) > 0 such that

L(fn|Dn
) ≤ λ.

In particular, we note that λ is independent of both n and the sequence (Bn)n∈N.

Proof of Lemma 5.2. For n ∈ N and m ∈ {0, 1, · · · , n− 1} define

Dn,m = φn−m ◦ φn−m+1 ◦ · · · ◦ φn(f(Bn)).

It follows from (5.5) that diam(Dn,m) ≤ s
√

2α−m. Hence, by (5.5), we deduce
that

N(f |Dn,m) ≤Ms
√

2α−m <
1

4
, for m ∈ {0, 1, · · · , n− 1}.

Thus, by Lemma 5.1,

L(f |Dn,m
) ≤ 1 + 8Ms

√
2α−m, for m ∈ {0, 1, · · · , n− 1}.

Hence, by (5.3), we have that

L(fn|Dn
) ≤ L(f |Dn,n−1

)L(f |Dn,n−2
) . . . L(f |Dn,0

)

≤
n−1∏
m=0

(1 + 8Ms
√

2α−m)

≤
∞∏
m=0

(1 + 8Ms
√

2α−m).

�
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6. Proof of Theorem 1.1

We require the following alternative characterisation of A(f) [20, Theorem 2.7].
Here we define µε(r) = M(εr, f), for r > 0 and ε > 0.

Lemma 6.1. Suppose that f is a transcendental entire function and that ε > 0.
Suppose also that R > 0 is sufficiently large that µε(r) > r, for r ≥ R. Then

A(f) = {z : there exists ` ∈ N such that |fn+`(z)| ≥ µnε (R), for n ∈ N}.

Proof of Theorem 1.1. We may suppose that f ∈ Eq, for some q ≥ 3. We show that
there exists a set K ⊂ J(f) ∩A(f) such that K has positive area.

We first define some variables required to start the construction. Let ε0 be the
constant from (4.10) and define

α(r) =
1

2
eε0r, for r > 0.

Choose ν0 sufficiently large that the following all hold;

• ν0 ≥ ν′, where ν′ is the constant from Lemma 4.1;
• α(ν0) > ν0;
• 1

2σe
ν0 min{|ak| : 0 ≤ k ≤ q − 1} is large compared to both σ and τ , where

σ is the constant defined in (4.1) and τ is the constant defined in (4.2);
• µε0(r) > r, for r ≥ ν0.

Define

(6.1) νk = αk(ν0), for k ∈ N.
We now construct the set K. We first pack the complex plane with disjoint

squares of side σ – which we refer to as boxes – by defining

Bm,m′ = {z : mσ < Re(z) < (m+ 1)σ,m′σ < Im(z) < (m′+ 1)σ}, for m,m′ ∈ Z.
Recall that, for ν > 0, R(ν) is defined in (4.4) and P (ν) is defined following (4.2);

see Figure 1. Choose m0,m
′
0 ∈ Z such that Bm0,m′0

⊂ R(ν0), and set K0 = Bm0,m′0
.

We define inductively a sequence of collections of disjoint subsets of K0 as follows;

• K0 = {K0},
• Kn consists of the connected sets Kn satisfying the following conditions:

(i) there exist m,m′ ∈ Z such that fn(Kn) = Bm,m′ and Bm,m′ ⊂ R(νn).
(ii) Kn ⊂ Kn−1 for some Kn−1 ∈ Kn−1.

We complete the construction by setting

K̃n =
⋃

K∈Kn

K, for n ∈ {0, 1, · · · }, and K =

∞⋂
n=0

K̃n.

We next show that these collections are non-empty. First, we need to understand
the size of the image of a box. Suppose that B is a box such that B ⊂ R0(ν), where
ν ≥ ν0. If z ∈ B, then, by (4.5) and (4.6), we have

| arg(f(z))− arg(a0e
z)| ≤ 1/η,

for some branch of the argument defined in a neighbourhood of f(z), and

|a0ez| (1− 1/η) ≤ |f(z)| ≤ |a0ez| (1 + 1/η) .

Hence, by symmetry, if B is a box such that B ⊂ R(ν), where ν ≥ ν0, then f(B)
contains a curvilinear square of side at least 1

2σe
ν min{|ak| : 0 ≤ k ≤ q − 1}.
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Suppose then that n ∈ N, and that Kn−1 ∈ Kn−1. We note two facts about
the set fn(Kn−1); see Figure 3. Firstly, since fn−1(Kn−1) is a box contained in
R(νn−1), it follows from the discussion above that fn(Kn−1) contains a curvilinear
square, of side at least 1

2σe
νn−1 min{|ak| : 0 ≤ k ≤ q − 1}. This value, by the

choice of ν0, is large compared to both τ and σ. Hence the set fn(Kn−1) is large
compared to the size of the boxes, and also large compared to the strips Qk, for
k ∈ {0, 1, · · · , q−1}, which are of fixed width 2τ . Secondly, we note that, by (4.10)
and (6.1), and since |w| < 2ν, for w ∈ P (ν), we have that

f(z) ∈ C \ P (νk+1), for z ∈ R(νk), k ∈ N.

We deduce that fn(Kn−1) ⊂ C\P (νn). It follows from these two facts, by induc-
tion, that Kn is non-empty for n ∈ N.

We next claim that

(6.2) area(fn(Kn−1\K̃n)) = O(eνn−1).

The set fn(Kn−1) is the image of a box, and fn(Kn−1\K̃n) consists of all the points
in this set which do not lie in a box which itself is contained in fn(Kn−1). It follows

that fn(Kn−1\K̃n) consists of the union of three sets. The first is the set of points
of fn(Kn−1) which lie on the boundary of a box; this set has area zero. The second
is the set of points of fn(Kn−1) (if any) which lie in a box which intersects with
one of the strips Qk; the area of this set is easy to estimate as O(eνn−1). The third
is contained in the set of points of fn(Kn−1) which lie at a distance less than or

equal to σ
√

2 from the boundary of fn(Kn−1); it follows from (4.6) and (4.13) that
the length of the boundary of fn(Kn−1) is also O(eνn−1). This completes the proof
of (6.2).

Next we show that K has positive area. Choose n ∈ N, and Kn−1 ∈ Kn−1. It
follows from (4.1), (4.7), (4.8) and Lemma 4.3 that we can apply Lemma 5.2, with
U = R(ν0), s = σ and α = M = 2. We deduce that the distortion of fn on Kn−1
is bounded independently of n and Kn−1. Hence, by (5.4), we have that

area(Kn−1 ∩ K̃n)

area(Kn−1)
= 1− area(Kn−1\K̃n)

area(Kn−1)
≥ 1−O

(
area(fn(Kn−1\K̃n))

area(fn(Kn−1))

)
.

Now, by (6.2)

area(fn(Kn−1\K̃n))

area(fn(Kn−1))
= O(e−νn−1).

Making ν0 larger, if necessary, we can assume that
∑∞
n=1 e

−νn−1 is arbitrarily
small. It follows that there exists ∆ > 0 such that

area(K)

areaK0
≥
∞∏
n=1

(
1−O

(
e−νn−1

))
≥ ∆,

and so K has positive area, as required.

Finally we show that K ⊂ J(f) ∩ A(f). Suppose that z ∈ K. It follows
from (4.10), and by construction, that |fn(z)| ≥ µε0(ν0), for n ∈ N. Hence, by
Lemma 6.1, and by choice of ν0, we have that z ∈ A(f).
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Figure 3. fn(Kn−1), where Kn−1 ∈ Kn−1, shown with solid
boundary and packed with boxes which belong to fn(Kn). Note
that fn(Kn−1) contains a slightly smaller curvilinear square –
shown with a dashed boundary – which has side O(exp(νn−1)).

It follows from (4.9) that we can apply Theorem 3.1, with z0 = z, to obtain that
either z is in a multiply connected Fatou component of f , or z ∈ J(f). However,
by Corollary 2.1, f has no multiply connected Fatou components, and so z ∈ J(f).
This completes the proof of Theorem 1.1. �

7. Proof of Theorem 1.2

For the proof of Theorem 1.2 we require the following [20, Theorem 8.1].

Theorem 7.1. Let f be a transcendental entire function and let R > 0 be such that
M(r, f) > r, for r ≥ R. Then AR(f) is a spider’s web if and only if there exists a
sequence (Gn)n≥0 of bounded simply connected domains such that, for all n ≥ 0,

(7.1) Gn ⊃ B(0,Mn(R, f))

and

(7.2) Gn+1 is contained in a bounded component of C \ f(∂Gn).

Proof of Theorem 1.2. Recall again that f(z) =
∑q−1
k=0 ak exp(ωkq z), where q ≥ 3,

and ωq = exp(2πi/q). We first prove that AR(f) is a spider’s web by giving an
explicit construction of the sequence of domains (Gn)n∈N given in the statement of
Theorem 7.1. The proof of the rest of the theorem then follows quickly.

Recall Figure 1 for an illustration of the various sets defined earlier. For large
values of ν, the domain P (ν), defined in Section 4, is almost a candidate for a
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domain Gn, for some n ∈ N. However, |f(z)| can be small for values of z close
to the vertices of P (ν). We need to modify P (ν) to a slightly smaller domain,
P ′(ν), in such a way that if z is on the boundary of P ′(ν), then |f(z)| is, in some
sense, large. Roughly speaking, we define the boundary of P ′(ν) by ‘cutting off’
the vertices of P (ν).

We now explain the first part of this construction, which is illustrated by the
dotted line in Figure 1. Set c0 = log(aq−1/a0), where log is any branch of the
logarithm, and define a transcendental entire function

(7.3) g0(z) = a0 exp(z) + aq−1 exp(ωq−1q z) = a0 exp(z)(1 + exp((ωq−1q − 1)z+ c0)).

Define also the lines

(7.4) L0,m = {z : Im((ωq−1q − 1)z + c0) = 2mπ}, for m ∈ Z.

The reason for this choice of line is as follows. If z ∈ Q0 is of large modulus, then
f(z) is very close to g0(z). On these lines the two exponentials which make up
g0(z) have the same argument.

It can readily be shown that

L0,m =

{
z : Im(z) = − cot(π/q) Re(z) +

Im(c0)− 2mπ

2 sin2(π/q)

}
, for m ∈ Z.

It follows that these lines are perpendicular to the boundary of Q0. Note that, by
(7.3) and (7.4),

(7.5) |g0(z)| ≥ |a0 exp(z)|, for z ∈ L0,m, m ∈ Z.

For large values of ν, there are many values of m ∈ Z such that L0,m intersects
both the line segments Γ0(ν) and Γq−1(ν). Let p0 ∈ Z be the least of the values such
that both Γ0(ν) ∩ L0,p0 6⊂ Q0 and Γq−1(ν) ∩ L0,p0 6⊂ Q0. Let Γ0(ν) ∩ L0,p0 = {z0}
and let Γq−1(ν) ∩ L0,p0 = {z′0}. (We remark that choosing a small value of p0
ensures that z0 has large imaginary part).

The first part of the boundary of P ′(ν) is made up of the union of three line
segments. The first is the segment of Γ0(ν) from the midpoint of Γ0(ν) to z0. The
second is the segment of L0,p0 from z0 to z′0. The third is the segment of Γq−1(ν)
from z′0 to the midpoint of Γq−1(ν).

This is the first part of the construction of the boundary of P ′(ν). The remain-
der of the boundary of P ′(ν) is completed by repeating this process q times, once
again using arguments from symmetry.

We now consider the value of the modulus of f on the boundary of P ′(ν), where
we assume that ν is sufficiently large for the comments after (7.5) to hold. We also
assume that ν ≥ ν′, where ν′ is defined in Lemma 4.1, and that ν is sufficiently
large that

(7.6) ν ≤ |z| ≤ 2ν, for z ∈ ∂P ′(ν).

Suppose first that z ∈ ∂P ′(ν) ∩ Γ0(ν). Then, by (4.5) and (4.6), we have that

(7.7) |f(z)| ≥ 1

2
|a0|eν , for z ∈ ∂P ′(ν) ∩ Γ0(ν).

Suppose next that z ∈ ∂P ′(ν) ∩ L0,p0 . Here we have that |a0 exp(z)| may be
comparable to |aq−1 exp(ωq−1q z)|, but all other terms in the summand of f are of
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negligible modulus. Hence, by (7.5), there exists κ = κ(τ, q) > 0 such that

(7.8) |f(z)| ≥ 1

2
|g0(z)| ≥ 1

2
|a0|eRe(z) ≥ 1

2
|a0|e−κeν , for z ∈ ∂P ′(ν) ∩ L0,p0 .

(In fact, it follows from an elementary geometric argument, that we may take
κ = 2π cot(π/q) + 2τ sin(π/q).)

We deduce from (7.7) and (7.8), and from considerations of symmetry, that there
exists a constant ε′ > 0, such that, for all sufficiently large values of ν,

(7.9) |f(z)| > ε′ eν , for z ∈ ∂P ′(ν).

Define a real-valued function

(7.10) β(r) =
ε′

2
er, for r > 0.

It is straightforward to see that there exists 0 < δ < 1 such that β(r) ≥ δM(r, f),
for r > 0. Choose R > 0 sufficiently large that M(r, f) > r, for r ≥ R.

It is well-known that

logM(r, f)

log r
→∞ as r →∞,

and also (see, for example, [20]) that if k > 1, then

M(kr, f)

M(r, f)
→∞ as r →∞.

It follows that we may assume that R is sufficiently large that

δM(r, f) ≥ 1

δ
M(δr, f) ≥ r, for r ≥ R.

We choose a value of ν sufficiently large for previous estimates to hold, and such
that ν ≥ R/δ. We deduce that

(7.11) βn(ν) ≥Mn(R, f), for n ∈ N.
We now define the domains (Gn)n≥0 in the statement of Theorem 7.1. Let

Gn = P ′(βn(ν)), for n ≥ 0.

Equation (7.1) holds by (7.6) and (7.11). Equation (7.2) holds by (7.6), (7.9) and
(7.10). It follows, by Theorem 7.1, that AR(f) is a spider’s web.

The rest of the proof of Theorem 1.2 is now quite straightforward. Since AR(f)
is a spider’s web, A(f) and I(f) are also spiders’ webs by [20, Theorem 1.4]. Since,
by Corollary 2.1, f has no multiply connected Fatou components, the fact that each
of

AR(f) ∩ J(f), A(f) ∩ J(f), I(f) ∩ J(f), and J(f)

is also a spider’s web follows by [20, Theorem 1.5(a)]. �

8. On logarithmic tracts

In this brief section we give some definitions and one preliminary result, in order
to prove that if f ∈ Eq, for q ≥ 3, then f does not have a logarithmic tract.

We use definitions taken from [7]. Suppose that f is a transcendental entire
function. Suppose also that U is an unbounded domain with unbounded comple-
ment, the boundary of which consists of piecewise smooth curves. We say that U
is a direct tract of f if there exists R > 0 such that |f(z)| = R, for z ∈ ∂U , and
also |f(z)| > R, for z ∈ U . If, in addition, the restriction f : U → {z : |z| > R} is
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a universal covering, then we say that U a logarithmic tract of f . In particular, if
U is a logarithmic tract, then U is simply connected.

Although Lemma 8.2 could be proved directly, it seems most straightforward to
use the following result of Rippon and Stallard, which is part of [20, Theorem 1.8].

Lemma 8.1. Let f be a transcendental entire function, let R > 0 be such that
M(r, f) > r, for r ≥ R, and let AR(f) be a spider’s web. Then there is no path to
infinity on which f is bounded, and f /∈ B.

Lemma 8.2. Suppose that f ∈ Eq, for q ≥ 3. Then f does not have a logarithmic
tract. In particular f /∈ B.

Proof. Choose R > 0 such that M(r, f) > r, for r ≥ R. By Theorem 1.2 we have
that AR(f) is a spider’s web. Suppose that U is a direct tract of f . Then, by
Lemma 8.1, the boundary of U has only bounded components. Hence U cannot be
simply connected, and so U is not a logarithmic tract. �
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