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Simply Connected Fast Escaping Fatou Components

D. J. Sixsmith

Abstract: We give an example of a transcendental entire function with a

simply connected fast escaping Fatou component, but with no multiply con-

nected Fatou components. We also give a new criterion for points to be in

the fast escaping set.

Keywords: transcendental entire functions; wandering domain; fast escap-

ing set.

1. Introduction

Suppose that f : C → C is a transcendental entire function. The Fatou set

F (f) is defined as the set of points z ∈ C such that (fn)n∈N is a normal family

in a neighborhood of z. The Julia set J(f) is the complement of F (f). An

introduction to the properties of these sets was given in [3].

The fast escaping set A(f) was introduced in [5]. We use the definition

A(f) = {z : there exists ` ∈ N such that |fn+`(z)| ≥Mn(R, f), for n ∈ N},

given in [10]. Here, the maximum modulus function M(r, f) = max|z|=r |f(z)|,
for r > 0, Mn(r, f) denotes repeated iteration of M(r, f) with respect to r, and

R > 0 can be taken to be any value such that M(r, f) > r, for r ≥ R. We write

M(r) when it is clear from the context which function is being considered.

Suppose that U = U0 is a component of F (f). If U ∩A(f) 6= ∅, then U ⊂ A(f)

[10, Theorem 1.2]. We call a Fatou component in A(f) fast escaping. Denote

by Un the component of F (f) containing fn(U). We say that a component is
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wandering if Un = Um implies that n = m. All fast escaping Fatou components

are wandering; [5, Lemma 4] and [10, Corollary 4.2].

For a transcendental entire function, all multiply connected Fatou components

are fast escaping; [8, Theorem 2] and [10, Theorem 4.4]. The first example of a

transcendental entire function with a multiply connected Fatou component was

constructed by Baker in [1]. Other examples are found in, for example, [2], [4],

[6] and [7].

The only known example of a simply connected fast escaping Fatou component

was given by Bergweiler [4], using a quasi-conformal surgery technique from [7].

This function also has multiply connected Fatou components. In fact, in [4], the

properties of the multiply connected Fatou components are used to show that the

simply connected Fatou components are fast escaping.

This prompts the question of whether a transcendental entire function can

have simply connected fast escaping Fatou components without having multi-

ply connected Fatou components. We answer this in the affirmative, using a

direct construction and a recent result on the size of multiply connected Fatou

components [6, Theorem 1.2] to prove the following.

Theorem 1. There is a transcendental entire function with a simply connected

fast escaping Fatou component, and no multiply connected Fatou components.

To prove Theorem 1 we require a new sufficient condition for points to be in

A(f), which may be of independent interest.

Theorem 2. Suppose that f is a transcendental entire function. Suppose also

that, for R0 > 0, ε : [R0,∞)→ (0, 1) is a nonincreasing function, such that

(1.1) ε(Mn(r)) ≥ ε(r)n+1, for r ≥ R0 and n ∈ N.

Define η(r) = ε(r)M(r), for r ≥ R0. Then there exists R1 ≥ R0 such that

A(f) = {z : there exists ` ∈ N such that |fn+`(z)| ≥ ηn(R′), for n ∈ N},

for R′ ≥ R1.

Note that this is a generalisation of [10, Theorem 2.7], which is obtained from

Theorem 2 when ε is constant.
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2. The definition of the function

In this section we define a transcendental entire function, f , which has all the

properties defined in Theorem 1. Since f is very complicated, we first outline

informally the construction of f , starting with simpler functions which only have

some of these properties. We then give the full construction. A detailed proof of

Theorem 1 is given in subsequent sections.

Consider first a transcendental entire function defined by a power series;

g(z) = z
∞∏
k=1

(
1 +

z

ak

)2

, 0 < a1 < a2 < · · · .

The sequence (an)n∈N can be chosen so that the following holds: we can define

another sequence, (bn)n∈N, such that bn is approximately equal to an, −bn is close

to a critical point of g, and g(−bn) is close to −bn+1. It can then be shown that a

small disc centred at −bn is mapped by g into a small disc centred at −bn+1. By

Montel’s theorem, these discs must be in the Fatou set of g. Moreover, these discs

cannot be in multiply connected Fatou components of g since, by [6, Theorem

1.2], any open set contained in a multiply connected Fatou component of g must,

after a finite number of iterations of g, cover an annulus surrounding the origin.

Finally, it can be shown, by comparing |g(−bn)| to M(bn, g) = g(bn), that these

discs are contained in fast escaping Fatou components of g.

However, g does not have all the properties defined in Theorem 1. In particular,

by considering the behaviour of g in large annuli which omit the zeros of g, it

can be shown that g has multiply connected Fatou components. Thus g has very

similar properties to the example in [4].

We note that no zero of g can be in a multiply connected Fatou component,

since 0 is a fixed point. In order to prevent the existence of multiply connected

Fatou components, we add further zeros to the function, along the negative real

axis. This requires some care. The addition of too many zeros – for example,

spaced linearly along the negative real axis – leads to a breakdown of other parts

of the construction. The addition of a zero with modulus insufficiently distant

from an leads to a similar breakdown.

We use [6, Theorem 1.2] to show that only a relatively small number of ad-

ditional zeros are required. In particular, suppose that h is a transcendental

entire function with h(0) = 0 and with zeros of modulus r0 < r1 < r2 < · · · .
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Then, by [6, Theorem 1.2], h has no multiply connected Fatou components if

limk→∞ log rk+1/ log rk exists and is equal to 1.

To use this result, we need to understand the behaviour of log an+1/ log an, for

large n. From the recursive definition that we use to ensure that the sequences

(an)n∈N and (bn)n∈N have the required properties, (see (3.15)), we find that, for

large n, log an+1/ log an is close to n3. See (3.9) for a precise statement of how

the term n3 arises here.

This suggests the following. Define µn = n3/n, for n ∈ N. To simplify some

displays we set µn,m = µmn , and observe that µn,0 = 1 and µn,n = n3, for n ∈ N.

We now define a more complicated transcendental entire function;

h(z) = z
∞∏
k=1

k−1∏
l=0

(
1 +

z

a
µk,l
k

)2

, 0 < a1 < a2 < · · · .

The sequence (an)n∈N in this definition is not the same as in the definition of g,

but serves the same purpose, and is chosen similarly. This function has zeros of

modulus

· · · , an, aµnn , a
µn,2
n , · · · , aµn,n−1

n , an+1, a
µn+1

n+1 · · · .

Since it is readily seen that µn → 1 as n → ∞, this function does not have

multiply connected Fatou components. However, two further adjustments are

required. Firstly, the zero of modulus a
µn,n−1
n is sufficiently close to the zero of

modulus an+1 that the original construction breaks down. We resolve this by

omitting this zero. Secondly, the value of log an+1/ log an is not close enough to

n3, for large n, to ensure that limk→∞ log ak+1/ log a
µk,k−2

k = 1. We resolve this

by adding one additional zero, which serves no other purpose in the construction.

This zero is defined using two additional sequences, (αn)n∈N and (βn)n∈N, which

we choose to keep log an+1/ log an sufficiently close to n3.

Now we are able to indicate the form of the function f in Theorem 1. Let f

be the transcendental entire function;

(2.1) f(z) = z
∞∏
k=3


(

1 +
z

aβkk

)2αk k−2∏
l=0

(
1 +

z

a
µk,l
k

)2
 ,

where 0 < a3 < a4 < · · · , αn ∈ {0, 1, 2, . . .}, βn ∈ R, for n ∈ N. Again, the

sequence (an)n∈N in this definition is not the same as that in the definition of g

or h, but serves the same purpose, and is chosen similarly. The related sequence
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(bn)n∈N, discussed after the definition of g, is defined for f by (3.14). The se-

quences (αn)n∈N and (βn)n∈N are the two sequences mentioned at the end of the

previous paragraph.

The structure of the proof of Theorem 1 is as follows. First, in Section 3, we

give the definition of the various sequences in (2.1), and we prove a number of

estimates on the modulus of the zeros of f . Next, in Section 4, we show that

there are no multiply connected Fatou components of f . In Section 5 we show

that there are intervals on the negative real axis each contained in some Fatou

component of f . Finally, in Section 6 we prove Theorem 2 and then use this to

show that these Fatou components of f are fast escaping. It is clear that Theo-

rem 1 follows from these results.

Remark: Rippon and Stallard asked [10, Question 1] if there can be unbounded

fast escaping Fatou components of a transcendental entire function. It can be

shown that the Fatou components of the function f are all bounded. Indeed, it

is straightforward to prove that the number of zeros of f in the disc {z : |z| < r}
is O(log r), and hence that logM(r, f) = O((log r)2). It follows that f has no

unbounded Fatou components [10, Theorem 1.9(b)], and, moreover, that the set

A(f) has a structure known as a spider’s web. For more details we refer to [10].

3. Defining the sequences

In this section we first define the sequences (αn)n∈N and (βn)n∈N, and then

define the sequences (an)n∈N and (bn)n∈N.

Recall from Section 2 that µn = n3/n and µn,m = µmn ; we also define, for n ≥ 3,

(3.1) σn =

n−2∑
l=1

µn,l = µn
µn,n−2 − 1

µn − 1
.

We define (αn)n∈N to be a sequence of integers and (βn)n∈N to be a sequence of

real numbers. Assume that N0 is even and chosen sufficiently large for subsequent
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estimates to hold. Set

(3.2) 2αn =


0, for n < N0,

N3
0 + 2N2

0 + 6N0 + 2, for n = N0,

3n2 + n+ 6, for n > N0, n even,

3n2 + n+ 4, for n > N0, n odd.

Note that αn is an integer, for n ∈ N. Set

βn =


0, for n < N0,

1
αn

(n4 − σn), for n ≥ N0, n even,

1
αn

(n
3(2n−1)

2 − σn), for n ≥ N0, n odd.

We observe that these choices imply that

(3.3) τn =
2

n3
(αnβn + σn)

satisfies

(3.4) τn =

2n, for n ≥ N0, n even,

2n− 1, for n ≥ N0, n odd,

and

(3.5) 2αn = 3n2 + n+ 3 + τn − τn−1, for n > N0.

We also define a sequence of integers (Tn)n∈N by

(3.6) Tn =

n3 + 2n− 3, for n even,

n3 + 2n− 2, for n odd.

Next we prove a result which gives various relationships between these sequences.

Lemma 3.1. The following all hold for the choice of sequences above:

(3.7) αn ∼
3

2
n2, βn ∼

2

3
n2, as n→∞,

(3.8) 2

n∑
k=3

αk = n3 + 2n2 + 4n+ 2 + τn, for n ≥ N0,

(3.9) 1 + 2

n−1∑
k=3

αk +

n−1∑
k=3

k−2∑
l=0

2 = n3 + τn−1 = Tn, for n ≥ N0,
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and

(3.10) µn,2 < βn < µn,n−3, for large n.

Proof. The first half of (3.7) is immediate from (3.2). Now, by (3.2), (3.3) and

(3.4),

βn ∼
2n

3

(
n− σn

n3

)
, as n→∞.(3.11)

We have that

(3.12)
x

2
≤ log(1 + x) ≤ x, for 0 < x <

1

2
.

Putting x = µn − 1, we obtain

(3.13)
3

n
log n ≤ µn − 1 ≤ 6

n
log n, for large n.

Hence, by (3.1),

σn
n3

=
µn
µn,n

µn,n−2 − 1

µn − 1
∼ 1

µn(µn − 1)
= O

(
n

log n

)
as n→∞,

and the second half of (3.7) follows by (3.11).

We can see that (3.8) holds by induction. For, it is immediately satisfied when

n = N0. When n = m > N0 we have, by (3.5) and (3.8) with n = m− 1,

2

m∑
k=3

αk = 2αm + 2

m−1∑
k=3

αk = m3 + 2m2 + 4m+ 2 + τm.

Finally (3.9) follows from (3.4), (3.6), and (3.8), and (3.10) follows from (3.7). �

Next we define the sequence (an)n∈N recursively, and for each n ∈ N put

(3.14) bn = an −
2

Tn + 2
an =

Tn
Tn + 2

an.

Choose a3 and N1 large, and set an+1 = an
3

n , for 3 ≤ n < N1. We assume that a3

and N1 are chosen sufficiently large for various estimates in the sequel to hold.

For n ≥ N1, we define

(3.15)

an+1 =
(Tn+1 + 2)

Tn+1
bn

(
1− bn

an

)2 n−1∏
k=3


(

1− bn

aβkk

)2αk k−2∏
l=0

(
1− bn

a
µk,l
k

)2
 .
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Finally in this section we prove a set of inequalities which concern the growth

of the sequence (an), and the ratios of these numbers to the modulus of the other

zeros of f . Note that (3.7) and (3.17) imply that the product in (2.1) is locally

uniformly convergent in C.

Lemma 3.2. The following inequalities hold for the sequence (an) defined above.

For n ≥ 3,

an
3−2/n
n ≤ an+1 ≤ an

3+2/n
n ,(3.16)

an > exp(en),(3.17)

and, for large n,

an
aµnn
≤ exp(−en/2), αnan

aβnn
≤ exp(−en/2),(3.18)

a
µn,n−2
n

an+1
≤ exp(−en/2), αna

βn
n

an+1
≤ exp(−en/2).(3.19)

Proof. First, assume that (3.16) holds for 3 ≤ n ≤ m. Equation (3.17) follows

for 3 ≤ n ≤ m by a simple induction. Hence, for sufficiently large m, by (3.7),

(3.13), (3.16) and (3.17):

am
aµmm

= a1−µmm ≤ exp(em(1− µm)) ≤ exp(−em/2);
αmam

aβmm
≤ 3m2a1−m

2/2
m ≤ exp(−em/2);

a
µm,m−2
m

am+1
≤ (a

µm,m−2
m )1−µm,2+

2
m ≤ exp(em(1− µm,2 +

2

m
)) ≤ exp(−em/2);

αma
βm
m

am+1
≤ 3m2am

2−m3+2/m
m ≤ exp(−em/2).

It remains to prove (3.16). We can assume, by taking N1 sufficiently large, that

(3.16) holds for 3 ≤ n ≤ m − 1, for some large m. We can assume also that

m is sufficiently large that (3.9), (3.10) and various other estimates used in the

following hold. We need to prove that (3.16) holds for n = m. Now, by (3.15)
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and (3.3),

am+1 =
(Tm+1 + 2)

Tm+1
bκmm

(
1− bm

am

)2 L1∏m−1
k=3

{
a2αkβkk

∏k−2
l=0 a

2µk,l
k

}
= km

aκmm

a
2αm−1βm−1

m−1
∏m−3
l=1 a

2µm−1,l

m−1

L1

L2

= km
aκmm

a
(m−1)3τm−1

m−1

L1

L2
,(3.20)

where, by (3.14),

km =
(Tm+1 + 2)

Tm+1

(
Tm

Tm + 2

)κm ( 2

Tm + 2

)2

,

by (3.9),

κm = 1 + 2

m−1∑
k=3

αk +

m−1∑
k=3

k−2∑
l=0

2 = m3 + τm−1 = Tm,

L1 =
m−1∏
k=3


(

1−
aβkk
bm

)2αk k−2∏
l=0

(
1−

a
µk,l
k

bm

)2
 ,

and, by (3.3) again,

L2 = a2m−1

m−2∏
k=3

{
a2αkβkk

k−2∏
l=0

a
2µk,l
k

}

= a2m−1

m−2∏
k=3

a
2(1+αkβk+

∑k−2
l=1 µk,l)

k

= a2m−1

m−2∏
k=3

a2+k
3τk

k .

We now estimate the terms in this equality. Firstly, by (3.6), and noting that

(Tm/(Tm + 2))Tm > 1/e2, we obtain

1

8
m−6 < km < 8m−6.

Secondly, by (3.16), with n = m− 1,

a
(m−1)3
m−1 ≤ a

(1− 2
(m−1)4

)−1

m ≤ a
1+ 4

(m−1)4

m ,
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and so, by (3.4),

aκmm

a
(m−1)3τm−1

m−1

≥ a
κm−τm−1−

4τm−1

(m−1)4

m = a
m3− 4τm−1

(m−1)4

m ≥ am
3− 1

m
m .

Similarly, by (3.4) and (3.16),

aκmm

a
(m−1)3τm−1

m−1

≤ am
3+ 1

m
m .

Thirdly, we consider L1. Noting (3.10), and by (3.14) and (3.19), we see that

the smallest term in this product is

1 >

(
1−

a
µm−1,m−3

m−1
bm

)2

>

(
1−

2a
µm−1,m−3

m−1
am

)2

> 1− exp(−e
m
4 ).

There are fewer than m terms in L1 of the form (1− apm−1/bm)q, p ∈ R, q ∈ N,

and so of comparable size to this term. The other terms in the product for L1

tend to 1 sufficiently quickly, by (3.16), that 1/2 < L1 < 1.

Finally, we consider L2. Observe that, by (3.4) and (3.16), the largest term in

this product is

a2m−1a
2+(m−2)3τm−2

m−2 < a2m−1a
4(m−2)4
m−2 < a2m−1a

8(m−1)
m−1 < a16/m

2

m .

By (3.16), all other terms in the product for L2 decrease sufficiently quickly that

1 < L2 < a
32/m2

m .

Thus, by (3.20), for sufficiently large m,

am+1 ≥
1

16
m−6a

m3− 1
m
− 32
m2

m ≥ am
3− 2

m
m ,

and similarly,

am+1 ≤ 8m−6a
m3+ 1

m
m ≤ am

3+ 2
m

m .

This completes the proof of Lemma 3.2. �

4. There are no multiply connected Fatou components

In this section we prove the following result.

Lemma 4.1. The transcendental entire function f does not have multiply con-

nected Fatou components.
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We use the definition of an annulus

A(r1, r2) = {z : r1 < |z| < r2}, for 0 < r1 < r2.

We need the following, which is part of [6, Theorem 1.2].

Theorem A. Suppose that g is a transcendental entire function with a multiply

connected Fatou component U . For each z0 ∈ U there exists α > 0 such that, for

sufficiently large n ∈ N,

gn(U) ⊃ A(|gn(z0)|1−α, |gn(z0)|1+α).

Proof of Lemma 4.1. Observe that, for large n, in the closed annulus A(an, an+1)

there are zeros of f on the negative real axis of modulus an, a
µn
n , a

µn,2
n , . . . , a

µn,n−2
n

and an+1. Note also that 0 is a fixed point of f , and so no zero of f can be in a

multiply connected Fatou component of f . Now, by (3.16),

an+1 ≤ an
3+2/n
n < (a

µn,n−2
n )µn,2+2/n.

Hence, for large n, there is at least one zero of f in any annulus A(r, rµn,2+2/n),

for an ≤ r ≤ an+1. Note that µn,2 + 2/n→ 1 as n→∞.

Now, by Theorem A, if f has a multiply connected Fatou component, then

there is a c > 1, and a sequence (ri)i∈N, tending to infinity, such that the annuli

A(ri, r
c
i ) are contained in multiply connected Fatou components of f . This is in

contradiction to the observations above regarding the distribution of zeros of f

and the fact that these zeros do not lie in multiply connected Fatou components.

Hence there can be no multiply connected Fatou components of f . �

5. There are simply connected Fatou components

Next we show that f has simply connected Fatou components.

Lemma 5.1. Define Bn = {z : |z + bn| < δnbn}, where δn = n−15. Then, for

large n, we have f(Bn) ⊂ Bn+1, and Bn is contained in a simply connected Fatou

component of f .

Proof. Suppose that z ∈ Bn, in which case z = −bn + wbn where |w| < δn. We

assume throughout this section that n is sufficiently large for various estimates
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to hold. By (2.1), (3.14) and (3.15),

f(z)

−bn+1
= I1I2,

where

I1 = (1− w)

(
1 + w

bn
an − bn

)2 n−1∏
k=3


(

1 + w
bn

aβkk − bn

)2αk k−2∏
l=0

(
1 + w

bn

a
µk,l
k − bn

)2
 ,

(5.1)

and

I2 =

n−2∏
l=1

(
1 +

z

a
µn,l
n

)2 ∞∏
k=n

(
1 +

z

aβkk

)2αk ∞∏
k=n+1

k−2∏
l=0

(
1 +

z

a
µk,l
k

)2

.

First consider I1. This is a polynomial in w of degree Tn + 2, by (3.9). Write

I1 = 1 +

Tn+2∑
j=1

ηjw
j , for ηj ∈ C.

Then

(5.2) |I1 − 1| ≤ |η1w|+ |η2w2|+ · · ·+ |ηTn+2w
Tn+2|.

We consider η1. We have, by (3.2), (3.9), (3.14), (3.16), (3.17) and (3.19),

|η1| =

∣∣∣∣∣1 + 2
bn

bn − an
+ 2

n−1∑
k=3

{
αk

bn

bn − aβkk
+

k−2∑
l=0

bn

bn − a
µk,l
k

}∣∣∣∣∣
=

∣∣∣∣∣1− Tn + 2
n−1∑
k=3

{
αk

(
1 +

aβkk

bn − aβkk

)
+
k−2∑
l=0

(
1 +

a
µk,l
k

bn − a
µk,l
k

)}∣∣∣∣∣(5.3)

= 2

∣∣∣∣∣
n−1∑
k=3

{
αk

aβkk

bn − aβkk
+
k−2∑
l=0

a
µk,l
k

bn − a
µk,l
k

}∣∣∣∣∣
≤ 4

∣∣∣∣∣nαn−1a
βn−1

n−1
an

+ n2
a
µn−1,n−3

n−1
an

∣∣∣∣∣
≤ exp(−en/4).

Note that the cancellation in (5.3) occurs because, due to the choice of bn and

Tn, −bn is very close to a critical point of f .

Next consider ηk, for k > 1. Note that the coefficients of w in the product for

I1 have modulus at most bn/(an − bn) = Tn/2 < n3. Moreover, the degree of I1
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is less than 2n3, and so the expansion of (5.1) contains less than (2n3)k terms in

wk. Hence

|ηk| < (n3)k.(2n3)k < n7k, for large n.

Hence |η2w2| < n−16. The other terms in (5.2) decrease sufficiently quickly that

(5.4) |I1 − 1| < 2n−16, for large n.

Now we consider I2. Observe that each term in the product for I2 has modulus

less than 1. Hence, since − log(1 − x) ≤ log(1 + 2x), for 0 < x < 1/2, we have,

by (3.12), (3.16), (3.17) and (3.18),

0 < − log |I2|

≤ 2

(
n−2∑
l=1

log

(
1 +

2|z|
a
µn,l
n

)
+
∞∑
k=n

αk log

(
1 +

2|z|
aβkk

)
+

∞∑
k=n+1

k−2∑
l=0

log

(
1 +

2|z|
a
µk,l
k

))

≤ 8

(
n−2∑
l=1

an

a
µn,l
n

+

∞∑
k=n

αk
an

aβkk
+

∞∑
k=n+1

k−2∑
l=0

an

a
µk,l
k

)

≤ 16
(

exp(−en/2) + exp(−en/2) + exp(−en/2)
)

≤ exp(−en/4).

Thus, 1 − 2 exp(−en/4) ≤ |I2| ≤ 1. This, together with (5.4), establishes the

first part of the lemma. It follows from Montel’s theorem that, for large n, Bn is

contained in a Fatou component, which must be simply connected by Lemma 4.1.

�

Remark. Let Vn be the Fatou component containing Bn. These Fatou com-

ponents are distinct. For, suppose that Vm = Vn with m 6= n. Because all the

coefficients of z in (2.1) are real, the Fatou set F (f) must be invariant under

reflection in the real axis. Hence, all points on the negative real axis between Bn

and Bm must be in Vm, as otherwise Vm would be multiply connected. This is a

contradiction since these points include the zeros of f .

6. The simply connected Fatou components are fast escaping

In this section we first prove Theorem 2, and then we use this result to prove

the following.
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Lemma 6.1. Let Vn, n ∈ N, be the simply connected Fatou components defined

at the end of Section 5. Then Vn ⊂ A(f), for large n.

Proof of Theorem 2. We need two facts about the maximum modulus function,

M(ρ), of a transcendental entire function. The first is well known, and the second

is from [9, Lemma 2.2]:

(6.1)
logM(ρ)

log ρ
→∞ as ρ→∞,

and there exists R > 0 such that

(6.2) M(ρc) ≥M(ρ)c, for ρ ≥ R, c > 1.

Fix r0 ≥ R0 such that M(r) > r, for r ≥ r0. Whenever r ≥ r0 there is a unique

n ∈ N such that Mn−1(r0) ≤ r < Mn(r0). Hence, since ε is nonincreasing, by

(1.1) and (6.1)

ε(r)r ≥ ε(Mn(r0))M
n−1(r0) ≥ ε(r0)n+1Mn−1(r0)→∞ as n→∞.

Hence

(6.3) ε(r)r →∞ as r →∞.

By (6.1) and (6.3) we see that, given k > 0, we can ensure that

(6.4)
logM(ε(r)R)

log(ε(r)R)
> k, for large r, R ≥ r.

A little algebra shows that this is equivalent to

(6.5) M(ε(r)R)
− log ε(r)
log(ε(r)R) > ε(r)−k, for large r, R ≥ r.

In (6.2) we replace c with logR/ log(ε(r)R), and replace ρ with ε(r)R. We obtain,

using (6.5) with k = 3, that there exists R1 ≥ R0 such that

(6.6) M(R) ≥ ε(r)−3M(ε(r)R), for R ≥ r ≥ R1.

Note that we can assume that R1 is sufficiently large that both M(r) > r, for

r ≥ R1/ε(r), and also, by (6.3), that η(r) > r, for r ≥ R1.

We claim next that we have

(6.7) ηk(r) ≥ ε(r)−k−1Mk(ε(r)r) > Mk(ε(r)r), for r ≥ R1, k ∈ N.
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This can be seen by induction. When k = 1 we have, by (6.6),

η(r) = ε(r)M(r) ≥ ε(r)−2M(ε(r)r), for r ≥ R1.

Hence, by induction, for r ≥ R1,

ηk+1(r) = ε(ηk(r))M(ηk(r))

≥ ε(Mk(r))M(ηk(r)) as ε is nonincreasing

≥ ε(r)k+1M(ηk(r)) by (1.1)

≥ ε(r)k+1M(ε(r)−k−1Mk(ε(r)r)) by (6.7)

≥ ε(r)k+1ε(r)−3k−3Mk+1(ε(r)r) by repeated use of (6.6)

≥ ε(r)−(k+1)−1Mk+1(ε(r)r) as required.

(Note that in the penultimate step we have used the fact that ε(r)r ≤ M(ε(r)r),

for r ≥ R1.)

It follows from (6.7) that, for r ≥ R1, η
n(r)→∞ as n→∞. Define

A′(f) = {z : there exists ` ∈ N such that |fn+`(z)| ≥ ηn(R′) for n ∈ N},

for R′ ≥ R1. We complete the proof by showing that A′(f) = A(f).

First, suppose that z ∈ A(f), in which case for some ` ∈ N we have

|fn+`(z)| ≥Mn(R), for n ∈ N,

and some R with M(r) > r, for r ≥ R.

Choose K ∈ N such that MK(R) = R′ ≥ R1. Then

|fn+`+K(z)| ≥Mn+K(R) = Mn(R′) ≥ ηn(R′), for n ∈ N.

Hence z ∈ A′(f).

Conversely, suppose that z ∈ A′(f), in which case for some ` ∈ N and R′ ≥ R1

we have

|fn+`(z)| ≥ ηn(R′), for n ∈ N.

Choose K ∈ N so that MK(ε(R′)R′) = R ≥ R1. Then, by (6.7).

|fn+`+K(z)| ≥ ηn+K(R′) ≥Mn+K(ε(R′)R′) ≥Mn(R), for n ∈ N.

Hence z ∈ A(f). �

Finally, we give the
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Proof of Lemma 6.1. For some large R0 define, for r > R0,

(6.8) ε(r) =
1

16n6
, for an−1(1 + δn−1) < r ≤ an(1 + δn),

where δn = n−15 as in Lemma 5.1. Define also η(r) = ε(r)M(r), for r ≥ R0.

Suppose that x′ ∈ Bn ∩ R ⊂ Vn, for some n. We can assume that n is chosen

sufficiently large for various estimates in this section to hold. We claim that

x′ ∈ A(f). Thus, by [10, Theorem 1.2], Vn ⊂ A(f).

Our approach to proving this claim is as follows. Set x = −x′, recalling that

x > 0. We first show that

(6.9) |f(x′)| ≥ 1

16n6
M(x).

It follows from this, and since f(x′) ∈ Bn+1 ∩ R, that

(6.10) |fm(x′)| ≥ ηm(x), for m ∈ N.

Second, we show that ε satisfies (1.1). Thus, by (6.10) and Theorem 2, x′ ∈ A(f),

as required.

First we need to establish (6.9). Since M(x) = f(x), we have

|f(x′)|
M(x)

= J1J2J3,

where

J1 =
n−1∏
k=3


(
aβkk − x
aβkk + x

)2αk k−2∑
l=0

(
a
µk,l
k − x
a
µk,l
k + x

)2
 ,

J2 =

(
an − x
an + x

)2

,

and

J3 =
∞∏

k=n+1


(
aβkk − x
aβkk + x

)2αk k−2∑
l=0

(
a
µk,l
k − x
a
µk,l
k + x

)2

(
aβnn − x
aβnn + x

)2αn n−2∑
l=1

(
a
µn,l
n − x
a
µn,l
n + x

)2

.
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We consider these three terms separately. By (3.10) and (3.19), the smallest

term in J1 is(
a
µn−1,n−3

n−1 − x
a
µn−1,n−3

n−1 + x

)2

=

1− a
µn−1,n−3
n−1

x

1 +
a
µn−1,n−3
n−1

x

2

≥

(
1−

8a
µn−1,n−3

n−1
an

)
≥
(

1− exp(−en/4)
)
.

Thus, recalling the estimates of Lemma 3.2, J1 ≥ 1
2 .

Secondly, recalling that x = bn + ωbn, with |ω| < δn = n−15, we have for large

n,

J2 =

(
an − bn − ωbn
an + bn + ωbn

)2

=

(
2− ωTn

2Tn + 2 + ωTn

)2

≥ 1

4n6
.

Thirdly, by (3.10) and (3.18), the smallest term in J3 is(
aµnn − x
aµnn + x

)2

≥

(
1− x

aµnn

1 + x
aµnn

)2

≥
(

1− 8an
aµnn

)
≥
(

1− exp(−en/4)
)
.

Thus, recalling again the estimates of Lemma 3.2, J3 ≥ 1
2 . This establishes our

first claim.

Finally, we need to show that ε satisfies (1.1). We claim that M(an(1 + δn)) ≤
an+2. In a very similar way to the proof of (6.9), we can split f(2bn)/an+1 into

three terms, and show that f(2bn)/an+1 < 212n
3
. Hence, by (3.14), (3.16) and

(3.17),

(6.11) M(an(1 + δn)) ≤M(2bn) = f(2bn) < 212n
3
an+1 ≤ a2n+1 ≤ an+2,

as required.

Suppose then that r is such that an−1(1 + δn−1) < r ≤ an(1 + δn). Since ε is

nonincreasing, we deduce that, for k ∈ N,

ε(Mk(r)) ≥ ε(Mk(an(1 + δn))),

≥ ε(an+2k), by (6.11)

=
1

16(n+ 2k)6
≥ 1

(16n6)k+1
= ε(r)k+1.

Thus ε satisfies (1.1). This completes the proof of Lemma 6.1 and hence the proof

of Theorem 1. �



18 D. J. Sixsmith

Acknowledgement. The author is grateful to Gwyneth Stallard and Phil Rippon

for their help with this paper.

References

[1] Baker, I. N. Multiply connected domains of normality in iteration theory. Math. Z. 81

(1963), 206–214.

[2] Baker, I. N. Some entire functions with multiply-connected wandering domains. Ergodic

Theory Dynam. Systems 5, 2 (1985), 163–169.

[3] Bergweiler, W. Iteration of meromorphic functions. Bull. Amer. Math. Soc. (N.S.) 29,

2 (1993), 151–188.

[4] Bergweiler, W. An entire function with simply and multiply connected wandering do-

mains. Pure Appl. Math. Quarterly 7, 2 (2011), 107–120.

[5] Bergweiler, W., and Hinkkanen, A. On semiconjugation of entire functions. Math.

Proc. Cambridge Philos. Soc. 126, 3 (1999), 565–574.

[6] Bergweiler, W., Rippon, P. J., and Stallard, G. M. Multiply connected wandering

domains of entire functions. Preprint, arXiv:1109.1794v1 (2011).

[7] Kisaka, M., and Shishikura, M. On multiply connected wandering domains of entire

functions. In Transcendental dynamics and complex analysis, vol. 348 of London Math. Soc.

Lecture Note Ser. Cambridge Univ. Press, Cambridge, 2008, pp. 217–250.

[8] Rippon, P. J., and Stallard, G. M. On questions of Fatou and Eremenko. Proc. Amer.

Math. Soc. 133, 4 (2005), 1119–1126.

[9] Rippon, P. J., and Stallard, G. M. Functions of small growth with no unbounded Fatou

components. J. Anal. Math. 108 (2009), 61–86.

[10] Rippon, P. J., and Stallard, G. M. Fast escaping points of entire functions. To appear

in Proc. London Math. Soc., arXiv:1009.5081v1 (2011).

D. J. Sixsmith

Department of Mathematics and Statistics

The Open University

Walton Hall

Milton Keynes MK7 6AA

UK

E-mail: david.sixsmith@open.ac.uk


