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Abstract 15 

Strategies to reduce antiretroviral doses and drug cost can support global access and 16 

numerous options are being investigated. Efavirenz pharmacokinetic simulation generated 17 

with a bottom-up physiologically based model were successfully compared with data 18 

obtained from the Encore I clinical trial (Efavirenz 400mg qd versus 600mg qd). These 19 

findings represent a pivotal paradigm for the prediction of pharmacokinetics resulting from 20 

dose reductions. Validated computational models constitute a valuable resource to optimise 21 

therapeutic options and predict complex clinical scenarios. 22 

Main text 23 

The global access to treatment will favour a more effective strategy against the HIV 24 

pandemic but defines several challenges in terms of drug production and distribution. 25 

Antiretroviral dosing strategies have been selected to warrant inhibition of viral replication 26 

but there is growing recognition that some antiretroviral drugs may be administered at doses 27 

above those required for efficacy.  This may place a higher demand than necessary on 28 

medication budgets and manufacturing costs in resource-limited settings where the need is 29 

greatest.  30 

Alternative strategies to lower doses and drug cost could effectively support global access 31 

and several reduction strategies are being investigated (1). A rational identification of optimal 32 

dose reductions is challenging and is commonly based on large clinical studies. 33 

Drug distribution can be quantitatively investigated through computational approaches, 34 

utilising data from clinical studies to provide a Top-down description and its variability in 35 

populations (i.e population pharmacokinetic modelling, popPK) or integrating drug specific in 36 

vitro data in models to predict Bottom-up pharmacokinetics in populations of virtual patients 37 

(i.e physiologically based pharmacokinetic modelling, PBPK). PBPK modelling is based on 38 

the mathematical representation of absorption, distribution and elimination processes 39 

defining pharmacokinetics (2). Drug specific (lypophilicity, apparent permeability, in vitro 40 
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clearance, induction and inhibition potential) and patient specific factors (demographics, 41 

enzyme expression, organ volume and blood flows) are integrated in order to provide a 42 

realistic description of pharmacokinetics (3-5). A virtual population of patients can be 43 

simulated by considering anatomical and physiological characteristics, and their covariance.  44 

The pharmacokinetic assessment after administration of efavirenz (EFV) 400mg once daily 45 

(qd) versus 600mg qd conducted as part of the Encore I study was recently published (6). 46 

Prior to this clinical analysis we made a prediction of the drug exposure from 400mg using 47 

PBPK modelling that we also published 3 years previously (7).  48 

The purpose of this work is to exemplify the utility of PBPK modelling in exploration of the 49 

pharmacokinetic consequences of dose reduction by reporting a formal comparison of the 50 

previous PBPK prediction against the popPK model (top down) that was constructed with the 51 

clinical data from Encore I (6).  52 

The frequency of the CYP2B6 516 G>T genotype from our previously published PBPK 53 

model were amended to match the population of the Encore I trial to provide a more realistic 54 

description of the inter-patient variability. The median of pharmacokinetic variables such as 55 

Cmax , C12hr and C24hr obtained through the PBPK simulations and their variability were 56 

compared with model predicted PK parameters from Encore I. As shown in Figure 1 the key 57 

pharmacokinetic descriptors of EFV were accurately predicted by the PBPK model after 58 

correcting the frequency of CYP2B6 516G>T. The predicted pharmacokinetic variables (Cmax 59 

, C12hr and C24hr) were in satisfactory agreement with the data observed for the dose 60 

reduction to 400 mg. These findings can be viewed as a paradigm for prediction of the 61 

pharmacokinetic consequences of dose reduction. While PBPK modelling cannot help 62 

establish the accuracy of existing pharmacokinetic therapeutic cut-off values (which Encore I 63 

has shown is likely to be inaccurate for EFV), it can certainly help define the potential for 64 

pharmacokinetic success prior to costly and labour-intensive prospective clinical trials. 65 

Therefore, integration of PBPK modelling prior to or during design of prospective studies is 66 

warranted to ensure effective deployment of available resources.  67 
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It is increasingly evident that computational approaches can assist in answering questions 68 

that cannot easily be examined because of prohibitive ethical or logistical barriers. PBPK 69 

modelling can bridge from drug development through in vitro data into the clinical scenario 70 

and reduce the number of clinical studies required to optimise therapies. This modelling 71 

approach can support the design of clinical studies in terms of sample size, timing of doses 72 

and sampling as recently indicated in several regulatory guidelines and documents (8-10). 73 

Our findings demonstrate the utility of PBPK modelling for dose optimisation, and a 74 

comparison between Bottom-Up and Top-Down approaches can build the basis for a future 75 

wider application of this modelling approach (11-13). The pharmacology of antiretrovirals 76 

and other anti-infective drugs is based on the co-administration of complex regimens and 77 

often administered to patients with specific characteristics defining challenging clinical 78 

scenarios (14, 15). Computational predictive models such as PBPK can represent a pivotal 79 

resource in answering questions that cannot otherwise be examined in pre-clinical or clinical 80 

development, supporting the rational design of therapeutic options, identifying strategies to 81 

maximise the efficiency and safety of therapies in various populations of patients.  82 
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Figure 1 Scatter dot representing the main pharmacokinetic descriptors (AUC0-24, Cmax, and 85 

C24hr) simulated through the PBPK model (7)and population PK model developed for 86 

ENCORE I (6) for 400mg qd (A) or 600 mg (B). 25th percentile (open circle), median (black 87 

circle) and 75th percentile (patterned circle) are presented. The solid line represents the 88 

identity line and dotted lines represent 50-200% range 89 
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