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Abstract Generally, existing isolators with quasi-zero stiffness (QZS) are designed 
for mitigating transmission of vertical translational excitations, but vibration isolation 
in multiple directions is much more desirable and useful. The major contribution of 
this paper is extending the QZS vibration isolation method from one degree of 
freedom (DOF) to all six DOFs, by using a novel QZS strut to construct a 6-DOF 
QZS vibration isolation platform. Firstly, the design concept of the QZS strut is 
proposed, and then a pyramidal 3-QZS-strut isolator is assembled. Finally, a 6-DOF 
QZS platform is achieved by using such isolators as supporting mounts. The 
equations of motion of this platform are established, and solved by the Harmonic 
Balance method to obtain amplitude-frequency relationships. Moreover, the 
performance of vibration isolation is evaluated in terms of force/moment 
transmissibility. Compared with the linear counterpart, the 6-DOF QZS platform has 
broader bandwidth of vibration isolation starting from lower frequency, and possesses 
higher effectiveness in low-frequency range, most importantly, in all six DOFs.  
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1. Introduction  

Recently, a category of vibration isolators with quasi-zero stiffness has been proposed 

to overcome the drawback of traditional linear passive isolators [1, 2]. Specifically, 

the QZS isolator not only can attenuate transmission of low-frequency excitations, but 

also possesses high static stiffness to prevent the system from producing large static 

deflections. The vital component of a QZS isolator is the negative-stiffness 

mechanism. There exist several formulas to realize a negative-stiffness mechanism [1, 

2]. The earliest form might be the oblique-spring mechanism [3], which was often 

utilized as a theoretical model for performance evaluation of the QZS isolator [4-7]. 

To avoid possible bulking of oblique springs, its alternatives can be a planar spring [8], 

or an oblique link connecting horizontal spring [9]. Other means of negative stiffness 

include: cam-roller-spring mechanism (CRSM) [10, 11], bi-stable structures [12-16], 

magnetic springs [17-21], and scissor-like structures [22, 23]. All these investigations 

indicate that the QZS isolator can perform a good function of low-frequency vibration 

isolation. 

 

Generally, most of the exiting QZS isolators were designed for mitigating the 

transmission of vertical translational excitations. However, in many engineering fields 

including high-technology manufacturing [19, 24], high precision measurement [25] 

and micro-vibration control in spacecraft [26, 27], multi-direction isolation with high 

effectiveness is desired to reduce vibration transmission in multiple directions. Hoque 

et al. [28] developed a 6-DOF hybrid vibration isolation system, which was a 

combination of an active negative suspension and an active-passive positive 

suspension with a passive weight support mechanism. Wang and Liu [24] proposed a 

6-DOF hybrid micro-vibration isolation platform consisting of passive air springs and 

magnetostrictive actuators. To attenuate micro-vibration in multiple directions 

resulting from the reaction and moment wheels on board of spacecraft, Zhou and Li 

[26] designed and analysed an intelligent vibration isolation platform. 
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It can be observed from the above works that researchers often resort to active control 

for multi-direction vibration attenuation. To the best of our knowledge, the designs 

and studies of passive multi-direction QZS isolators are rarely reported. Sun and Jing 

[29] designed a 3-DOF QZS isolator in the form of a scissor-like structure. Platus [12] 

proposed a compact 6-DOF QZS isolator with buckled Euler beams. Zhu et al. [30] 

developed a 6-DOF QZS/ZS isolator using magnetic levitation. Wu et al. [31] used 

X-shape structures as the legs to assemble a 6-DOF QZS Stewart platform. 

 

The major contribution of this paper is extending the QZS vibration isolation method 

from one direction to six directions. The design concept of a novel compact QZS strut 

is proposed based on the CRSM that has been validated by experimental tests in our 

previous work [10]. A pyramidal isolator consisting of such three QZS struts is 

assembled to be a mount to symmetrically support a platform, leading to a 6-DOF 

QZS vibration isolation platform. The static and dynamic characteristics of this 

platform are studied, and its isolation performance is theoretically and numerically 

evaluated in terms of force and moment transmissibility.  

 

The aim of this paper is to show a procedure for creating a 6-DOF QZS vibration 

isolation platform by using the proposed QZS struts, rather than an experimental 

study based on a fabricated prototype. In the present study, some assumptions should 

be noted, which are listed as follows: (1) The deformations of struts are far smaller 

than the length of the strut, and thus can be approximated by the first order Taylor 

polynomial. (2) All the QZS struts are identical to each other, and all the inclination 

angles of the struts with respect to the vertical direction are the same at the static 

equilibrium. (3) An equivalent constant viscous damping model is assumed for the 

proposed QZS platform. The actual damping needs to be obtained by experimental 

measurement on an actual prototype to be built later. 
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2. QZS strut  

2.1 Conceptual model of the QZS strut 

A schematic diagram of the QZS strut is shown in Fig.1. Rigid rod (2) with a cam (9) 

can only slide along the axial direction guided by two linear bearings (6), which are 

fixed on sleeves (3). Flexible beams (7) with rollers (8) are fixed on holders (10), 

which are also fastened on sleeve (3) by screws. There are three flexible beams fixed 

on annular holders (10) at equal intervals. A coil spring (4) is installed at the end of 

the strut, and is fastened on the end of rod (2). An adjustor (5) is designed to tune up 

the compression of coil spring (4) to handle different levels of payload. To assemble a 

vibration isolation platform by using such QZS struts, ball joints (1) are set at two 

ends of the strut.  

 

 
Fig 1 Schematic diagram of QZS strut at the static equilibrium position. (a) Internal configuration; 
(b) a partially enlarged view. 1 ball joint, 2 rod, 3 sleeve, 4 coil spring, 5 adjuster, 6 linear bearings, 

7 flexible beam, 8 roller fixed on the beam, 9 cam fixed on the rod, 10 holder of flexible beams. 
 

2.2 Static analysis  

The schematic diagram of static analysis is shown in Fig 2. The QZS characteristics 

are fulfilled by means of a Cam-Roller-Spring Mechanism proposed in our previous 
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work [10]. When the strut is subjected to a payload PF , the connecting line between 

the centres of the semi-circular cam and the roller is perpendicular to the axis of the 

strut, leading to a static equilibrium, as shown in Fig. 2a. At this position, the coil 

spring with stiffness vk  undergoes a compression of a P vF kΔ = . When an 

additional force f is applied on the strut, the rod moves along the axis with a 

displacement x, as illustrated in Fig. 2b. In such situation, the static analyses of the 

rod and the flexible beam are illustrated in Fig. 2c.  

 

 
Fig 2 Schematic diagram of static analysis. (a) Static equilibrium position; (b) an external force f 

applied on the strut results in a compression x; (c) forces applied on the rod and the flexible beam.  

 

The static equilibrium equation of the rod is given by  

 P o v3 cos 0f F f fθ+ + − =  (1) 

where of  is an interaction force between the roller and the cam, θ  is the angle 

between the axis of the rod and the direction of of , and vf  is the restoring force of 

the coil spring. Substituting ( )v v af k x= Δ +  and P v aF k= Δ  into Eq. (1) gives  
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 v o3 cosf k x f θ= −  (2) 

Then, of  can be obtained from the static analysis of the clamped flexible beam. By 

neglecting the distance between the acting point of of  and the mid-point of the beam, 

the deflection at the mid-span, namely the displacement of the roller along the 

direction perpendicular to the beam axis, can be obtained [32]  

 
3

o
b sin

192
f L

EI
θΔ =  (3) 

where L  is the span of the flexible beam, and EI  is the flexural rigidity. Deflection 

bΔ  also can be obtained through geometrical analysis,  

 ( )2 2
b 1 2r r x δΔ = + − −  (4) 

where 1r  and 2r  are the radii of the roller and semi-circular cam, respectively, and 

δ is the distance between the centres of the roller and the cam under the 

non-deformed configuration, as shown in Fig. 2a. By combining Eq. (3) and Eq. (4), 

and using ( ) ( )2 2
1 2 1 2sin r r x r rθ = + − + , one can obtain the expression of force of  

as  

 
( )( )( )

( )

2 2
1 2 1 2

o 3 2 2
1 2

192 r r x r rEIf
L r r x

δ+ − − +
=

+ −
 (5) 

By substituting Eq. (5) into Eq. (2), the relationship between the force f and the 

displacement x can be given by  

 
( )

v 3 2 2
1 2

576 1EIf k x x
L r r x

δ⎛ ⎞
⎜ ⎟= − −
⎜ ⎟+ −⎝ ⎠

 (6) 

By introducing ( )1 2x x r r= +  and ( )v 1 2f f k r r= +⎡ ⎤⎣ ⎦ , the non-dimensional 

force-displacement relationship can be expressed as  

 
2

3 1
1

f x x
x

δ
α
⎛ ⎞

= − −⎜ ⎟
−⎝ ⎠

 (7) 
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where ( )1 2r rδ δ= +  and 
3

v

192
k L

EI
α = . Let d d =0f x  at 0x = , and then one can 

get the zero-stiffness condition,  

 ( )3 1α δ= −  (8) 

It implies that the strut can fulfil the QZS characteristics when the stiffness of the coil 

spring satisfies Eq. (8). Submitting Eq. (8) into Eq. (7) gives the force-displacement 

relationship of the QZS strut  

 QZS 2

1 1
1 1

f x x
x

δ
δ
⎛ ⎞

= − −⎜ ⎟− −⎝ ⎠
 (9) 

and the stiffness can be given by  

 
( )

QZS 32

1 1
1 1

k
x

δ
δ

⎡ ⎤
⎢ ⎥= −⎢ ⎥− −⎢ ⎥⎣ ⎦

 (10) 

 

Note that the cam will disengage from the rollers when the displacement of the rod in 

the axial direction exceeds a critical value 21cx δ= − . After the disengagement, the 

rod is merely supported by the coil spring, and thereby the stiffness of the strut 

changes into kv. The complete force-displacement relationship can be written as  

 2
QZS

1 1 ,
1 1

,

c

c

x x x x
f x

x x x

δ
δ

⎧ ⎛ ⎞
− − <⎪ ⎜ ⎟= −⎨ −⎝ ⎠

⎪ ≥⎩

 (11) 

and then the complete expression of stiffness can be obtained by differentiating the 

above expression with respect to x  

 ( )32QZS

1 1 ,
1 1

1,

c

c

x x
k x

x x

δ
δ

⎧ ⎡ ⎤
⎪ ⎢ ⎥− <⎪ ⎢ ⎥= −⎨ −⎢ ⎥⎣ ⎦⎪
⎪ ≥⎩

 (12) 

To simplify the following static and dynamic analysis of the platform, the 

force-displacement relationship is approximated by a cubic function using a truncated 

Taylor series expansion about the equilibrium, as given by 
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3

QZS

,
,

c

c

x x x
f

x x x
γ⎧ <⎪= ⎨

≥⎪⎩
 (13) 

where ( )2 1γ δ δ⎡ ⎤= −⎣ ⎦ . And then the simplified expression for stiffness can be 

readily given by differentiating the above expression with respect to x  

 
2

QZS

3 ,
1,

c

c

x x x
k

x x
γ⎧ <⎪= ⎨

≥⎪⎩
  (14) 

 

To avoid contact between the cam and the flexible beams, the distance between the 

centre of the cam and the flexible beam under the non-deformed configuration should 

be larger than the radius of the cam, i.e. 2rδ ≥ , where ( )2 2 1 2r r r r= + . The upper 

limit of δ  is ( )1 2r r+ , otherwise the cam will always disengages with the roller. 

Therefore, δ  should be selected within the range of [ )2 ,1r . 

 

Fig. 3 shows the stiffness of the QZS strut for different δ  when 2 2 3r = . Obviously, 

in the vicinity of static equilibrium, the non-dimensional stiffness is below 1, which 

means the stiffness of the strut is smaller than that of the coil spring. The stiffness 

curve becomes steep as δ  increases, leading to a narrow displacement range of 

smaller stiffness than that of the coil spring. In addition, the circle denotes the critical 

value of displacement that allows engagement between the cam and the roller, which 

implies that the displacement range for engagement is also narrowed by increasing δ . 

Therefore, δ  is suggested to be selected as 2r , due to the degradation of QZS 

characteristics caused by increasing δ . 
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Fig 3 Stiffness of QZS strut for the settings of δ  with 2 2 3r = . 

2.3 Stiffness and strength of the flexible beam 

The flexible beams are fundamental elements of the CRSM to provide negative 

stiffness in the axial direction. The zero stiffness condition (Eq. (8)) indicates the 

requirement on the stiffness of the flexible beam, i. e.  

 ( )
3

v
3 1

48
k L
Ebh

δ= −  (15) 

where b and h are the width and thickness of the beam, respectively. At the static 

equilibrium position, the maximum stress in the beam arrives at its peak value  

 ( ) ( )1 2
max s212 1

h r r
E

L
σ δ σ

+
= − ≤  (16) 

where sσ  is the allowable stress. Substituting Eq. (15) into Eq. (16) gives  

 ( )v 1 2
max s24

k L r r
bh

σ σ
+

= ≤  (17) 

In the design process, the geometrical parameters, such as width, length and thickness 

of the beam, should meet with the zero stiffness condition (Eq. (15)) as well as the 

requirement on the strength (Eq. (17)) simultaneously.  
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3 6-DOF QZS vibration isolation platform   

A vibration isolation platform supported by pyramidal 3-QZS-strut isolators is shown 

in Fig. 4, on which a machine is mounted rigidly. Both the platform and machine are 

assumed to be rigid bodies with total mass m, and located symmetrically. Hence, the 

whole system is not eccentric. The origin of the coordinate system x-y-z lies at the 

centroid of the system, and the moments of inertia of the system are designated as xI , 

yI , and zI . Suppose that the machine generates excitations in 6 DOFs at the centroid 

of the system, namely ( ) ( ) ( ) ( ) ( ) ( ){ }T
, , , , ,x y z x y zF t F t F t M t M t M t . The pyramidal 

3-QZS-strut isolators are located at four corners of the platform, and its characteristics 

and configuration are addressed as follows. It is reminded that all the struts are 

identical to each other, and all the inclination angles with respect to the vertical 

direction are the same at the static equilibrium.  

 
Fig 4 Schematic diagram of (a) the vibration isolation platform supported by (b) pyramidal 

3-QZS-struts isolators.  

3.1 Pyramidal 3-QZS-strut isolator   

The proposed pyramidal 3-QZS-struts isolator is shown in Fig. 5a. Both ends of the 

strut are fixed on two rigid plates by ball joints, respectively. On the surface of the 

fixed rigid plate (bottom one), the ball joints are evenly distributed. On the movable 

rigid plate (top one), the ball joints are made to stay closely, and hence all the axes of 



11 
 

the three QZS struts can be supposed to intersect at one point. All the angles between 

each axis of the QZS strut and the z%  axis are φ . Considering the situation of small 

deformation, the disengagement between the roller and the cam would not occur in 

the following static analysis, and thus the first simplified expression (in Eq. (13)) of 

the restoring force is adopted. 

 
Fig 5 (a) Pyramidal 3-QZS-struts isolator in static equilibrium position under a payload; (b) 

deformational configuration under the payload and additional loads. 

 

The deformed configuration under the payload and additional loads is shown in Fig. 

5b, and the displacement vector of the centre of the top rigid plate is { }T, ,x y z% % % . 

Therefore, the axial deformations of the QZS struts can be calculated by 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 22 2 2
1

2 2 2 2 2
2

2 2 2 2 2
3

cos 60 sin 60

cos 60 sin 60

l x R y z h R h

l x R y R z h R h

l x R y R z h R h

Δ = − + + + − +

Δ = + + + + + − +

Δ = + + − + + − +

o o

o o

% % %

% % %

% % %

  (18) 

where tanR h φ= . Because the deformations are far less than the length of the strut, 

the deformations in Eq. (18) can be approximated by the first order Taylor series at 

the static equilibrium ( )0, 0, 0 ,  
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1

2

2

sin cos

1 3sin sin cos
2 2
1 3sin sin cos
2 2

l x z

l x y z

l x y z

φ φ

φ φ φ

φ φ φ

Δ ≈ − +

Δ ≈ + +

Δ ≈ − +

% %

% % %

% % %

  (19) 

The resultant forces in the struts can be given by 

 3
N , 1, 2,3

3cosi i
GF l iϒ
φ

= − Δ =   (20) 

where ( )2
v 1 2k r rϒ γ= + . The static equilibrium equations of the top rigid plate can 

be given by 

 

( )

( )

( )

N1 N2 N3

N2 N3

N1 N2 N3

1sin sin 0
2

3 sin 0
2

cos 0

x

y

z

F F F f

F F f

F F F f G

φ φ

φ

φ

− + + + =

− + =

+ + + − =

%

%

%

  (21) 

By substituting Eq.(19) and Eq. (20) into Eq. (21), the expressions of additional loads 

{ }T
, ,x y zf f f% % %  with respect to the displacements { }T, ,x y z% % %  can be given by 

 

( ) ( )

( ) ( )

( ) ( )

4 3 3 2 4 2 2 2 2 3 2

4 3 4 2 2 2 2 3

4 3 2 2 2 2 2 2 3 3 3 2

9, , 2 4 2
8
9, , 4 4
8
3, , 4 6 6 3
4

x

y

z

f x y z s x s cx z s xy s c xz s cy z

f x y z s y s yx s c yz s cyxz

f x y z c z s c zx s c zy s cx s cxy

= ϒ − + + +

= ϒ + + +

= ϒ + + − +

%

%

%

% % % % %% % %% % % %

% % % % % % % %% % %

% % % % % %%% % % %

  (22) 

where sins φ=  and cosc φ= . When 0, 0, 0x y z≠ = =% % % , the applied load along x%  

direction is 4 39
8xf s xϒ=% % . Similarly, 4 39

8yf s yϒ=% %  when 0, 0, 0x y z= ≠ =% % %  and 

4 33zf c zϒ=% %  when 0, 0, 0x y z= = ≠% % % . Therefore, the pyramidal 3-QZS-strut isolator 

has QZS characteristics in all three translational DOFs.  

3.2 Static characteristics of the platform   

When the loads { }T
, , , , ,x y z x y zF F F M M M  are applied on the centroid of the 
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platform, the centroid experiences displacements { }T
, , , , ,x y zx y z θ θ θ . Since the 

displacements are far less than the dimensions of the platform, the displacements of 

the platform at the four support points, which are equal to those of the vertices of the 

pyramidal 3-QZS-strut isolators accordingly, can be given by 

 

1 2 1 2
1 1 1 1 1 1

1 2 1 2
2 2 2 2 2 2

1 2 1 2
3 3 3 3 3 3

1 2 1 2
4 4 4 4 4 4

, ,
2 2 2 2

, ,
2 2 2 2

, ,
2 2 2 2

, ,
2 2 2 2

z z x y

z z x y

z z x y

z z x y

l l l lx x x y y y z z z

l l l lx x x y y y z z z

l l l lx x x y y y z z z

l l l lx x x y y y z z z

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ

= = + = = + = = − −

= = + = = − = = − +

= = − = = − = = + +

= = − = = + = = + −

% % %

% % %

% % %

% % %

  (23) 

where subscripts 1, 2, 3, 4 denote the positions of corners, respectively, as shown in 

Fig. 4a. It is assumed that the distance between the centroids of the machine and the 

platform zcl  is far less than 1l  and 2l ; hence, contributions of yθ  and xθ  to ix  

and ( )1 ~ 4iy i = , respectively, can be neglected. By substituting Eq. (23) into Eq. 

(22), one can obtain the restoring forces of isolators, ( ), ,xi i i if x y z% % % % , ( ), ,yi i i if x y z% % % % , 

and ( ), ,zi i i if x y z% % % %   ( 1 ~ 4i = ). Then, by using the static equilibrium equations of the 

platform, the relationships between applied loads and displacements can be given by 

 ( )
( )

4 3 3 2 4 2 2 2 2 3 2 2 2 2 2
1

2 2 2 2 2 2 4 2 2 3 2 2 2
2 1 2 1 1

2 3 2 2 3 2
2 2 1

9 4 8 4 16 8 4
8

4 3 4 8

4 2

x x

y z x z x z

y z z

F s x cs x z s xy c s xz cs y z l c s x

l c s x l l s x l cs x l c s z

l cs y l l cs z

ϒ θ

θ θ θ θ θ θ

θ θ θ

⎡= − + + + +⎣

+ + + + −

⎤− + − ⎦

 (24) 

 
( )

4 3 4 2 2 2 2 3 2 2 2 2 2 2 2 2
1 2

2 2 4 2 2 3 2 3 2 2 2
1 2 1 2 2

9 4 4 16 16 4 4
8

3 4 4 8

y x y

z x z y z y z

F s y s yx c s yz cs xyz l c s y l c s y

l l s y l cs y l cs x l c s z

ϒ θ θ

θ θ θ θ θ θ θ

⎡= + + + + +⎣

⎤+ + − − − ⎦

  (25) 

 

( ) ( )
( )

4 3 2 2 2 2 3 2 3 3 2 2 3 2
2 1

2 4 2 2 4 2 2 2 2 2 2 2 2 2
1 2 1 2 1

2 2 2
2

3 16 24 12 4 3
4

12 12 6 12

12

z z

x y z x z

y z

F c z c s z x y cs xy cs x l l cs x

l c z l c z l l c s z l c s x

l c s y

ϒ θ

θ θ θ θ θ

θ θ

⎡= + + + − + −⎣

+ + + + −

⎤− ⎦

  (26) 
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( )
( )

( )

4 4 3 4 2 2 2 2 2 2 3 3 2 2 4 2
1 1 1 1 2 1 2

2 2 2 2 2 2 4 2 2 2 2 2 2
1 2 1 1

2 2 2 2 3 2 2
1 1

3 4 6 3 12
16

6 48 24

48 12

x x x z z x y

x z x x

z z

M l c l c s l l l cs l l c

l l c s l c z l c s x y

l c s xz l cs x y

ϒ θ θ θ θ θ θ

θ θ θ θ

θ θ

⎡= + + − +⎣

+ + + +

⎤− + − ⎦

  (27) 

 
( )

( )

4 4 3 2 2 4 2 2 2 2 2 2 2 2 4 2
2 1 2 2 1 2 2

2 2 2 2 2 2 2 2 2 3
2 2 2

3 2 6 3 24
8

12 24 12

y y y x y z y

y z z

M l c l l c l l l c s l c z

l c s x y l c s yz l cs xy

ϒ θ θ θ θ θ θ

θ θ θ

⎡= + + + +⎣

⎤+ + − − ⎦

  (28) 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

22 2 4 3 2 2 2 3 2 2 2 2 2 2 2
1 2 1 1 2 1 1 2

2 2 2 2 2 2 2 2 4 2 2 2 4 2
2 1 2 1 2 1 2

2 2 2 2 2 2 2 3 2 3 2 2
1 2 2 1 1

2 2 2 2 2 2
1 2

9 2 3 4
32

4 4 3 4 3

16 16 8

32 32 16

z z z x z x

z y z z

z z x

x y

M l l s l l l cs l l l c s

l l l c s l l s x l l s y

l l c s z l l cs xz l cs x y

l c s xz l c s yz l

ϒ θ θ θ θ θ

θ θ θ θ

θ θ θ

θ θ

⎡= + + − + +⎢⎣

+ + + + + +

+ + + − + −

− − − 2 3
2 ycs xyθ ⎤⎦

  (29) 

When the non-zero displacement occurs only in one direction, the above relationships 

can be simplified as 

 4 39 , when 0, 0, 0, 0, 0, 0
2x x y zF s x x y zϒ θ θ θ= ≠ = = = = =   (30) 

 4 39 , when 0, 0, 0, 0, 0, 0
2y x y zF s y x y zϒ θ θ θ= = ≠ = = = =   (31) 

 4 312 , when 0, 0, 0, 0, 0, 0z x y zF c z x y zϒ θ θ θ= = = ≠ = = =   (32) 

 4 4 3
1

3 , when 0, 0, 0, 0, 0, 0
4x x x y zM l c x y zϒ θ θ θ θ= = = = ≠ = =   (33) 

 4 4 3
2

3 , when 0, 0, 0, 0, 0, 0
4y y x y zM l c x y zϒ θ θ θ θ= = = = = ≠ =   (34) 

 ( )22 2 4 3
1 2

9 , when 0, 0, 0, 0, 0, 0
32z z x y zM l l s x y zϒ θ θ θ θ= + = = = = = ≠   (35) 

The stiffness of the platform in each direction can be obtained by differentiating the 

loads in Eqs.(30)-(35) with respect to the displacement. One can easily find that the 

stiffness becomes zero at the state equilibrium. Thus, this vibration isolation platform 

obviously possesses the QZS characteristics in all six DOFs.  

3.3 Equations of motion of the platform   

The displacements of the centroid of the platform are represented as 

{ }T
, , , , ,x y zx y z θ θ θ=u . The equations of motion of the platform can be given by 



15 
 

 Mu + Ku = F&&   (36) 

where 

 ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }

R

T

T

R

diag , , , , , , ,

, , , , ,

, , , , ,

x y z t

t x y z x y z

x y z x y z

m m m I I I

F t F t F t M t M t M t

F F F M M M

⎡ ⎤= = = −⎣ ⎦

=

=

M K 0 F F F

F

F u u u u u u

  (37) 

where RF is the restoring force of the QZS platform, namely Eqs. (24)-(29). It is 

assumed that all the excitations are harmonic with an identical frequency, namely 

( )0 cost tω=F F , where { }T

0 0 0 0 0 0 0, , , , ,x y z x y zF F F M M M=F  are amplitudes of the 

excitations.  
 

A linear platform is introduced as a counterpart of the QZS platform, which is 

constructed by removing all negative-stiffness mechanisms, and then the platform is 

supported just by coil springs with stiffness of vk . The equations of motion of the 

linear platform can be written as  

 L tMu + K u = F&&   (38) 

where  

 ( )2 2 2 2 2 2 2 2 2 2
L v v v 1 v 2 v 1 2 v

3diag 6 , 6 ,12 , 3 , 3 ,
2

s k s k c k c l k c l k s l l k⎡ ⎤= +⎢ ⎥⎣ ⎦
K   (39) 

 
By introducing following non-dimensional terms 

 
( )

( ) ( )

2
v

n n 2
1 2 n v 1 2

2 22
v 1 2 1 2

12 cos, , ,
12cos

, , ,
12cos

z z
z

j j
j j

j

kx Fx t t F
r r m k r r

M I
M I j x y z

k r r I m r r

φ ωω ω Ω
ω φ

φ

= = = = =
+ +

= = =
+ +

，

，

 (40) 

where nzω  denotes the natural frequency in the z DOF of the linear platform, and with 

the inclusion of an assumed equivalent constant linear viscous damping term ζ to 

account for energy dissipation, the equations of motion of the 6-DOF QZS platform 

can be rewritten as  

 2′′ ′u + ζu + Ku = F   (41) 
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where 

 { } ( ) ( ) [ ]T

1 2 3 4 5 6

R

d, , , , , , diag , , , , ,
d

,

x y z

t

x y z
t

θ θ θ ζ ζ ζ ζ ζ ζ′= • = • =

= = −

u ζ

K 0 F F F

，
  (42) 

3.3 Fundamental responses 

The first approximation of the primary resonance can be derived by using the 

Harmonic Balance method. Considering the phases between forces and displacements, 

the fundamental responses are assumed to be 

 
{ } { }
1 2

T T

1 1 1 1 1 1 1 2 2 2 2 2 2 2

cos + sin

, , , , , , , , , , ,x y z x y z

t t

X Y Z X Y Z

Ω Ω

Θ Θ Θ Θ Θ Θ

=

= =

u U U

U U
  (43) 

and the amplitudes of the displacements can be written as 

 { } ( ) ( ) ( )T 2 2
1 2, , , , , , , 1 ~ 6x y zX Y Z i i i iΘ Θ Θ= = + =U U U U   (44) 

Substituting Eq.(43) into Eq. (41) results in  

 
( ) ( ) ( )2

1 2 1 2 R

0

cos sin 2 sin cos

cos

t t t t

t

Ω Ω Ω Ω Ω Ω

Ω

− + − − +

=

U U ζ U U F u

F
  (45) 

By using ( )3sin 3sin sin 3 4t t tΩ Ω Ω= − , ( )3cos 3cos cos3 4t t tΩ Ω Ω= +   

and ignoring the high order harmonic terms, ( )RF u  can be approximated as  

 ( )R R1 R 2cos sint tΩ Ω≈ +F u Γ Γ   (46) 

where R1Γ and R2Γ  are functions of 1U  and 2U , and independent of time t . By 

equating coefficients of cos tΩ  and sin tΩ  in Eq. (44), the amplitude-frequency 

equations can be given by 

 
2

1 2 R1 0

2
2 1 R2

2

2

Ω Ω

Ω Ω

⎧− + + =⎪
⎨
− − + =⎪⎩

U ζU Γ F

U ζU Γ 0
  (47) 

The above equations are third-order nonlinear algebraic equations of displacement 

amplitudes 1U  and 2U , which can be solved numerically. And then, the forces 

transmitted to the base are given by 
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( )
( ) ( )

( ) ( )
( )

T R

1 2 R1 R 2

R1 2 R 2 1

2 2
0 1 2

2

2 sin cos cos sin

= 2 cos 2 sin

= cos sin

t t t t

t t

t t

Ω Ω Ω Ω Ω

Ω Ω Ω Ω

Ω Ω Ω Ω

′= +

≈ − − + +

+ + −

+ +

F ζu F u

ζ U U Γ Γ

Γ ζU Γ ζU

F U U

  (48) 

The ith component of force/moment transmissibility { }T
= , , , , ,Fx Fy Fz Mx My MzT T T T T TT  

can be defined as the ratio of the amplitude of the transmitted force to the excitation 

amplitude in the form of decibel:  

 ( )
( ) ( ) ( )

( ) ( )
2 22 2

0 1 2
10

0

20 log , 1 ~ 6
i i i

i i
i

Ω Ω⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦= =
F U U

T
F

  (49) 

which is utilized to evaluate the vibration isolation performance in each DOF. 

4 Numerical Simulations and Discussions 

For numerical experiments, a set of parameters of the 6-DOF QZS vibration isolation 

platform is given in Table 1. The amplitudes of excitation forces are selected as 10% 

of the total weight of the machine and the platform, and these three forces act at an 

off-centre location of the platform, which yield three excitation moments. The 

non-dimensional natural frequencies of the linear platform can be given by 

n n 0.4082x yΩ Ω= = , n 1zΩ = , n 1.732xθΩ = , n 2.058yθΩ = , n 0.8076zθΩ = . 

 
Table 1 Parameters of the 6-DOF QZS vibration isolation platform 
Parameter Value 

δ ,γ ,φ  2/3, 1, 6π  

1l , 2l  1000, 2000 

0xF , 0yF , 0zF  0.0317, 0.0317, 0.0317 

0xM , 0yM , 0zM  41.8998 10−× , 56.7051 10−× , 54.9559 10−×  

, 1 ~ 6i iζ =  0.05 
 

It should be noted that angle φ  is an important design parameter for the platform. 

The stiffness of the linear platform against angle φ  is depicted in Fig. 6. It is 
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reminded that the QZS platform has the same supporting capability as its linear 

counterpart. It can be seen that the translational stiffness in the vertical direction zk , 

and out-of-plane rotational stiffness xkθ  and ykθ  decrease as angle φ  increases. In 

contrast, the translational stiffness in horizontal directions xk  and yk , and in-plane 

rotational stiffness zkθ  increase as angle φ  increases.  

 

 
Fig 6 Stiffness of the linear platform against angleφ . 

 

To choose the setting of angle φ , the following considerations should be included 

when designing this platform. 1) The platform should possess enough stiffness to 

support the weight of equipment in the vertical direction, and thus one can choose an 

angle value from the curve zk  subject to the requirement. 2) Another issue is the 

requirement on the attenuation of vibrations in different directions, which also 

depends on the situation of actual excitations. For example, if excitations mainly arise 

from vertical forces ( zF ) and out-of-plane moments ( ,x yM M ), thus angle φ  should 

be selected as a relatively large value according to Fig. 6 to achieve better isolation 

performance; while excitations mainly arise from horizontal forces ( ,x yF F ) and 

in-plane moments ( zM ), angle φ  should be set small. (3) One has to consider the 

balance in designing the angle φ  when there are conflicts among the requirements 

on the capability of weight support and the types of excitations to be isolated. In this 
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paper, we do not intend to design a platform for a specific application. Thus the angle 

is selected as 6π  here in the purpose of illustrating the vibration isolation 

performance. 

 

The design optimization of angle φ  should be subjected to the requirement on a 

specific practical problem. For example, in the case of high-technology precision 

manufacturing, one should consider to attenuate the vibration in a few concerned 

directions or all directions simultaneously. In such cases, a reasonable objective 

function should be established to take into account vibration isolation effectiveness in 

these directions, and to minimize the overall power flow into the base. Thus 

optimization is very much objective oriented based on particular requirements, which 

would be a topic of the authors’ future work and not presented in this paper.  

 

Another important parameter is damping, which might have significant effect on the 

vibration isolation performance of the platform. It depends on the friction between 

each contacting pair, and might be very difficult to be predicted. However, in the 

proposed negative-stiffness mechanism, the roller rolls rather than slides on the 

semi-circular cam. Generally, rolling friction is expected to be much smaller than 

sliding friction. Moreover, in the authors’ previous experimental study [10], a similar 

cam-roller-spring negative-stiffness mechanism was tested. We investigated the 

experimental responses of the QZS isolator at different excitation frequencies and 

amplitudes, and found that the damping ratio remains similar level. Thus in numerical 

simulations we usually take the damping ratio as a constant value. Surely, for a real 

application, the damping ratios in different motions should be measured through 

experiments. In this numerical simulation, the damping ratio is taken at 0.05 in the 

purpose of illustrating the characteristic of the QZS platform. Of course, there is no 

difficulty to include different damping ratios in numerical simulations, and the effects 

of damping on force transmissibility will be discussed in Section 4.4.  
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It should be noted that the damping ratios selected as 0.05 for simulation is based on 

the experience on the experimental study [10], and the numerical analysis (using 

damping ratio 0.05) only indicates the characteristics of the new 6-DOF QZS platform. 

The actual damping ratios should be obtained by only experiments on a prototype, 

including the issue on whether the damping ratios are dependent on displacement or 

not, which is not in the scope of this paper. The purpose of this paper is to propose a 

design method for 6-DOF QZS platform and illustrate the feature of the new platform.  

4.1 Cross coupling stiffness 

The force-displacement relationships in all individual directions have been presented 

previously in Eqs. (30) to (35), which indicate that this platform has QZS 

characteristics in each individual DOF. However, the restoring force is not only 

related to the displacement in the direction of the force, but also fully coupled with 

displacements in other directions. Figs. 7 and 8 illustrate force-displacement 

relationships of zF  and zM , respectively, in cross coupling planes. Note that the 

force-displacement relationships in a cross coupling plane are obtained from Eqs. (24)

-(29) by letting other displacement variables out of the cross coupling plane be zero. 

For example, the expression of zF  in zx plane can be explicitly given by 

 ( )4 3 2 2 2 3 3
2= 4 6 4

4coszF c z c s x z cs xγ
φ

+ −   (50) 

For the fake of brevity, other four forces are not shown, which are similar to zF  and 

zM .  

 

It can be seen that the non-zero displacement in non-loading direction can introduce a 

linear term, and even a quadratic term, into the force-displacement relationship, which 

can result in an interference to the loading direction from other DOFs, and cause an 

increase in the stiffness of the system. Hence, the cross coupling effect is undesirable 

in terms of vibration isolation. Fortunately, from Figs. 7 and 8, it can be observed that 



21 
 

there exist large flat areas on the curved surfaces of force-displacement relationships. 

It means that the stiffness is small in a large displacement space near the static 

equilibrium position (0, 0, 0, 0, 0, 0). Moreover, the stiffness at the static equilibrium 

position always remains zero. Therefore, the cross coupling has an insignificant 

influence on the 6-DOF QZS characteristics of this platform, when oscillations are 

close to the static equilibrium.  

 

 

Fig 7 Force-displacement relationship of zF  in (a) zx plane, (b) zy plane, (c) xzθ plane, (d) 

yzθ plane, and (e) zzθ plane. 

 
Fig 8 Force-displacement relationship of zM  in (a) z xθ  plane, (b) z yθ  plane, (c) z zθ plane, 

(d) z xθ θ plane, and (e) z yθ θ plane. 
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4.2 Characteristics of amplitude-frequency relationship 

The amplitude-frequency relationships can be obtained by solving the nonlinear 

algebraic Eqs. (47), as shown in Fig. 9. The solid lines and dotted lines denote stable 

and unstable solutions, respectively, and the hollow circles represent the numerical 

solutions by using both the forward and backward frequency sweeps. For the 

frequency sweeps, the time histories of displacements are obtained by solving the 

equations of motion (Eqs. (41)) using the Runge–Kutta algorithm, and then the 

maximum amplitudes of steady-state displacement responses are collected as the 

numerical results. 

 

It can be seen from Fig. 9a and Fig. 9b that, in the two frequency ranges of 0.005 to 

0.266 and 0.65 to 1, there exist gaps between numerical solutions and theoretical 

approximations, which can be attributed to the fact that, in those frequency ranges, the 

system experiences complicated dynamical behaviour, such as sub/super-harmonic 

motion, quasi-periodic motion and even chaotic motion. Since the Harmonic Balance 

method only includes the effect of the fundamental harmonic component, thus the 

first approximation cannot match well with the responses containing multi-harmonic 

components in such two frequency ranges, as shown in Figs. 9a and 9b. In contrast, 

out of these two frequency ranges, there is exceptional agreement between theoretical 

and numerical results, especially for small-amplitude oscillations.  

 

As seen from the expressions of the stiffness of the linear platform, i.e. Eq. (39), the 

stiffness in each DOF is decoupled, in other words, the force is independent of 

displacements in other DOFs. Thus, only one peak occurs on the amplitude-frequency 

curve for the linear system. However, there exist two or more peaks for the QZS 

system, due to the stiffness coupling effects, which normally appear in low-frequency 

range when the platform undergoes large-amplitude vibrations, as shown in Figs. 9a 

and 9b.  
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Fig 9 Fundamental responses (amplitude vs frequency curves) of the system, (a) Z ,  (b) zΘ  (c) X, 

(d) Y, (e) xΘ , (f) yΘ . Solid lines and doted lines denote stable and unstable solutions, respectively, 

and cycle dots represent numerical solutions of both the forward and backward frequency sweeps.  
 

4.3 Force transmissibility  

The vibration isolation performance is evaluated by the force/moment transmissibility 

in each DOF, as defined by Eq. (49), which is depicted in Fig.10. It should be noted 

that the transmissibility curves seem discontinuous, since unstable solutions are not 

depicted. Theoretical results are verified by numerical simulations, as illustrated by 

dots in Figs. 10a and 10b. Due to the complicated form of responses, the numerical 
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results of transmissibility are given in a statistical form, which is defined as the ratio 

of root mean square (RMS) of transmitted forces to those of excitations [10] in 

decibel, i.e. 

 
( )
( )

T
NS 10

RMS
20log

RMS
i

i

F t
T

F t

⎛ ⎞⎡ ⎤⎣ ⎦= ⎜ ⎟
⎜ ⎟⎡ ⎤⎣ ⎦⎝ ⎠

  (51) 

where ( )T iF t  and ( )iF t  are time histories of the transmitted force and the 

excitation in each DOF, respectively. Based on the time histories of displacements u  

and velocities ′u , obtained by numerically solving the equations of motion, the force 

transmitted to the base can be given by 

 ( )TN R2 ′= +F ζu F u   (52) 

 

As seen from Figs. 10a and 10b, there exist differences between theoretical and 

numerical results in several low frequency ranges, because of the complicated 

responses rather than periodic motions with sole harmonic component. However, 

theoretical results agree with numerical simulations well in most of the frequency 

range, especially in the effective frequency range of vibration isolation. Moreover, the 

predication of jump phenomenon is also closely validated by numerical simulations. 

Therefore, the theoretical transmissibility is capable of evaluating vibration isolation 

performance of the 6-DOF QZS platform system. 

 

As a counterpart, the theoretical transmissibility of the linear platform is also 

illustrated in Fig. 10, as denoted by dashed lines, which has a single peak due to the 

decoupling stiffness, as mentioned previously. From Fig.10, the advantage of the QZS 

system can be observed evidently in all DOFs, although the advantages in x and y 

translational DOFs are less obvious than those in other DOFs. Specifically, the 

advantages can be mainly summarised up in two points. Firstly, the effective 

frequency range of vibration isolation is extended into lower frequencies as a result of 

using the QZS struts, or in other words, the QZS platform has a broader bandwidth of 

vibration isolation than its liner counterpart. Secondly, in the effective frequency 
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range, the force transmissibility is much lower than that of its linear counterpart, 

especially in low frequency range, which means that the QZS platform possesses 

much higher performance of vibration isolation than its linear counterpart. Most 

importantly, such good performances occur in all six DOFs. 
 

 

Fig 10 Transmissibility in each DOF, (a) FzT , (b) MzT , (c) FxT , (d) FyT , (e) MxT , (f) MyT . Solid lines 

and dots denote stable theoretical and numerical results, respectively, of the QZS system; dashed 

lines represent results of the counterpart linear system. 

 

For the force transmissibility in x and y translational DOFs, jumps occur in the 
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effective frequency range of vibration isolation, because of the stiffness coupling 

effects, as shown in Figs. 10c and 10d. However, the transmissibility on the upper 

branch is still below that of the linear counterpart. Therefore, although the cross 

coupling effects might affect vibration isolation performance in certain DOFs, it 

hardly loses its advantage over its linear counterpart. 

4.4 Effects of damping on force transmissibility 

The effects of damping on force transmissibility are depicted in Fig. 11. For the sake 

of brevity, only the transmissibility in the DOFs of z and zθ  are considered here. 

Note that the effects of damping in other DOFs are similar to those in such two DOFs. 

From Figs. 10a, 10b, and 11, it can be observed that as the damping increases, the 

peak transmissivity decreases, and the solution structure, which is dependent on the 

intensity of stiffness coupling, becomes simple. Moreover, the jump phenomenon is 

supressed effectively by increasing damping, and thus under a comparatively heavy 

damping, the jump phenomenon is expected to be completely avoided.  

 

Additionally, the increasing damping lowers the beginning frequency of vibration 

isolation, and thus broadens the bandwidth of vibration isolation, due to the fact that 

the resonance and jump phenomenon are supressed effectively by the increasing 

damping. However, in the effective frequency range, the force transmissibility rises as 

the damping increases, which means a reduction in vibration isolation effectiveness. 

Therefore, a moderate damping is capable of supressing resonance, avoiding jump 

phenomenon and keeping good overall performance in the effective frequency range 

of vibration isolation simultaneously.  
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Fig 11 Effects of damping on the force transmissibility. (a) FzT , =0.1ζ ;  (b) FzT , =0.15ζ ; (c) 

MzT , =0.1ζ ;  (d) MzT , =0.15ζ . Solid lines: stable solutions; dotted lines: unstable solutions. 

5 Conclusions   

A conceptual design of a quasi-zero-stiffness (QZS) platform supported by novel QZS 

struts is proposed for low-frequency vibration isolation in six degrees of freedom 

(DOFs). The static analysis of the platform is carried out, and then, considering 

excitations in all six DOFs, the equations of motion of the platform are established, 

which are solved by using the Harmonic Balance method. Finally, the performance of 

vibration isolation is evaluated in terms of transmissibility, and the stiffness coupling 

effects on amplitudes and transmissibility are also discussed. 

 

It is found that this vibration isolation platform has QZS characteristics in all six 

DOFs, and substantially outperforms its linear counterpart. Specifically, by using the 

proposed QZS struts, the bandwidth of vibration isolation is broadened into lower 
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frequency, and the effectiveness of vibration isolation is notably improved. Most 

importantly, such advantages occur in all six DOFs, which is desired in many real 

engineering applications, such as high precision manufacturing and equipment 

protection in spacecraft. The cross coupling effects might be active when the platform 

undergoes large-amplitude oscillations, which usually appear at low frequency but out 

of the effective frequency range of vibration isolation, and thus such cross coupling  

hardly degrades the performance of the QZS platform. Additionally, a moderate 

damping is needed to supress resonance, avoid jump phenomenon, and keep good 

overall vibration isolation effectiveness simultaneously. 
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