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Local cost surface models of distance decay for the analysis of 
gridded population data 
 
Summary 
This paper evaluates a number of proposed improvements to the analysis of gridded 
population data, using as a case study the religious segregation observed in gridded 
population data from Northern Ireland. First, the use of cost surfaces rather than simple 
Euclidean (straight line) distances to represent the interactions between gridded geographic 
areas.  Second, a method for creating gridded cost surfaces that takes account of vector 
features (such as roads and physical obstructions). Third, the limitation of cost surfaces to 
a tightly defined ‘local’ set of areas, with a view to significantly reduce computational 
overheads without adversely impacting the accuracy of subsequent results.  The results 
suggest that all three improvements have merit. The paper further explores the impact of 
using log ratios rather than percentages (minimal) and of local rather than global measures 
of segregation (which allows for considerably greater insight into population 
characteristics). Although the case study and results apply specifically to gridded 
population data, the results of the paper have wider implications for the analysis of any 
type of zonal data. 
 
1. Introduction 
This paper examines a number of key issues relating to the analysis of spatially aggregated 
data, using as a case study the religious segregation observed in gridded population data 
from Northern Ireland. First and foremost, this paper explores the possibilities offered by 
using cost surfaces rather simple Euclidean (straight line) distances to represent the 
interactions between gridded geographic areas. The distance between people (or, at least, 
between the areas they live in) is often taken as a proxy for interactions between them. In 
spatial analyses involving spatial regression or spatial autocorrelation of numerical 
population data it is the norm to adopt the convenient fiction of modelling these 
interactions as a simple function of Euclidean distance. Yet, as Cliff and Ord (2009) note, 
these simple functions of distance ignore anisotropy (directional variation) and assume 
spatial homogeneity. In reality, interactions between people are a function of multiple 
complex factors. These may include distance, cultural or economic difference, mode of 
interaction (residential, workplace, leisure,…) and other physical and perceptual 
obstructions. For this reason, in some contexts, such as spatial interaction modelling using 
flow data (for example, on commuting or migration), time or road distance-based measures 
are commonly applied.  
 
Cost distance approaches may help to overcome the limitations of simple functions of 
distance. Costs are generally expressed as travel time or the ‘effort’ associated with crossing 
a cell rather than financial cost, and cost distances can be computed such that, for example, 
speed of travel along particular roads is accounted for and obstructions such as water 
bodies can be included. For example, cost distances (based on a friction surface in a raster 
(data values on a regular grid) context) have been used by Greenberg et al. (2011) to 
determine weights for spatial interpolation of water temperature in a complex deltaic river 
system, where straight line distances between samples are not meaningful. For a more 
general discussion of notions of distance other than simple Euclidean distance see Lowe 
and Moryadas (1975) and Gatrell (1983). 
 
As formulated as part of Ravenstein’s ‘Laws of Migration’ (Ravenstein, 1885; 1889), 
interactions between populations decline with distance. The greater the distance (cost) of 
the interaction, the fewer interactions that take place. However, it has been observed that 



 3 

this ‘distance decay’ does not generally follow a simple linear relationship with the 
cumulative cost of the distance between areas. For this reason a wide range of distance 
decay functions have been considered, such as the inverse distance and Gaussian (see, for 
example, Lloyd 2011). It has also widely been recognised that the applicable distance decay 
function may well vary from place to place, leading to functions with locally varying 
parameters, such as the bi-square adaptive kernel (Fotheringham et al., 2002). Cliff and Ord 
(2009) further note that the use of weight schemes (used in measuring spatial 
autocorrelation, for example) which are not based on adjacency of areas is still under-
developed; a shortcoming that this paper addresses. Getis and Aldstadt (2004), in a study 
concerned with deriving local weights matrices, provide a useful summary of alternative 
forms of geographical weighting (distance decay) functions. 
 
Not only is the nature of the distance decay function debated; so is the range, or size of 
neighbourhood, over which it should be operated. It is a given that the larger the 
neighbourhood considered, the more interactions that will be identified. However, there 
are computational and empirical reasons for choosing to limit neighbourhood size. From 
an empirical perspective, the vast majority of interactions take place with between entities 
(people) in spatially proximate areas. And from a computational perspective, there are 
major gains to be had from reducing the size of the problem set. Thus, using only some 
subset of the data in the calculation of each local statistic reflects the predominance of 
interactions over short distances and, compared to measuring distances and computing 
geographical weights for all observations, reduces computational effort.  
 
Jointly, the combination of distance decay function and neighbourhood size defines a 
‘weighting function’ which can be used to weight the interactions (distances) between the 
population in a given focal cell and the wider population. A weight of zero may be assigned 
to all interactions outside of the neighbourhood (an alternative approach is to weight all 
observations in the data set, but with negligible weights beyond a certain distance), whilst 
the weight assigned to interactions within the neighbourhood is determined by the distance 
decay function chosen.  
 
A second key contribution of this paper is the introduction of a methodology for creating 
gridded cost surfaces that take account of vector features (such as roads and physical 
obstructions). Most applications of cost surfaces are based on friction surfaces derived 
directly from raster data sets, an example being maps of terrain slopes. An alternative 
approach, as employed here, is to construct a friction surface for input to cost surface 
analysis by rasterising vector features representing roads and also impediments to 
movement such as, in the following case study, peace walls (physical structures which 
divide different ‘religious’ communities in so-called ‘interface’ areas of Northern Ireland). 
Further, cost surfaces are generally computed from one cell to all other cells. Here, the 
concern is to derive a separate cost surface for each cell which represents the least cost 
from the cell to its neighbours. Computing costs only to some subset of the data (e.g., the 
closest cells) is computationally much easier than computing costs from each cell to all 
other cells in the data set.  
 
The derivation of a neighbourhood-based local cost surface is the third and most significant 
contribution of this paper. Through the case study of religious segregation in Belfast, the 
use of local cost surfaces, computed within a defined neighbourhood of each cell, is shown 
to provide more meaningful measures of clustering in the population by religion than do 
functions of Euclidean distance. In addition, computing costs distances only within some 
neighbourhood (and not from each cell to all other cells) offers considerable savings in 
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computation time. Such an approach has potentially wide applicability in any context where 
spatial variation in gridded data is of interest. 
 
Spatial autocorrelation is usually measured on a global basis – one measure is obtained 
which summarises clustering across the whole study area. Many spatial properties, 
including population groups, tend to cluster in some regions, but not others. Thus, to 
characterise these region-specific clusters, a local measure of spatial autocorrelation is 
needed. In this paper, different weighting schemes are applied for measurement of spatial 
autocorrelation both globally and locally with, in the latter case, a measure for each zone 
(here, 100m grid cell) in the study area. 
 
Analysis of population variables, such as those contained in the religion dataset used in the 
case study presented here, is often based on percentages or proportions. Such data are 
termed compositional data and the sum of the parts is 100 (for percentages) and 1 
(proportions); data of this type should not be analysed using standard statistical methods. 
Reasons for this include the potential for prediction of negative values when using 
regression with compositional data, the possibility of spurious correlations being induced 
between components of a composition because the data are closed (i.e., possible values 
range from 0 to 1 or 0 to 100), with a bias toward negative correlations, and 
subcompositional incoherence. As an example of the latter, it has been demonstrated that 
the covariance (and thus correlation coefficient) between variables can change markedly 
and with no apparent pattern, as parts of an original five-part composition are removed to 
form new four-part or three-part compositions (Aitchison, 1986). It has also been argued 
that univariate statistical methods are not appropriate for the direct analysis of raw 
compositional data (Filzmoser et al., 2009). Another concern of this paper, therefore, is to 
compare results derived using a sound statistical approach (log ratios) with results based 
on the common approach – use of untransformed percentages. For a discussion of 
alternative forms of log ratios and the justification for their use in place of percentages see 
Aitchison (1986), Filzmoser et al. (2009) and Lloyd et al. (2012). 
 
Thus, the case study presented in this paper assesses the impact on results of using different 
(i) variable definitions (percentages and log ratios), (ii) distance metrics (Euclidean and cost 
distances), (iii) distance decay functions, (iv) neighbourhood sizes (with iii and iv 
combining to make a weighting scheme), and (v) global and local measures of spatial 
autocorrelation. Each of these issues is discussed in depth below and their importance is 
illustrated systematically through the case study. While these issues are explored through 
an analysis of the spatial autocorrelation amongst the religious communities of Belfast, the 
principles considered are applicable in any analysis of gridded spatial data, and, by 
extension, to any other less regular geography. 
 
2. Case study 
 
The data 
The population of Northern Ireland can be divided into two main religious groups– 
Catholics, who are generally associated with the aspiration for a united Ireland and 
Protestants, who are generally associated with the desire for Northern Ireland to remain a 
part of the United Kingdom (although, in practice, the picture is less clear). In the 2001 
Census, two questions were asked relating to religious identify – respondents were asked 
to state their religion and, if none, their community background (‘religion or religion 
brought up’). In 2001, some 40.3% of the population were Catholic by religion while 43.8% 
were Catholic by community background. The link between religion and politics means 
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that the changes in the percentage shares are of widespread interest in the region. In the 
present case study, Belfast Urban Area (BUA) provides the focus.  
 
The case study makes use of counts of persons in BUA by community background for 
100m grid squares, released as one of the outputs from the 2001 Census of Population (see 
Shuttleworth and Lloyd 2009, for more details on the grid square resource). For grid cells 
with less than 25 persons and/or eight households, counts are restricted to total persons, 
total males, total females and total households. The full set of counts, which include those 
for community background, are provided for cells only where those thresholds are 
exceeded. The imputation of non-responding individuals and small cell adjustment, used 
to prevent disclosure of information about individuals, have an impact on the counts used 
as the basis of the analysis, although the results are believed to be robust since the impact 
of small cell adjustment on the spatial structure of the percentages (and log ratios) is minor. 
Figure 1 shows the percentage of Catholics by community background for 100m cells in 
BUA. The 100m data for 2001 indicate that some 39.5% of the population of BUA were 
Catholic by community background, 56% were Protestant (or Other Christian) and 4.5% 
had a background associated with other religions or no religion.  
 
 
FIGURE 1 ABOUT HERE 
  
Measuring segregation 
This paper presents one example of the use of Euclidean and cost distance measures for 
determining weights locally, and the particular focus is on the measurement of clustering 
of population groups. Such analyses have links to studies of residential segregation, which 
are concerned with the distribution of population subgroups and with interactions between 
these subgroups. There is a large body of research on the measurement of residential 
segregation which presents and applies measures of different dimensions of segregation 
(see Massey and Denton, 1988). Most measures are aspatial and are based on counts or 
proportions within zones; in these cases, interactions between zones are not taken into 
account. Poole and Doherty (1996) provide a study of segregation in Northern Ireland, 
while a more recent analysis is presented by Shuttleworth and Lloyd (2009), who explore 
changes in segregation between 1971 and 2001. In both of these publications, standard 
aspatial measures of segregation, such as the index of dissimilarity (D), are utilised. In 
another study concerned with Northern Ireland, Lloyd (2012) explores the spatial scale of 
variation in the population by religion.  
 
The focus of this paper is on the measurement of clustering in the Catholic population 
which arises in the context that there are spatially distinct concentrations of Catholics and 
Protestants in some areas within the BUA. The value of D for Catholics as against 
Protestants and Other Christians in BUA in 2001 was 0.757 (excluding others from the 
calculations), suggesting a large degree of unevenness in the population (that is, the 
proportional share of the two groups varies markedly across the zones). Some 68% of 
Catholics lived in 100m cells which had 75% Catholics or more, while some 76% of 
Protestants lived in 100m cells which had 75% Protestants or more; in both cases 
percentages were computed from the total population.  
 
Log ratios and Percentages 
As noted in the introduction, raw percentages should not be analysed directly using 
standard statistical measures, and log ratios are an appropriate solution. Some 100m cells 
are 100% Catholic or 100% non Catholic and log ratios cannot be computed in these cases. 
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However, given small cell adjustment (see Williamson 2007) and non-responding we 
cannot be sure that there really are no members of the ‘other’ group (i.e., Catholics in 
‘Protestant areas’ or Protestants in ‘Catholic areas’ ). Therefore, log ratios were used given 

percentages computed with 1
1
n  and 1

2
n , where 

1
n  is the number of Catholics and  

2
n  is the number of non Catholics; this strategy was also employed by Lloyd (2010a). 

Addition of other alternative constants (e.g., 5.0
1
n  and 5.0

2
n ) suggests that results 

obtained using the log ratios are robust. In short, log ratios (𝑧1) were derived as follows: 
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Log ratios provide the main focus in the analysis, although raw percentages are used for 
comparative purposes. 
 
3. Deriving the friction surface 
The first stage of a cost surface analysis, used here to determine weights for spatial 
autocorrelation analysis, is the construction of a friction surface. The friction surface 
indicates the cost associated with crossing each given cell, while the cost surface derived 
from it indicates the minimum accumulative cost distance from a focal cell to other cells. 
In the case study presented here, data on roads and peace walls are used to determine costs. 
Members of the two main communities in Northern Ireland are physically separated in 
some areas (mostly in Belfast) by peace walls. The first of these walls were constructed in 
1969 with the intention of reducing conflict in ‘interface’ areas where predominantly 
Catholic neighbourhoods share boundaries with predominantly Protestant 
neighbourhoods. Peace walls are an obvious case of a physical barrier across which daily 
interactions may be limited; other barriers in this and other contexts may consist of, for 
example, major roads, railways, or parks (Noonan 2005).  
 
Cost surfaces, as derived from friction surfaces, provide a means of modelling movement 
over a surface and the impedance of movement according to particular factors. A common 
example is a map of terrain slope whereby travelling over steep slopes is associated with 
greater effort or cost than travelling over relatively flat terrain. In an urban environment, 
movement between places is generally faster, using a car or public transport, along major 
roads than along minor roads and, of course, walking is slower still. Taking travel speed as 
a measure of cost, it is possible to generate a friction surface and, given population data 
on the same grid configuration, relate these population characteristics to the cost distance 
from each cell to its neighbouring cells. The rationale behind such an approach is that 
utilising information on transport ‘cost’ should represent a more meaningful notion of 
distance decay than is represented by Euclidean distance between places. Least cost 
distances along a network can be derived efficiently using the algorithm of Dijkstra (1959). 
Introductions to the derivation of least cost distances using gridded friction surfaces are 
provided by Chang (2010) and Lloyd (2010b). Applications of cost surfaces are diverse; 
recent examples include an exploration of connections between areas and the extent of 
territories in the Late Prehistoric period (c. AD 1200–1600) in Michigan (Howey, 2007), 
and modelling the spread of surface fires (Gonzalez et al., 2008). This paper differs from 
these applications in deriving locally-specific cost surfaces within a particular 
neighbourhood of each cell in the grid. In an application concerned with spatial 
interpolation, Greenberg et al. (2011) computed accumulative least cost distances from 
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each measurement location, although for a much smaller number of observations than in 
the present study.  
 
The vector road data used in the present case study are from the OSNI® (Ordnance Survey 
Northern Ireland) road network dataset. Roads include Motorways, A Class, B Class, and 
C Class roads. In addition, the dataset includes footpaths and car parks, as well as 
Unclassified features (including private roads, alleyways and tracks); these other features 
were not used in this study. Travel speeds were estimated for the various classes of roads 
and, for non-road cells, walking. The road travel figures were based on approximate 
maximum permitted road speeds which were reduced to reflect congestion and other 
factors which inhibit travel, particularly in urban areas. Following research on pedestrian 
walking speeds outlined by Laxman et al. (2010), an approximate speed of just under 
80m/minute was specified, rounded to the nearest kilometre below. The travel speeds 
specified were considered to represent an improvement over the assumption of equal 
travel speeds by foot or by road:  
 

Speed  Time to cross  
100m (minutes) 

Average walking speed     5km/hour 1.2 
Average speed on minor urban roads (U roads) 20km/hour 0.3 
Average speed on B roads and C roads   40km/hour 0.15 
Average speed on Motorways and A roads   80km/hour 0.075 
 
These figures are also expressed as the time taken to cross a 100m cell. The roads and 
peace wall vector data were combined and converted to a raster grid with a spatial 
resolution of 100 m – this corresponds to the gridded population data used in the case 
study (described below). Each raster cell received the cost associated with the overlapping 
vector line segment which had the longest length. For example, if a motorway segment 
and a minor urban road segment overlap a cell, then the longest of these two segments 
determines the cost attached to the cell. Here, movement across a road cell in a direction 
perpendicular to the road is the same as the cost of movement across the cell along the 
road. That is, moving across a road, rather than along it, presents an impediment to travel. 
While the approach could be refined, this is unlikely to have a major impact on results. 
Peace walls were assigned a nominal cost of 30 minutes. This figure was sufficient to ensure 
that movement around a peace wall by walking or any type of road was less costly than 
movement across the peace wall. Rasterisation of peace walls could lead to gaps through 
which modelled interactions are possible; in practice, the friction effect associated with 
peace walls was represented well.   
 
The BUA friction surface, derived as described above, is shown in Figure 2. All (non water) 
cells which were not classified as roads or peace walls were assigned a cost of 1.2 to reflect 
walking as the mode of transport. Of course, some of these cells may be predominantly 
covered by buildings which may reduce average walking speeds, or prevent movement, 
across parts of the cell. But, making full use of such information would necessitate a 
population data resolution of finer than 100m; such data are not available for population 
subgroups. The spatial resolution of the population grid (100m) restricts the resolution of 
the friction and cost surfaces, and it is important to note that specific features of the 
transport network will not be well-represented by cells of this size. So, the friction surface 
should be seen as a generalisation of the transport network (and impedance factors like 
peace walls). 
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FIGURE 2 ABOUT HERE  
 
There is an assumption in the case study that the friction surface inputs (roads, peace walls) 
and Census data (for 2001) correspond to the same time period. Although there have been 
changes in the road network of Belfast in the more than ten years following 2001, these 
changes are unlikely to make a marked difference to modelled interactions on a local basis. 
 
Cost distances for gridded data are computed from the friction surface with: 
 
• Neighbours sharing an edge: average of costs in the neighbouring cells (e.g., 1.2 + 0.3 = 
1.5/2 = 0.75) 
• Neighbours sharing only a corner: average of costs in the neighbouring cells multiplied 

by 2  – here approximated by 1.4142 (e.g., (1.5+0.3)/2 = 1.5/2 = 0.75 × 1.4142 = 
1.0607)  
 
The cost surface procedure can be outlined as follows: 
 
1. Compute the cost distances from the source (focal) cell to its neighbours. 
2. Select the neighbouring cell with the smallest cost distance from the source cell. 
3. Compute the cost distances from the newly selected cell to all of its neighbours and 

activate these cells. 
4. The activated cell with the smallest accumulative cost distance is selected and the cost 

distances to the neighbours of that cell are calculated. Every time a cell becomes 
accessible to a source cell through a different path it is reactivated and its accumulative 
cost must be recalculated as the new path may have a smaller accumulative cost. If it 
does not, then the accumulative cost value remains the same. 

5. Repeat the above process until the smallest accumulative cost distances from the 
source cell to each possible destination cell have been computed 

 
4. Computing local costs 
Given the friction surface described above, least costs to the neighbouring cells are 
computed from each of the populated cells, and it is this locally-based cost surface 
construction which comprises the key original contribution of this paper. Costs could be 
computed from each populated cell to all other cells using the procedure outlined above, 
but this is prohibitively slow. It is also unnecessary given that weights, and thus costs, are 
only required in some local neighbourhood. For these reasons, costs were only computed 
up to some specified number of neighbouring cells. The approach taken here is to compute 
n least costs to populated neighbours of a populated focal cell. It is possible that some edge 
cells could be reached by less costly routes if n is increased, but this is likely to have only a 
minimal impact on results. A possible modification would be to compute, for example, 
least costs to 50 cells but retain only the 20 smallest costs. The costs were converted to 
weights in four ways, using the weighting schemes defined in Section 5. This local 
derivation of cost surfaces is a novel approach, and one which opens up the possibility of 
computing individual cost surfaces for multiple neighbourhoods with a low computational 
effort. This new approach has many potential applications, as considered later. 
 
An example of weights derived from costs, given the focal cell, is mapped in Figure 3. The 
figure demonstrates the effect of using a cost surface where costs for crossing a peace wall 
are large. The weights close to, or on the opposite side of, the peace wall are small; more 
distant cells on the same side of the peace wall have larger weights. Where proximity or 
Euclidean distances are used the weights on opposite sides of the peace wall would be the 
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same if the cells were equally distant from the focal cell. Figure 3 also demonstrates how 
the least cost paths are derived in this example. The costs for moving between cells are 
computed as outlined in Section 3. The focal cell is labelled ‘1’ at centre top, and ‘centre 
s1-8’ indicates that it is the focal cell from which costs to cells labelled s1 to s8 are 
computed. The cost associated with each cell (its value in the friction surface) is indicated 
by the prefix ‘c’ – so c30 indicates a cost of 30 minutes. The algorithm scans around the 
focal cell from left to right and top to bottom, visiting the cell with ‘s1’ in its lower right 
corner, then the cell s2, onto s3, s4, s5, s6, s7, and finally s8. The (minimum) cost is stored 
at each stage. If there are several cells with the same smallest cost, the first minimum cost 
cell visited is selected. Here, this is the cell labelled ‘2’ at centre top. The cells around this 
cell are then scanned (that is, they are visited sequentially, in the same order as before), and 
costs determined for any cells which do not have a cost. If an existing accumulative cost 
associated with a cell is less through a cell which is newly assigned a cost, then a new 
accumulative cost is computed for that cell. This happens with the cell which includes s3,s9 
at its base – it is cheaper to reach this cell in a path from the cell headed ‘1’ through to cell 
‘2’, and then horizontally from cell ‘2’,  than diagonally from cell ‘1’. The process continues 
until a predefined minimum of n least costs (for example, 20, including the source cell) is 
computed for populated cells. The value is a minimum because each new cell added to a 
path can introduce 0-5 neighbouring cells for which least costs need to be calculated. In 
practice, for a minimum of 20 least costs to populated cells (including the source cell), the 
number of least costs calculated ranged from 19 to 23 (since the focal cell is included, a 
minimum of less than 20 is possible). So, costs are computed to cells, including those which 
are unpopulated, until costs are available for at least n populated cells; the weights are then 
determined (using the functions defined in Section 5) from these costs and used to 
compute I (whether global or local). 
 
FIGURE 3 ABOUT HERE  
 
In this application, local costs can be computed for all locations as the limit of analysis is 
BUA and accumulative least costs near the borders of the area can be computed given 
values of the friction surface outside of the BUA. Were the analysis extended to the whole 
of Northern Ireland, then the friction surface would have to be determined in the border 
areas of the Republic of Ireland. The friction surface could be derived as for Northern 
Ireland, but the lack of equivalent gridded population data would mean that the n nearest 
populated cells would all be in Northern Ireland unless population surfaces on a 100m grid 
were derived from counts for irregular zones in the Republic of Ireland.  
 
5. Alternative weighting schemes 
 
Before a spatial statistic – such as Moran’s I for religion in Belfast – can be calculated, a 
distance metric and a weighting scheme must first be specified.  Two of the distance 
metrics considered in this paper have been introduced already: Euclidean and Cost 
distances. A third metric, adjacency, is simply an equal weighting for all cells which share 
a boundary with a focal cell. The weighting scheme, as operationalised in this paper, 
comprises two components: a distance decay function; and the type of local 
neighbourhood over which the distance decay function is to be applied. For the purposes 
of this paper, five distance decay functions and four definitions of ‘neighbourhood’ are 
considered. They are introduced in turn in this section. As summarised in Table 1, the 
subsequent case study evaluates the impact on measurement of spatial autocorrelation of 
seven of the possible combinations of distance metric and weighting scheme, helping to 
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illuminate the relative importance of choice of distance metric, distance decay function and 
neighbourhood type.  
 
 
TABLE 1 ABOUT HERE 
 
5.1 Queen Contiguity 

In many applications, the proximity between locations i  and j  given by 
ij

w  is set to 1 

when locations i  and j  are neighbours, and 0 when they are not, with 
ij

w  = 0 when ji 

. When zones sharing edges and vertices are included in the calculations, this is termed 
Queen case contiguity. Note that, by definition, the local neighbourhood for the Queen 
Contiguity weighting scheme simply comprises those cells immediately adjacent to the 
focal cell. The weights may be subsequently row-standardised – this refers to division of 
each weight in the weights matrix by the sum of its row. In words, the weights matrix 
comprises rows for each location i and columns for each location j, and the entries in each 
row can be standardised to sum to one. As an example, if zone i has four neighbours and 
each is given a weight of one, these are each standardised by division by four (the sum of 
the weights) and thus the weights each become 0.25.  
 
5.2 Inverse Distance 
Inverse distances are commonly employed in spatial interpolation contexts: 
 

k

ijij
dw


             (1) 

 

where 
ij

d  is the distance between locations i  and j . As above, the weights derived from 

the function may be subsequently row-standardised by dividing each weight in the weights 
matrix by the sum of its row, such that the entries in each row will sum to one.  
 
Reflecting common choices for the value of the exponent k, the inverse distance function 
is used to define three weighting schemes for this paper. The first uses k=1 (representing 
linear distance decay); the second and third use k= 2 (the so called ‘gravity’ model) 
(numbers 2, 3, and 4 in Table 1). The local neighbourhood is defined for the first two 
weighting schemes (k=1; k=2) as the n populated cells with least accumulative costs from 
the focal cell (‘nearest n’). For the third weighting scheme, also with k=2, the local 
neighbourhood is defined as all cells within a particular travel time (accumulative cost 
distance or ‘time limit’) of the focal cell. For the three inverse distance weighting schemes 
considered in this paper the weights of all cells outside of a defined local neighbourhood 
are set to zero. 
 
The weights shown in Figure 3 are of row-standardised inverse square weights (i.e., k=2). 
In this case, the weights are standardised to sum to one and the function corresponds to a 
form of weighted average of the values in a particular locality (e.g., 20 nearest neighbours) 
(Anselin, 1995)) 
 
5.3 Gaussian Fixed Kernel 
The fifth weighting scheme used in this paper has previously been used in local 
(geographically weighted) regression and spatial autocorrelation analysis (Lloyd 2010a) and 
is based on the Gaussian weighting function (Fotheringham et al. 2002). It is defined as: 
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])/(5.0exp[
2


ijij

dw                                                                                                 (2) 

 

Where, as before, 
ij

d  is the distance between locations i  and j , and   is the bandwidth 

which determines the size of the spatial kernel.  For the purposes of this paper the local 
neighbourhood for this weighting scheme is defined as all grid cells within a fixed 
Euclidean distance of the focal cell. Importantly, the bandwidth (and thus the size of the 
kernel) is of the same size at all locations. 
 
5.4 Bi-square Adaptive Kernel 
In contrast, the final distance decay function considered is one in which the bandwidth 
and kernel size vary as a function of, for example, observation density or population 
number. In the case of observation density, the kernel is small in areas with large numbers 
of zones and large in areas with small numbers of zones. Thus, the kernel may be adapted 
to include (for example) the nearest ten observations to each location. The bi-square 
weighting function (see Fotheringham et al. 2002) defines one form of adaptive kernel: 
 





 


otherwise 0

 if ])/(1[
22


ijij

ij

dd
w                                                                                     (3) 

 
In this paper, the bi-square function is used to determine weights for the n nearest 
neighbours (Euclidean distance; sixth weighting scheme in Table 1) or the n neighbours 
with least accumulative costs (cost distances; seventh weighting scheme in Table 1). When 

the (Euclidean) distance 
ij

d  between the locations i and j is greater than   then the weight 

is zero;   is the distance to the nth nearest neighbour and its value is set so that each 
location has the same number of neighbours with non zero weights. For Euclidean 
distances, n is here set as a minimum so that all cells within a distance of   are given a 
weight. If this criterion was not used, then some cells the same distance away from the 
focal cell as the nth nearest neighbour would be excluded. In other words, if n was set to 
20 and the 20th and 21st nearest neighbours (the order of the two being determined by the 
order in which they are visited) were the same distance from the focal cell, then both should 
be used to determine weights. For cost distances,   is the largest accumulative cost 
distance in the local neighbourhood. That is, if local costs are ordered from smallest to 

largest,   would be, for example, the 20th cost (with n here including the focal cell); if the 
21st cost, for example had the same cost distance as the 20th then both would be included 
in the calculations.  
 
In passing it should be noted that weight matrices based on n nearest neighbours are 

asymmetric – location 
1

x  may have location 
2

x  as one of its nearest neighbours, but 
1

x
 

may not be one of the n nearest neighbours of 
2

x . The focus on this paper is on 

measurement of spatial autocorrelation; such measures may be computed using a 
symmetric or asymmetric matrix. However, an asymmetric matrix may present problems 
when estimating spatial lag or spatial error regression models (fitting such models with 
non-symmetric weight matrices is not possible in the current version of the GeoDa™ 
software1 (Anselin et al., 2006); a solution is to make the matrix symmetric, see Patuelli et 
al., 2012). LeSage and Pace (2009) and Bivand et al. (2013) discuss spatial regression models 
and the use of non-symmetric weight matrices (see also LeSage, 2008). 

                                                 
1 https://geodacenter.asu.edu/node/390#k 
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5.5 Local neighbourhoods 
In summary, local neighbourhoods are defined here in several ways. They refer to (i) 
contiguous cells (Queen contiguity), (ii) cells within a particular Euclidean distance (fixed 
kernel bandwidth (Gaussian)), a given number of neighbouring cells – (iii) the n (minimum) 
nearest for Euclidean distance (adaptive kernel bandwidth (bi-square)), (iv) the n 
(minimum) with least accumulative costs (inverse distance and adaptive kernel bandwidth 
(bi-square)), and also (v) cells within a particular travel time based on cost distances (inverse 
distance). Classes (iv) and (v) represent a hierarchy – costs could be computed from 
location i to all other cells but this is computationally intensive; a time bandwidth reduces 
computational cost, while identifying only the n nearest neighbours results in even few 
computations (assuming that the latter neighbourhood comprises less cells than the 
former). 
 
6. Measuring spatial autocorrelation 
To explore the way in which distance is handled upon statistical analyses of gridded 
population data, this paper uses as a case study the example of the segregation of ‘religious’ 
communities in Belfast. The observed level of spatial autocorrelation is regarded as 
representing the clustering dimension of segregation within a population. The Moran’s I 
spatial autocorrelation coefficient (Moran 1950; Cliff and Ord 1973) is a widely-used 
measure of spatial autocorrelation (correlation between neighbouring values of a variable), 

and it provides the key tool in the present analysis. Where the weights, 
ij

w , between 

locations i   and j  are row-standardised. Moran’s I can be given by: 
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where )(
i

y x is an observation at the i th location 
i

x  and y  is the mean of the values. 

Large positive values of I indicate that neighbouring values tend to be similar while large 
negative values indicate that they tend to be dissimilar, while a value close to zero indicates 
zero spatial autocorrelation. As noted in Table 1, the value of I is calculated using seven 
different combinations of weighting scheme and distance metric.  
 
Global measures provide a single (one figure) summary of spatial autocorrelation. Such 
approaches are limited in that local departures from ‘average’ behaviour are obscured. For 
this reason, local measures have been developed which allow assessment of spatial 
variations in, for example, population clustering. Anselin (1995) developed the concept of 
local indicators of spatial association (LISAs) and one of the most widely used LISAs is a 

local variant of Moran’s I  (Anselin 1995). Local I often appears in published applications 
in the following form: 
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j
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where )(
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z x  are differences of variable y
 
at location 

i
x

 
from its global mean ( yy

i
)( x

), )(
j

z x  are differences of variable y
 
at location 

j
x  from its mean ( yy

j
)( x ), and 2

s  

is the global sample variance. Local Moran’s I was implemented using this definition and 
with the same weighting schemes as for global I. Local I takes large positive values when 



 13 

the focal cell and the weighted sum of its weighted neighbours deviate markedly from the 
mean in the same direction (that is, the deviations from the mean are positive or negative, 
but not a mixture). Where the focal cell and the weighted sum of the neighbours have 
different signs, local I will be negative. Note that, for local I, there is a vector of weights 
and each is here divided by the sum of weights (they are row-standardised). 
 
Brown and Chung (2006) and Poulsen et al. (2010) use the local Moran’s I spatial 
autocorrelation statistic in analyses of segregation. In an analysis of several population 
variables in Northern Ireland, Lloyd (2010a) applies local Moran’s I spatial to assess spatial 
structure in these variables at different scales. The latter paper makes use of geographical 
weighting functions which serves as a simple measure of interaction and which can be used 
to determine weights as a function of distance between a zone i and each of its neighbours.  
For the local cost surface approach adopted in this paper, the components of global I and 
local I were obtained given the following stages: 
 

1. Visit each cell in the friction surface 
2. If it is populated, compute least costs from the cell to the populated cells in the 

local neighbourhood (the number of costs will be a prior value, such as 20 (which 
here includes the source cell), plus the number of unpopulated cells required to 
reach this number of populated cells; alternatively, neighbouring cells may be those 
which can be reached in a given time limit), using the procedure outlined in Section 
4 

3. Compute weights from costs and derive element of global I or local I given the 
weights in the local neighbourhood 

 
7. Comparing weighting schemes 
This section presents the results of calculating global and local Moran’s I using alternative 
weighting schemes to convert the distance metrics of adjacency, Euclidean distance and 
cost distance into weights (c.f. Table 1 and Section 5). Selected results for local I are 
summarised first, as these allow detailed assessment of how and why results vary given 
different weighting schemes. Following this, the global I results are summarised. 
 
Figure 4 shows local I for a locally-adaptive bandwidth of 20 nearest neighbours (bi-square 
function). The map suggests that west Belfast has the most obvious clusters – these are 
locations where there are spatial concentrations of values which depart markedly from the 
mean. Examination of Figure 1 supports this to some degree, although in some areas, 
particularly in the mid west and parts of the east, more strongly positive values would be 
expected to reflect the consistently small percentage of Catholics (and thus consistently 
large percentages of Protestants) in those areas. In other words, where there are cells with, 
for example, a large proportion of Protestants surrounded by cells with similar 
characteristics, the values deviate markedly from the mean and thus large values of local I 
would be expected. 
 
FIGURE 4 ABOUT HERE 
 
Figure 5 shows local I for community background log ratios with cost distance weights (bi-
square function) minus local I for locally-adaptive bandwidth of 20 nearest neighbours (bi-
square function; recall that this is a minimum figure and for cost distances includes the 
source cell as described in Section 4). This map suggests that the use of cost distance-
derived weights results in more strongly positive values of local I than for conventional 
kernels in areas where these might be expected. Such areas include parts of the west of 
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Belfast. Notably, the cost distance derived local I values are markedly larger than those for 
the conventional kernel in the Protestant-dominated Shankill Road area of west Belfast. 
The area is apparent in Figure 1 as the band which bisects the two main Catholic-
dominated areas of west Belfast. This area is in the southern third of Figure 6 – which 
shows the same values as in Figure 5, but with greater detail for this particular part of west 
Belfast. This map indicates that using cost distances (which include information on the 
peace walls shown in Figure 6), correctly reduces the negative spatial autocorrelation which 
is evidenced in some of these areas using a conventional kernel. In addition, and as 
suggested in principle by Figure 3, use of cost surface-derived weights tends to result in 
more positive values of local I at locations close to the peace walls. Therefore, the cost 
surface weights appear to more accurately reflect clustering either side of the peace walls 
than do conventional weights which suggest interactions across the peace walls.  
 
FIGURE 5 ABOUT HERE 
 
FIGURE 6 ABOUT HERE 
 
Local I values for community background log ratios with a locally-adaptive bandwidth of 
20 nearest neighbours based on Euclidean distances are strongly related to those derived 
using cost distance weights, as indicated by Figure 7, which plots one set of values against 
the other. While most values are similar, there are clearly a large number of values of local 
I for cost surface weights which are larger (more positive) than the equivalent values 
obtained using the conventional geographical weights and there are large differences for 
cells close to peace walls. As the number of nearest neighbours increases, there is a greater 
potential for difference between values of local I derived using conventional weighting 
schemes or cost distances. 
 
FIGURE 7 ABOUT HERE 
 
Global I is computed using raw percentages and log ratios. Table 2 gives Moran’s I for 
Catholics by community background (%) and the community background log ratio. The 
table includes results for I based on (i) Queen contiguity, (ii) Euclidean distances (with 
weights determined using the Gaussian weighting scheme and the locally-adaptive bi-
square function), and (iii) cost distances (using the inverse of the costs, inverse square, bi-
square function, and also time bandwidths with the inverse square of the costs within a set 
travel time of the focal cell). In addition, Table 2 explores the impacts on I of varying the 
size of the ‘local neighbourhood’ used for each weighting scheme. The larger values of I 
for percentages than for log ratios is, at least in part, a function of the addition of one to 
the counts of Catholics and non Catholics (see Section 2) which reduces variation in the 
data when computing the latter. However, the results obtained using percentages and log 
ratios are proportionately similar, when comparing between metrics, weighting schemes, 
and local neighbourhood definitions. Thus, in this case, the choice of raw percentages or 
transformed values is of relatively little practical importance. 
  
TABLE 2 ABOUT HERE 
 
Turning to the choice of distance metric, we first consider the results for weighting 
schemes using a Euclidean distance metric. In general, where more influence is given to 
distant neighbours, I will tend to take smaller values since greater heterogeneity would be 
expected over larger areas. Hence, I derived with a fixed bandwidth (Gaussian function) is 
larger for small bandwidths. Similarly, I is larger for small locally-adaptive bandwidths (here 
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the bi-square function, defined in Equation 3, is used) than it is for large bandwidths. The 
smallest values of I are for the fixed bandwidths of 500m and 1000m, as these cover larger 
areas than the other weighting schemes considered.  
 
Next, we can compare the results obtained with Euclidean and cost distance metrics. The 
values of I for the cost distance metric with weights determined by the locally adaptive (bi-
square) kernel are in line with those obtained using the Euclidean distance metric with the 
same weighting function. Thus, for global I, the choice of the Euclidean distance metric 
or a cost distance metric does not have major implications in terms of the results. The 
values of I for a given number of nearest neighbours are similar regardless of the weighting 
schemes applied to cost distances (inverse distance with k=1 and k=2, and the bi-square 
kernel), although the difference between the three sets of values for the 20 nearest 
neighbours emphasizes the differences in weights assigned to more distant observations 
by the two weighting schemes (that is, the decay is more ‘rapid’ in one case than the other). 
The time bandwidths are conceptually useful in that the feasibility of a trip, and thus 
interactions, are usually judged by travel time and not by distance.  
 
In summary, the results for local I clearly illustrate the potential advantages of using a 
weighting scheme based on local cost surfaces. For global I, the results are less clear and, 
while cost distance weights are conceptually superior to weights based on Euclidean 
distances, the values of global I are close to one another for similar neighbourhood sizes, 
irrespective of the use of Euclidean or cost distances for weighting – although the 
differences are likely to increase as the size of the neighbourhood increases.  
 
8. Discussion and conclusions 
This paper demonstrates that it is possible to derive a gridded local friction surface that 
sensibly takes account of vector line features, even allowing for the fact that the conversion 
of vector features to a grid surface is inevitably approximate. Given gridded friction values, 
a local cost surface can be computed and used to derive a weighting scheme for the 
measurement of spatial autocorrelation using gridded data. Such an approach is a 
conceptual improvement on simple geographical weighting schemes where, in the case of 
gridded data, interactions between individuals in particular areas are usually considered to 
be a simple function of Euclidean distance between cells. Cost surfaces and distance decay 
functions share the same weakness in that there are innumerable possible ways of defining 
them. But, it seems likely that assumptions of isotropy and spatial homogeneity in simple 
distance decay functions will hold in very few situations. Functions of Euclidean distance 
may allow the assessment of the spatial configuration of a population subgroup, but they 
will rarely provide a meaningful model of interactions, which must be a core consideration 
if assessment of population clustering (as an example) is the objective. With cost surfaces, 
weights can vary with direction (e.g., travel along a road) across grid cells, and with location 
(weights may be different with respect to the neighbourhood of particular cells). In this 
analysis, alternative approaches to cost surface modelling can be seen as a hierarchy where 
costs from location i can be computed (i) to all other cells, (ii) within a time bandwidth, or 
(iii) to a pre-defined number of neighbouring cells. The first approach was not considered 
because of the high computational cost and because a local approach is sufficient to 
determine weights, while both the second and third were applied.  
 
It is, of course, difficult to objectively define the most appropriate distance decay function. 
While cost surfaces are likely to represent the ‘cost’ of transport more accurately than 
simple arbitrary functions of Euclidean distance, assessing the benefits of more complex 
approaches is not straightforward. In the present study, the case of the peace walls does at 



 16 

least allow a clear demonstration of the benefit of cost surface-based weights which 
correctly suggest positive autocorrelation by community background on both sides a of 
peace wall. In addition, the cost distance-based weights result in more strongly positive 
spatial autocorrelation in some areas where dominantly Catholic neighbourhoods border 
dominantly Protestant neighbourhoods and where the two are not physically divided by 
peace walls. There is an implicit assumption behind the approach employed here that all 
persons have access to transport and that they would take the ‘optimal’ route, in terms of 
travel time, from one location to another. Although it is obvious that particular groups are 
likely to have differential access to, in particular, cars (according to, for example, age or 
socioeconomic profile) it is argued that cost surfaces are more suggestive of potential 
interactions than are simple functions of Euclidean distance.  
 
The analysis shows that global I is relatively insensitive to the type of decay function and 
neighbourhood size (at least for the neighbourhood sizes defined here), and that results 
are similar for weighting schemes based on Euclidean and cost distance metrics. Analyses 
based on raw percentages and log ratios are, in relative terms, very similar. Despite this, a 
statistically valid approach based on log ratios is preferred here to direct analysis of 
percentages. In the case of local I, large differences between results obtained using 
Euclidean and cost distance metrics were observed at some locations, most notably in close 
proximity to peace walls. Thus, the use of a cost distance metric is likely to be of value 
where there are locally important features which either impede or facilitate travel, but more 
research is required to more fully assess the practical implications of different choices of 
distance metric for particular applications.   
 
The availability of data sources indicating where individuals are at particular times of day 
offers the opportunity to more accurately model interactions using cost surfaces, and thus 
to refine the approach presented here. The Economic and Social Research Council-funded 
project ‘Population24/7: Space-time specific population surface modelling’ (Cockings et al. 
2010) is making use of data from the UK Census of Population and other sources relating 
to workplaces, educational and leisure establishments and healthcare facilities to generate 
population surfaces referring to specific times of day. Such data sources could potentially 
be used to represent directly population interactions or to refine cost surfaces by 
representing the magnitude of population movements between locations or by the use of 
particular modes of transport.  
 
In the present study, gridded data population were available. For users who have access 
only to data for irregular zones there are the options of (i) converting the data to a grid 
using some form of areal reallocation procedure (for example, using an approach such as 
that applied by Martin et al. 2011) or (ii) adapting the present approach to work directly 
with irregular zones. Even 100m cells, as applied here, represent a considerable loss of 
detail – each cell in a friction surface can only be associated with one mode of transport, 
and thus one cost. In reality, the transport system and the precise connections between its 
component parts may be very complex even over an area of 100m by 100m. There is scope 
to refine the approach given more detailed data, but cost surfaces are, in principle, a logical 
way of representing interactions and the approach presented here presents, it is argued, an 
improvement over standard geographical weighting schemes. 
 
There are a number of additional obvious ways in which the approach presented could be 
refined. Use could be made of a wider range of data sources in construction of the friction 
surface (e.g., train lines (not currently included) and data on land uses which may have an 
impact on mobility around particular areas) and a set of alternative costs could be applied 
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to represent travel speeds in different areas. In addition, spatial autocorrelation in other 
variables could be explored. When measures making use of cost distance-based weights 
are compared to those using standard geographical weights, the differences will be larger 
for some variables than for others. For example, religion either side of a peace wall is likely 
to be more different than for example, unemployment rates. Therefore, in the Northern 
Ireland case, use of a cost distance-based weighting scheme may make more difference at 
some locations for religion than for employment.  
 
Cost surface-derived weights are applicable in contexts other than the measurement of 
spatial autocorrelation and applications in geographically weighted regression (GWR) are 
currently being explored. Cost distances have been used as covariates in GWR analyses, 
but their use as weights is likely to prove beneficial where functions of Euclidean distance 
are not appropriate. In any application making use of gridded data and geographical 
weighting functions, local cost distances could be used to determine weights. These include 
interpolation, spatial filtering, and spatial regression (e.g., spatial autoregressive models or 
GWR). The present study provides a platform on which future analyses of these kinds can 
be built. 
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 Distance Decay Function 

 Queen 
Contiguity 

Inverse 
Distance 
(k=1) 
(Eq. 1) 

Inverse 
Distance 
(k=2) 
(Eq. 1) 

Inverse 
Distance 
(k=2) 
(Eq. 1) 

Fixed 
kernel  
(Gaussian) 
(Eq. 2) 

Adaptive 
kernel  
(bi square) 
(Eq 3) 

 Type of Local Neighbourhood 

Distance 
metric 

Adjacent 
cells 

Nearest n  Nearest n Time limit Radial 
distance 

Nearest n 

Adjacency 1      
Euclidean     5 6 
Cost  2 3 4  7 

Nearest n = minimum nearest n neighbouring cells to focal cell 
Time limit = cells within fixed travel time of focal cell 
Radial distance = cells within fixed distance of focal cell 

 
Table 1. Distance metrics and corresponding weighting schemes. 
 
 
 

Weighting scheme Neighbourhood Catholics 
(distance metric + distance 
decay function) 

 
Type 

 
Size 

 
% 

 
Log ratio 

(1) Queen contiguity Adjacent cells  0.911 0.875 

(5) Euclidean distance, Fixed 
kernel bandwidth (Gaussian) 

Radial 
distance 

100m 0.904 0.867 
500m 0.677 0.646 

1000m 0.515 0.486 

(6) Euclidean distance, 
Adaptive kernel bandwidth 
(bi-square) 

Nearest n 6 0.922 0.886 
 10 0.914 0.878 
 20 0.893 0.858 

(2) Cost distance, Inverse 
distance, k=1 

Nearest n 6 0.916 0.880 
 10 0.906 0.871 
 20 0.886 0.852 

(3) Cost distance, Inverse 
distance, k=2 

Nearest n 6 0.919 0.882 
 10 0.912 0.876 
 20 0.899 0.864 

(7) Cost distance, Adaptive 
kernel bandwidth (bi-square) 

Nearest n 6 0.923 0.886 
 10 0.913 0.877 
 20 0.890 0.856 

(4) Cost distance, Inverse 
distance, k=2 (time 
bandwidth)  

Time limit 1 minute 0.904 0.867 
5 minutes 0.838 0.808 

10 minutes 0.819 0.789 

Table 2. Moran’s I for Catholics by community background (%) and log ratio. Nearest n: 
for cost distances this minimum figure includes the source cell. BW is kernel bandwidth. 
Numbers in parenthesis relate to the distance metric and weighting scheme combinations 
detailed in Table 1.  
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Figure 1. BUA: Catholics by community background for 100m cells. Source: 2001 

Census: Northern Ireland Grid Square Data. 
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Figure 2. BUA: friction surface. This material is based upon Crown Copyright and is 

reproduced with the permission of Land & Property Services under Delegated 

Authority from the Controller of Her Majesty’s Stationery Office, © Crown 

Copyright and Database Right 2013. 
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Figure 3. Cost distance weights (inverse square) with respect to focal cell. The 

numbering scheme is described in the text. 
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Figure 4. BUA: Local I for community background log ratios – Euclidean distances, 

locally-adaptive kernel bandwidth of a minimum of 20 nearest neighbours (bi-square). 
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Figure 5. BUA: Local I for community background log ratios - cost distances, locally-

adaptive kernel bandwidth of a minimum of 20 smallest accumulative costs including 

the source cell (bi-square) minus local I, Euclidean distances, locally-adaptive kernel 

bandwidth of a minimum of 20 nearest neighbours (bi-square).  
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Figure 6. BUA (detail): Local I for community background log ratios - cost distances, 

locally-adaptive kernel bandwidth of a minimum of 20 smallest accumulative costs 

including the source cell (bi-square) minus local I, Euclidean distances, locally-

adaptive kernel bandwidth of a minimum of 20 nearest neighbours (bi-square).  
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Figure 7. Local I, Euclidean distances, locally-adaptive kernel bandwidth of a 

minimum of 20 nearest neighbours (bi-square) (GW 20 NN) against local I, cost 

distances, locally-adaptive kernel bandwidth of a minimum of 20 smallest 

accumulative costs including the source cell (bi-square) (CSW 20 NN).  
 


