Copyright © 2017 Kovanda et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

osted
<u> </u>
ot
• =
S S
<u> </u>
Ę
9
>
~
0
W
–
0
U
Ũ
Ö
\checkmark

1 The Impact of Mucositis on Absorption and Systemic Drug Exposure of

- 2 Isavuconazole
- 3
- 4 Running Title: Impact of Mucositis on Isavuconazole Exposure
- 5
- 6 Authors: Laura L. Kovanda,^{a,b} Francisco M. Marty,^c Johan Maertens,^d Amit V. Desai,^b
- 7 Christopher Lademacher,^b Marc Engelhardt,^e Qiaoyang Lu,^b William W. Hope^{a,#}
- 8
- 9 Author Affiliations: Antimicrobial Pharmacodynamics and Therapeutics,
- 10 Department of Molecular and Clinical Pharmacology, Institute of Translational
- 11 Medicine, University of Liverpool, Liverpool, UK^a; Astellas Pharma Global
- 12 Development, Inc., Northbrook, IL, USA^b, Brigham and Women's Hospital, Boston,
- 13 MA, USA^c, Universitaire Ziekenhuizen, Leuven, Belgium^d, Basilea Pharmaceutica
- 14 International Ltd. Basel, Switzerland^e
- 15
- 16 #Corresponding Author:
- 17 Professor William Hope
- 18 Sherrington Building
- 19 University of Liverpool
- 20 Ashton Rd.
- 21 Liverpool, L69 3GE
- 22 Phone: +44 (0)151 794 5941
- 23 Email: <u>william.hope@liverpool.ac.uk</u>

24 ABSTRACT

25 Isavuconazonium sulfate is the water-soluble prodrug of isavuconazole. Population 26 analyses have demonstrated relatively predictable pharmacokinetic (PK) behavior in 27 diverse patient populations. We evaluated the impact of mucositis on the oral 28 isavuconazole exposure using population PK modeling. 29 METHODS: We evaluated patients treated in two phase 3 trials of isavuconazole, 30 SECURE for treatment of invasive aspergillosis (IA) and other filamentous fungi and 31 VITAL for patients with mucormycosis, invasive fungal disease (IFD) caused by other 32 rare fungi, or IA and renal impairment. Mucositis was reported by site investigators and 33 its impact on oral bioavailability was assessed. Use of the oral formulation was at the 34 discretion of the investigator. Patients with plasma samples collected during the use of 35 isavuconazonium sulfate were included in the construction of population PK model. 36 RESULTS: Of 250 patients included, 56 patients had mucositis at therapy onset or as an 37 adverse event during oral isavuconazole therapy. Oral bioavailability was comparable of 38 98.3% and 99.8%, respectively. The average drug exposures (AUC_{ave}) calculated from 39 either the mean or median parameter estimates were not different between patients with 40 and without mucositis. Mortality and overall clinical response was similar between 41 patients receiving oral therapy with and without mucositis. 42 CONCLUSION: Isavuconazole exposures and clinical outcomes in this subset of patients 43 with mucositis who were able to take oral isavuconazonium sulfate were comparable to 44 those without mucositis, despite the difference in oral bioavailability. Therefore, 45 mucositis may not preclude use of the oral formulation of isavuconazonium sulfate. 46

47 INTRODUCTION

48	Invasive mould diseases (IMDs) are life-threatening conditions that require timely
49	and intensive treatment. Patients with hematological disorders or who have undergone
50	hematopoietic stem cell transplantation (HSCT) are a leading risk group for IMDs. Anti-
51	neoplastic chemotherapy for acute myeloid leukemia (AML) or acute lymphocytic
52	leukemia (ALL) and conditioning regimens for HSCT often cause mucosal disruption of
53	the gastrointestinal (GI) tract (i.e. mucositis) that may compromise oral bioavailability
54	(1). An evaluation of the impact of mucositis on the oral absorption of antifungal agents
55	is required to ensure optimal antifungal therapy (2).
56	Isavuconazonium sulfate, the water-soluble prodrug of the triazole antifungal
57	agent isavuconazole, is approved by the US FDA for the treatment of invasive
58	aspergillosis (IA) and invasive mucormycosis (IM) and by the EMA for the treatment of
59	IA, and for IM in patients for whom amphotericin B is inappropriate (3, 4). The clinical
60	formulations include both intravenous and oral capsules. The pharmacokinetics have
61	been well characterized from sub-studies embedded in clinical trials (5-8). The pivotal
62	clinical trials included more than 400 patients with >60% with hematological
63	malignancies or other conditions that required intensive chemotherapy and the potential
64	for mucositis (9, 10).
65	Here, we examine the impact of mucositis on the bioavailability and drug
66	exposure following the administration of oral isavuconazonium sulfate. We fitted a
67	population pharmacokinetic model to the plasma concentrations from patients receiving
68	oral isavuconazole in patients with and without mucositis and used this model to

- 69 bioavailability and the ultimate drug exposure. We consider the potential impact for
- 70 dosing and therapeutic drug monitoring of isavuconazole in the setting of mucositis.

4

Antimicrobial Agents and Chemotherapy

Accepted Manuscript Posted Online

73	Study design. Patients treated with isavuconazonium sulfate from two Phase 3
74	clinical trials, SECURE and VITAL, were eligible for inclusion if plasma concentrations
75	were available. The SECURE trial (ClinicalTrials.gov identifier: NCT00412893)
76	evaluated the efficacy and safety of isavuconazole compared with voriconazole for the
77	primary treatment of invasive mould disease caused by Aspergillus spp. and other
78	filamentous fungi (9). The VITAL trial (ClinicalTrials.gov identifier: NCT00634049)
79	evaluated the efficacy and safety of isavuconazole for the treatment of IA in patients with
80	renal impairment and in patients with IFD caused by Mucorales and other emerging
81	moulds, yeasts, and dimorphic fungi (10). Eligibility criteria for both studies are detailed
82	elsewhere (9, 10). Patients received a loading regimen of isavuconazonium sulfate at a
83	dose of 372 mg (equivalent to isavuconazole 200 mg) every 8 h for the first 48 h. In the
84	SECURE trial, the loading dose was required to be administered intravenously (i.v.),
85	while in the VITAL trial treatment could commence using either the i.v. or oral
86	formulation. The maintenance regimen for both studies was i.v. or oral isavuconazonium
87	sulfate 372 mg once daily for up to 84 or 180 days, respectively. Patients received i.v. or
88	oral drug at the discretion of site investigators.
89	Identification of Patients with Mucositis. The medical history (MH) and adverse
90	event (AE) records from the case report forms were reviewed for MedDRA preferred
91	terms suggestive of "mucositis" or "stomatitis" (e.g. mucosal inflammation, radiation
92	mucositis, stomatitis, gastrointestinal inflammation). From there, the patients were further
93	reviewed to determine the degree of likelihood that the MH and AE reported represented
94	significant disease, such as recent radiation therapy or intensive chemotherapy. Patients

AAC

Accepted Manuscript Posted Online

Antimicrobial Agents and Chemotherapy

95	with mucositis were only included if administration of the oral formulation occurred
96	during the episode of mucositis AND plasma PK concentrations coincided with the oral
97	administration and episode of mucositis. Patients without mucositis with plasma PK
98	measurements during oral administration were classified as non-mucositis patients.
99	Plasma PK sampling. Blood samples were collected on treatment days 7, 14, 42,
100	and end of therapy (EOT) in both trials. Collection was targeted for 24 hours after the
101	start of the infusion or the oral dose on the previous day (i.e., trough concentration). Full
102	24-hour profiles were obtained from a subset of 43 patients (including 6 patients with
103	mucositis). After collection, samples were processed immediately and stored at -80° C
104	until shipment to the central research laboratory. Isavuconazole concentrations were
105	measured at the completion of the study using a validated LC-MS/MS method as
106	previously described (5).
107	Population Pharmacokinetic (PPK) Modeling. Raw plasma concentration data
108	from the 2 groups during oral administration that was collected after Day 7 were
109	compared to determine if any trends in the data were observed. A PPK model was
110	developed using non-parametric estimation using Pmetrics (v1.4.1, University of
111	Southern California, Los Angeles, CA, USA) (11). The model-fitting process included
112	evaluation of both 2- and 3-compartment models including absorptive compartments and
113	a lag-time. The presence of mucositis (yes=1, no=0) was used as a covariate on oral
114	bioavailability (F) as a secondary equation, which took the following form:

 $F = F1 \cdot (1 - MUC) + F12 \cdot MUC$

115 where, F1 refers to the oral bioavailability in patients without mucositis (MUC=0) and

116 F12 refers to the oral bioavailability in patients with mucositis (MUC=1).

6

117	Data were weighted by the inverse of the estimated assay variance. The final
118	model was assessed by a visual inspection of the observed-versus-predicted concentration
119	values before and after the Bayesian step, the coefficient of determination (r^2) from the
120	linear regression of the observed-versus-predicted values, as well as estimates for bias
121	(mean weighted error) and precision (adjusted mean weighted squared error).
122	The average AUC (AUC _{ave}) for each patient was calculated using the Bayesian
123	posterior parameter estimates from the final model using the trapezoidal rule in Pmetrics.
124	AUCave was calculated by determining the total AUC over the entire dosing period and
125	dividing by the number of days of therapy for each patient. Statistical comparisons were
126	performed in MYSTAT 12 version 12.02 (https://systatsoftware.com) and GraphPad
127	Prism version 6.0h (<u>http://www.graphpad.com</u>).
128	Exposure-Response Analysis. The AUCave for patients with and without mucositis
129	were compared by patient outcomes defined as All-Cause Mortality through Day 42 or
130	Overall Response to explore if any impact on exposure was associated with differences in
131	response. Statistical comparisons were performed in MYSTAT 12 (version 12.02,
132	http://www.systat.com).
133	

135	Study Population. A total of 250 patients were included in the analysis of which
136	56 had mucositis. Figure 1 shows the flow of patient inclusion in the study. The majority
137	of the mucositis patients had a hematologic malignancy (89.3%) that was active at the
138	time of enrollment and were neutropenic at the start of antifungal treatment (78.2%)
139	(Table 1). Only 6 patients did not have a hematological malignancy [aplastic anemia
140	(n=3), uterine leiomyosarcoma (n=1), X-linked adrenomyeloneuropathy (n=1), squamous
141	cell carcinoma of the tongue (n=1)]. A quarter (26.8%) of the patients with mucositis had
142	received a HSCT. Sixteen percent of mucositis patients had baseline renal impairment
143	(eGFR-MDRD < 60 mL/min/1.73m ²) compared with 27.6% of those without mucositis.
144	The majority of the overall population were males (62%), Caucasian (78.8%), and the
145	average age (± SD) and weight (± SD) were 50.3 \pm 16.1 years and 70.0 \pm 18.3 kg,
146	respectively.
146 147	respectively. <i>Type of Fungal Infection in Patients with Mucositis</i> . Thirty-two patients had
146 147 148	respectively. <i>Type of Fungal Infection in Patients with Mucositis</i> . Thirty-two patients had proven or probable IA and 7 patients had possible IA (with appropriate host factors,
146 147 148 149	respectively. <i>Type of Fungal Infection in Patients with Mucositis.</i> Thirty-two patients had proven or probable IA and 7 patients had possible IA (with appropriate host factors, clinical features but no mycological evidence of disease). Eight patients had proven or
146 147 148 149 150	respectively. <i>Type of Fungal Infection in Patients with Mucositis</i> . Thirty-two patients had proven or probable IA and 7 patients had possible IA (with appropriate host factors, clinical features but no mycological evidence of disease). Eight patients had proven or probable infection caused by various mould and rare yeasts including Mucorales (n=1),
146 147 148 149 150 151	respectively. <i>Type of Fungal Infection in Patients with Mucositis.</i> Thirty-two patients had proven or probable IA and 7 patients had possible IA (with appropriate host factors, clinical features but no mycological evidence of disease). Eight patients had proven or probable infection caused by various mould and rare yeasts including Mucorales (n=1), <i>Fusarium</i> spp. (n=3), <i>Culvularia lunata</i> (n=1), <i>Alternaria</i> spp. (n=1), <i>Acremonium</i> spp.
146 147 148 149 150 151 152	respectively. <i>Type of Fungal Infection in Patients with Mucositis.</i> Thirty-two patients had proven or probable IA and 7 patients had possible IA (with appropriate host factors, clinical features but no mycological evidence of disease). Eight patients had proven or probable infection caused by various mould and rare yeasts including Mucorales (n=1), <i>Fusarium</i> spp. (n=3), <i>Culvularia lunata</i> (n=1), <i>Alternaria</i> spp. (n=1), <i>Acremonium</i> spp. (n=1), and <i>Trichosporon</i> spp. (n=1). Five patients did not have enough evidence for
146 147 148 149 150 151 152 153	respectively. <i>Type of Fungal Infection in Patients with Mucositis.</i> Thirty-two patients had proven or probable IA and 7 patients had possible IA (with appropriate host factors, clinical features but no mycological evidence of disease). Eight patients had proven or probable infection caused by various mould and rare yeasts including Mucorales (n=1), <i>Fusarium</i> spp. (n=3), <i>Culvularia lunata</i> (n=1), <i>Alternaria</i> spp. (n=1), <i>Acremonium</i> spp. (n=1), and <i>Trichosporon</i> spp. (n=1). Five patients did not have enough evidence for probable or proven IFD after review of the Data Review Committees.
146 147 148 149 150 151 152 153 154	respectively. <i>Type of Fungal Infection in Patients with Mucositis</i> . Thirty-two patients had proven or probable IA and 7 patients had possible IA (with appropriate host factors, clinical features but no mycological evidence of disease). Eight patients had proven or probable infection caused by various mould and rare yeasts including Mucorales (n=1), <i>Fusarium</i> spp. (n=3), <i>Culvularia lunata</i> (n=1), <i>Alternaria</i> spp. (n=1), <i>Acremonium</i> spp. (n=1), and <i>Trichosporon</i> spp. (n=1). Five patients did not have enough evidence for probable or proven IFD after review of the Data Review Committees. <i>PPK Model</i> . Comparisons of the raw plasma concentrations for the patients with
146 147 148 149 150 151 152 153 154 155	respectively. <i>Type of Fungal Infection in Patients with Mucositis</i> . Thirty-two patients had proven or probable IA and 7 patients had possible IA (with appropriate host factors, clinical features but no mycological evidence of disease). Eight patients had proven or probable infection caused by various mould and rare yeasts including Mucorales (n=1), <i>Fusarium</i> spp. (n=3), <i>Culvularia lunata</i> (n=1), <i>Alternaria</i> spp. (n=1), <i>Acremonium</i> spp. (n=1), and <i>Trichosporon</i> spp. (n=1). Five patients did not have enough evidence for probable or proven IFD after review of the Data Review Committees. <i>PPK Model</i> . Comparisons of the raw plasma concentrations for the patients with mucositis and patients without mucositis during oral administration beyond Day 7

15	7 concentrations largely overlapped. A 2-compartment model including an absorptive
15	8 compartment fit the data well. An illustration of the structural model is provided in Fig.
159	9 where the first compartment represents the gut (oral compartment) and the second
16	0 representing the central compartment. The fit of the model to the data was acceptable
16	based on visual inspection of the observed-versus-median predicted plots and the
16	2 coefficient of determination (r^2) of 0.813 after the Bayesian step (Fig. 4). The estimates
16	of bias and imprecision were also acceptable (0.11 and 0.938, respectively). The
16	4 observed-versus-mean predicted plots showed similar statistics with a coefficient of
16	determination (r^2) of 0.792 (slope = 0.976) after the Bayesian step. The median parameters
16	6 estimates are included in Table 2 .
16	7 <i>Comparison of Oral Bioavailability</i> . The mean (range) oral bioavailability (F)
16	8 estimates for mucositis and non-mucositis patients were 86.0% (50.3-99.7%) and 97.4%
16	9 (70.2-99.9%), respectively. Comparison of the mean and median bioavailability estimat
17	0 for the two populations demonstrated a significant difference between the 2 groups (p <
17	0.001) (Fig. 5). However, this 11.4% difference in bioavailability did not have a
172	2 significant impact on the distribution of exposures (AUC _{ave}) between the two groups
173	3 (p=0.706) (Fig. 6).
174	4 <i>All-Cause Mortality through Day 42.</i> All-cause mortality through treatment day
17	5 42 for the patients with and without mucositis was 7.1% (4/56) and 14.4% (28/194),
17	6 respectively. The oral bioavailability and AUC _{ave} were 83.6% and 91.3 mg·h/L, 92.7%
17	and 164.9 mg·h/L, 99.7% and 56.5 mg·h/L, and 99.7% and 216.9 mg·h/L for the four

178 patients with mucositis who died. The median bioavailability estimates for the non-

AAC

.80	70.2%. The mean AUC _{ave} was 100.5 mg·h/L and ranged from 34.9-369.1 mg·h/L.
.81	Overall Response at the End of Therapy (EOT). Overall Response at the EOT was
82	available for 232 mITT patients in the analysis. Fifty-eight percent [n=43; 95% CI 42.13,
.83	72.99] and 42.9% [n=189, 95% CI 35.68, 50.42] of the patients with and without
.84	mucositis had a successful response, respectively. In the mucositis patients who failed at
.85	the EOT (n=25), the mean oral bioavailability was $84.9 \pm 17.9\%$, (range 50.4-99.7%;
.86	median 90.3%) and the mean AUC ave was 117.9 \pm 69.4 mg·h/L, (range 45.9-315.5
.87	mg·h/L; median 94.2 mg·h/L). Six of the patients (n=18; 33%) who failed at the EOT had
.88	oral bioavailability estimates $< 80\%$ (range 50.4-69.5%) with AUC _{ave} values ranging
.89	from 45.9-176.3 mg·h/L and 8 of the patients (n=25; 32%) with successful responses at
.90	the end of the rapy had bioavailability estimates of ${<}80\%$ (range 50.3-75.5%) with
.91	AUC _{ave} ranging from 48.2-155.2 mg·h/L.
.92	

mucositis patients that died were all above 90% except for one patient with an estimate of

193 **DISCUSSION**

194	Biological factors that have an impact on drug absorption include the pH along
195	the GI tract, tissue perfusion, the presence of bile and mucus, the surface area per volume
196	of the lumen, and the epithelial integrity. Mucositis manifests as erythema, inflammation,
197	ulcerations, and hemorrhage of the mucosal surfaces of the GI tract and causes gastric
198	motility dysfunction. This mucosal disruption can significantly affect drug absorption
199	after the oral administration of medications. Using oral medications in the setting of
200	mucositis requires an understanding of the determinants of drug absorption.
201	Table 3 summarizes the determinants of oral bioavailability for triazole antifungal
202	agents. Isavuconazole and fluconazole have similar characteristics that include the
203	absence of clinically relevant effect on absorption from food, changes in pH, or increases
204	in GI motility (3, 12, 13). Posaconazole and itraconazole oral solutions should be
205	administered with high-fat meals, carbonated soda, or nutritional supplements (2, 14-19).
206	Plasma concentrations are decreased when gastric acidity is reduced (2, 14-19).
207	Absorption of posaconazole oral solution may be improved when daily doses are
208	fractionated compared with less frequent dosing (20). The newer posaconazole tablets are
209	not affected by changes in gastric pH and absorption is not improved by the consumption
210	of high-fat meals (17, 21). Voriconazole plasma concentrations are reduced when taken
211	with food; however, absorption is not clinically significantly affected by changes in pH or
212	by drugs such as omeprazole (22). H2-blockers were not found to cause clinically
213	significant changes in voriconazole absorption kinetics (23). Voriconazole exhibits
214	decreased oral bioavailability in patients with cystic fibrosis (CF) compared to patients
215	without CF after lung transplant (24). Thus, factors that affect the absorption of triazoles

Antimicrobial Agents and Chemotherapy

AAC

such as mucositis differ markedly.

217	Drugs that require food to increase bioavailability or experience decreased
218	bioavailability with increased gastric emptying (increased gastric motility) suggest that
219	passive diffusion is slow and likely occurs primarily from the stomach. In these
220	circumstances, absorption is improved by longer transit times in the stomach and upper
221	small intestine. Aside from the prodrug formulation of isavuconazole, the other azoles are
222	limited by the insufficient dissolution in stomach prior to delivery in the duodenum,
223	where absorption is maximal. A meal that is high in fat increases luminal volume and bile
224	and pancreatic secretions, and delays gastric emptying. The absorption for drugs such as
225	posaconazole may be optimized by the use a more fractionated regimen (14, 25, 26).
226	However, studies have suggested that this may be due to the high-fat meal increasing the
227	solubility versus delayed gastric emptying (14). Another study failed to associate factors
228	such as P-glycoprotein on the absorption of posaconazole (27). In contrast, the absorption
229	for isavuconazole and fluconazole (and to a lesser extent voriconazole) is not
230	significantly influenced by these factors, suggesting passive diffusion occurs more
231	quickly and the majority of the absorption occurs in the upper small intestine.
232	In this analysis, the presence of mucositis did not have a significant overall impact
233	on the clinical outcomes in the patients treated with isavuconazonium sulfate from the
234	SECURE and VITAL trials despite the statistical differences in oral bioavailability
235	between the groups with and without mucositis. In addition, the drug exposure between
236	the groups was not significantly different. The results held whether mean or median
237	parameter estimates were used for the comparisons.

238	The current study has several limitations. First, details on the presence or severity
239	of mucositis were not available for the majority of patients with the condition.
240	Quantification of severity may have allowed for a deeper understanding of the impact for
241	the degree of mucosal disruption and the impact on oral bioavailability. Second, patients
242	were allowed to switch back and forth from oral to intravenous medication during the
243	treatment period. However, only patients with mucositis coinciding with oral
244	administration were selected for analysis. Third, the administration of i.v. or oral
245	formulations was at the discretion of the site investigators making it difficult to assess the
246	impact of the severity of mucositis on oral bioavailability. Patients with more severe
247	grades of mucositis patients may have remained on i.v. therapy longer, while patients
248	with less severe mucositis may have been switched to oral therapy. In addition,
249	identification of mucositis patients for this study relied on the reporting of the events by
250	the treating investigator, which could be underrepresenting the incidence in the study. We
251	did not utilize a validated mucositis score or a biomarker, such as citrulline to capture
252	severity as has done in other studies (28). Finally, we assumed compliance was 100%,
253	which may be overly optimistic.
251	These analyses are important as many patients who will be treated with
254	These analyses are important as many patients who will be dealed with
255	isavuconazonium sulfate are at risk or could have mucositis at the onset of therapy caused
256	by the harsh treatments used to treat their underlying co-morbidities. Patients with
257	slightly lower bioavailability had outcomes similar to those with higher bioavailability.
258	Therefore, use of the oral formulation of isavuconazonium sulfate during episodes of
259	mucositis may be acceptable; however, treating physicians may consider extending
260	isavuconazole intravenous therapy during episodes of mucositis or monitoring levels to

- 261 ensure they are within the range reported from the clinical trial. However, additional
- studies in this population may be warranted.

Antimicrobial Agents and Chemotherapy

263 ACKNOWLEDGMENTS

264 Isavuconazonium sulfate has been co-developed by Astellas Pharma Global	26	6	4]	[savuco	onazonium	sulfate	has ł	been	co-deve	loped	by .	Astellas	Pharma	Global	
---	----	---	---	---	---------	-----------	---------	-------	------	---------	-------	------	----------	--------	--------	--

- 265 Development, Inc. and Basilea Pharmaceutica International Ltd.
- 266 Laura L. Kovanda, Amit V. Desai, Qiaoyang Lu, and Christopher Lademacher are
- 267 employees of Astellas Pharma Global Development, Inc. Marc Engelhardt is an
- 268 employee of Basilea Pharmaceutica International, Ltd. William W. Hope is supported by
- 269 a National Institute of Health Research (NIHR) Clinician Scientist Fellowship.

271 References

272 1. Blijlevens N, Donnelly J, de Pauw B. 2001. Empirical therapy of febrile 273 neutropenic patients with mucositis: challenge of risk-based therapy. Clin 274 Microbiol Infect 7:47-52. 275 2. Lipp H. 2010. Clinical pharmacodynamics and pharmacokinetics of the 276 antifungal extended-spectrum triazole posaconazole: an overview. Br J Clin 277 Pharmacol 70:471-480. 278 3. Astellas Pharma US I. 2015. CRESEMBA[™] (isavuconazonium sulfate) 279 prescribing information. In: US FDA. 280 http://www.astellas.us/docs/cresemba.pdf. Accessed 281 4. EMA. 2015. European Medicines Agency Cresemba (isavuconazonium 282 sulfate) Product Information. 283 5. Kovanda L, Desai A, Lu Q, Townsend R, Akhtar S, Bonate P, Hope W. 284 2016. Isavuconazole Population Pharmacokinetic Analysis Using Non-285 Parametric Estimation in Patients with Invasive Fungal Disease: Results from 286 the VITAL Study. Antimicrobial Agents and Chemotherapy 287 doi:10.1128/AAC.00514-16. Schmitt-Hoffmann A, Roos B, Maares J, Heep M, Spickerman J, 288 6. 289 Weidekamm E, Brown T, Roehrle M. 2006. Multiple-dose 290 pharmacokinetics and safety of the new antifungal triazole BAL4815 after 291 intravenous infusion and oral administration of its prodrug, BAL8557, in 292 healthy volunteers. Antimicrob Agents Chemother 50:286-293. 293 7. Desai A, AH S-H, Mujais S, Townsend R. 2016. Population 294 Pharmacokinetics of Isavuconazole in Subjects with Mild and Moderate 295 Hepatic Impairment. Antimicrob Agents Chemother pii: AAC.02942-15. 296 [Epub ahead of print]. 297 Desai A, Kovanda L, Kowalski D, Lu O, Townsend R. 2014. Isavuconazole 8. 298 (ISA) Population Pharmacokinetic Modeling from Phase 1 and Phase 3 299 Clinical Trials and Target Attainment Analysis, abstr ICAAC, Washington, DC, 300 USA, September, 2014. 301 9. Maertens J, Raad I, Marr K, Patterson T, Kontoyiannis D, Cornely O, Bow 302 E, Rahav G, Neofytos D, Aoun M, Baddley J, Giladi M, Heinz W, Herbrecht 303 R, Hope W, Karthaus M, Lee D, Lortholary O, Morrison V, Oren I, 304 Selleslag D, Shoham S, Thompson III G, Lee M, Maher R, Hortense 305 Schmitt-Hoffmann A, Zeiher B, Ullmann A. 2016. Isavuconazole versus 306 voriconazole for primary treatment of invasive mould disease caused by 307 Aspergillus and other filamentous fungi (SECURE): a phase 3, randomised-308 controlled, non-inferiority trial. The Lancet 387:760-769. 309 10. Marty F, Ostrosky-Zeichner L, Cornely O, Mullane K, Perfect J, Thompson 310 Gr, Alangaden G, Brown J, Fredricks D, Heinz W, Herbrecht R, Klimko N, 311 Klyasova G, Maertens J, Melinkeri S, Oren I, Pappas P, Ráčil Z, Rahav G, 312 Santos R, Schwartz S, Vehreschild J, Young J, Chetchotisakd P, 313 Jaruratanasirikul S, Kanj S, Engelhardt M, Kaufhold A, Ito M, Lee M, 314 Sasse C, Maher R, Zeiher B, Vehreschild M, Investigators VaFM. 2016. 315 Isavuconazole treatment for mucormycosis: a single-arm open-label trial and

316		case-control analysis. Lancet Infect Dis doi:10.1016/S1473-3099(16)00071-
210	11	2:pii. 314/ 5-3077(1410)000/ 1-000/2. Nooly MN yan Cuildor MC Vamada WM Schumitzby A Jolliffo DW 2012
210	11.	Accurate detection of outliers and subnonulations with Prostrics a
320		nonnarametric and narametric pharmacometric modeling and simulation
320		nackage for R. Ther Drug Monit 34 :467-476
321	12	Schmitt-Hoffmann & Desai & Kowalski D. Pearlman H. Vamazaki T
322	12.	Townsend R 2016 Isawuconazole absorption following oral administration
323		in healthy subjects is comparable to intravenous dosing and is not affected
324		hy food or drugs that alter stomach nH Int I Clin Pharmacol Ther 54:572.
325		580
320	13	Pfizer I 2014 DIFLUCAN® (Fluconazole Tablets) (Fluconazole for Oral
327	15.	Suspension) In: IIS FDA
320		http://labeling.nliver.com/ShowLabeling.aspx?id=575_Accessed
330	14	Krishna G Moton A Ma I. Medlock M McLeod I 2009 Pharmacokinetics
331	1.11	and Absorption of Posaconazole Oral Suspension under Various Gastric
332		Conditions in Healthy Volunteers Antimicrobial Agents and Chemotherany
333		53: 958-966.
334	15.	Merck C. Inc. 2016. NOXAFIL [™] (posaconazole) prescribing information. In:
335	101	US FDA.
336		https://www.merck.com/product/usa/pi_circulars/n/noxafil/noxafil_pi.pdf.
337		Accessed
338	16.	Janssen Pharmaceutical I. 2014. Sporanox [™] (itraconazole capsules)
339		prescribing information. In: US FDA.
340		http://www.janssen.com/us/sites/www_janssen_com_usa/files/products-
341		documents/pi-sporanoxcapsules.pdf. Accessed
342	17.	Kraft W, Chang P, van Iersel M, Waskin H, Krishna G, Kersemaekersb W.
343		2014. Posaconazole Tablet Pharmacokinetics: Lack of Effect of Concomitant
344		Medications Altering Gastric pH and Gastric Motility in Healthy Subjects.
345		Antimicrobial Agents and Chemotherapy 58: 4020-4025.
346	18.	Lewis R. 2011. Pharmacokinetic-pharmacodynamic optimization of triazole
347		antifungal therapy. Current Opinion in Infectious Diseases 24: S14-S29.
348	19.	Krishna G, AbuTarif M, Xuan F, Martinho M, Angulo D, Cornely O. 2008.
349		Pharmacokinetics of Oral Posaconazole in Neutropenic Patients Receiving
350		Chemotherapy for Acute Myelogenous Leukemia or Myelodysplastic
351		Syndrome. Pharmacotherapy: The Journal of Human Pharmacology and Drug
352		Therapy 28: 1223-1232.
353	20.	Ezzet F, Wexler D, Courtney R, Krishna G, Lim J, Laughlin M. 2005. Oral
354		Bioavailability of Posaconazole in Fasted Healthy Subjects: Comparison
355		Between Three Regimens and Basis for Clinical Dosage Recommendations.
356		Clinical Pharmacokinetics 44: 211-220.
357	21.	Krishna G, Ma L, Martinho M, O'Mara E. 2012. Single-dose phase I study to
358		evaluate the pharmacokinetics of posaconazole in new tablet and capsule
359		formulations relative to oral suspension. Antimicrob Agents Chemother

361 362	22.	Wood N, Tan K, Purkins L, Layton G, Hamlin J, Kleinermans D, Nichols D. 2003. Effect of omeprazole on the steady-state pharmacokinetics of
303	22	Voriconazoie. Br J Ulin Pharmacol 50 :50-01.
304 265	23.	Purkins L, wood N, Kielinermans D, Nichols D. 2003. Histamine H2-
303		neceptor antagonists have no chinically significant effect on the steady-state
267	24	Pilai Inacokinetics of voliconazore. Di J Chin Pilai Inacol 50:51-55.
307 260	24.	Mali K, Capitalio D, Dies K, Poloski D, Husalii S, Gilbert S, Patersoli D, Macumu K, Vankataramanan D, 2010, Picawailability and Dapulation
260		Dharmacolvinatics of Varianagala in Lung Transplant Decinionts
270 270		Antimicrobial Agents and Chemotherapy 54 ,4424,4421
370 271	25	Cubbins D Krishna C Sansono-Darsons S Donzal S Dong I Martinho M
272	23.	Anaicsia E 2006 Dharmacelyingtics and Safety of Oral Decasenagele in
372		Noutrononic Stom Coll Transplant Paciniants, Antimicrobial Agants and
274		Chamatharany E0. 1002 1000
374 275	26	Dark W Cho I Dark S Kim F Voon S Voon S Loo I Koh V Song K Choo D
375	20.	Vu K Kim F Bang S Kim N Kim I Oh M Kim H Song S 2016
370		Fifectiveness of increasing the frequency of nessconazole surun
378		administration to achieve ontimal plasma concentrations in patients with
370		haematological malignancy. International Journal of Antimicrobial Agents
380		
300	27	Sansone-Parsons & Krishna C. Simon I. Soni P. Kantesaria B. Herron I.
382	27.	Stoltz P 2007 Effects of Age Cender and Pace/Ethnicity on the
302		Pharmacokinetics of Posaconazole in Healthy Volunteers Antimicrobial
384		Agents and Chemotherapy 51 :495-502
385	28	Vanstraalan K Drattas I Maartans I Lagrou K Schoomans H Deersman
386	20.	N Vermeersch P Theunissen K Mols R Augustins P Annaert P Hoenig
387		M Snriet I 2016 Posaconazole plasma exposure correlated to intestinal
388		mucositis in allogeneic stem cell transplant patients. Furopean Journal of
389		Clinical Pharmacology 72:953-963
390	29	Pfizer I 2015 VFEND™ (voriconazole) prescribing information In US FDA
391	<u> </u>	http://labeling.nfizer.com/ShowLabeling.aspx?id=618_Accessed
392	30	Lin P. Mould DR. 2014. Population Pharmacokinetic Analysis of
393	50.	Voriconazole and Anidulafungin in Adult Patients with Invasive Aspergillosis
394		Antimicroh Agents Chemother 58 :4718–4726.
395		

Antimicrobial Agents and

Chemotherapy

397 Figure Legends

398 FIG 1. Flowchart illustrating flow of isavuconazole-treated patients into the

399 mucositis and non-mucositis populations

400

401 FIG 2. Comparison of plasma concentrations drawn during oral

402 administration after day 7 of therapy between the mucositis and non-

- 403 mucositis patients. (Mann-Whitney U Test p-value = 0.0011).
- 404

405 FIG 3. Illustration of the Structural Model: Compartment 1 represents the gut

406 for oral administration; Compartment 2 represents the central compartment;

407 CL, clearance; F, bioavailability; Ka, first-order absorption rate constant; Tlag,

408 lag-time; V, volume in the central compartment; RATEIV(1) specifies infusions

409 going directly into the central compartment.

- 410
- 411 FIG 4. Observed versus median posterior predicted concentrations (mg/L)

412 from the final model after the Bayesian step ($r^2 = 0.813$, slope = 0.98 [95%CI

413 **0.956 to 1], intercept = -0.0181 [95%CI –0.115 to 0.0792]). Dotted line is line**

414 of unity where observed concentrations equal predicted concentrations.

415

416 FIG 5. There is a significant difference in the median estimates for

417 bioavailability between the 2 groups. (Mann-Whitney U Test p-value <
418 0.0001).

419

- 420 FIG 6. No significant difference in average AUCs between Mucositis and Non-
- 421 Mucositis Patients (p=0.706; Mann Whitney U test) (AUCs calculated from the
- 422 median parameter estimates after the Bayesian step).

Antimicrobial Agents and Chemotherapy

	Mucositis	Non-Mucositis	Total
	N=56	N=194	N=250
Age (years)			
Median (min-max)	50 (18-79)	52 (19-92)	52 (18-92)
Sex			
Male	32 (57%)	123 (63%)	155 (62%)
Race			
White	48 (86%)	149 (77%)	197 (79%)
Asian	7 (13%)	31 (16%)	38 (15%)
Black	1 (2%)	9 (5%)	10 (4%)
Other	0	5 (3%)	5 (2%)
Weight (kg)			
Mean ± SD	71.7 ± 18.1	69.5 ± 18.4	70.0 ± 18.3
Underlying Disease			
Hematological Malignancy	50 (89.3%)	101 (52.1%)	151 (60.4%)
Active Malignancy	40 (71.4%)	76 (39.2%)	116 (46.4%)
Allogeneic HSCT	15 (26.8%)	33 (17.0%)	48 (19.2%)
Baseline Neutropenia	43 (78.2%)	64 (41.8%)	107 (51.4%)
T-cell Immunosuppressants	23 (41.8%)	82 (51.9%)	105 (49.3%)
Use of Corticosteroids	8 (14.3%)	47 (24.2%)	55 (22.0%)
Duration of Therapy (days)			
Median (range)			
Total duration	75.5 (8-735)	83 (1-882)	82 (1-882)
IV formulation	9 (2-45)	7 (0.5-77)	7.5 (0.5-77)

424 Table 1. Demographics, Background Disease and Duration of Therapy

Г

Oral formulation	58 (1-690)	79.8 (0.5-882)	73 (0.5-882)

Antimicrobial Agents and Chemotherapy 425

23

	Mucositis			Non-Mucositis				
	$Mean \pm SD$	Median	Range	%CV	Mean ± SD	Median	Range	%CV
Ka (h ⁻¹)	7.0 ± 2.6	7.9	0.0-8.0	38%	6.5 ± 3.0	7.9	0.0-8.0	46%
Cl/F (L/h)	2.2 ± 1.0	1.9	0.5-4.1	44%	2.3 ± 1.1	1.9	0.1-5.9	47%
V/F (L)	331.4 ± 154.9	347.7	6.8-895.5	47%	354.1 ± 182.5	349.8	5.8-895.5	52%
Lag time (h)	1.2 ± 1.2	1.0	0.0-5.0	94%	1.3 ± 1.3	1.0	0.0-5.0	103%
F (%)	86.0 ± 18.5	98.3	50.3-99.7	21%	97.4 ± 6.9	99.8	70.2-99.9	7%
AUC _{ave} (mg·h/L)	105.3 ± 55.9	91.9	45.9-315.5	53%	114.1 ± 141.2	100.2	30.8-1944.3	124%

426 Table 2. Median Parameter estimates from the PPK model

427 428

Abbreviations: SD, standard deviation; Ka, first-order absorption rate constant; CL, clearance; F, bioavailability; V, volume in the central compartment, AUC_{ave} average area-

under-the concentration curve.

AAC

Antimicrobial Agents and Chemotherapy 429

	Isavuconazonium sulfate	Voriconazole	Posaconaz	zole (15)	Itraconazole (16)		Fluconazole (13)
Formulation	capsule	tablets	solution	tablets	solution	capsule	tablet
Water Solubility	Y (prodrug)	N	N	[N	N	
Bioavailability (%)							
Healthy Subjects	98 (12)	96 (29)	8-48 (fasted)	54 (fasted)	55		90
Patients	97 (5)	64 (30)					
GI motility agents	none	No data found	Decreases	none	No data found		No data found
pH Effect	none	none	Decreases in reduced acidity	none	Decreased i	Decreased in reduced acidity	
Food Effect	none	Decreases	Increases	Cmax and	Incre	ases	none

430 Table 3. Comparison of factors impacting oral absorption of triazole antifungal drugs

	concentrations	concentrations	AUC	concentrations	
		(especially high	increases 16%		
		fat, nutritional	and 51% with		
		supplement or	high fat foods		
		acidic			
		carbonated			
		beverage)			
	F significantly lower				
	in CF lung tx (23%)				
	pts versus non-CF	Divided doses			
	lung tx (63%) (24); 2				
01	factors significant				
Other	association with F in	increases			
	lung tx pts: CF, post-	absorption			
	operative time				
	(increased with				
	increasing time) (24)				

Ī	Substrate of							
	Pgp	no	no	yes	yes	yes	yes	no

431 Abbreviations: Y: yes; N: no; GI: gastrointestinal; F: bioavailability; CF: cystic fibrosis; Pgp: P-glycoprotein

Antimicrobial Agents and Chemotherapy

434

435 FIG 1. Flowchart illustrating flow of isavuconazole-treated patients into the

436 mucositis and non-mucositis populations

AAC

441 administration after day 7 of therapy between the mucositis and non-

- 442 mucositis patients. (Mann-Whitney U Test p-value = 0.0011).
- 443

FIG 3. Illustration of the Structural Model: Compartment 1 represents the gut
for oral administration; Compartment 2 represents the central compartment;
CL, clearance; F, bioavailability; Ka, first-order absorption rate constant; Tlag,
lag-time; V, volume in the central compartment; RATEIV(1) specifies infusions
going directly into the central compartment.

455

458

AAC

468 **0.0001).**

469

473 Mucositis Patients (p=0.706; Mann Whitney U test) (AUCs calculated from the

474 median parameter estimates after the Bayesian step).