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ABSTRACT 

Due to the physical and physiological properties of the blood-brain barrier (BBB), the 

transport of neurotherapeutics from blood to brain is still a pharmaceutical challenge. 

We previously conducted a series of experiments to explore the potential of the anti-

transferrin receptor 8D3 monoclonal antibody (mAb) to transport neurotherapeutics 

across the BBB. In that study, gold nanoparticles (AuNPs) were coated with the 8D3 

antibody and administered intravenously to mice. Transmission electron microscopy 

was used and a two-dimensional (2D) image analysis was performed to detect the 

AuNPs in the brain capillary endothelial cells (BCECs) and brain parenchyma. In the 

present work, we determined that serial block-face scanning electron microscopy (SBF-

SEM) is a useful tool to study the transcytosis of these AuNPs across the BBB in three 

dimensions and we therefore applied it to gain more knowledge of their transcellular 

trafficking. The resulting 3D reconstructions provided additional information on the 

endocytic vesicles containing AuNPs and the endosomal processing that occurs inside 

BCECs. The passage from 2D to 3D analysis reinforced the trafficking model proposed 

in the 2D study, and revealed that the vesicles containing AuNPs are significantly larger 

and more complex than described in our 2D study. We also discuss tradeoffs of using 

this technique for our application, and conclude that together with other volume 

electron microscopy imaging techniques, SBF-SEM is a powerful approach that is worth 

of considering for studies of drug transport across the BBB. 

 

 

KEYWORDS: blood-brain barrier, receptor-mediated transport, transferrin receptor, 

monoclonal antibodies, SBF-SEM, 3D electron microscopy, drug delivery 

 

ABBREVIATIONS: BBB, blood-brain barrier; TfR, transferrin receptor; mAb, monoclonal 

antibody; AuNP, gold nanoparticle; TEM, transmission electron microscopy; 2D, two-

dimensional; 3D, three-dimensional; SBF-SEM, serial block-face scanning electron 

microscopy; BCEC, brain capillary endothelial cell; PBS, phosphate-buffered saline; PF, 

p-formaldehyde. 
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INTRODUCTION 

 

The blood−brain barrier (BBB) is a well-coordinated and highly selective barrier that 

severely limits brain uptake and hence the therapeutic potential of pharmacologically 

active compounds following intravenous administration (Abbott et al. 2010; de Boer 

and Gaillard 2007; Pardridge 1998; Temsamani 2001). Receptor-mediated transcytosis 

in brain capillary endothelial cells (BCECs) has been extensively studied as a possible 

strategy to transport such compounds across the BBB. Moreover, monoclonal 

antibodies (mAbs) directed against some of those receptors present in the luminal 

membrane of BCECs have been proposed as carriers of these substances (Lajoie and 

Shusta 2015; Manich et al. 2013). Some of these mAbs are those directed against the 

transferrin receptor (TfR), which have been widely studied in rodents. Some of the 

studies, principally those using the capillary depletion method or indirect outcome 

measures to determine brain uptake, conclude that mAbs and/or their cargo are 

transported across the BBB, while other studies conclude that these mAbs do not 

complete transcytosis and accumulate inside BCECs (Alata et al. 2014; Gosk et al. 2004; 

Lee et al. 2000; Manich et al. 2013; Moos and Morgan 2001; Paris-Robidas et al. 2011; 

Zhang and Pardridge 2005; Zhang et al. 2003). Thus, the success and usefulness of this 

strategy remain controversial and the intracellular mechanisms by which these mAbs 

undergo inside or across BCECs are still unknown (Freskgård and Urich 2016). Gaining 

knowledge of these mechanisms would help to ascertain the possible use of mAbs as 

molecular Trojan Horses. 

 

We recently conducted a series of experiments to provide insight at a subcellular level 

into the endocytic/transcytotic mechanisms involved in the processing of these mAbs 

(Cabezón et al. 2015). In these studies, we coated gold nanoparticles (AuNPs) with the 

8D3 antibody directed against the mouse TfR. After in vivo administration of the 8D3-

AuNP conjugates, and using transmission electron microscopy (TEM), we observed a 

time-dependent internalization and trafficking pattern (Figure 1). The 8D3-AuNP 

conjugates were individually internalized within BCECs through clathrin-dependent 

endocytosis. Thereafter, most of the endocytic vesicles followed an intracellular 

process of vesicular fusion and rearrangement that ended up moving the AuNPs to late 
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endosomes, multivesicular bodies or lysosomes, which then presented a high AuNP 

content. A small percentage of the endocytic vesicles containing just one AuNP 

followed a different route whereby they fused with the abluminal membrane and 

opened up to the basal lamina. This latter route suggests endosomal escape and 

complete transcytosis, but the 8D3 remains attached to the TfR, and thus the 8D3-

AuNP conjugates remain in this location, possibly until their reinternalization, without 

reaching the brain parenchyma beyond the basal lamina. 

 

All these results provided relevant information at an ultrastructural level concerning 

the dynamics of the AuNP cargo when transported by the possible molecular Trojan 

Horse 8D3. However, the study was limited by the use of two-dimensional (2D) image 

analysis. A three-dimensional (3D) structural study could provide significantly more 

insight into the transport of molecules across the BBB, and more knowledge 

concerning the trafficking of the AuNPs. 

 

Serial block-face (SBF) imaging is a recently devised approach using scanning electron 

microscopy (SEM) to acquire serial images and reconstruct large tissue regions in 3D 

(Ohno et al. 2015). In SBF-SEM, surface areas of the embedded tissue blocks are 

serially cut and removed with the built-in diamond knife in the SEM chamber between 

the cycles of SEM imaging. Because the consecutive areas of tissue of the specimens 

are imaged with surface milling, this method generates largely pre-aligned images, 

which speeds up 3D reconstruction of the target structures. The method has been 

extensively used to explore the connectivity of the neuronal network, but only rarely 

to study the structure of the BBB, and no SBF-SEM data exist on the transport of 

molecules across this barrier. 

 

The objective of the present work is to determine whether SBF-SEM is a useful tool to 

study the transcytosis of molecules across the BBB, and their accurate localization both 

inside BCECs and within other cellular structures of the brain parenchyma. To this end, 

we coated AuNPs with 8D3 mAb, we administered the resultant 8D3-AuNP conjugates 

intravenously to mice, and 2.5 hours after administration, we processed the mouse 

brain for SBF-SEM. We specifically aimed to establish and optimize the configuration 
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for performing 3D reconstructions of brain regions containing BBB segments and 

characterize the vesicles containing AuNPs. If the technique is shown to be 

appropriate, we will complement our previous 2D studies with detailed 3D 

reconstructions of BBB segments as well as vesicles containing AuNPs situated within 

BCECs. This will provide additional information regarding these endocytic vesicles and 

the endosomal processing that occurs inside BCECs. 

 

MATERIALS AND METHODS 

 

Animals  

Male ICR-CD1 mice (four months old) were used for the study. They were kept in 

standard conditions of temperature (22 °C ± 2 °C) and light−dark cycles (12:12 h, 300 

lx/0 lx) and had access to food and water ad libitum until the day of the experiment. All 

experimental procedures were reviewed and approved by the University of Barcelona 

Animal Experimentation Ethics Committee (DAAM 7505). 

 

Formation of the 8D3-AuNP conjugates 

 

8D3−AuNP conjugates were formed as described in Cabezón et al. (2015). Briefly, the 

anti-TfR 8D3 mAb (AbD Serotec, U.K.) was covalently attached to AuNPs measuring 20 

nm in diameter using the InnovaCoat GOLD Covalent Conjugation Kit (Innova 

Biosciences, Cambridge, U.K.). Then, the buffer was changed to phosphate-buffered 

saline (PBS), pH 7.2, via four centrifugations of 20 min each at 9000 g, discarding the 

supernatant and resuspending the pellet in 1200 μL of PBS until the last centrifugation, 

when the pellet was resuspended in PBS to a final volume of 700 μL.  

 

Administration of the 8D3-AuNP conjugates and brain obtention 

 

The mice were anesthetized with isoflurane, and a bolus of 300 μL of PBS, pH 7.2, 

containing the 8D3−AuNP conjugate at a concentration of 430 μg of 8D3/mL was 

intravenously injected into the caudal vein. After 2.5 h of recirculation, the animals 

were anesthetized with 80 mg/kg of sodium pentobarbital by an intraperitoneal 



 Published in Cabezón et al.; Histochem Cell Biol 2017. 

6 
 

injection, the thoracic cavity was opened, and an intracardiac gravity-dependent 

perfusion of 50 mL of PBS followed by 50 mL of paraformaldehyde (PF, Sigma-Aldrich, 

Madrid, Spain) at 4% and glutaraldehyde at 0.1% in phosphate buffer 0.1 M was 

performed. The brains were then removed and kept in the same solution. 

 

Brain sample processing for SBF-SEM 

 

Coronal brain sections 1 mm thick were obtained using a vibratome. The hippocampal 

and cortical areas were then selected, dissected, and post-fixed overnight in PF at 4% 

and glutaraldehyde at 0.1% in phosphate buffer 0.1 M. The fixative was then 

substituted for PF at 2%, and tissue samples were stored in this solution for 3 days at 4 

°C. Samples were then prepared for SBF-SEM, based on the Deerinck and Ellisman 

(2010) protocol. The samples were washed in PB 0.1 M and post-fixed with reduced 

osmium (2% osmium tetroxide (OsO4) containing 1.5% potassium ferrocyanide) for 1 h 

at room temperature. Sequentially, the samples were placed in 1% thiocarbohydrazide 

solution in ddH2O for 20 min, stained with 2% OsO4 in ddH2O for 30 min at room 

temperature, and incubated in 1% aqueous uranyl acetate (UA) overnight at 4 °C. 

Between each of the preceding steps, the samples were washed five times, for three 

minutes each time, with ddH2O. All the stains were filtered through a 0.22 µm filter, 

immediately before use. 

 

After overnight incubation, the samples were washed again with ddH2O five times for 

three minutes each time, and en bloc Walton’s lead aspartate staining was performed 

for 30 min at 60 °C. To prepare the lead aspartate solution, first, 0.399 g of L-aspartic 

acid (Sigma-Aldrich) was dissolved in 100 ml ddH2O, and the solution was adjusted to 

pH 3.8 with 1N KOH. Then, 0.066 g of lead nitrate was dissolved in 10 ml of the aspartic 

acid stock solution, and the pH was adjusted to 5.5 using 1N KOH. 

 

The tissue was then washed with ddH2O five times for three minutes each time, and 

dehydrated through a graded ethanol series (30%, 50%, 70%, and 90%, for 10 min, 

twice each), followed by 100% propylene oxide (for 10 min twice) at room 

temperature. The samples were then infiltrated with TAAB Hard Premix resin at ratios 
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of 1:1, 2:1 and 3:1 with the resin: 100% propylene oxide, 30 mins per incubation. 

Finally, the samples were incubated in 100% resin for 2 x 30 mins, before embedding in 

a mold with 100% fresh resin. The samples were cured for 48 h at 60 °C. 

 

Each embedded sample was mounted on an aluminum pin and trimmed to a block face 

of 0.4 x 0.4 mm2 using a Leica EM UC6 UltraMicrotome (Leica Microsystems). In order 

to minimize the charging of the specimen, the samples were silver-painted and 

sputter-coated (Quorum Technologies, UK) with a thin layer (10 nm) of gold palladium. 

 

Serial block-face scanning electron microscopy 

 

The stained blocks were imaged using a Gatan 3View serial block-face imaging system 

(Gatan, Pleasanton, CA) installed on a FEI Quanta 250 FEG scanning electron 

microscope (FEI Company, Hillsboro, OR). The SEM was operated in low vacuum. 

Image stacks were collected using different setting parameters, depending on the level 

of magnification. These parameters are detailed in the results section. 

 

Image processing and analysis 

 

The resulting datasets were assembled into volume files and aligned using Digital 

Micrograph (Gatan UK, Abingdon, UK). 3D reconstruction of the desired structures was 

performed in image stacks using Imaris 8.0.2 and Imaris 7.2 software (Bitplane). The 

structures deemed of interest to determine the location of the AuNPs, such as the 

cellular components of the neurovascular unit (i.e. BCECs, basal membrane, tight 

junctions, pericytes and astrocytes) and the intracellular endocytic vesicles of the 

BCECs, among others, were reconstructed in 3D by manually tracing the area in each 

plane and surface-rendering next. To obtain the 3D representation of the AuNPs, Fiji 

software (Schindelin et al. 2012) was used following the strategy indicated in the 

results section. 
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RESULTS 

 

In an initial attempt to perform a 3D reconstruction of the BBB and to observe the 

localization of the AuNPs, capillary segments from different brain samples were fully 

3D rendered using low-magnification image stacks (10,000-25,000 x). Images were 

acquired from regions of interest (ROI) of approximately 30,000 nm3. It must be 

pointed that the presence of bare resin in the lumen of the capillary, which causes 

electrical charging of the sample and therefore produces tissue deterioration and even 

breakage, restricts the possibility of obtaining long series of images. At this level of 

magnification, we used an incident electron beam with an energy of 2.3-2.4 kV and 

spot size 3, and a chamber pressure of 50 pa was applied to scan across the samples at 

a pixel dwell time of 60 µs. As capillaries are not straight and vertical structures, but 

twisted, and bifurcate within the brain parenchyma, it is difficult to acquire long 

capillary segments inside the available field of view. However, these conditions 

permitted us to monitor and acquire images of some transversal capillary segments 

along the z-axis. These allowed us to identify the cellular elements that form the 

neurovascular unit and to reconstruct them in 3D. Online Resources 1 and 2 contain 

the images corresponding to two different stacks obtained at low-magnification. In 

Online Resource 1, the magnification is 14,900 x and the voxel size is 16 x 16 x 100 nm. 

Some representative serial images from this stack can be observed in images A1 to C1 

in Figure 2. In the same figure, images A2 to C2 indicate the structures selected from 

A1 to C1 to perform the 3D reconstruction. In this stack, the rendered structures were 

two adjacent BCECs attached by a tight junction, a pericyte and two different 

astrocytic endfeet. After the 3D reconstruction, the structures can be visualized from 

different perspectives, as can be observed in Online Resource 3. Some frames from 

this video are presented as images D1 to D3 in Figure 2. In Online Resource 2, the 

magnification is 11,130 x and the voxel size 22.1 x 22.1 x 70 nm. In this case, the 

rendered structures were a BCEC and a pericyte, and their respective nuclei, and all of 

them can be visualized from different perspectives on Online Resource 4. Figure 3 

shows some images from the stack, some selected structures in these images and 

some frames from Online Resource 4. Although this level of magnification permits 

visualization of the neurovascular unit and even the vesicles inside the BCECs (Figure 3, 
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C1 inset), the AuNPs cannot be clearly visualized: on one hand, due to the low 

resolution in the x-y plane and on the other hand, due to the backscattered electron 

signal. 

 

Due to these technical problems, a second attempt with higher magnification imaging 

of capillary segments was considered to achieve sufficient resolution to visualize the 

AuNPs. Thus, we acquired higher magnification images (> 30,000 x) from ROIs of 

approximately 3,000 nm3. We used an incident electron beam with an energy of 3.5 kV 

and spot size 3, and a chamber pressure of 50 pa was applied to scan across the 

samples at a pixel dwell time of 60 µs. At this magnification level, BCECs and the basal 

membrane of the endothelium can be observed, as well as both the vesicles inside the 

BCECs and the AuNPs contained in them. Figure 4 is an example of these images: A1-

A6 are selected serial images from an SBF-SEM high-magnification image stack (35,850 

x; voxel size is 4.8 x 4.8 x 100 nm). Insets from images A3 and A6 are magnified in B3 

and B6 respectively, in order to illustrate some vesicles. In C3 and C6, the brightness 

and contrast of these insets were modified in order to enhance visualization of the 

AuNPs contained in the vesicles. The sequential images in the stack allowed us to 

reconstruct in 3D structures such as the basal membrane or the vesicles located inside 

the BCEC, by manually tracing the area in consecutive planes. However, this strategy 

cannot be used with AuNPs, because they are located in one or another section, but 

never in more than one section, so it is impossible to reconstruct these particles in 3D 

by manually tracing the area across consecutive planes. Thus, a copy of the stack was 

preprocessed using the Fiji software in order to later replace the AuNPs in each section 

by 3D spheres of similar size (20 nm diameter) in Imaris. Since the AuNPs are the 

darkest structures in these images, they could be segmented with the Fiji software 

using a low threshold value. An example of the AuNPs segmentation can be observed 

in Figure 4, images D3 and D6, which correspond to the regions shown in B3 and B6 

respectively. It must be pointed that in some individual cases, the darkness of the 

vesicle hinders visualization of the AuNPs, and thus some AuNPs may be missing from 

the 3D reconstruction. After segmentation, the resulting binary particles were split 

using a watershed to allow individual reconstruction. The final binary stack of images 

was loaded into Imaris as an additional channel of the original stack and the AuNPs 



 Published in Cabezón et al.; Histochem Cell Biol 2017. 

10 
 

were rendered as spheres in the final 3D reconstruction. Thus, this level of 

magnification and this strategy allowed for reliable 3D reconstructions in which the 

structures of the BBB, such as the BCECs, their basal membrane, and the vesicles 

located in the BCECs, as well as the precise location of the AuNPs could be visualized 

simultaneously. To facilitate the visualization of the vesicles and the AuNPs, we 

previously removed the region corresponding to the lumen using the Fiji software. 

Representative images of the 3D reconstruction from the SBF-SEM high-magnification 

image stack that contains sections A1-A6 can be observed in Figure 4, images E1 and 

F1. An animation of this reconstruction can be observed in Online Resource 5. In the 

reconstructions performed at high-level magnification, we observed that all AuNPs 

found (we found a total of 96 AuNPs in the different samples analyzed) were located 

inside endocytic vesicles in the BCECs. No AuNPs were found on the luminal side of the 

BCEC or in the basal membrane of the endothelium. Regarding the distribution of the 

AuNPs inside the vesicles, in some cases they were randomly distributed (Fig 4, image 

E2), while in others they appeared in the marginal region of the vesicle, near the 

membrane (Figure 4, image F2). With respect to the shape of the vesicles, the 3D 

reconstruction allowed us to observe that although some of the vesicles containing 

8D3–AuNP conjugates present a spherical or ellipsoidal form, they are often branched 

structures with irregular shapes, which sometimes even seem to merge with each 

other forming a complex endosomal network. As can be observed in Figure 4, some 

vesicles that show a spherical or ellipsoidal shape in a 2D plane can be considered part 

of a complex and irregular structure when subsequent sections are analyzed as a 

whole 3D structure. 

 

DISCUSSION 

 

As stated above, our first goal in this work was to establish and optimize the imaging 

conditions and configuration settings of the SBF-SEM to apply this technique to BBB 

sections, and to study the transport of AuNPs coated with an anti-TfR mAb. 

 

The main problem with the use of this technique for our application was the charging 

of the samples. In order to decrease this charging, we used intensive osmium reactions 
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and en bloc staining with heavy metals before embedding the samples, as well as 

sputter coating. However, the presence of bare resin in the lumen of the capillaries, 

the need for higher-magnification images, the use of higher voltages and the longer 

dwell times used to enhance both the signal-to-noise ratio and visualization of the 

AuNPs, caused charging and damage to the samples, hampering the serial imaging 

process. These observations are in agreement with previous work (Nguyen et al. 2016; 

Ohno et al. 2015) and currently, efforts are being made to overcome this problem, 

which is particularly prominent in SBF-SEM imaging. Nguyen et al. showed that 

increasing conductivity by using carbon-based conductive resins significantly reduces 

the charging of the samples during SBF-SEM imaging, and improves the resolution of 

the images by facilitating their cutting (Nguyen et al. 2016).  

 

Meanwhile, the small size of the AuNPs (20 nm) was the major limiting factor as well as 

the key challenge when trying to visualize and render the particles in 3D. Low-

magnification imaging was relatively easy, as the lower resolution of the images 

required a lower accelerating voltage, and thus there was less charging in tissue. As 

shown in Figures 2 and 3, this level of magnification permits acquiring images of a large 

field of view and monitoring of relatively long capillary segments (more than 10 µm 

long), and results appropriate for the identification and 3D reconstruction of cellular 

elements and some subcellular elements as nuclei. However, this resolution was too 

low for clear identification of the AuNPs. This led us to increase the level of 

magnification and re-establish the setting parameters. A higher accelerating voltage 

permitted high-magnification image acquisition with sufficient resolution for AuNP 

visualization, as exemplified in Figure 4. These conditions dramatically increased the 

charging of the tissue, but permitted us to acquire serial images (a maximum of 50 

images in each stack) that are sufficient to study the AuNPs trafficking. 

 

Thus, adjusting the balance among the different variables listed above (voltage, level 

of magnification, dwell time, chamber pressure and image size) and working under 

very specific conditions (as detailed in the Results section), allowed us to overcome 

this charging problem. We thus achieved the goal of reconstructing BBB segments and 

vesicles containing AuNPs in 3D, as well as precisely localizing the AuNPs within the 
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cellular structures. As it was impossible to reconstruct the AuNPs in 3D by manually 

tracing the area in consecutive planes, we applied an innovative method in which we 

replaced the AuNPs by 3D spheres of a similar size at the exact same coordinates 

inside the tissue volume. In this way, we were able to visualize the AuNPs as 3D 

spheres inside the 3D tissue reconstructions. 

 

A further consideration is that although theoretically the in-chamber ultramicrotome 

can cut sections as thin as 20-30 nm, we found that due to the presence of bare resin 

in the lumen of the capillaries and the ensuing charging, it was impossible to cut 

sections thinner than 70 nm. Consequently, information was lost when parts of the 

sample that did not contribute to the image were cut away. This led us to address that 

some information was lost along the z-axis. Although this loss of information does not 

seem to influence the rendering of subcellular elements such as the vesicles, it may 

affect the visualization of some AuNPs. We therefore need to bear in mind that there 

might be more AuNPs than those observed. There is an alternative SEM-based volume 

imaging method, in which tissue can be removed by milling the sample surface with a 

focused ion beam (FIB) (Briggman and Bock 2012; Kremer et al. 2015). Both methods 

are based on the principle of block-face imaging, in which the surface of a plastic 

embedded block of cells or tissue is imaged and then sectioned and reimaged (Kremer 

et al. 2015). However, the FIB-SEM technique offers a higher z-resolution of 5 nm and 

allows imaging at the isotropic voxel (Briggman and Bock 2012; Kremer et al. 2015). 

This technique is probably best suited for AuNP localization and 3D rendering, as it 

currently provides the highest 3D resolution, but it is limited to small volumes, 

whereas SBF-SEM can handle much larger volumes. Moreover, ion beam milling is 

much slower than sectioning with a diamond-knife, and the need for milling 

consistency also restricts the available field of view (to as little as 20 µm2) (Peddie and 

Collinson 2014). As discussed by Briggman and Bock, there is currently no one best 

volume EM imaging method (Briggman and Bock 2012): each method involves 

tradeoffs in size, resolution and completeness. Thus, a combination of both techniques 

would be the best choice, as they can complement each other. In any case, we can 

conclude that, although we probably did not visualize all the AuNPs during the process, 
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the techniques and strategies used in the present work provide information on the 

transport or trafficking of AuNPs coated with an anti-TfR mAb on the BBB. 

 

After obtaining the high-magnification images, the subsequent 3D analysis of the 

vesicles containing AuNPs yielded considerable information on the size and shape of 

these vesicles and the organization of the endosomal network inside BCECs. It also 

allowed us to complement our previous 2D TEM studies with regard to how AuNPs 

coated with the anti-TfR 8D3 antibody are processed in BCECs (Cabezón et al. 2015). 

 

In our previous work, we postulated that vesicles that contain AuNPs were generally 

spherical or ellipsoidal vesicles of different sizes. However, the passage from 2D to 3D 

has revealed that these vesicles, at least those that contain a high number of AuNPs, 

are not large spherical or ellipsoidal vesicles but complex vesicular networks of up to 1 

µm in size, and maybe even larger. So we can now assume that many of the 

supposedly spherical or ellipsoidal vesicles we analyzed in a 2D plane are in fact part of 

these complex networks; thus, the number of AuNPs per vesicle may be significantly 

higher than we concluded in our previous 2D study. In the present study, we 

administered the AuNPs coated with 8D3 intravenously and analyzed vesicles in BCECs 

by killing the animals 2.5 h after the intravenous administration. The fact that we 

observed high numbers of AuNPs in the complex networks suggests that endosomal 

sorting occurs relatively quickly. In our previous 2D study, and after 2.5 h of 

recirculation, 95% of the AuNPs were observed inside endocytic vesicles of the BCECs; 

4.6% of the AuNPs were located in the basal membrane of the endothelium, attached 

to the abluminal membrane of the BCEC; and just 0.2% of AuNPs were found located in 

the lumen of the capillary, attached to the luminal membrane of the cell or being 

internalized via clathrin-coated pits. In the present work, all the AuNPs were found 

inside endocytic vesicles, in agreement with the most frequent localization pattern 

observed in the previous study. In any case, pooling the information obtained from 

both the present and the previous study, we can conclude that AuNPs individually 

internalize inside BCECs via clathrin-dependent endocytosis. In the main route, the 

resulting endocytic vesicles fuse with early endosomes and enter the endosomal 

network, where vesicular fusion, maturation, sorting and rearrangement occur. It must 
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be pointed that, in the case of the endosomal route of transferrin internalized via TfR, 

the resulting sorting endosomes may become acidified by ATP-dependent proton-

pumps before their maturation into late endosomes. With this acidification, some 

receptors (TfR) and ligands (transferrin) dissociate and are recycled for another round 

of delivery (Hillarieau and Couvreur 2009). This pattern matches the AuNP localization 

observed in our previous 2D study. There, some of the AuNPs were observed attached 

to the vesicle membrane, whereas others seemed to be dissociated from the 

membrane, and possibly from the TfR. In the present 3D study, we observed similar 

patterns: while in some cases the AuNPs are randomly distributed inside the vesicle, in 

some others they seem to be in a peripheral disposition and thus probably attached to 

the vesicle membrane. In any case, in this route, the AuNPs end up accumulated in 

these complex vesicular networks, whose nature remains to be clarified. 

 

Observing the vesicular network (Figure 4, images E1 and F1), it can be seen that 

AuNPs accumulate in certain regions, whereas extended areas in other regions of the 

vesicular network are completely free of AuNPs. The presence of clusters of AuNPs 

inside the vesicular network may reflect the localization of the subdomains of the 

complex network, which could be useful to describe the trafficking of the AuNPs. In 

order to identify and characterize the different subdomains of the vesicular networks, 

utilization of SBF-SEM together with TEM (conventional or combined with 

immunostaining) would be a promising strategy, worthy of consideration in future 

studies. Moreover, it would be interesting to study earlier and later time points than 

the 2.5 h used in the present study, such as the 10 min or 24 h time points analyzed in 

our previous 2D study. In any case, although most of the vesicles follow this main 

route, in our previous 2D study we observed that some AuNPs reached the basal 

lamina of the endothelium, remaining attached to the basolateral membrane of the 

BCEC. In the present study no AuNPs were found in the basal membrane of the 

capillaries, probably due to the small number of them that complete transcytosis and 

the limited number of capillary images that we have been able to analyze in this study. 

Be that as it may, in the previous study we observed no AuNPs far away from the basal 

membrane, i.e., in the brain parenchyma. 
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In summary, SBF-SEM imaging and 3D reconstruction of vesicles containing AuNPs 

provide complementary information on their morphology and reinforce the 8D3-AuNP 

trafficking model proposed in our previous study. Combining this technique with other 

volume EM imaging techniques is worth of considering for studies of drug transport 

across the BBB. The attachment of AuNPs to drugs or carriers could be a good strategy 

to monitor these substances in the most precise and accurate manner currently 

available. 
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FIGURE CAPTIONS 

 

Fig. 1 Deduced trafficking of 8D3-AuNPs across the mouse BBB (from Cabezón et al., 

2015). The 8D3−AuNPs internalize individually within BCECs via TfR-mediated and 

clathrin-dependent process. These vesicles then follow at least two different routes. 

On one hand, most vesicles enter intracellular processes of vesicular fusion and 

rearrangement in which the AuNPs end up accumulated inside vesicles with a high 

AuNPs content. On the other hand, a small percentage of the vesicles follow a different 

route in which they fuse with the abluminal membrane and open to the basal 

membrane. In these cases, the 8D3−AuNPs remain attached to the abluminal 

membrane, which suggests an endosomal escape, but not dissociation from the TfR. 
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Fig. 2 (A1-C1) Three selected serial images from an SBF-SEM low-magnification image 

stack. The complete sequence of images can be visualized in Online Resource 1. (A2-

C2) Colored areas represent some of the structures that were selected and manually 

traced in A1-C1 respectively, for the later 3D reconstruction. The selection process was 

performed on all the serial images in the stack. The resulting 3D reconstruction of the 

capillary segment containing the different cellular elements that form the 

neurovascular unit can be observed in the video contained in Online Resource 3. (D1-

D3) Three snapshots of the Online Resource 3 video showing the 3D reconstruction: 

(D1) Two adjacent endothelial cells (ec1 and ec2) can be observed. Image B1 is 

superimposed on the reconstruction. (D2) A pericyte rendering is added to the 

reconstruction. (D3) The complete 3D reconstruction of the BBB segment, which 

includes the renderings of the two adjacent endothelial cells, the pericyte and two 

astrocytic endfeet (ae1 and ae2). Abbreviations: ec, endothelial cell; p, pericyte; ae, 

astrocytic endfeet. Scale bar: 5 µm 

Fig. 3 (A1-C1) Three selected serial images from an SBF-SEM low-magnification image 

stack. The complete sequence of images can be visualized in Online Resource 2. (A2-

C2) Colored areas represent the structures that were selected and manually traced in 

A1-C1 respectively, for later 3D reconstruction: an endothelial cell, a pericyte and their 

respective nuclei. The selection process was performed on all the serial images in the 

stack. The resulting 3D reconstruction can be observed in the video contained in 

Online Resource 4. (D1-D2) Two snapshots of the video showing the 3D reconstruction. 

In D1, part of the tissue volume is represented to contextualize the 3D reconstruction 

of the capillary segment. Abbreviations: ec, endothelial cell; n1, endothelial cell 

nucleus; p, pericyte; n2, pericyte nucleus; bm, basal membrane. Scale bar: 5 µm 
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Fig. 4 (A1-A6) Six selected serial images from an SBF-SEM high-magnification image 

stack. Arrows indicate vesicles containing AuNPs. (B3 and B6) Original insets from A3 

and A6, respectively. (C3 and C6) Insets from A3 and A6, respectively, in which the 

brightness and contrast has been modified in order to enhance visualization of the 

AuNPs. (D3 and D6) Images corresponding respectively to the insets from A3 and A6 

that were obtained after applying the process of binarization, which permits us to 

localize the AuNPs. (E1 and F1) Representative images of the 3D reconstruction of the 

SBF-SEM high-magnification image stack that contains images A1-A6. AuNPs are 

represented as green spheres. Blue regions are the endothelial vesicles. bm: basal 

membrane; lum: lumen of the capillary. An animation of this reconstruction can be 

observed in Online Resource 5. (E2 and F2) Insets from E1 and F1, respectively. The 

arrow in E2 indicates AuNPs that are irregularly distributed inside the vesicle, while the 

arrow in F2 indicates AuNPs with a peripheral distribution. Scale bar: 2 µm 

ONLINE RESOURCE CAPTIONS 

Online Resource 1 Serial images from an SBF-SEM low-magnification image stack. The 

magnification is 14,900 x and the voxel size 16 x 16 x 100 nm 

Online Resource 2 Serial images from an SBF-SEM low-magnification image stack. The 

magnification is 11,130 x and the voxel size 22.1 x 22.1 x 70 nm 

Online Resource 3 Video illustrating, from different perspectives, two adjacent BCECs 

(different shades of red), a pericyte (blue) and two different astrocytic endfeet (different 

shades of green) rendered after processing the images from the stack shown in Online 

Resource 1 
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Online Resource 4 Video illustrating, from different perspectives, a BCEC (red) and a 

pericyte (blue) and their respective nuclei (bright red an bright blue, respectively), 

rendered after processing the images from the stack shown in Online Resource 2 

Online Resource 5 Video illustrating, from different perspectives, the basal membrane 

(yellow), the vesicles in the BCEC (blue) and the AuNPs contained in those vesicles 

(green spheres). The SBF-SEM high-magnification images of the stack were obtained at 

35,850 x magnification and the voxel size is 4.8 x 4.8 x 100 nm 
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Figure 2 
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Figure 3 
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Figure 4 

 

 
 

 

 

 


