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Abstract

In this paper, we derive an optimal test for determining break positions in
Gaussian linear regressions. The procedure is an admissable rule in a multiple
decision theory setting and the results are exact and valid in small samples. The
analysis indicates that regression design can have a very signi�cant e¤ect on the
ability of the optimal test to �nd the position of the break. Some regression designs
make it all but impossible to successfully identify a break location in certain subsec-
tions of the sample span. Two graphical devices, the cq and !-plots are available to
identify those subsets of the sample span where locating a break position is di¢ cult
or impossible.
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1 Introduction

Structural stability has long been an important issue in statistics and econometrics. In

the frequentist tradition, a lot of work has concentrated on detecting the presence of
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structural change and �nding the corresponding location, see for example, the surveys

by Perron (2006) and Aue and Horvath (2013). The corresponding Bayesian literature is

also large and includes Carlin et al. (1992), Barry and Hartigan (1993), Stephens (1994)

and Martin (2000). The present paper contributes to the structural change literature by

(a) deriving a decision theory based exact small sample optimal procedure for �nding the

location of a structural change in the sample span of Gaussian linear regression models

and (b) analysing of the e¤ect that the regression design has on the performance of this

procedure. We consider two speci�c scenarios. The �rst is where the observations are

sequenced by the order statistics of a variable of interest as in a cross section (CS) study

and the second is where the observations are ordered as a time series (TS), for example,

when the model contains trends and/or seasonal components.

The modelling situation we envisage is one where there are grounds for thinking that

an attribute or episode may trigger a disruption in a currently understood relationship

but it is not de�nitive that a resultant structural change should manifest itself in the

model and in the associated data. In general, the ability to determine the existence of a

change depends on a) the size of the change, b) the model and c) the sample data used.

The sample data employed, the span of which may vary as it is chosen by the investigator,

maps the potential (unknown) �xed location of the change into a relative position (also

unknown) in the sample span. Hence, the possible change location may be thought of as

�xed in an absolute sense while its relative position in the sample span may vary. One

has to bear in mind that large changes will overwhelm any design e¤ect and be easily

detectable. Similarly, for small changes the design e¤ect will dominate and changes will

remain undetectable. In what follows, change sizes are considered to be moderate. In the

TS context, even if a disruptive episode were to consist of a one-o¤ event and did induce

a change in our model/data, its date is deemed not to be known, perhaps because the

e¤ect of the trigger event takes place with a lag or even because the event itself had been

anticipated. In the CS case, we simply may not know at which level of the treatment
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variable an anticipated e¤ect might take place. Determining that a change has occurred

is a necessary but not a su¢ cient condition for �nding its location.

The type of structural change we consider is often described as a structural break,

in that a coe¢ cient of the model is deemed to change at some unknown location and

continues to remain at the new level for the duration of the sample. Thus, we have a

model with no change, a model with the change in position 2, a model with a change in

position 3 and so on until positionN , the sample size. Thus there areN competing models

in total and the task is to choose between them. A multiple decision theory framework

is used since there are more than two decisions to be made and we follow closely the

treatment of Ferguson (1961) but modify the content there to deal with structural change.

Decision theory allows for the construction of an optimal break location procedure which

is uniform with respect to the break parameter. It turns out that the minimum sum of

squares (MSS) procedure proposed by Bai (1994,1997) in the TS context is equivalent to

the decision theory approach but the latter involves the computation of just one regression

as opposed to O(N) such computations in MSS. The optimal procedure consists of two

parts: an initial test to check if a break has occurred and, if so, an identi�cation step to

reveal the location of the break1. Hence, to successfully identify a break location, it is

required that the test has power and that the resulting suggested location is not spurious.

We introduce the cq plot which displays the e¤ect that any given regression design has

on the ability of the procedure to determine the existence of a break as the potential break

position varies over the sample span. The cq depends on the regression design and the

types of break being investigated. These plots may be used to identify hot and blind spots

in the span i.e. regions where it is, relatively speaking, easier and harder to determine if

there is a break should the break be located therein; these subsets are additional to the

obvious cases at the extremities of the span where it is all but impossible to determine if

1This sort of optimality is in contrast to studying the power of break tests i.e. the ability to reject
the null of no break, typically against some weighted combination of the possible break points; see, for
example, Andrews et al. (1996) and Forchini (2002).
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there has been a break. So, given the possibility of a trigger situation or event, the cq plot

tells whether or not, discovering the existence of an induced break will be signi�cantly

impacted by the model and the current data. An analysis of some simple trend models and

simulated data from more complicated models, quanti�es the e¤ect that certain designs

may have and shows that it can be almost impossible to determine if there has been a

break should it occur in certain subsets of the sample span. These subsets are recognisable

using the cq plots.

The analysis and simulations also show that it is possible for the procedure to have

very high power but little ability to identify the correct break location. This phenomenon,

unfortunately, leads to spurious identi�cation of break locations. Certain design features

can make it impossible to determine the correct location and we use a second graphical

device, the !-plot, to help identify such di¢ cult cases, although the issue of spurious

breaks cannot be resolved in general. As far as we are aware the analysis presented here,

of the performance of an exact optimal break locating strategy in regression, is the only

one currently available.

The plan for the rest of the paper is as follows. Section 2 applies the decision theory

framework to regressions and a rule, based on CUSUM statistics, for optimally identifying

break locations is derived. In Section 3, the e¤ects of the regression design on the CUSUM

are analysed. A graphical technique, the cq plot, is suggested to identify hot spots and

blind spots in the sample span. The utility of the cq plots is explored by examining

a selection of techniques for modelling trends and seasonality. Some simulations are

conducted in Section 4. They illustrate how the cq plot can identify subsections of the

sample span where the optimal rules will have power and other subsections where they

will not. Certain features of some designs can make it virtually impossible to identify

the break location and the !-plot is introduced to help identify such cases. An empirical

analysis of is given in Section 5 while Section 6 contains conclusions.
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2 Optimal Structural Break Tests in Regression

The set of models we consider for the observations is the multiple regression

y = X� + �!q� + " (1)

" s N(0; �2I)

where y is a N �1 vector of observations, X is a N �k full rank matrix of variables that

is conditioned on, � is a vector of unknown coe¢ cients and " is a vector of independent

normal disturbances with zero mean and variance �2. The form of the structural break is

captured by !q� with !q being a vector and � a scalar which may be positive or negative

and q is a member of a set Q. The size of the breaks are calibrated against the disturbance

standard deviation, �. Much of the algebra we employ is still valid when !q and � are

matrices and vectors respectively, but we concentrate on the case where � is a scalar

because optimal rules that are uniform in �2 are available which allows procedures to be

assessed independently of the value of � (and indeed of �, �2). Our problem is to decide

which of the hypotheses represented by the set of Qn possibilities generated by the class

!q : q 2 Q should be accepted. So for example, if we set !q = iq = (0; :::; 0; 1:::; 1)0

where the 1�s start at q = NB + 1, with the convention that !0 � !N = (0; 0; :::; 0)0, then

we are considering models with a shift, in the intercept only, at the unknown position

NB 2 [1; N � 1] and also the model of no shift !0, giving Qn = N possibilities in total.

In structural break problems, !q is zero up to position q � 1 and takes some non zero

values thereafter. In the CS situation, q represents the observation number of the break

as determined by the variable by which the observations in [y X] were ordered while in

the TS context q represents the timing or date of the break. The vector !q could also

be speci�ed as !q = �q = (0; :::; 0; xq;;j; :::; xN;j)
0 corresponding to a possible change in the

coe¢ cient of the jth regressor. Again in the CS case, xq;j is the q-th order statistic of
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the j-th variable according to which the observations were arranged and in TS problems

q represents a date. In fact, we work with !q = �qwq, where wq is a sequence of scalars

representing weights that we may wish to attach to the competing hypotheses, allowing,

for example, changes of a greater magnitude to take place near the extremities of the

sample span. Hence our general multiple decision problem is to decide which of the

change point models de�ned by the set Q = [1; 2; :::; N ] (Qn = N), is preferred. A choice

from Q identi�es either the model with no breaks or a possible break point. For the

purposes of this analysis, we consider that there is a single possible change but allow for

the possibility that no shift has occurred. We do not consider possible simultaneous shifts

in the regression variance because of confounding (See McCabe (1988) for a discussion of

other multiple decision procedures as well a more general analysis of structural stability

(including multiple breaks) in location and scale).

For ease of reference, we use � = q=N to indicate the fraction of the sample span

where a break may take place and when q = NB +1, � represents the true break fraction.

Other notations that are used in the following text are r =My, M = I �X (X 0X)�1X 0,

the studentised r, er = r= (r0r)1=2, and
cq = !

0
qM!q:

We shall see later that we may interpret cq as an index of how di¢ cult it is to detect a

change point should it occur at position q; if cq is small it is di¢ cult while it is relatively

easier for large cq. So, from a pragmatic point of view, it may be thought worthwhile to

positively weight the hypotheses under consideration in regions where cq is small to have

any hope of success should the true break location lie there. Hence, we consider deciding
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between

H0 : !q = !0

Hq : !q = wq�q = c
�1=2
q �q q = 2; :::; N (2)

where we have weighted the hypotheses using cq to create larger shifts in relatively di¢ cult

regions.

Now the nuisance parameters of the problem are �, �2 and the sign of �. We seek to

eliminate them by invariance. The �rst rule is that the problem be invariant under the

addition to y of vectors of the formX� while the second is invariance under multiplication

of y by scalars c 6= 0.2

The following Proposition is a mild extension of Theorem 4.1 of Ferguson (1961, p

278) and paraphrases his formulation. Like the Neyman-Pearson Lemma, the Proposition

speci�es the structure of an optimal rule.

Proposition 1 (Ferguson) The decision rule that decides to accept there is no break

when

max
q=2;:::;N

c�1q
�
�0qer�2 � K

and to decide that there is a break at position q� when c�1q�
�
�0q�er�2 = maxq=2;:::;N c�1q ��0qer�2 >

K is invariant admissible when the hypotheses are given by (2).

The proof of this proposition is the same as Ferguson�s Theorem 4.1 except that bjj

there is replaced by the equivalent cq here3. In hypothesis testing problems it is more

2Notice that this is not the same invariance rule that is commonly constructed when testing parameters
in the covariance structure of the linear regression model (e.g. testing autocorrelation) where the constant
c > 0 is used.

3The rule of Proposition 1 is also Bayes with respect to a prior that gives equal weight to the hypotheses
and is uniform in �2.
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usual to classify the rules by � 2 (0; 1) (rather than K) where

� = 1� P [accept H0jH0 true]

and by �xing � = 0:05, say, we can �nd a critical value, cv, such that

P

�
max
q
c�1q
�
�0qer�2 > cv� = �

and implement the rule in practice. We refer to this optimal rule as a weighted cusum (W -

CUSUM) since �0qer cumulates the studentised residuals over q. Invariant admissibility
for the W -CUSUM means the probability of deciding a break at position q, given the

break did occur at q, i.e. P (Dec qjHq), cannot be increased by any other invariant rule

without decreasing the equivalent P (Dec sjHs) at some other point s 6= q.

Now the minimum least squares (MSS) procedure introduced by Bai (1997) in the

TS context proceeds as follows to �nd a break point in the model class y = X�+!q�+ ".

Regress, for each q 2 [2; N ] , the dependent variable, y, on X and !q where, successively,

!q = (0; :::; 0; !q; :::; !N)
0 and compute the sum of squares of the residuals SS (q). The

break date is determined to be the q that minimises SS (q) ; i.e., the argmin. The Ap-

pendix shows that the MSS break location may be computed via a single regression and

it is equivalent to the argmax of the W -CUSUM . That is, it is shown that

argmin
q
SS (q) = argmax

q
�̂2qcq = argmax

q
c�1q
�
�0qer�2 (3)

where �̂q the OLS estimator of �. Note, the MSS and W -CUSUM procedures may not

be quite equivalent in practice, as applied researchers using MSS often assume a priori

that a break does indeed exist.
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3 The E¤ect of the Regression Design

Intuitively, because theW -CUSUM procedure has to be based on an estimated model, in

e¤ect, the observations are �ltered by the regression design and information is extracted

from them in order to estimate the sequence of conditional means of the model. Only

the remaining residual information is available for break detection and determining its

location. This section looks at the e¤ect the regression design has on the ability of the

residual based rules to �nd breaks and their corresponding locations.

3.1 Interpreting the role of cq

In the previous sections, the cq play an important role in the structure of the hypotheses

and correspondingly in the W -CUSUM statistic. A way to shed light on cq is to note

that change point detection may be thought of testing � = 0 in (1) over every possible

con�guration of models speci�ed by !q. From the algebra in the Appendix, it is easily

seen that the variance of �̂q, the OLS estimator of � in y = X� + !q� + ", is proportional

to c�1q so that accurate estimates correspond to large values of cq. More speci�cally,

equation (7) of the Appendix shows that the numerator of the Wald statistic for testing

� = 0 (for any �xed q) is given by �̂2qcq and (3) shows that using the sequence of Wald

tests is essentially equivalent to using the W -CUSUM . Hence, if the cq are small, say,

in some region of the sample span, there is little chance of a break being detected should

it lie therein by comparison with regions where the cq are large. Thus a plot of the cq,

for any model, may be seen as a convenient way to identify sub-spans of the sample

where the W -CUSUM test will have blind spots and struggle to �nd possible breaks and

correspondingly hot spots where, relatively speaking, discovering the existence of a break

is easier. Of course, one can subsequently only identify the break location when the test

of the null rejects and so having power in a sub-span is a necessary but not su¢ cient

condition for having the ability to �nd exact break locations.
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To see the e¤ect of a regression design on the ability of detect the existence of a break,

consider the simple case when testing for a possible break in means where the observations

are ordered by time, i.e.,

yt = �+ "t; t = 1; :::; TB

yt = �+ � + "t; t = TB + 1; :::; T:

so that X is a column of 1�s and !q = iq = (0; :::0; 1; :::; 1)
0 where the 1�s start in position

q. The elements of the M matrix are mtt = 1�T�1 on the diagonals and mts = �T�1 on

the o¤-diagonals. It is then straightforward to evaluate the cq to get cq = T� (1� �) which

has the familiar \-shaped pro�le peaking at � = 0:5. Hence, if the true break point is near

the middle of the sample span, the W -CUSUM would have a better chance of detecting

it than if the true break were to occur near the extremities. This example accords well

with our intuition but, there are other models that do not and some of these are explored

below. In the next sub-section, we investigate the e¤ect that di¤erent speci�cations of a

trend have on power.

3.2 The E¤ect of Trend Speci�cation

This section looks at some of the di¤erent ways trends may be modelled and analytically

derives the functional form of the corresponding cq. Di¤erent trend speci�cations can

have a big impact on what parts of the span are advantageous and what parts are not,

from the power perspective. Some trend speci�cations mean that it is virtually impossible

to locate the correct break date even when the corresponding test has high power. This is

unfortunate as it leads to spurious identi�cation of break dates. The !-plot is introduced

to help alleviate the spurious identi�cation problem.
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Consider the model for a break in slope coe¢ cient of the linear trend

yt = �+ �t+ "t; t = 1; :::; TB

yt = �+ (� + �) t+ "t; t = TB + 1; :::; T:

so that X consists of a column of 1�s, 1, and the trend variable x = t =(1; 2; :::; T )0 while

!q = tq = (0; :::0; q; :::; T )
0. From the Appendix, it follows that

cq = t
0
qMtq � T 3

�
1

3
� 3 � � 4 + 2� 5 � 4

3
� 6
�

(4)

= T 3
1

3
� 3 (1� �)

�
4� 2 � 2� + 1

�
(5)

We use the � to mean plus terms of a smaller order that the leading power of T; i.e.,

smaller than T 3 here. It is easy to see that cq is skewed left, unimodal and maximised on

[0; 1] at � = 0:83 and, from (5) that that cq is tied down at 0 at the extremities 0 and 1.

Also since there are no linear or quadratic terms, (4) indicates that the test will have low

power for small values of � . The normalised cq are plotted in the right panel of Figure 1,

and it can be seen almost no weight is given to the possibility of breaks in the �rst half

of the sample with the implication that if the true break point were to lie in that region

then even those with quite a large magnitude would not be discovered. The cq for �nding

a break in the intercept of the trend model is found by algebra similar to the slope case

and they are given by

cq = i
0
qM iq � T

�
� � 4� 2 + 6� 3 � 3� 4

�
: (6)

There are two maxima, one at � = 0:21 and the other at � = 0:79 and the plot is as given

in the left panel of Figure 1. It is seen that it is bimodal while there is a dip in the middle

of the sample span around � = 0:5.
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Figure 1: cq plots for Trend Regressions

Another commonly used model is the broken (continuous) trend break given by

yt = �+ �t+ "t; t = 1; :::; TB

yt = �+ �t+ � (t� TB) + "t; t = TB + 1; :::; T

which simultaneously introduces a change in slope and intercept. The X = [1 t] matrix

is the same as before and !q = bq = (0; :::0; 1; :::; (T � q + 1)). In this case

cq = b
0
qMbq �

T 3

3
� 3 (1� �)3 :

These cq have the familiar "bell" shaped plot (see the left panel in Figure 2) centered

at 0:5 and are tied down at the extremities. Hence for this version of the trend model,

greatest power will tend to occur should the break happen near the center of the span

with � = 0:5 in contrast with � = 0:8 for the regular trend. There are also no linear or

quadratic terms in either � or (1� �) implying that breaks near either extremity will be

hard to �nd. It is instructive to note that the way the trend is modelled matters. Say we

symmetrise the trend around zero and use x =(t��t1) as our regression design variable.
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Figure 2: cq plot along with the power and exact dating performance of the CUSUM and
W-CUSUM tests for the Broken (continuous) Trend Model

Then, again using algebra similar to that above, we �nd in the slope case that

cq = (tq � �tiq)0M (tq � �tiq) � T 3
�
1

4
� � 3

2
� 2 +

23

6
� 3 � 21

4
� 4 + 4� 5 � 4

3
� 6
�

= T 3
1

12
� (1� �)

�
3� 15� + 31� 2 � 32� 3 + 16� 4

�
which is maximised at � = 0:15 and � = 0:85 and is tied down as before (compared with

Figure 1). Since we have linear and quadratic terms the test will have greater power

for small � than in the corresponding ordinary trend situation but the power is lower in

general. The cq for the intercept in the demeaned model are exactly as in the ordinary

case (6) and so we expect no di¤erence in power.

As remarked earlier, even if the test has power, the regression design can have a big

e¤ect on how good the procedure is at �nding break locations. For example, consider the

alternative model for the trend, t� �t. In this case when T is odd, t� �t will take the value

0 in the middle of the sample span at tm = (T + 1) =2. Should a break occur at tm, then

(tm � �t) � = 0 for all �, � has no e¤ect and ytm remains in the pre-break regime, making it

impossible to �nd the break location. Of course, in stylised situations it is easy to identify

such anomalies but, quite generally, should xi be in the vicinity of zero for sample sub-
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spans and should a beak occur in one of those then �nding the break location is almost

impossible. For this reason we suggest that the elements of ! = (!2;1; !2;1; ::::!2;N) be

plotted to identify cases where location of the break is di¢ cult or impossible.

Extensive simulations con�rm these assessments and a selection of them is given next

in Section 4.

4 Simulations

In this section, we look at some simulations to illustrate the e¤ect of the regression design

on the power of both the ordinary CUSUM andW -CUSUM as well as on their ability to

identify the exact break location. The ordinary CUSUM has a long history and, when

used in conjunction with the studentised residuals, has been analysed in, for example

McCabe and Harrison (1980) and Ploberger and Krämer (1990, 1992). It is unweighted

and the statistic is given by

max
q

�
�0qer�2 :

The simulations also assess the value of the plots as a diagnostic tool to identify hot

and weak spots in the sample span. The graphs in the left panels of Figure 2-5 are of the

cq plots while the two right-most panels show the performance of the procedures. The

value of the break magnitude � was calibrated to ensure that the test�s maximal power,

over the sample span, to reject the null of no break was close to 100%. The alternatives

used were unweighted as we view the weights in this context as a technical device to

discover what might be the structure of an optimal procedure for �nding break locations.

The tests were conducted throughout at the 5% level with critical values calculated by

bootstrapping for N = T = 100. In all cases � = � = 1, the disturbances used were

N (0; 1) and � = (NB + 1) =N varies in increments of 0:05 over the span.

The relative masses that the cq plot places on sub-spans of the sample represent
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predictions of the regression induced behaviour of the tests. The performance graphs

on right panels show the percentage of times that the tests rejected and, following a

rejection, identi�ed the break correctly as the true break location varies across the sample

span. The �rst sub-section simulates a cross sectional model with di¤ering regressors.

Then we look at the broken trend speci�cation. We also consider a second TS model

with a stochastically trending regressor (details in Section 4.3), looking at three di¤erent

realizations of xt. Finally, we look at a simple trigonometric model for seasonality where

use of the !-plot is highlighted.

The general picture to emerge is that the power of both tests is heavily in�uenced by

the regression design as the cq plots predict and the use of weights in the W -CUSUM

alleviates the X e¤ect, giving a more rounded performance across the sample span while

paying a penalty at the identi�ed peaks where the CUSUM has the greatest power.

Neither test is uniformly superior over the entire sample span. The cq plots are not able

to predict the ability of the procedures to identify exact locations should the way the

break manifests itself be zero or nearly so at the true break location. Thus, the cq may

be supplemented by the !-plot.

4.1 Cross Section Model

We simulate a cross section model by generating a vector of explanatory variables which

are then sorted to give the order statistics x(i). Then the model is

yi = �+ �x(i) + "i; i = 1; :::; NB

yi = �+ (� + �)x(i) + "i; i = NB + 1; :::; N:

The exogenous variables were drawn from a �2 (3), a N(5; 2) and a N (0; 1), this latter

choice representing an attribute measured on a standardised score, perhaps. The basic

premise is that the dependent variable yi responds di¤erently to x(i) as the level of the
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Figure 3: cq plot along with the power and exact location performance of the CUSUM
and W-CUSUM tests for the cross section Model with 3 di¤erent regressors

independent variable passes some unknown threshold which we seek to identify; perhaps

having a University degree attracts a salary premium?

The X matrix consists of a column of 1�s and the variable x(i) and these are used to

calculate the usual idempotent matrixM . The CUSUM andW -CUSUM procedures use

rq =
�PN

i=q x(i)eri�2 and c�1q rq with weights cq = x0(q)Mx(q), x(q) = �0; :::; 0; x(q); :::; x(N)�0
and eri is the ith element of the studentised residual vector er. Figure 3 shows the predic-
tions cq in the left panel and the performance of the methods in the other two.

In the case of the �2 (3) and N(5; 2) explanatory variables the value of � is the same

(� = 0:3). When x is a Chi-square, there is little power and virtually no chance of exactly

discovering the break location unless the break occurs at a fraction greater than � = 0:6

in the sample span and the power approaches 1 around � = 0:8. There is little to choose

between the two CUSUM�s. When x is N(5; 2), the corresponding numbers are � = 0:4

and � = 0:5. This is a signi�cant improvement in performance and the W -CUSUM
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does smooth the regression e¤ect. The reason for the improvement is that the Chi-square

generates much greater outlier type e¤ects than does the Normal and, given the ordering

of the x variable, pushes the peak of the cq plot towards � = 1, which makes it more

di¢ cult to �nd a break earlier in the span when x is Chi-square rather than Normal.

This is re�ected in the cq plots. The previous pattern breaks down when x is N (0; 1).

In this case, we used � = 1 and the performance of both tests is much better near the

extremities of the span. In the middle, despite the high power, the ability to determine a

break location exactly is almost zero between � = 0:3 and � = 0:7 approximately. This

is doubly worrying as the presence of high power means that the procedure identi�es a

spurious break location. The relative information in the cq plot about the span is re�ected

in the power performance but there is no indication of how badly the methods perform in

the center of the span in determining the location. The reason for the dramatic change

in performance is that the design now includes observations from the N (0; 1) that are

e¤ectively 0 or very close to it in the center of the span and hence if � becomes non zero

at one of these design points there is little, if any, impact on the corresponding observed

y, making it almost impossible to identify the true break location. To save space, we do

not produce the !-plot in this obvious situation.

4.2 Trend Regression

The CUSUM statistic for the continuous trend model uses

rq =

 
TX
t=q

(t� q) ert!2

whileW -CUSUM is based on c�1q rq where cq = b
0
qMbq where bq = (0; :::; 0; 1; :::; (T � q + 1)).

We set � = 0:065. From the panels in Figure 2 we can see that cq plots accurately predict

the power behaviour of the test but the ability to detect the correct break location is

17



very low by virtue of the continuity of the trend which ensures that the impact on yt

immediately after the break is small. Thus for 0:3 � � � 0:7; most break identi�cations

are spurious.

4.3 Stochastic Trend

This section looks at a regression model with a stochastic trend on which we condition.

The stochastic trend model is

yt = �+ �xt + "t

where xt = zt=maxfabs(zt)g and

zt = 0:04 + zt�1 + �t �t v iid N(0; 1)

and hence the regression variable xt behaves like a (nonstationary) random walk with

drift, i.e. has a unit root. The dependent and explanatory variables are cointegrated

(di¤er by a stationary term) when there is no break but the xt variable is conditioned on,

given its distribution is not dependent of the parameter �; i.e. is ancillary. The idea is

to check if a known cointegrating regression relationship has coe¢ cients that change over

time.

The X matrix consists of a column of 1�s and the variable xt and is used to compute

M . We look at the intercept case and cq = i0qM iq are dependent on the realisation of

the data that actually occurred and while they may be computed with any data set it

is not possible to know a priori what the shape will look like. The rules for a shift in

the intercept are computed as usual. Figure 4 gives the cq and performance of the two

methods for three di¤erent realisations of xt. These are displayed in three rows in the

graph. Needless to say, di¤erent realisations constitute di¤erent regression designs which

may or may not be similar. It appears that the sample sub-spans identi�ed are a good
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Figure 4: cq plot along with the power and exact dating performance of the CUSUM and
W-CUSUM tests for the I(1) intercept Model

predictor of the overall behaviour of both the CUSUM and W -CUSUM procedures.

4.4 Seasonality

Consider a simple trigonometric model xt =
P s

2
j=1

�
cos
�
2�j
s
t
�
+ sin

�
2�j
s
t
�	
for an s period

seasonal process and

yt = �+ �xt + "t; t = 1; :::; TB

yt = �+ (� + �)xt + "t; t = TB + 1; :::; T:

In this case, the X matrix used to construct M consists of a constant term plus the

variable xt. Hence cq = x0qMxq where xq = (0; :::; 0; xq; xq+1; :::; xT )
0. The CUSUM uses

rq =
�PT

t=q xtert�2 and theW -CUSUM is based on c�1q rq. We set s = 4 to mimic quarterly

seasonality and the results are reported in Figure 5. Again, the cq plot correctly predicts
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Figure 5: cq plot along with the power and exact dating performance of the CUSUM and
W-CUSUM tests for the Seasonal Model with s = 4

the power behaviour of both tests but fails to predict the exact dating performance. The

seasonal regression has a dramatic e¤ect on the ability to identify break date and this is

due to the fact that the trigonometric functions cycle through the value zero and should

a break occur at such a zero point it will be impossible to detect. The !-plot is given

in Figure 6. Our simulations introduce breaks at times 5; 10; 15; 20; ::: and this sequence

will match zeros of the !-plot at times 5, 10, 25, 45 etc. which explains the dips to zero

in the location �nding performance in Figure 5.

5 Empirical Analysis

In this section, we analyse a cross section of banking data.

5.1 Bank Data - Cross Section

This example uses data on salary and years education to see if there is a threshold where

additional years of education would yield a salary premium. The data consist of 474

observations on the logarithm of salary and years of education for employees of a US
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Figure 6: !-plot for trigonometric seasonal model with s = 4

bank as presented in Heij et al (2004). Also included are two dummy variables, one for

gender and the other for whether an employee was a member of a minority or not. The

data are ordered by years of education and the scatter plot of log salary and education is

given in Figure 7.

Critical values were found by using a �xed-X bootstrap and re-sampling from estimated

residuals using the model

logSalaryi = �+ �1 � Educataioni + �2 �Dummyg + �3 �Dummym + "i:

The CUSUM test identi�ed a break at observation number 368 which corresponds to

16 years of education and the threshold between 15 and 16 years of education occurs

at observation number 366. The W -CUSUM identi�ed observation number 370 as the

break observation. The p-values for both tests were very close to 0. Hence it would appear

bene�cial to invest in graduate education.
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Figure 7: Scatter plot of log Salary versus Years Education

6 Conclusions

This paper introduced an optimal exact test for determining the location of a possible

break point in Gaussian linear regression models. It also undertook an analysis of the

e¤ect that the regression design has on the power of the test as well as its ability to

discover the exact break location. A graphical procedure, the cq plot, is used to identify

subsets of the sample span where it is di¢ cult to detect a break should it occur there

and correspondingly subsets where, relatively speaking, it is easier. It turns out that the

regression design can play a major role in the ability of the optimal test to detect breaks

and their locations, so much so that certain design features make it all but impossible to

identify the location of moderately sized breaks. The cq plots are good predictors of the

hot spots and blind spots of the sample span as far as the power of the tests is concerned

but may fail to give any indication that the tests have no ability to �nd the exact location

of a break for certain design characteristics. The !-plot may be used to help identify

speci�c break locations that are di¢ cult or impossible to detect.
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Appendix
The Minimum Sum of Squares Procedure
In the section we speci�cally allow !q to be a matrix and � a vector to maintain

compatibility with the treatment of Bai (1997). Using the current notation, the minimum

sum of squares procedure (MSS) for �nding a break date is equivalent to using the argmax

of a Wald statistic (see Eq (5) of Bai (1997)) i.e.

argmax
q
�̂0q!

0
qM!q �̂q (7)

where �̂q is the OLS estimator of � in the regression of y on X and !q with M =�
I �X (X 0X)�1X 0�. This equivalence simply expresses the fact that minimising residual
error is equivalent to maximising �t. An obvious thing to do is to project X out of the

problem since it does not depend on q. Hence, we �rst regress y on X to get residuals

ry =My and then regress !q on X to get a second set of residuals rq =M!q, which may

be a matrix. The estimate of � is then �̂q =
�
r0qrq

��1
r0qry obtained by regressing ry on rq
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for each q 2 Q.4 Hence

�̂0q!
0
qM!q �̂q = r

0
yr
0
q

�
!0qM!q

��1
r0qry

which is just the sum of squares of the elements of the vector

�
!0qM!q

��1=2
r0qry =

�
!0qM!q

��1=2
!0qry

where
�
!0qM!q

��1=2
is interpreted as a square root matrix.

When � is a scalar and !q = �qwq, then
�
!0qM!q

��1=2
r0qry = wq�

0
qr using the notation

r = ry of Section 2. Hence the MSS technique using argmaxq �̂0q!
0
qM!q �̂q is equivalent

to argmaxq
�
wq�

0
qer�2. Hence the MSS equals the weighted CUSUM and is therefore

optimal.

When �qwq is a matrix product, with wq =
�
�0qM�q

��1=2
a square root matrix and � is

a vector, the prior is still noninformative over the possible break points but the statistic

that would emerge is

max
q2Q

r0�qwq��
0w0q�

0
qr

r0r

which is not in general uniform in � as is to be expected. In the special case where � = ~�k

for some known vector k and scalar ~�, then the statistic is uniform and is given by

max
q2Q

r0�qwqkk
0w0q�

0
qr

r0r
(8)

and the argmaxq gives the optimal break date estimate. For example, if the � of the shift

in the intercept and the slope of a simple regression model were considered equal then

k0 = (1; 1)0 and (8) is optimal. The continuous trend beak model is an example of this. Of

course it is perfectly possible to compute r0�qwqKw0q�
0
qr for any known weighting matrix

4This idea is also known as the Frisch-Waugh-Lovell Theorem.

25



K we choose and use the max and argmax as a class of break location estimating devices

regardless of the dimension of the unknown �. The Bai procedure uses the choice K = I.

Members of such a class would no longer necessarily be Bayes rules, of course.

Trend Regression.
Consider the regression where X consists of a column on 1�s and the variable xt. Using

� =
PN

j=1 (xj � �x)
2 and x2 =

PN
j=1 x

2
j=N we see

(X 0X)
�1
= ��1

264 x2 ��x

��x 1

375 :
Next de�ne ~xj = x2 � �xxj and x̂j = xj � �x and associated vectors ~x and x̂. Hence X

(X 0X)�1X 0 = ~x10 + x̂x0. After a bit of algebra in the trend notation and using orders of

magnitude in line (9)

cq = t
0
qMtq = t

0
qtq ���1t0q~x1

0tq ���1t0qx̂x
0tq

= t0qtq ���1t0q (t21� �tt)10tq ���1t0q (t� �t1) t0tq

= t0qtq � t2��1 (10tq)
2 ���1 �t0qtq�2 + 2�t��110tqt

0
qtq

�
�
T 3

3
� q

3

3

�
�
"
T 2

3

12

T 3

�
T 2

2
� q

2

2

�2#
�
"
12

T 3

�
T 3

3
� q

3

3

�2#
(9)

+

�
T
12

T 3

�
T 2

2
� q

2

2

��
T 3

3
� q

3

3

��
=
2

T 2
q5 � 1

T
q4 � 4

3T 3
q6 +

1

3
q3

= T 3
�
1

3
� 3 � � 4 + 2� 5 � 4

3
� 6
�

= T 3
1

3
� 3 (1� �)

�
4� 2 � 2� + 1

�
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In the case of the broken trend we get

cq = b
0
qbq � t2��1 (10bq)

2 ���1 (t0bq)
2
+ 2�t��110bqb

0
qt

and b0qt =
PT�q

j=1 j (q + j) =
1
6
(T � q) (T � q + 1) (2T + q + 1). Using orders of magni-

tude as before

cq �
(T � q)3

3
� T

2

3

12

T 3

 
(T � q)2

2

!2
� 12

T 3

�
1

6
(T � q) (T � q) (2T + q)

�2
+ T

12

T 3
1

6
(T � q) (T � q) (2T + q) (T � q)

2

2

=
1

3T 3
q3 (T � q)3

=
T 3

3
� 3 (1� �)3 :
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