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ABSTRACT: Major accidents are complex, multi-attribute events, originated from the interactions 
between intricate systems, cutting-edge technologies and human factors. Usually, these interactions 
trigger very particular accident sequences, which are hard to predict but capable of producing 
exacerbated societal reactions and impair communication channels among stakeholders. Thus, the 
purpose of this work is to convert high-dimensional accident data into a convenient graphical 
alternative, in order to overcome barriers to communicate risk and enable stakeholders to fully 
understand and learn from major accidents. This paper first discusses contemporary views and 
biases related to human errors in major accidents. The second part applies an artificial neural 
network approach to a major accident dataset, to disclose common patterns and significant 
features. The complex data will be then translated into 2-D maps, generating graphical interfaces 
which will produce further insight into the conditions leading to accidents and support a novel and 
comprehensive “learning from accidents” experience. 

1 Introduction 

1.1 Perspectives on learning from accidents and understanding human errors 

Major accidents have a multidimensional nature, arising from a wide range of contributing factors 
interacting in a seemingly random and sophisticated fashion to result in large-scale technological 
disasters. Many of these contributing factors are developed since the design conception, comprising 
of technical and non-technical issues and ultimately including the alluring influence of human errors.  
 
The term “human error” has been coined in several different fields such as engineering, economics, 
psychology, design, management and sociology, with numerous interpretations and diverse 
objectives.  Although most of the researchers and practitioners would (probably!) agree that human 
error can be generally understood as a failure to perform a certain task, the indiscriminate usage of 
the label “human error” to define some sort of human underperformance can be highly 
controversial. Hollnagel (1993, 1998), Woods et al. (2010) and Dekker (2014) claim that errors are 
best seen as a judgment in hindsight, or an attribution made about the behaviour of people after an 
event, being a quite misleading term, of limited practical use and nothing more than a tag. 
Conversely, Reason (1990, 2013) favoured the usage of the nomenclature, describing three 
necessary features to define human error: (i) plans; (ii) actions (or omissions); and (iii) consequences, 
surrounded by two situational factors: intention and absence of chance interference. Therefore, 
according to Reason, human errors can be acknowledged when an intention is reflected in a planned 
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sequence of actions which fails to accomplish its projected outcome, with observable consequences. 
The plan can be flawed or the action(s) can be imperfect, and some chance agency (e.g. an act of 
God or force majeure) is not recognisable. 
 
The understanding of human error is typically encapsulated by a wider concept entitled “Human 
Factors”. This applied discipline has grown significantly after World War II, where the consideration 
of the human aspect was deemed necessary for achieving a realistic reliability assessment (Swain 
and Guttman, 1983; Dhillon, 1986). Since then, the multi-disciplinary nature of the human factors 
studies, which focus on the relationship between humans, tasks, technologies, organisations and the 
surrounding environment, allowed for some variances among the views and needs of engineers, 
psychologists, sociologists, managers and the general public. Hollnagel (1998) suggested that the 
original engineering and design approach aimed at analysing humans as components, in order to 
assign a human failure probability (or human error likelihood) to risk and safety assessments. 
Adopting a different perspective, psychologists attempted to understand mental processes and 
awareness mechanisms leading to erroneous actions, while sociologists were looking for flaws in the 
socio-technical system, usually attributing errors to management and organisational shortcomings.  
 
But how do stakeholders see errors, especially after a major accident? Two common attitudes 
towards human errors were distinguished by Dekker (2014). The first one is what he called the “old 
view”, which considers errors as causes. On the other hand, the “new view” regards human errors as 
consequences of accidents, effects or symptoms of some sort of organisational shortcoming.  
Hollnagel (1998) highlighted that human error has been seen as the cause of events (when accidents 
are said to be due to the human intervention), the event itself (when an action, e.g. pressing the 
wrong button, is said to be a human error) or the consequences (the outcome of the action is said to 
be an error, e.g. the driver made the error of fuelling a petrol-fuelled car with diesel, inferring a car 
malfunction).  
 
The general approach to human errors and the level of comprehension of human factors will deeply 
affect the process of learning from accidents. Major events are likely to trigger exacerbated societal 
reactions and impair communication channels, demanding an immediate and strong response from 
industry and authorities to ensure accountability. In those cases, acknowledging that humans are 
pivotal in any engineered system, the temptation to expose a scapegoat may limit the search to 
individuals who made errors throughout the lifecycle of the industrial process. If the concept of 
errors as causes of events prevails, the investigation will aim at the culprits’ exposure, the blame 
allocation and the imposition of penalties, and thus valuable lessons regarding organisational and 
technological aspects can be lost. Hopkins (2006) and Johnson (2008), discusses the tension between 
the requirement to learn as much as possible from events and the public pressure, highlighting that 
fear of litigation can act as an important barrier to learning the lessons from accidents.  
 
That is why Reason’s characterisation of human errors turns out to be extremely beneficial, tying up 
two loose ends: firstly, the need for recognition and common understanding of human error, a 
deeply rooted concept in both technical and general public reality, serving as a useful bridge 
between the two worlds; and secondly, a clear and convenient definition, focused on the internal 
and external characteristics of the analysed subject and on the genesis of error. This approach allows 
for the search for profounder issues related to accidents and can help to reduce the knowledge gap 
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among authorities, the general public and wider stakeholder groups, in order to accomplish an 
improved learning environment. 
 
1.2 Recent catastrophes in complex, multi-attribute accidents 
 
The relevance of human factors and the impact of human errors in industrial accidents were 
extensively emphasised by contemporary studies. Human error was regarded as a major contributor 
to more than 70% of commercial airplane hull-loss accidents (Graeber, 1999). Correspondingly, 
according to Leveson (2004), operator errors can be considered the cause for 70–80% of accidents, 
given recurrent deviations between established practice and normative procedures. Considering the 
cost issue, a review by the United Kingdom Protection and Indemnity (P&I) Club indicated that 
US$541 million per year is lost by the marine industry due to human errors (Dhillion, 2007). 
 
Major accidents have the potential to capture the public’s attention and demand strong responses 
from authorities. The Fukushima accident in March 2011 has triggered a considerable shift in the 
way the nuclear industry was seen by governments and the general public.  
 
Mr. Kiyoshi Kurokawa, the chairman of the independent investigation commission for the Fukushima 
nuclear accident, stated in the official report that the tsunami and technical issues were not the sole 
reasons for the tragedy, declaring that human factors as well as deeper Japanese cultural issues 
were vital contributors (Kurokawa et al, 2012): "What must be admitted – very painfully – is that this 
was a disaster 'Made in Japan'. Its fundamental causes are to be found in the ingrained conventions 
of Japanese culture (…). Therefore, we conclude that the accident was clearly 'man-made'”. 
 
This wide-reaching accident was drawn into the international media’s spotlight. In a global 
perspective, it has driven the German government to immediately shut-down eight reactors (their 
restart is highly unlikely) and reject the construction of new units (Schneider et al., 2012). Thus, the 
phasing-out of nuclear plants and the replacement with renewables or other energy sources in 
Germany seems to be irreversible. Also, the former Republic of China’s president Ma Ying-Jeou 
decided to limit the operating lifespan of nuclear power plants to 40 years, and declared that the 
continuation of the ongoing construction of a new nuclear power unit in Taiwan would be decided 
by a public referendum (Ishikawa, 2015). It appears that the political climate due to the public’s 
perception of risk is highly unfavourable to nuclear power, especially after Fukushima. 
 
Recently, prosecutors called for the death penalty for the captain of the MV Sewol, a South Korean 
ferry that sank in April 2014 and left 304 fatalities, most of them pupils on a school trip. He was 
found guilty and sentenced to 36 years in prison, and 14 crewmembers were jailed from 9 to 25 
years. Families and protesters affirmed that lessons were not learnt from a series of previous 
accidents (BBC, 2014). 
 
These are examples, to name but a few, of how the process of learning from accidents can be 
compromised if risks are not adequately communicated, due to the natural distance between 
experts’ views and the public’s perception.  
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From an engineering perspective, the highly complex interaction between operators, technology and 
organisations is a recurring subject arising from investigations involving major events. The Bureau 
d’Enquêtes et d’Analyses pour la sécurité de l’aviation civile (2011) official report on the AF-447 Rio-
Paris Airbus A-330 accident on 1st June 2009 acknowledged an apparently simple equipment defect 
(icing of the Pitot probes) resulting from a design failure, which led to some inconsistencies of the 
flight speed indicators. This deficiency triggered several human-related events (wrong system 
diagnosis and inappropriate control inputs, among others), ultimately resulting in the airplane hull-
loss in the Atlantic Ocean, with 228 victims. The investigation report also highlighted some intricate 
factors such as the de-structuring of the task-sharing in the cockpit during the response to the 
anomalous event, training shortcomings in a predictable flight mode (manual handling of the 
airplane in high altitudes), and the lack of indication of the airspeed inconsistencies in the flight 
console, exposing an complex combination of several factors leading to the catastrophe. 
 
These major accident examples, mostly involving up-to-date technologies with numerous systems 
under normal operation (e.g. Airbus (2016) states that around 1,200 A330 airplanes are operated by 
over 100 companies, meaning that an aircraft takes off or lands somewhere every 20 seconds!), 
illustrates the complexity behind erroneous actions, mental models, technology, organisational 
issues, culture and the environment in high-technology industries. This highly interdisciplinary and 
intricate setting, including the influence of the utmost public and media attention and the fact that 
human errors are palpable and a compelling argumentation to explain undesirable events, brings a 
substantial challenge to stakeholders. How to develop means to learn from multi-attribute events 
and translate these lessons into an approachable scheme for researchers, practitioners, 
policymakers and society, in order to communicate and tackle risks appropriately? 
 
Consequently, this work aims to overcome barriers to dealing with complex datasets containing 
incident/accident information, by means of applying an unsupervised learning neural network 
approach to a proprietary accident dataset. The Multi-Attribute Technological Accidents Dataset 
(MATA-D) presented by Moura et al. (2016) will be converted into two-dimensional graphical 
representations of accidents and their corresponding surrounding factors. The 2-D interfaces will 
provide innovative means to communicate high-technology risks and to disclose tendencies that 
could lead to the genesis of errors, facilitating and enhancing interactions among internal 
stakeholders and the general public.   
 
2  Analysis Method 

2.1 Capturing the complexity underlying major accidents: fit for the past, adaptable to the future 

The underlying dynamics observed during critical events is so great that some renowned accident 
causation theorists consider the failures in complex, tightly coupled systems as inevitable (Perrow, 
1999), or not prospectively foreseeable (Taleb, 2007). This is due to the acknowledged difficulties to 
capture and understand all facets of socio-technical systems and all circumstances leading to 
catastrophes, which pose a challenge to researchers and practitioners. As a result, any method to 
capture lessons from accidents will have inherent limitations. In this work, a data-based approach 
which starts from the available information (detailed accounts from major accidents) and uses an 
artificial neural network process to generate useful knowledge is proposed. The dataset structure is 
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flexible and expandable: new accidents can be added, or prospective analyses can be conducted in 
order to increase the database.  

Other dataset frameworks inspired by novel accidents causality models based on systems theory and 
system thinking, such as the System-Theoretic Accident Model and Processes (Leveson, 2011), could 
be used for accident analyses, and the artificial neural network approach presented in this work 
would be equally applicable. However, the data required to construct a reasonable model based on 
some new approaches would require accident investigators to have previous knowledge of those 
approaches and carry out a targeted data collected process to suit the framework. Consequently, it 
is unlikely that the massive amount of data from early major accident accounts currently available 
would be immediately adaptable. Even considering a broader, virtually ideal holistic approach, 
potential influencing factors such as the percentage of profit allocated to safety, the influence of 
political decisions on industrial segments or the impact of the change of controllers and investors on 
companies, would not be fully available for earlier accidents, implying a new start point for data 
collection and thus a drawback to embrace past events.      

Therefore, the choice of the dataset framework took into account the possibility of starting from the 
available information reflected on past accounts to generate immediate knowledge. On the 
contrary, to construct a dataset based on a fully new framework, many years of catastrophic events 
(fortunately major accidents are rare) would be necessary, and even the most comprehensive model 
would still hold intrinsic limitations. 

Additionally, this study presents an expansion of conventional reductionist models. The focus of the 
analysis method lies on the examination of the interfaces among contributing factors, instead of 
specifying root-causes in a classical chain of directly related events. Although accident reports are 
intended to present a logical explanation to accidents, usually comprising a sequence of events 
through time, non-linear interactions among contributing factors can be also identified during in-
depth investigations, allowing a systemic learning process. Irrespective from the accident causation 
method used to understand events, it was possible to classify all of them under the common 
framework in which the dataset was based, as seen on Moura et al. (2016).  

For example, The Piper Alpha Accident Report (Cullen, 1990) revealed design, construction, 
management, operational and human factors interfacing in an undesirable fashion to result in 167 
fatalities and billions of pounds in property losses in July 1988. The recommendations (106 in total) 
arising from the report addressed changes to oil & gas offshore facilities, industry, the UK 
government and trade unions. New legislation (The Safety Case Regulations) was developed after a 
full review of existing legislative arrangements, progressing from the former prescriptive regime to 
the current performance-based safety management model. Even the responsibility for safety 
oversight was transferred from the Department of Energy which used to regulate both revenue 
collection and safety, to the Health & Safety Executive (Paté-Cornell, 1988).  

Therefore, accident narratives arising from detailed investigation processes can give impetus to 
broader safety improvement measures, and the collective understanding of previous occurrences is 
able to reveal new interfaces, contribute to a holistic safety understanding and improve 
stakeholders’ risk awareness level.   
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2.2 The Multi-attribute Technological Accidents Dataset (MATA-D) 

Many researchers (e.g. Swain, 1990; International Atomic Energy Agency, 1990; Grabowski, 2009) 
referred to the lack of reliable data on human performance in high-technology systems and the 
complications associated with the collection, consistency and interpretation of data. 
 
In addition, most of the near-misses datasets contains condensed descriptions of events, generally 
limiting the information to direct or immediate causes (e.g. operator failure, equipment defect), due 
to usual constraints (i.e. time, budget, human resources) to conduct in-depth analysis of 
inconsequential events. The main shortcoming with non-detailed data is that the context in which 
workers are placed is usually overlooked.  However, it is widely accepted (Reason, 1990; Hollnagel, 
1998; Cooper, 1996; Strater, 2000; Deker, 2014) that the context is actually the central element to 
be studied, in order to provide a full picture and a better understanding of undesirable events.  
 
The European Safety, Reliability and Data Association (2015) stated that major accident 
investigations allow for a detailed analysis of preventive and protective systems, as well as the 
exploration of events and surroundings conditions leading to accidents. In addition, high-impact 
events usually provide impetus for the application of lessons learned to minimise reoccurrence, as 
observed in the wake of disasters such as the Texas City Refinery, the offshore production platform 
Piper Alpha and the Nuclear Power Plant in Fukushima (Fukasawa, 2012; Dahle, 2012). Society’s risk 
perception, the regulatory approach and industry’s behaviour towards safety were affected in a 
global scale by these events. 
 
Although major accidents seem to be one of the finest sources of information available, they are 
considered to be rare events (Reason, 1997; Taleb, 2007), and the currently available data might not 
be enough for the application of traditional statistical approaches. Thus, a method to allow the 
seamless learning process between different industrial sectors is necessary, in order to generate 
sufficient data for a suitable analysis. Nevertheless, transversal learning is not trivial, due to 
differences among technologies, industrial jargon and contexts in complex systems. To overcome 
these issues, the authors developed a major-accident dataset, using a common framework, the 
Contextual Control Model used as basis for the Cognitive Reliability and Error Analysis Method 
(Hollnagel, 1998), to classify data captured from investigation reports prepared by regulators, 
investigation commissions, government bodies, insurance companies and industry experts to explain 
the contributing factors and causes behind major accidents. The framework is comprehensive, 
containing 53 contributing factors distributed in groups (man, technology and organisation) and 
subgroups (erroneous actions, specific cognitive functions, temporary and permanent person-
related functions; equipment, procedures, temporary and permanent interface; communication, 
organisation, training, ambient and working conditions).  The data structure is represented in Figures 
1, 2 and 3. Further information about the decision to develop a new dataset and all the details 
regarding the creation and content of the Multi-attribute Technological Accidents Dataset (MATA-D) 
can be found in Moura et al. (2016). 
 
The use of high-consequence accident reports to feed the MATA-D proved to have many benefits. 
Deep investigations involve internal and external experts in the search for evidence and to disclose 
contributing factors and relevant interactions between humans, technology and organisations. 
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Therefore, uncertainties associated with the consistency of the input data were reduced, and the 
selected framework permitted the classification of events from diverse industrial backgrounds under 
a common taxonomy, making them comparable. Consequently, the MATA-D structure allows for the 
application of mathematical methods, aiming at the disclosure of common patterns and at the 
recognition of significant features. This way, the genesis of multi-attribute events can be better 
understood and communicated.  
 

Figure 1. “Man” categorisation, adapted from Hollnagel (1998) 
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Figure 2. ““Technology” categorisation, adapted from Hollnagel (1998) 

 

Figure 3. “Organisation” categorisation, adapted from Hollnagel (1998) 
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The dataset includes 238 major accidents from several industrial segments, as detailed in Table 1.    

Table 1. MATA-D Accidents distribution by industrial sector, after Moura et al. (2016) 

Industrial Sector Accidents 
# % 

Refinery 39 16.39 
Upstream (oil & gas) 37 15.55 
Chemicals  29 12.18 
Petrochemicals 25 10.50 
Nuclear Power Plants 23 09.66 
Civil Construction 16 06.72 
Terminals & Distribution 15 06.30 
Aviation 13 05.46 
Gas Processing 09 03.78 
Metallurgical industry 07 02.94 
Waste Treatment Plant 05 02.10 
Food Industry 04 01.68 
Others 16 06.72 
 

 

2.3 The data mining process 

The aim of the data mining process is to disclose common structures among accidents and significant 
features within the major-accident dataset. In this work, making an attempt to go beyond the 
general statistical analysis presented by Moura et al. (2016), a well-known clustering approach 
named Self-Organising (or Kohonen) Maps (SOM), developed by Kohonen (1998), is applied to the 
MATA-D. The objective is to convert the 53-dimensional dataset (a matrix of 238 accidents holding 
53 possible contributing factors each) into a low-dimensional (i.e. 2-D) array, enabling the data 
visualisation and interpretation. 

Essentially, the SOM algorithm consists of an initialisation followed by three processes: (i) 
competition; (ii) cooperation; and (iii) adaptation. The network learning begins with the attribution 
of arbitrary values for the initial weight vectors. Then, the training starts with the competition 
process, where the winning output neuron (best matching node) is the one which minimises the 
Euclidean Distance ‖⃑ݔ − ݉పሬሬሬሬ⃑ ‖ for each input pattern (Eq. (1)). After defining the output winner, the 
cooperation process consists of the application of a neighbourhood function (usually the Gaussian 
function Eq. (2)) to define the spatial influence of the best matching unit upon the neighbour 
neurons. The last process is the adaptation one, where the weights of all neighbour neurons are 
sequentially updated while both the learning rate and the neighbourhood function decrease with 
time, following the Eq. (3). This sequence is repeated (through iterations) until the map converges 
(Kohonen,2001; Andreev and Argyrou, 2011). 

(ݐ)ݒ = arg min௜ఢΩ‖(ݐ)ݔ − ݉௜(ݐ)‖    (1) 

ℎ௖௜(ݐ) = ∝ (ݐ) ∙ exp ቀ‖௥೎ି௥೔‖మ

ଶఙమ(௧)
ቁ    (2) 
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ݐ)݉ + 1) = ݉௜(ݐ)+∝ (ݐ)ݔ](ݐ)ℎ௖௜(ݐ) − ݉௜(ݐ)]  (3) 

 

Kohonen (2013) has shown that a variation of the updating rule (Eq. 3) would be useful to eliminate 
convergence complications and generate steadier asymptotic mi values. Therefore, a batch-learning 
version of SOM (Batch-SOM) was revealed for practical applications, in order to generate more 
consistent outcomes. Eq. (4) shows the Batch-SOM updating rule developed by Kohonen. 

݉௜
∗ =  

∑ ௡ೕ௛ೕ೔௫ണതതതೕ

∑ ௡ೕ௛ೕ೔ೕ
     (4) 

 
With the new update rule (Eq. 4), the definition of a learning parameter ∝ is no longer necessary, as 
the batch-learning implies that the codevectors are being updated once, rather than in a recursive 
fashion. Each best matching node ݉௜

∗ represents the centroid of an influence region defined by ݔఫഥ  
(the mean value of a group of input vectors x(t)), the neighbourhood function hji and the number ௝݊  
of samples. 
 
The representation of the dataset (a 53-dimension input space, Figure 4) in a 2-D topographic map 
shows the MATA-D events organised by similarity, i.e. accidents with analogous contributing factors 
will be close to each other (e.g. Figure 5). This enables the generation of clusters which can be 
analysed in an integrated way, revealing tendencies within a group of major accidents.  
 
One of the most important features of the SOM’s learning process is that it comprises an 
unsupervised learning process, dismissing the need for any pre-classification, pre-selection of the 
number of clusters or the definition of main/leading factors (Kohonen et al, 1996). Consequently, 
the data mining process is not affected by external parameters, avoiding potentially biased concepts 
regarding the main factors influencing accidents and potentially leading to human errors. 

 

3 Results 

3.1. Clustering Results 

The application of the SOM algorithm brought together accidents by resemblance – the more similar 
the accidents are, the closer they are positioned in the output space. Figures 4 and 5 shows the input 
space (a matrix 238 x 53) and the output space (a 2-D representation of the events). 

 

ଵ.ଵܣ … ଵ.ହଷܣ
⋮ ⋱ ⋮

ଶଷ଼.ଵܣ … ଶଷ଼.ହଷܣ

 

 

Figure 4. Input Space: A dataset containing 238 samples x 53 features 
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Figure 5. Output Space: A reorganised 2-D grid 

 
Maps were generated from the 238 records with 53 possible attributes each. The output space was 
trained with 111 batches, and the width of the kernel (the radius of the Gaussian neighbourhood - 
Eq. (2)) was 0.41. This value is set to be the smallest to form meaningful clusters while maintaining 
the best possible representation of data differences, with attribute values being averaged less. Maps 
were produced by the expert version of Viscovery SOMine® software, in order to enhance graphical 
visualisation. 
 
The Viscovery® SOMine software has a clustering quality indicator, a histogram which classifies 
conceivable groupings by attributing an index for each possible clustering arrangement.  The 4-
cluster final map attained the highest quality measure (Figure 6) and thus was adopted as a useful 
arrangement for further interpretation.  
 

 

 

Figure 6. Cluster Quality Indicator (Viscovery SOMine®) 
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Other analysis methods can be used to evaluate the quality of the map, such as the error 
quantisation and frequency computation. For the current application, quantisation errors were very 
small, and both the data frequency and the error quantisation were evenly distributed throughout 
the map, indicating that the network was well-trained and the mapping quality is good.  
 
Tables 2 and 3 present the clusters’ statistical results. 
 
 
Table 2. Clusters’ Features  
 

Cluster Events # Contributing Factors # 
Min Max Mean Median Mode 

C1 80 04 24 9.62 09 09 
C2 57 01 10 4.56 04 02 
C3 39 05 22 8.92 08 08 
C4 62 01 06 3.10 03 02 
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Table 3. Overall dataset statistics (After Moura et al., 2016) and new clustering statistics 
 
 

 
Overall C 1 C 2 C 3 C 4 

 Accidents # 238 80 57 39 62 

Erroneous Actions 

Wrong Time 14.7% 13.8% 10.5% 41.0% 3.2% 
Wrong Type 11.8% 11.3% 7.0% 30.8% 4.8% 
Wrong Object 2.5% 3.7% 3.5% 2.6% 0.0% 
Wrong Place 31.5% 52.5% 36.8% 12.8% 11.3% 

Observation 
Observation Missed 15.5% 20.0% 12.3% 23.1% 8.1% 
False Observation 3.4% 6.3% 3.5% 0.0% 1.6% 
Wrong Identification 2.5% 5.0% 0.0% 5.1% 0.0% 

Interpretation 

Faulty diagnosis 13.0% 26.3% 8.8% 12.8% 0.0% 
Wrong reasoning 11.3% 20.0% 1.8% 25.6% 0.0% 
Decision error 9.2% 5.0% 17.5% 17.9% 1.6% 
Delayed interpretation 4.6% 8.7% 1.8% 7.7% 0.0% 
Incorrect prediction 3.8% 7.5% 1.8% 2.6% 1.6% 

Planning Inadequate plan 23.0% 10.0% 7.0% 25.6% 1.6% 
Priority error 7.1% 6.3% 8.8% 15.4% 1.6% 

Temporary Person-
related Functions 

Memory failure 0.9% 1.3% 1.8% 0.0% 0.0% 
Fear 2.1% 1.3% 0.0% 5.1% 3.2% 
Distraction 5.9% 11.3% 3.5% 7.7% 0.0% 
Fatigue 2.9% 7.5% 0.0% 2.6% 0.0% 
Performance Variability 1.4% 5.0% 1.8% 0.0% 0.0% 
Inattention 2.1% 2.5% 0.0% 5.1% 1.6% 
Physiological stress 0.8% 1.3% 1.8% 0.0% 0.0% 
Psychological stress 2.9% 5.0% 1.8% 2.6% 1.6% 

Permanent Person-
related Functions 

Functional impairment 0.4% 0.0% 0.0% 2.6% 0.0% 
Cognitive Style 0.0% 0.0% 0.0% 0.0% 0.0% 
Cognitive bias 7.1% 15.0% 1.8% 10.3% 0.0% 

Equipment Failure Equipment failure 55.0% 33.8% 22.8% 94.9% 87.1% 
Software fault 2.5% 6.3% 0.0% 2.6% 0.0% 

Procedures Inadequate procedure 44.1% 78.7% 42.1% 38.5% 4.8% 

Temporary Interface 
Problems 

Access limitations 1.3% 3.7% 0.0% 0.0% 0.0% 
Ambiguous information 2.5% 5.0% 0.0% 5.1% 0.0% 
Incomplete information 17.6% 36.2% 7.0% 20.5% 1.6% 

Permanent Interface 
Problems 

Access problems 1.7% 3.7% 0.0% 2.6% 0.0% 
Mislabelling 1.7% 2.5% 1.8% 0.0% 1.6% 

Communication Communication failure 10.5% 16.3% 5.3% 20.5% 1.6% 
Missing information 20.6% 37.5% 14.0% 15.4% 8.1% 

Organisation 

Maintenance failure 34.9% 56.3% 14.0% 33.3% 27.4% 
Inadequate quality control 60.5% 81.3% 24.6% 79.5% 56.5% 
Management problem 9.2% 12.5% 5.3% 23.1% 0.0% 
Design failure 66.0% 85.0% 50.9% 87.2% 41.9% 
Inadequate task allocation 60.1% 95.0% 68.4% 48.7% 14.5% 
Social pressure 7.1% 17.5% 3.5% 0.0% 1.6% 

Training Insufficient skills 36.1% 56.3% 12.3% 76.9% 6.5% 
Insufficient knowledge 35.3% 60.0% 17.5% 56.4% 6.5% 
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Ambient Conditions 

Temperature 1.3% 1.3% 0.0% 2.6% 1.6% 
Sound 0.0% 0.0% 0.0% 0.0% 0.0% 
Humidity 0.0% 0.0% 0.0% 0.0% 0.0% 
Illumination 0.8% 1.3% 1.8% 0.0% 0.0% 
Other 0.0% 0.0% 0.0% 0.0% 0.0% 
Adverse ambient conditions 7.1% 2.5% 14.0% 10.3% 4.8% 

Working Conditions 

Excessive demand 5.5% 6.3% 8.8% 5.1% 1.6% 
Inadequate work place layout 2.5% 1.3% 7.0% 2.6% 0.0% 
Inadequate team support 3.4% 6.3% 0.0% 7.7% 0.0% 
Irregular working hours 3.8% 10.0% 1.8% 0.0% 0.0% 

 
 
3.2 Clusters Description  

 

 

Figure 7. Clusters Identification 

Figure 7 presents the accidents positioned by similarity in the grid, separated in 4 (four) clusters with 
different dominating characteristics. 

Cluster 1 is the largest single group, covering 80 accidents which encloses between 4 and 24 
contributing factors. It is largely dominated by Inadequate Task Allocation (95.0%), when the 
organisation of work is lacking due to deficient scheduling, task planning or poor rules and principles. 
Additionally, accidents within this cluster were deeply influenced by Design Failure (85.0%) and 
Inadequate Quality Control (81.3%). From an organisational perspective, factors such as Insufficient 
Knowledge (60.0%), Maintenance Failure (56.6%) and Missing Information (37.5%) were also 
significant. The most important technological contributor was the Inadequate Procedure factor with 
78.7% of incidence, followed by Incomplete Information (36.2%). From a human factors perspective, 
erroneous actions labelled as Wrong Place (when actions in a planned sequence are 
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omitted/skipped, repeated, reversed or when an unnecessary action is taken) were in 52.5% of the 
cluster, mainly accompanied by interpretation issues, specially Faulty Diagnosis, with 26.3% of 
incidence. Observation Missed and Wrong Reasoning were also noteworthy human-related factors, 
both appearing in 20% of the cluster.       

Cluster 2 grouped 57 accidents, all varying from 1 to 10 contributing factors and with low mean, 
median and mode figures (Table 2). Organisational factors such as Inadequate Task Allocation 
(68.4%) and Design Failure (50.9%), as well as the technological factor Inadequate Procedure (42.1%) 
were the most frequent in this grouping. Some hostile ambient and working conditions were 
highlighted, with Adverse Ambient Conditions (14.0%) and Inadequate Workplace Layout (7.0%) 
standing above the overall data distribution.  Decision Error (17.5%) was a noticeable human 
contributor, highlighting cases where workers were unable to make a decision or have made the 
wrong choice among possible alternatives.  

The leading factor for Cluster 3, which contains 39 major accidents, is a technological aspect labelled 
Equipment Failure, populating 94.9% of the grouping area. This cluster also presented very strong 
organisational factors, as Design Failure (87.2%), Insufficient Skills (76.9%), Management Problem 
(23.10%) and Communication Failure (20.5%) attained their maximum values in this cluster, being 
also the Inadequate Quality Control factor very relevant, with 79.5% of incidence. The human factors 
incidence is quite substantial, with actions occurring at the wrong time (41.0%) or being of the 
wrong type (30.8%). These cases include omitted, premature or delayed actions, as well as using 
disproportionate force, magnitude, speed or moving in the wrong direction. These human erroneous 
actions were accompanied by all three levels of cognitive functions, i.e. observation, represented by 
Observation Missed (23.1%), interpretation, with Wrong Reasoning (25.6%) and Decision Error 
(17.9%); and planning, with both Inadequate Plan (25.6%) and Priority Error (15.4%) attaining their 
maximum incidence. It is worth to notice that the number of contributing factors for each event in 
this cluster fluctuated from 5 to 22, with a mean of approximately 9 and median and mode of 8.  

Cluster 4 contains 62 events, each one encompassing 1 to 6 contributing factors, recording a mean 
of approximately 3, median of 3 and a mode of 2 features.  For most of the accidents in this cluster 
(i.e. 87.1%), an Equipment Failure was the most frequent contributor to accidents, followed by 
Inadequate Quality Control (56.5%), Design Failure (41.9%) and Maintenance Failure (41.9%).  

Figures 8 to 21 show the self-organising maps for individual features. These figures detail how 
individual characteristics were distributed in the map after the application of the SOM algorithm. 
Colder colours (tending to blue) mean the absence of a feature, while warmer colours (tending to 
red) mean the presence of a contributing factor. Multiple intersections of warm colours in different 
individual SOM maps can be interpreted as an interface/relationship.   
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Figure 8. Inadequate Task Allocation SOM  Figure 9. Inadequate Quality Control SOM 

 

     

Figure 10. Design Failure SOM   Figure 11. Insufficient Knowledge SOM 

 

     

Figure 12. Wrong Place SOM   Figure 13. Inadequate Procedure SOM 
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Figure 14. Equipment Failure SOM   Figure 15. Maintenance Failure SOM 

 

 

   

Figure 16. Insufficient Skills SOM   Figure 17. Inadequate Plan SOM 

 

   

Figure 18. Wrong Time SOM   Figure 19. Observation Missed SOM 
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Figure 20. Wrong Type SOM   Figure 21. Wrong Reasoning SOM 

 

4 Discussion  

4.1 Clustering Interpretation 

The application of the SOM algorithm resulted in the reorganisation of accidents originally arranged 
in a 238 x 53 matrix (Figure 4) into topographic maps (Figures 5 and 7-21). Having the accidents 
grouped by similarity (considering the contributing factors), it is now possible to identify common 
patterns and highlight key relationships within the dataset. Moreover, the results are presented 
through a graphical interface, allowing analysts to effectively see the most frequent features or have 
further insight into contributing factors which might be of interest (such as Design Failures, Human 
Erroneous Actions, Quality Control and Task Allocation).   

The combination of three organisational factors (Inadequate Task Allocation, Inadequate Quality 
Control and Design Failure - Figures 8, 9 and 10) occupied most of the Cluster 1 area, meaning that 
these aspects are leading contributors to the grouping. Human erroneous actions contribute to 70% 
of the cluster, being the Wrong Place (Figure 12) the most relevant one, covering more than a half of 
the grouping. The analysis of the individual maps clearly shows that Inadequate Procedures (Figure 
13) are highly associated with this specific type of human erroneous action, meaning that incorrect, 
incomplete, ambiguous or instructions open to interpretation provoked specific problems to 
implement a sequence of operational movements. A deep relationship between Inadequate 
Procedures (Figure 13) and Insufficient Knowledge (Figure 11) can be perceived in Cluster 1, 
denoting that written instructions presumed some level of specific knowledge to recognise the 
situation and complete the operation, which was not the case in many events.       

An example of this type of accident was described in a US Chemical Safety and Hazard Investigation 
Board (2004) safety bulletin, when operators were assigned to a cleaning process in a 
petrochemicals plant. They executed a nitrogen gas purging exactly as required by the written 
procedures, in order to remove a hazardous mixture from the pipe. Afterwards, they started a steam 
purge to finish the service. However, the procedural steps were not sufficiently detailed to ensure 
the removal of the mixture from the pipe, especially in the low points, and failed to describe the 
consequences of having flushing liquid in the system. The operators were unaware of the possibility 
of having residues in the line, as well as the chemical reactions that could occur. The steam purge 
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heated the peroxide/alcohol mix above its thermal decomposition temperature, resulting in an 
explosion and fire. The SOM map exploration shows that this combination of contributing factors is 
not an isolated episode, but a recognisable pattern (or tendency) in Cluster 1, which should prompt 
the attention of risk analysts.   

The correlation of further factors, such as the design failure which allowed an unnecessary low-point 
section in the pipe route and the failure of the quality control to identify the low-point trap as well 
as the deficient procedure are also persistent in this grouping.    

As in Cluster 1, Cluster’s 2 most common features were Design Failure accompanied by Inadequate 
Task Allocation and Inadequate Procedures. However, the results for these factors are close to the 
overall dataset figures (65.97%, 60.07% and 44.09%, respectively) and thus cannot be considered to 
be major influencing factors to generate this clustering. A noticeable feature in this cluster was 
Adverse Ambient Conditions, which attained 14% in this grouping. The exploration of these events 
demonstrates that not only major natural events such as hurricanes, typhoons or earthquakes 
should be considered from a risk and safety management perspective, but also more common 
adverse situations like torrential rain, electrical storms and even the presence of airborne particles. 
A straightforward example of the latter is the case where haze from forest fires carried atmospheric 
particles to the intake of an air separation unit of a gas processing facility, causing an explosion and a 
large fire.  

Equipment Failure (as shown in Figure 14) dominates almost the whole area of Cluster 3, but, in 
sharp contrast with Cluster 1, the association with Maintenance Failure (Figure 15) is not relevant 
any longer. In fact, the analysis of the maps indicates that the equipment failure events tend to be 
associated with Design Failure and/or Insufficient Skills (Figure 16) for this grouping.  Therefore, it 
can be learned that enhancing maintenance cannot be considered the only solution to minimise the 
possibility of equipment failures. The lack of skills (training / experience) to operate a system or 
equipment may well be combined with equipment faults, as well as with design shortcomings. 71.8% 
of the Cluster 3 area was covered by human erroneous actions, mostly Wrong Time and Wrong Type 
(Figures 18 and 20). A profounder analysis of specific cognitive functions influencing human actions 
can be also attained. Observation Missed, Wrong Reasoning and Inadequate Plan maps represented 
many cases where events or signals that were supposed to trigger an action were missed; the 
operator misinterpreted a given signal or cue – a deduction or induction error; or the mental 
plan/solution to solve an issue was incomplete or wrong. The airplane accident report mentioned in 
the introduction (Bureau d’Enquêtes et d’Analyses pour la sécurité de l’aviation civile, 2011) perfectly 
illustrates circumstances where an equipment failure due to a design shortcoming can trigger 
cognitive disturbances, leading to errors and ultimately major accidents. The lack of skills of the co-
pilot to handle some problems (i.e. the approach to stall) at high altitudes made him build an 
erroneous mental plan to react to the undesirable situation. He adopted a tactic applicable to low 
altitudes, destabilising the flight path with inappropriate control inputs. Therefore, these tendencies 
reveal that specific training, aimed at dealing with critical conditions and major hazards, is very 
complex and must be carefully selected. Instead of reassuring written procedures or transmitting 
instructions, an effective training strategy must embrace the systemic development of a problem-
solving mindset. Although most of the simulation and training strategies are focused on conditioning 
the human to expected or predictable scenarios, critical situations will demand advanced decision-
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making skills and should focus on processes and techniques aimed at the identification and 
development of adequate operation alternatives.  

Equipment Failure is also the main contributor to Cluster 4, but the accidents within this grouping 
presented different characteristics from the former cluster. The map’s analysis for this cluster (i.e. 
Figures 9, 10 and 14) unmistakably shows that equipment problems were accompanied by quality 
control issues and design shortcomings. Although these relationships are quite clear, the low mode 
of 2 contributing factors prevents further tendencies from being accurately inferred in this grouping. 

 

5 Conclusions 

The successful conversion of multi-attribute, complex data from a major-accident dataset into a 2-D 
array revealed numerous possibilities of data clustering and interpretation, in order to disclose 
features, facilitate risk communication and enhance the learning process. The usage of graphical 
visualisation techniques such as topographic maps, which were generated by the SOM algorithm 
(Kohonen, 2001) in this research, provided additional means to help stakeholders absorb risk 
information and synchronise the textual explanation with meaningful visual representations.   

The application of an artificial neural network approach permitted the identification of common 
patterns and comparable contributing factors within four major accidents groups, revealing 
interfaces and conveying information to operators, designers, risk managers and the general public. 

Beyond the visual aid provided by the maps’ construction, it was possible to directly correlate real 
accidents with images, creating and enhancing a full learning experience that can be further 
expanded, depending on the objectives and the targeted public. This is due to the data mining 
approach, which fully preserved the input data (the MATA-D 238 x 53 Matrix) in the output space 
(the 2-D Maps) and allowed the retrieval of the dataset records. 

Also, the interpretation of the graphs can help to understand and communicate the relationship 
between contributing causes for major accidents.  Figures 14 and 15, for instance, can be used to 
show to a sceptical operations manager that very advanced maintenance procedures do not 
guarantee that equipment will not fail, and further measures might be necessary.  

The strategy of representing accident data in maps allows the fast transmission of relevant 
information and increases the possibility that stakeholders will fix and remember the lessons learned 
from accidents, minimising the dominance of biased concepts such as the oversimplification of 
addressing human errors as the main cause of major disasters. 
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