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Abstract. We revisit a classical problem in transportation, known as the (bilevel) continuous
network design problem, CNDP for short. Given a graph for which the latency of each edge depends
on the ratio of the edge flow and the capacity installed, the goal is to find an optimal investment in
edge capacities so as to minimize the sum of the routing costs of the induced Wardrop equilibrium
and the investment costs for installing the edge’s capacities. While this problem is considered as
challenging in the literature, its complexity status was still unknown. We close this gap showing that
CNDP is strongly NP-hard and APX-hard, both on directed and undirected networks and even for
instances with affine latencies. As for the approximation of the problem, we first provide a detailed
analysis for a heuristic studied by Marcotte for the special case of monomial latency functions
(Math. Program., Vol. 34, 1986). We derive a closed form expression of its approximation guarantee
for arbitrary sets of latency functions. We then propose a different approximation algorithm and
show that it has the same approximation guarantee. Then, we prove that using the better of the
two approximation algorithms results in a strictly improved approximation guarantee for which we
derive a closed form expression. For affine latencies, e.g., this best of two approach achieves a
49/41 ≈ 1.195-approximation which improves on the 5/4 that has been shown before by Marcotte.
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1. Introduction. Since the seminal works of Pigou [25] and Wardrop [31], the
impact of selfish behavior in congested transportation networks has been investigated
intensively. Wardrop stated in his first principle the following notion of an equilibrium:
“The journey times on all the routes actually used are equal, and less than those which
would be experienced by a single vehicle on any unused route.” For a formalization of
this principle in the context of selfish routing consider a directed graph with latency
functions on the edges and a set of origin-destination pairs, called commodities. Every
commodity has a demand associated with it, which specifies the amount of flow that
needs to be sent from the respective origin to the respective destination. The latency
that a flow particle experiences when traversing an edge depends on the edge flow and
is determined by a non-decreasing latency function. In practice, latency functions are
calibrated to reflect edge specific parameters such as street length and capacity. One
of the most prominent and popular classes of functions used in actual traffic models
are the ones put forward by the Bureau of Public Roads (BPR) [30]; BPR-type latency
functions are of the form Se(fe) = te

(
1 + be(fe/ze)

4
)
, where fe is the edge flow, te

represents the free-flow travel time, be > 0 is an edge-specific bias, and ze represents
the street capacity. A Wardrop equilibrium is a multi-commodity flow, in which each
commodity sends flow only along paths with minimum latency from its origin to its
destination.
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2 COMPLEXITY AND APPROXIMATION

It is well known that Wardrop equilibria can be inefficient in the sense that they
do not minimize the total travel time in the network [13]. The worst-case ratio of the
total travel time of a Wardrop equilibrium and an optimal flow is known as the price
of anarchy and exact values for the price of anarchy of selfish routing are known for
specific classes of latency functions [26, 28]. A prominent example of this inefficiency
can be observed in Braess’ Paradox [7] where improving the network infrastructure by
adding street capacity results in a Wardrop equilibrium with strictly higher total travel
time. This non-monotonic behavior illustrates that designing networks for efficient
Wardrop equilibria is an important and non-trivial issue.

In this paper, we revisit a variant of the continuous network design problem
(CNDP for short) previously studied by Marcotte [23]: We are given a graph for
which the latency of each edge depends on the ratio of the edge flow and the capacity
installed and the goal is to find an optimal investment in edge capacities so as to
minimize the sum of the routing cost of the induced Wardrop equilibrium and the
investment cost. Note that throughout this paper we assume that latency functions
are edge-separable, that is, for fixed capacities the latency of every edge depends only
on its edge flow.

From a mathematical perspective, CNDP is a bilevel optimization problem (see,
e.g., [8, 21] for an overview), where in the upper level the edge capacities are deter-
mined and, given these capacities, in the lower level the flow settles into a Wardrop
equilibrium in which, for each commodity, only shortest paths are used. It is well
known that the equilibrium condition in the lower level can be formulated as a mini-
mization problem [3] thus turning CNDP into a bilevel optimization problem. Clearly,
the lower level reaction depends on the first level decision because altering the capacity
investment on a subset of edges may result in revised route choices by the users.

CNDP (including different variants) has been intensively studied since the late six-
ties (cf. [1, 10, 12, 22]) and several heuristic approaches have been proposed since then;
see Yang et al. [32] for a comprehensive survey. Most of the proposed heuristics are
numerical in nature and involve iterative computations of relaxations of the problem
(for instance the iterative optimization and assignment algorithm [24] and augmented
Lagrangian methods or linearizations of the objective in the leader and follower prob-
lem) and no worst-case approximation guarantee is provided. An exception is the
work of Marcotte [23] who considered several algorithms based on solutions of associ-
ated convex optimization problems which can be solved within arbitrary precision in
polynomial time [16]. For monomial latency functions, he derives worst-case bounds
for his heuristics, e.g., for affine latency functions he obtains a 5/4-approximation.
For general monomial latency functions plus a constant (including BPR-type latency
functions) he obtains a 2-approximation.

1.1. Our Results and Used Techniques. Although CNDP and their vari-
ants have been studied by many researchers for more than 40 years, to the best of
our knowledge, the computational complexity status of CNDP is still unknown. We
settle this question by showing that CNDP is strongly NP-hard and APX-hard, both
on directed and undirected networks and even for instances with affine latencies of
the form Se(fe/ze) = αe+βe(fe/ze), αe, βe ≥ 0. For the proof of the NP-hardness, we
reduce from 3-Sat. The reduction has the property that in case that the underlying
instance of 3-Sat has a solution the cost of an optimal solution is equal to the minimal
cost of a relaxation of the problem, in which the equilibrium conditions are relaxed.
The key challenge of the hardness proof is to obtain a lower bound on the optimal
solution when the underlying 3-Sat instance has no solution. To this end, we relax
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the equilibrium conditions only partially which enables us to bound the cost of an
optimal solution from below by solving an associated constrained quadratic optimiza-
tion problem. With a slightly adapted construction and a more detailed analysis, we
can even prove APX-hardness of the problem. Here, we reduce from a symmetric vari-
ant of Max-3-Sat, in which all literals occur exactly twice. This problem is known
to be NP-hard to approximate by any factor better than 1016/1015, see Berman et
al. [4, 5]. While all our hardness proofs rely on instances with an arbitrary number of
commodities and respective sinks, a result by Marcotte [23] implies that for instances
in which all commodities share a common sink, CNDP can be solved to optimality in
polynomial time.

In light of the hardness of CNDP for general network topologies, we focus on
approximation algorithms. We first consider a polynomial time algorithm proposed by
Marcotte [23]. This algorithm, which we call BringToEquilibrium, first computes
a relaxation of CNDP by removing the equilibrium conditions. Then, it reduces
the edge capacities of each edge individually such that the flow computed in the
relaxation becomes a Wardrop equilibrium. We give a novel closed form expression
of the performance of this algorithm with respect to the set S of allowed latency
functions. Specifically, we show that this algorithm is a (1 + µ(S))-approximation,
where

µ(S) = supS∈S supx≥0:S(x)>0 maxγ∈[0,1]

{
γ

(
1− S(γx)

S(x)

)}
.

The value µ(S) has been used before by Correa et al. [9] and Roughgarden [26]
in the context of price of anarchy bounds for selfish routing. Specifically, they showed
that the routing cost of a Wardrop equilibrium is at most a factor of 1

1−µ(S) away of
the routing cost of a system optimum. The anarchy value of 1

1−µ(S) appears naturally
in the context of approximation algorithms for the continuous network design problem
as the following (trivial) algorithm has an approximation guarantee of 1

1−µ(S) ; first

compute a relaxation of CNDP by removing the equilibrium conditions, then fix the
capacities of the relaxation and compute a corresponding Wardrop equilibrium. It is
worth noting that, since 1 + µ(S) < 1

1−µ(S) for all sets of latency functions S with

µ(S) > 0, the algorithm of Marcotte has a better approximation guarantee than the
trivial algorithm.

For the special case that S is the set of polynomials with non-negative coefficients
and maximal degree ∆, we derive exactly the approximation guarantees that Marcotte
obtained for monomials. As an outcome of our more general analysis, we further derive
that this algorithm is a 2-approximation for general convex latency functions and a
5/4-approximation for latency functions that are both concave and semi-convex.

We then propose a new algorithm which we call ScaleUniformly. This algo-
rithm first computes an optimal solution of the relaxation as before and then uni-
formly scales the capacities with a certain parameter λ(S) that depends on the class
of allowable latency functions S. Based on well-known techniques using variational
inequalities (Correa et al. [9] and Roughgarden [26]), we prove that this algorithm
also yields a (1 + µ(S))-approximation.

As our main result regarding approximation algorithms, we show that using
the better of the two solutions returned by BringToEquilibrium and ScaleUni-
formly yields strictly better approximation guarantees. We give a closed form ex-
pression for the new approximation guarantee as a function of S. We demonstrate the
applicability of this general bound by showing that the best-of-two-algorithm achieves
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Table 1
Approximation guarantees of the algorithms BringToEquilibrium, ScaleUniformly, and the

best of the two for convex latency functions, concave latency functions and sets of polynomials with
non-negative coefficients depending on the maximal degree ∆. The approximation guarantees stated
for convex latency functions even hold for sets of semi-convex latency functions as in Assumption 1.
For BringToEquilibrium, the approximation guarantees marked with (?) have been obtained before
in [23].

Approximation guarantees

Functions
BringToEquilibrium

Better of the two
ScaleUniformly

concave 5/4 = 1.25 49/41 ≈ 1.195
convex 2 9/5 = 1.8

polynomials ∆
0 1 1

1/4 3381/3125 ≈ 1.082 ≈ 1.064
1/3 283/256 ≈ 1.105 ≈ 1.083
1/2 31/27 ≈ 1.148 1849/1657 ≈ 1.116
1 5/4 = 1.25 ? 49/41 ≈ 1.195

2 1 + 2
9

√
3 ≈ 1.385? 311

479
+ 180

479

√
3 ≈ 1.300

3 1 + 3
16

3
√

42 ≈ 1.472? ≈ 1.369

4 1 + 4
25

4
√

53 ≈ 1.535? ≈ 1.418
∞ 2 ? 9/5 = 1.8

a 9/5-approximation for S containing arbitrary convex latencies. For affine latencies
it achieves a 49/41 ≈ 1.195-approximation improving on the 5/4 of Marcotte. An
overview of our results compared to those of Marcotte can be found in Table 1.

1.2. Further Related Work. Quoting [32], CNDP has been recognized to be
“one of the most difficult and challenging problems in transport” and there are numer-
ous works approaching this problem. In light of the substantial literature on heuristics
for CNDP, we refer the reader to the surveys [8, 14, 22, 32].

While to the best of our knowledge prior to this work, the complexity status of
CNDP was open, there have been several papers on the complexity of the discrete
(bilevel) network design problem, DNDP for short, see [20, 27]. Given a network with
edge latency functions and traffic demands, a basic variant of DNDP is to decide which
edges should be removed from the network to obtain a Wardrop equilibrium in the
resulting sub-network with minimum total travel time. This variant is motivated by
the classical Braess’ Paradox, where removing an edge from the network may improve
the travel time of the new Wardrop equilibrium. Roughgarden [27] showed that
DNDP is strongly NP-hard and that there is no (bn/2c− ε)-approximation algorithm
(unless P = NP), even for single-commodity instances. He further showed that for
single-commodity instances the trivial algorithm of not removing any edge from the
graph is essentially best possible and achieves a bn/2c-approximation. For affine
latency functions, the trivial algorithm gives a 4/3-approximation (even for general
networks) and this is also shown to be best possible. These results in comparison
to ours highlight interesting differences. While DNDP is not approximable by any
constant for convex latencies, for CNDP we give a 9/5-approximation. Moreover, all
hardness results for DNDP already hold for single-commodity instances, while in that
case CDNP is solvable in polynomial time.

A more general variant of CNDP arises when initial edge capacities are given and
a budget must be distributed among the edges to improve the resulting equilibrium,
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see, e.g. [12, 24, 32]. Very recently and independently of this work, Bhaskar et al. [6]
studied the complexity of this problem. Among other results they show that the
problem is weakly NP-hard in single-commodity networks that consist of parallel links
in series. This again stands in contrast to the polynomial-time algorithm for single-
commodity networks for the variant of CDNP considered in this paper. A series of
works considered simplified network topologies (e.g., parallel links) or special latency
functions (e.g., M/M/1 latency functions), see [6, 17, 18, 19].

2. Preliminaries. Let G = (V,E) be a directed or undirected graph, V its set
of vertices and E ⊆ V × V its set of edges. We are given a set K of commodities,
where each commodity k ∈ K is associated with a triple (sk, tk, dk) ∈ V × V × R>0,
where sk ∈ V is the source, tk ∈ V the sink and dk the demand of commodity k.
A multi-commodity flow on G is a collection of non-negative flow vectors (fk)k∈K
such that for each k ∈ K the flow vector fk = (fke )e∈E satisfies the flow conservation
constraints∑

u∈V :(sk,u)∈E
fk(sk,u) −

∑
u∈V :(u,sk)∈E

fk(u,sk) = dk∑
u∈V :(u,tk)∈E

fk(u,tk) −
∑

u∈V :(tk,u)∈E
fk(tk,u) = dk∑

u∈V :(u,w)∈E
fk(u,w) −

∑
u∈V :(w,u)∈E

fk(w,u) = 0 for all w ∈ V \ {sk, tk}.

Whenever we write f without a superscript k for the commodity, we implicitly sum
over all commodities, i.e., fe =

∑
k∈K f

k
e and f = (fe)e∈E . We call fe an edge flow.

The set of all feasible edge flows will be denoted by F .
The latency of each edge e depends on the installed capacity ze ≥ 0 and the edge

flow fe on e, and is given by a latency function Se : R≥0 → R≥0 ∪ {∞} that maps
fe/ze to a latency value Se(fe/ze), where we use the convention that Se(fe/ze) =∞
whenever ze = 0. Throughout this paper, we assume that the set of allowable latency
functions is restricted to some set S and we impose the following assumptions on S.

Assumption 1. The set S of allowable latency functions is nonempty and only
contains strictly increasing, unbounded, continuously differentiable and semi-convex
functions S : R≥0 → R≥0 ∪ {∞}. (A function S is called semi-convex if the function
x 7→ x · S(x) is convex.)

We note that Assumption 1 is slightly more general than requiring that all latency
functions are strictly increasing and convex. For instance, the function x 7→

√
x

satisfies Assumption 1 although it is concave.
For a fixed vector of capacities z = (ze)e∈E , the latency of each edge e only

depends on the edge flow fe. Under these conditions, there exists a Wardrop flow
f = (fe)e∈E , i.e., a flow in which each commodity only uses paths of minimal latency.
It is well known (cf. [3, 11, 29]) that each Wardrop flow is a solution to the optimization
problem

min
f∈F

{∑
e∈E

∫ fe

0

Se(t/ze) dt

}
,(2.1)

and satisfies the variational inequality∑
e∈E

S(fe/ze)(fe − f ′e) ≤ 0(2.2)
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for every feasible flow f ′ = (f ′e)e∈E ∈ F . For a vector of capacities z we denote by
W(z) the corresponding set of Wardrop flows f(z). Beckmann et al. [3] showed that
Wardrop flows and optimum flows are related in the following way.

Proposition 2.1 (Beckmann et al. [3]). Let S∗e (x) = (xSe(x))′ = Se(x)+xS′e(x)
be the marginal cost function of edge e ∈ E. Then f∗ is an optimum flow with respect
to the latency functions (Se)e∈E if and only if it is a Wardrop flow with respect to
(S∗e )e∈E.

In the continuous network design problem (CNDP) the goal is to buy capacities ze
at a price per unit `e > 0 so as to minimize the sum of the construction cost CZ(f , z) =∑
e∈E ze `e and the routing cost CR(f , z) =

∑
e∈E Se(fe/ze) fe of a resulting Wardrop

equilibrium f . Observe that CR(f , z) is well defined as, by (2.1), it is the same for
all Wardrop equilibria with respect to z. Denote the combined cost by C(f , z) =
CR(f , z) + CZ(f , z).

Definition 2.2 (Continuous network design problem (CNDP)). Given a directed
graph G = (V,E) and, for each edge e, a latency function Se and a construction cost
`e > 0, the continuous network design problem (CNDP) is to determine a non-negative
capacity vector z = (ze)e∈E that minimizes

min
z≥0,f∈W(z)

{∑
e∈E

(
Se(fe/ze) fe + ze `e

)}
.(CNDP)

Removing the condition that f is a Wardrop equilibrium in (CNDP), we obtain
the following relaxation of the continuous network design problem:

min
z≥0,f∈F

{∑
e∈E

(
Se(fe/ze) fe + ze `e

)}
.(CNDP’)

Marcotte [23] showed that for convex and unbounded latency functions, the re-
laxed problem (CNDP’) can be solved efficiently by performing |K| independent short-
est path computations on the graph G, one for each commodity k ∈ K. The following
proposition slightly generalizes his result to arbitrary, not necessarily convex latency
functions that satisfy Assumption 1.

Proposition 2.3 (Marcotte [23]). The relaxation (CNDP’) can be solved by
performing |K| shortest path computations in polynomial time.

Proof. The proof is based on Marcotte’s proof idea for convex latency functions.
We include it for completeness and mention the new arguments needed to cope with
cost functions that satisfy Assumption 1 but are not convex.

First of all, by Assumption 1 it follows that the objective in (CNDP’) is convex,
and thus, first order conditions are also sufficient for global optimality. As noted
by Marcotte, we can first solve (CNDP’) in terms of capacities only leaving the flow
values as parameters. We obtain as a necessary optimality condition that for every
edge e ∈ E with ze > 0 we must have

S′e(fe/ze)(fe/ze)
2 = le.

Provided that one can solve the equation

S′e(x)x2 = le(2.3)
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for every e ∈ E beforehand, one can use the corresponding solutions ue ≥ 0 to derive
a simpler reformulation of (CNDP’) leading to the following unsplittable flow problem

min
f∈F

{∑
e∈E

(
Se(ue) + `e/ue

)
fe

}
.

This problem can be solved by |K| shortest path calculations.
For convex latency functions (as in [23]), Equation (2.3) always admits a unique

solution. To be able to deal with non-convex functions S, we prove that under the
weaker Assumption 1, we have limx↓0 S

′(x)x2 = 0 and limx↑+∞ S′(x)x2 = +∞. For
the proof, see Lemma A.1 in the appendix. Then, using continuity of S′(x)x2 the
intermediate value theorem implies the existence of a solution to (2.3).

It follows that for graphs with a single sink (or a single source), one can solve
even (CNDP) by computing a shortest path tree.

Corollary 2.4 (Marcotte [23]). In networks with only one sink vertex t (or
source vertex s), the continuous network design problem (CNDP) can be solved in
polynomial time.

The proof relies on first solving (CNDP’) (as above) and then observing that the
resulting shortest path tree (using that there is a single sink (or source) only) induces
unique paths for every commodity with finite latency, thus, inducing the optimal flow
as a Wardrop equilibrium.

Remark 1. To speak about polynomial algorithms and hardness, we need to
specify how the instances of CNDP, in particular the latency functions, are encoded,
cf. [2, 16, 27]. While our hardness results hold even if all functions are linear and
given by their (rational) coefficients, for our approximation algorithms, we require
that we can solve equations involving a latency function and its derivative, e.g., Equa-
tion (2.3). Without this assumption, we still obtain the claimed approximation guar-
antees within arbitrary precision by polynomial time algorithms.

3. Hardness Results. As the main results of this section, we show that CNDP
is strongly NP-hard and APX-hard both on directed and undirected networks and
even for affine latency functions. The main difficulty of the proofs is to obtain good
lower bounds on the objective value of a solution.

3.1. NP-hardness. For ease of exposition, we first show that CNDP on directed
networks is strongly NP-hard.

Theorem 3.1. The continuous network design problem (CNDP) on directed
networks is NP-hard in the strong sense, even if all latency functions are affine.

Proof. To show the NP-hardness of the problem, we reduce from 3-Sat. Let φ
be a Boolean formula in conjunctive normal form. We denote the set of variables and
clauses of φ with V (φ) and K(φ), respectively, and set ν = |V (φ)| and κ = |K(φ)|.
We denote by L(φ) the set of literals over V (φ), i.e., L(φ) = {xi ∈ V (φ)} ∪ {x̄i : xi ∈
V (φ)}. A solution of φ is a subset A ⊂ L(φ) such that |A ∩ {xi, x̄i}| = 1 and for
all clauses k = lk ∨ l′k ∨ l′′k ∈ K(φ) we have |A ∩ {lk, l′k, l′′k}| ≥ 1. The computational
problem 3-Sat is to decide for a given formula φ whether a solution exists.

We now explain the construction of a continuous network design problem based
on φ that has the property that, for some ε ∈ (0, 1/8), an optimal solution has total
cost less or equal to (4 + ε)κ + 2κν if and only if φ has a solution; cf. Figure 1.
Let ε ∈ (0, 1/8) be arbitrary. For each clause k ∈ K(φ), we introduce a clause edge
e(k) with latency function Se(k)(fe(k)/ze(k)) = 4 + fe(k)/ze(k) and construction cost
`e(k) = (ε/2)2. For each literal l ∈ L(φ) and each clause k ∈ K(φ), we introduce
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sj(x1) tj(x1) sj(x2) tj(x2). . .sj(xν ) tj(xν )

sj(1) tj(1) sj(2) tj(2) . . . sj(κ) tj(κ)

Fig. 1. Hardness of the continuous network design problem. Clause 1 is equal to x1 ∨ x̄2 ∨xν .
Dashed edges have zero latency.

a literal edge e(l, k) with latency function Se(l,k)(fe(l,k)/ze(l,k)) = fe(l,k)/ze(l,k) and
construction cost `e(l,k) = 1. We denote the set of clause edges and literal edges by
EK and EL, respectively.

For each variable xi ∈ V (φ), there is a variable commodity j(xi) with source sj(xi),
sink tj(xi) and demand dj(xi) = 1. This commodity has two feasible paths, one path
uses exclusively the literal edges {e(xi, k) : k ∈ K(φ)} that correspond to the non-
negated variable xi, the other path uses exclusively the literal edges {e(x̄i, k) : k ∈
K(φ)} that correspond to the negated variable x̄i. In that way, each feasible path of
the variable commodity j(xi) corresponds to a truth assignment of the variable xi.
For each clause k = lk ∨ l′k ∨ l′′k with lk, l

′
k, l
′′
k ∈ L(φ), we introduce a clause commodity

j(k) with source sj(k), sink tj(k) and demand dj(k) = 1. The clause commodity may
either choose its corresponding clause edge e(k) or the corresponding literal edges
that occur in k, i.e., e(lk, k), e(l′k, k), and e(l′′k , k). For notational convenience, we set
EL(k) = {e(lk, k), e(l′k, k), e(l′′k , k)}. We add some additional edges with latency 0 to
obtain a network; see Figure 1 where these edges are dashed. In order to make sure
that no further paths emerge, it is important that, for each variable commodity j(xi)
and each literal l ∈ {xi, x̄i}, the edges appear in the order e(l, 1), e(l, 2), . . . , e(l, κ).
Note that although our construction uses edges with zero latency, the problem remains
NP-hard, even if such edges are not allowed, see Remark 2 after this proof.

First, we show that an optimal solution of the so-defined instance of the continuous
network design problem P has total cost less or equal to (4 + ε)κ + 2κν, if φ has a
solution. To his end, let A be the set of literals that occur in a solution of φ. Then,
a feasible solution of P is as follows. If, for a variable xi, the solution A contains the
positive literal xi, we install capacity 1 for the corresponding negative literal edges
{e(x̄i, k) : k ∈ K(φ)}, and vice versa. Formally, we set

z(l,k) =

{
1, if ¬l ∈ A
0, otherwise

for all l ∈ L(φ), k ∈ K(φ). For each clause edge e(k), k ∈ K(φ), we install capacity
2/ε. This particular capacity vector z = (ze)e∈E implies that each variable commodity
j(xi) has a unique path of finite length, i.e., the path using the edges corresponding
to the negation of the corresponding literal in A. Using that A is a solution of φ,
we further obtain that for each clause commodity j(k) at least one of the edges in
EL(k) has capacity zero and, thus, infinite latency. This implies that the demand of
each clause commodity j(k) is routed along the corresponding clause edge e(k). This
Wardrop equilibrium is unique as each commodity has only a single path with finite
latency.



OF THE CONTINUOUS NETWORK DESIGN PROBLEM 9

For the total cost of this solution, we obtain

C(f , z) =
∑
e∈EK

((
4 +

fe
ze

)
fe +

( ε
2

)2
ze

)
+
∑
e∈EL

(f2
e

ze
+ ze

)
=
∑
e∈EK

((
4 +

ε

2

)
+
ε

2

)
+

1

2

∑
e∈EL

(
1 + 1

)
= (4 + ε)κ+ 2κν.(3.1)

Hence, an optimal solution has cost not larger than (3.1) if φ has a solution.
We proceed to prove that the total costs of an optimal solution are strictly larger

than (3.1) if φ does not admit a solution. Let z = (ze)e∈E be the capacity vector of
an optimal solution of P and let f = (fe)e∈E be a corresponding Wardrop flow. We
distinguish two cases.

First case: fe(k) > 0 for all k ∈ K(φ), i.e., each clause commodity j(k) sends
flow over the corresponding clause edge e(k). Before we prove the thesis for this case,
we need some additional notation. For the Wardrop flow fe on edge e ∈ E, let fVe
and fKe denote the flow on e that is due to the variable commodities and the clause
commodities, respectively. We claim that there is a clause k̃ ∈ K(φ), k̃ = l

k̃
∨ l′

k̃
∨ l′′

k̃
such that the flow of the variable commodities on each of the corresponding literal
edges in E(k̃) =

{
e(l

k̃
, k̃), e(l′

k̃
, k̃), e(l′′

k̃
, k̃)
}

is at least 1/2, i.e.,

fV
e(lk̃,k̃)

≥ 1/2, fV
e(l′

k̃
,k̃)
≥ 1/2, and fV

e(l′′
k̃
,k̃)
≥ 1/2.(3.2)

For a contradiction, let us assume that for each clause k = lk ∨ l′k ∨ l′′k there is a
literal l∗k ∈ {lk, l′k, l′′k} such that fVe(l∗k,k) < 1/2. As each variable commodity j(xi),
xi ∈ V (φ) splits its unit demand between the path consisting of the positive literal
edges {e(xi, k) : k ∈ K(φ)} and the path consisting of the negative literal edges
{e(x̄i, k) : k ∈ K(φ)}, at most one of these two paths is used with a flow strictly
smaller than 1/2. Thus, the set of literals

A =
{
l ∈ L(φ) : fVe < 1/2 for all e ∈ {e(l, k) : k ∈ K(φ)}

}
contains for each variable at most one literal, i.e., |A ∩ {xi, x̄i}| ≤ 1 for all xi ∈
V (φ) and satisfies all clauses. This implies the existence of a solution A∗ ⊇ A of φ
contradicting the assumption that no such solution exists. We conclude that there is
a clause k̃ such that (3.2) holds.

We proceed to bound the total cost of a solution from below. As f is a Wardrop
equilibrium in which the clause commodity j(k̃) uses at least partially the clause edge
e(k̃), we obtain ∑

e∈E(k̃)

fe
ze
≥ 4 +

fe(k̃)

ze(k̃)

> 4.(3.3)

We bound the total cost of the solution (f , z) by observing

C(f , z) =
∑
e∈EL

(f2
e

ze
+ ze

)
+
∑
e∈EK

((
4 +

fe
ze

)
fe +

( ε
2

)2
ze

)

≥ minxe≥0,e∈E
s.t.

∑
e∈E(k̃) fe/xe≥4

{∑
e∈EL

(f2
e

xe
+ xe

)
+
∑
e∈EK

((
4 +

fe
xe

)
fe +

( ε
2

)2
xe

)}
.
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Since the constraint
∑
e∈E(k̃) fe/xe ≥ 4 is independent of all variables xe with

e ∈ E \ E(k̃), we may optimize these variables independently and obtain

C(f , z) ≥
∑

e∈EL\E(k̃)

minxe≥0

{
f2
e

xe
+ xe

}
+ minxe≥0,e∈E(k̃)

s.t.
∑
e∈E(k̃) fe/xe≥4

{ ∑
e∈E(k̃)

(f2
e

xe
+ xe

)}

+
∑
e∈EK

minxe≥0

{(
4 +

fe
xe

)
fe +

( ε
2

)2
xe

}
.

Calculating the respective minima for the edges in E \ E(k̃), we obtain

C(f , z) ≥
∑

e∈EL\E(k̃)

2fe +
∑
e∈EK

(4 + ε)fe + minxe≥0,e∈E(k̃)
s.t.

∑
e∈E(k̃) fe/xe≥4

{ ∑
e∈E(k̃)

(f2
e

xe
+ xe

)}
.(3.4)

Each clause commodity j(k) with k 6= k̃ can route its demand either over the clause
edge e(k) or over the three literal edges in EL(k). Every fraction of the demand
routed over the clause edge contributes 4 + ε to the expression on the right hand side
of (3.4) while it contributes at least 6 when routed over the literal edges. Thus, the
right hand side of (3.4) is minimized when the clause commodities j(k) with k 6= k̃
do not use the literal edges at all. We then obtain

C(f , z) ≥ (4 + ε)

(
κ−

∑
e∈E(k̃) f

K
e

3

)
+ 2

(
κν −

∑
e∈E(k̃)

fVe

)

+ minxe≥0,e∈E(k̃)

s.t.
∑
e∈E(k̃)(f

K
e +fVe )/xe≥4

{ ∑
e∈E(k̃)

(
(fKe + fVe )2

xe
+ xe

)}
.

Minimizing over fVe and fKe for e ∈ E(k̃) and using (3.2) and (3.3), we obtain as a
lower bound

C(f , z) ≥ 2κν + (4 + ε)κ+Q,

where Q is the solution to the constrained minimization problem

Q = minge,xe,h
∑

e∈E(k̃)

(
(ge + h)2

xe
+ xe − 2ge

)
− (4 + ε)h

s.t.
∑
e∈E(k̃)

ge+h
xe

≥ 4

ge ≥ 1
2 for all e ∈ E(k̃),

and the minimization is over xe ∈ R>0, ge ∈ [0, 1], e ∈ E(k̃) and h ∈ [0, 1].
It is straightforward to show that the optimal solution to the constraint optimiza-

tion problem Q is equal to Q = 1/8 and is attained for h = 0, ge = 1/2 and xe = 3/8
for all e ∈ E(k̃), see Lemma B.1 in Appendix B for a formal proof. This implies that
the total cost of a solution is not smaller than 2κν + (4 + ε)κ+ 1/8, which concludes
the first case.
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Second case: There is a clause commodity j(k̃) that does not use its clause edge
e(k̃), i.e., fe(k̃) = 0. As for the first case, we observe

C(f , z) =
∑
e∈EL

(
f2
e

ze
+ ze

)
+
∑
e∈EK

(
4fe +

f2
e

ze
+
( ε

2

)2
ze

)
≥
∑
e∈EL

2fe +
∑
e∈EK

(4 + ε)fe.

Using that j(k̃) does not use its clause edge, we derive that the flow on the literal
edges amounts to νκ+ 3 and we obtain

C(f , z) ≥ 2(κν + 3) + (4 + ε)(κ− 1)

= 2κν + (4 + ε)κ+ 2− ε,

which concludes the proof.
In the following remark, we discuss that although the hardness proof of Theo-

rem 3.1 used edges with zero latency, the hardness result continues to hold even if
edges with zero latency are not allowed.

Remark 2. The continuous network design problem is NP-hard in the strong
sense, even if no edges with zero latency are allowed.

Proof. Let M be an upper bound on the total cost of an optimal solution to a
continuous network design problem constructed in the proof of Theorem 3.1 and let E0

be the set of edges with zero latency. We replace each edge e ∈ E0, e = (s, t), s, t ∈ V
by an edge e′ = (s, t) with latency function Se′(fe′/ze′) = fe′/ze′ and construction
cost `e′ = ( ε

2M )2. For each new edge e′, we introduce an additional commodity i(e′)
with source si(e′) = s, sink ti(e′) = t and demand di(e′) = M . To route the flow of
commodity i(e′), each solution has to buy a sufficient capacity for the edge e′. For
ze′ = 2M2/ε the additional total cost on edge e′ is ε. Thus, the routing cost and
the total cost of the new edges can be made arbitrarily small. In conclusion, we can
approximate the behavior of edges with zero latency within arbitrary precision by
edges with unbounded latency functions.

3.2. APX-hardness. With a similar construction as in the proof of Theorem 3.1,
but a more detailed analysis, we can show that CNDP is in fact APX-hard. We reduce
from a specific variant of Max-3-Sat, which is NP-hard to approximate. The main
technical difficulty remains to obtain good lower bounds on the optimal solution of
CNDP. This turns out to be even more intricate for the APX hardness proof since we
need essentially tight bounds on the costs of an optimal solution.

Theorem 3.2. The continuous network design problem (CNDP) on directed
networks is APX-hard, even if all latency function are affine.

Proof. An instance of 4-Occ-Max-3-Sat is given by a Boolean formula φ in
conjunctive normal form with the special property that each clause contains exactly
three literals and each variable occurs exactly twice as a positive literal and exactly
twice as a negative literal. The problem to determine the maximal number of clauses
that can be satisfied simultaneously is known to be NP-hard to approximate within a
factor of 1016/1015− δ ≈ 1.00099− δ for any δ > 0; see Berman et al. [4, 5].

To show the APX-hardness of CNDP, we use the same construction and notation
as in the proof of Theorem 3.1 but make use of the special property of φ that each
literal occurs in exactly two clauses. Specifically, for each literal l ∈ L(φ), we only
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sj(x1) tj(x1) sj(x2) tj(x2) . . .sj(xν ) tj(xν )

sj(1) tj(1) sj(2) tj(2) . . . sj(κ) tj(κ)

Fig. 2. Network used to show the APX-hardness of the continuous network design problem.
Clause 1 is equal to x1 ∨ x̄2 ∨ xν . Dashed edges have zero latency.

introduce two literal edges e(l, kl) and e(l, k′l) for some kl, k
′
l ∈ K(φ). As a consequence

each path of a variable commodity contains exactly two literal edges, see Figure 2.
We claim that the so-defined instance of CNDP has a solution with total cost

in the interval
[
7κ+ 1

8 κ̃, (7 + ε)κ+ ( 1
4 + ε

2 )κ̃
]

if and only if the minimum number of
unsatisfied clauses is κ̃.

We proceed to prove that an optimal solution has total cost not larger than
(7 + ε)κ + ( 1

4 + ε
2 )κ̃ if φ has a solution A that violates κ̃ clauses only. The proof

of this thesis is similar to the one in Theorem 3.1, with the additional complication
that we have to take special care of the non-satisfied clauses. Let A ⊂ L(φ) with
|A∩{xi, x̄i}| = 1 for all xi ∈ V (φ) be an assignment of the variables of φ that satisfies
exactly κ − κ̃ clauses and let K̃ ⊆ K(φ) with κ̃ = |K̃| be the set of clauses that are
not satisfied by A. Consider the tuple (f , z) defined as

ze(l,k) =


1, if k /∈ K̃,¬l ∈ A,(

4
3 + ε

6

)−1
, if k ∈ K̃,¬l ∈ A,

0, otherwise,

fe(l,k) =

{
1, if ¬l ∈ A,
0, otherwise,

for all l ∈ L(φ), k ∈ {kl, k′l} and

ze(k) =
2

ε
, fe(k) = 1,

for all k ∈ K(φ).
To show that the tuple (f , z) is a solution to CNDP, it suffices to prove that f

is a Wardrop equilibrium for the latency functions defined by z. For every variable
commodity j(xi), xi ∈ V (φ) and every clause commodity j(k) that corresponds to
a satisfied clause k ∈ K(φ) \ K̃, it is straightforward to check that there is only one
path with finite latency. Next, consider an arbitrary clause commodity j(k) that
corresponds to a non-satisfied clause k ∈ K̃, k = lk ∨ l′k ∨ l′′k . Such a clause uses the
clause edge e(k) with latency 4 + ε/2. On the other hand, the corresponding literal

edges e(lk, k), e(l′k, k), and e(l′′k , k) all have capacity
(

4
3 + ε

6

)−1
and carry one unit of

flow of the variable commodities. Thus, their latencies sum up to 4+ ε
2 , implying that

clause commodity j(k) is in equilibrium.
We proceed to calculate the total cost of the solution (f , z). Every literal edge

that corresponds to a satisfied clause and the negation of a literal in A has capacity 1
and flow 1 and thus causes a total cost of 2. In contrast to this, each literal edge
that corresponds to a violated clause and the negation of a literal in A has capacity(

4
3 + ε

6

)−1
and flow 1 and, thus, causes a total cost of

4

3
+
ε

6
+

1
4
3 + ε

6

≤ 25

12
+
ε

6
.
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Further, each clause edge has capacity 2/ε and is used by 1 unit of flow and, thus,
contributes 4 + ε to the total cost. We calculate

C(f , z) ≤ (4 + ε)κ+
∑
e∈EL

2fe +
∑
k∈K̃

∑
e∈EL(k)

(25

12
+
ε

6
− 2
)
fe.

Using
∑
e∈EL fe = 3

2κ, we obtain

C(f , z) ≤ (4 + ε)κ+ 3κ+ 3κ̃
( 1

12
+
ε

6

)
= (7 + ε)κ+

(1

4
+
ε

2

)
κ̃.

We proceed to prove that an optimal solution (f , z) of CNDP has total cost not
smaller than 7κ + 1

4 κ̃ if each solution A of φ violates at least κ̃ clauses. For an edge

flow f , let fV and fK denote the edge flow that is due to the variable commodities
and clause commodities, respectively. Using that for all edges e we have fe = 0 if and
only if ze = 0, we bound C(f , z) by

C(f , z) =
∑
e∈EL
fe>0

(
f2
e

ze
+ ze

)
+
∑
e∈EK
fe>0

((
4 +

fe
ze

)
fe +

( ε
2

)2
ze

)
.

≥
∑
e∈EL
fe>0

(
f2
e

ze
+ ze

)
+ 4

∑
e∈EK
fe>0

fe.

Each clause commodity has unit demand and uses either three literal edges in EL
or one clause edge in EK . This implies

∑
e∈EK f

K
e +

∑
e∈EL f

K
e /3 =

∑
e∈EK fe +∑

e∈EL f
K
e /3 = κ. We then obtain

C(f , z) ≥
∑
e∈EL
fe>0

(
(fVe + fKe )2

ze
+ ze

)
+ 4

(
κ− 1

3

∑
e∈EL
fe>0

fKe

)
(3.5)

= 4κ+
∑
e∈EL
fe>0

(
(fVe + fKe )2

ze
+ ze −

4

3
fKe

)
.

Since
∑
e∈EL f

V
e = 3

2κ, we obtain

C(f , z) ≥ 7κ+
∑
e∈EL
fe>0

(
(fVe + fKe )2

ze
+ ze − 2fVe −

4

3
fKe

)

= 7κ+
∑

k∈K(φ)

∑
e∈EL(k)
fe>0

(
(fVe + fKe )2

ze
+ ze − 2fVe −

4

3
fKe

)
.(3.6)

To obtain a lower bound on C(f , z) we bound for each clause k ∈ K(φ) the term∑
e∈EL(k):fe>0

(
(fVe + fKe )2/ze + ze − 2fVe − 4fKe /3

)
by the solution of a constrained

minimization problem for which the original solution (f , z) is feasible and has the
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same function value. To formulate the constraints of the minimization problem, for
a clause k ∈ K(φ) we denote by mk(fV ) = mine∈EL(k) f

V
e the minimum flow of the

variable commodities over the edges in EL(k). Consider the constrained minimzation
problem

Qk = inf
ge,xe,h

∑
e∈EL(k)
fe>0

(
(ge + h)2

xe
+ xe − 2ge −

4

3
h

)
(3.7a)

s.t.:
∑

e∈EL(k)

ge + h

xe
≥ 4, if h < 1 and fe > 0 for all e ∈ EL(k),(3.7b)

ge ≥ mk(fV ) for all e ∈ EL(k) : fe > 0,(3.7c)

xe > 0 for all e ∈ EL(k) : fe > 0,(3.7d)

ge + h > 0 for all e ∈ EL(k) : fe > 0,(3.7e)

ge ∈ [0, 1] for all e ∈ EL(k) : fe > 0,(3.7f)

h ∈ [0, 1].(3.7g)

We claim that Qk is a lower bound on the contribution of every clause k to (3.6), i.e.,

Qk ≤
∑

e∈EL(k):fe>0

(
(fVe + fKe )2/ze + ze − 2fVe − 4fKe /3

)
.

To see this claim, note that fKe = fKe′ for all e, e′ ∈ EL(k) and substitute fVe = ge,
fKe = h and ze = xe for all e ∈ EL(k). Then, the objective (3.7a) of Qk is equal to the
contribution of clause k to (3.6). In addition, (f , z) clearly satisfies the constraints
(3.7c) to (3.7g). Moreover, since f is a Wardrop equilibrium for the vector of capacities
z, the sum of the latencies of the edges in EL(k) is at least 4 in case that a non-zero
fraction of the flow of the clause commodity j(k) is routed over the corresponding
clause edge. With the substitution fKe = h this corresponds to h < 1. The equilibrium
constraint is trivially satisfied if fe = 0 for one of the edges in EL(k) since in this
case the optimality of (f , z) also implies that ze = 0 so that the latency of that
edge is infinite. This fact is expressed in (3.7b). We conclude that (f , z) satisfies all
conditions of Qk, k ∈ K(φ) so that 7κ+

∑
k∈K(φ)Qk gives a lower bound on C(f , z).

Next, we discuss the optimal solutions of (3.7). If fe > 0 for all e ∈ EL(k), the
optimal solution to this system (3.7) is equal to Qk = mk(fV )/4 and is attained for
fVe = mk(fV ) and ze = 3mk(fV )/4 for all e ∈ Ek, k ∈ K(φ), see Lemma B.1 in
Appendix B. If, on the other hand, fe = 0 for some e ∈ EL(k) we have mk(fV ) = 0
and constraint (3.7b) vanishes. We obtain

Qk = infge∈[0,1]
xe≥0
h ∈[0,1]

∑
e∈EL(k)
fe>0

(
(ge + h)2

xe
+ xe − 2ge −

4

3
h

)
,

where with some abuse of notation we let (ge + h)2/xe = 0 if ge + h = xe = 0 and
(ge + h)2/xe = ∞ if ge + h > 0 and xe = 0. First order conditions on xe imply that
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Qk is minimized when xe = ge + h. Thus,

Qk = infge∈[0,1]
h ∈[0,1]

∑
e∈EL(k)
fe>0

(
2(ge + h)− 2ge −

4

3
h

)

= minh∈[0,1]

∑
e∈EL(k)
fe>0

(
2

3
h

)
= 0 = mk(fV )/4.

Overall, we have shown that Qk is at least mk(fV )/4. This implies

C(f , z) ≥ 7κ+
∑

k∈K(φ)

mk(fV )

4
.

To finish the proof it suffices to show that
∑
k∈K(φ)mk(fV ) ≥ κ̃ for each feasible

flow of the variable commodities fV . To this end, let fV be a flow minimizing∑
k∈K(φ)mk(fV ). We claim that it is without loss of generality to assume that fV is

integral. To see this claim, suppose that the flow for all variable commodities except
j(xi) is fixed and consider the variable commodity j(xi). Let p denote the fraction
of the flow sent over the path consisting of the positive literal edges e(xi, kxi) and
e(xi, k

′
xi). By definition, only the clauses kxi and k′xi contain the literal xi and only

the clauses kx̄i and k′x̄i contain the literal x̄i. We calculate the contribution of these
four clauses to

∑
k∈K(φ)mk(fv) as follows:∑

k∈{kx
i
,k′xi

,kx̄i ,k
′
x̄i
}
mk(fV ) =

∑
k∈{kxi ,k

′
xi
}

min
{
p,mine∈EL(k)\e(xi,k)

{
fVe
}}

+
∑

k∈{kx̄i ,k
′
x̄i
}

min
{

1− p,mine∈EL(k)\e(x̄i,k)

{
fVe
}}
.

For a fixed flow fV on the literal edges not involving variable xi, being the sum of
concave functions, this expression is concave in p. Hence, the minimum is attained for
either p = 0 or p = 1. Put differently, for any flow of the other variable commodities,
the expression

∑
k∈K(φ)mk(fV ) is minimized when variable commodity j(xi) routes

all of its demand on one path. Iterating this argument for all variable commodities,
we conclude that it is without loss of generality to assume that fV is integral.

For an integral flow fV of the variable commodities, consider the assignment
A = {l ∈ L(φ) : fe(l,kl) = 0}. This assignment satisfies at most κ− κ̃ clauses. For any
clause k satisfied by A we obtain mk(fV ) = 0. As the flow is integral, any clause k
not satisfied by A has mk(fV ) = 1. We conclude that

∑
k∈K(φ)mk(fV ) ≥ κ̃ for all

feasible flows of the variable commodities fV .
Plugging everything together, we obtain that the total cost of an optimal solution

to CNDP lies in the range[
7κ+

1

4
κ̃, (7 + ε)κ+

(1

4
+
ε

2

)
κ̃

]
,(3.8)

if κ− κ̃ is the maximal number of satisfiable clauses.
Berman et al. [4, 5] construct a family of symmetric instances of 4-Occ-Max-

3-Sat with κ = 1016n, n ∈ N that has the property that for any δ ∈ (0, 1/2) it
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sj(x1)

type one

tj(x1)

type two

sj(x2) tj(x2) . . .sj(xν ) tj(xν )

sj(1) tj(1) sj(2) tj(2) . . . sj(κ) tj(κ)
type five

type three

type four

Fig. 3. Network used to show the APX-hardness of the continuous network design problem on
undirected graphs. Clause 1 is equal to x1∨x̄2∨xν . The clause edges (straight edges in the upper part
of the graph) and the literal edges (straight edges in the lower part of the graph) are connected via
different auxiliary edges (dashed). The auxiliary edges have different constant latencies dependent
on their type as specified in the proof of Theorem 3.3.

is NP-hard to distinguish between the systems where (1016 − δ)n clauses can be
satisfied and systems where at most (1015 + δ)n clauses can be satisfied. Using (3.8),
the corresponding instances of CNDP have the property that they have total cost at
most (7 + ε)1016n + δn( 1

4 + ε
2 ), if at least (1016 − δ)n clauses can be satisfied, and

total cost at least 7 ·1016n+ 1
4 (1− δ)n, if at most (1015+ δ)n clauses can be satisfied.

As we let ε and δ go to zero, we derive that it is NP-hard to approximate CNDP by
any factor better than 7112.25/7112 ≈ 1.000035. This proves the APX-hardness of
the problem.

3.3. Hardness for undirected networks. With a similar construction, we can
also show APX-hardness for CNDP on undirected networks.

Theorem 3.3. The continuous network design problem on undirected networks
is APX-hard, even if all latency functions are affine.

Proof. We closely mimic the proof of Theorem 3.2 and only sketch how to adjust
it to the undirected case, see Figure 3. Compared to the directed case, we introduce
some auxiliary edges with high latency in order to prevent the commodities from
taking undesired paths.
Type one edges are the edges adjacent to sj(xi) or tj(xi) for xi ∈ V (φ); their latency

is set to Se(fe/ze) = 50.
Type two edges connect e(l, kl) and e(l, k′l) for l ∈ L(φ); their latency is set to

Se(fe/ze) = 100.
Type three edges connect sj(k) or tj(k) for k ∈ K(φ) to a variable gadget; their

latency is set to Se(fe/ze) = 0.
Type four edges are the edges between two literal edges that correspond to the

same clause, but different variables; their latency is set to Se(fe/ze) = 20.
Type five edges are the additional edges that connect sj(k) with the clause edge

e(k) for k ∈ K(φ); their latency is set to Se(fe/ze) = 40.
The theorem is proven showing that the total cost of an optimal solution to CNDP
lies in the range

[
197κ+ 1

4 κ̃, (197 + ε)κ+
(

1
4 + ε

2

)
κ̃
]

if κ− κ̃ is the maximum number
of satisfied clauses.

To prove the upper bound on the cost, we proceed as in the proof of Theorem 3.2.
We fix an assignment A of the variables that satisfies κ − κ̃ clauses and route all
clause commodities along the clause edges and all variable edges along the negation
of the assignment of the variable in A. It is left to argue that the so-defined flow is a
Wardrop equilibrium. Since the auxiliary edges have non-zero latency, compared to
the solution in the directed case, the latency cost of each clause commodity increased
by the latency of a type five edge, i.e. 40, and the latency cost of each variable
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commodity increased by twice the latency of a type one edge plus the latency of a
type two edge, i.e. 200. Thus, the total cost increased by 40κ + 3

4 · 200κ = 190κ
giving a total cost of (197 + ε)κ + (1/4 + ε/2)κ̃. It is left to argue that this solution
still constitutes a Wardrop equilibrium although all edges can now be used in both
directions. To this end, note that each clause commodity uses its clause edge and
experiences a total latency of 44 + ε/2, and thus has no incentive to use a path with a
type one or type two edge. The only alternative path uses two type three edges, two
type four edges and the three corresponding literal edges where the latencies of the
latter are summing up to 4 + ε/2, as in the proof in Theorem 3.2. We conclude that
the clause commodities are in equilibrium.

For a variable commodity j(xi) we claim that the sum of the latencies of all
auxiliary edges in a path is at least 200. To see this, note that each such path
contains at least two type one edges with latency 50 each. Further, for each literal
l ∈ {xi, x̄i}, the type one edges adjacent to sj(xi) and tj(xi) are connected to literal
edges e(l, kl) and e(l′, k′l) that correspond to different clauses. The distance between
two literal edges e(l, kl) and e(l′, kl′) that correspond to different clauses is at least
100 because at least one type two and two consecutive type one edges have to be
crossed. Using this observation, one can show that no variable commodity has an
incentive to deviate.

For the lower bound, we argue as follows. If no variable commodity uses a type
three edge or a type four edge, then each variable commodity has to split its flow
between the path corresponding to the positive and the negative literal, respectively,
and the lower bound can be proven analogously to the directed case.

So we are left with the cases that a variable commodity uses a type three edge
or a type four edge. Let us first assume that we have an optimal solution, in which a
variable commodity uses a type four edge. We may assume without loss of generality
that every literal edge that carries flow has a latency of at most 5, because we could
decrease the total cost by increasing the capacity on these edges, otherwise. (However,
we may not decrease the latency below 4+ ε/2 because this might give an incentive to
the clause commodities to use these edges as well.) Every path available to a variable
commodity uses at least two type one edges as these edges are adjacent to the source
and target of each variable commodity. As argued above, every feasible path uses
at least either two additional type one edges or one type two edge. Using that the
variable commodity also uses a type four edge, this implies that the latency of the
variable commodity is at least 200 + 20. However, it would also be feasible to route
that variable commodity along the path corresponding to the positive literal say while
installing an additional capacity of 1/5 on the two literal edges f the positive literal
resulting in a total cost of 200 + 10 + 2/5 < 220. This low capacity would not prevent
any of the clause commodities from using their clause edge and has a lower total cost.
Thus, we may conclude that no variable commodity use a type four edge. As any
path of a variable commodity that uses a type three edge also uses a type five edge
with latency 40, we may conclude that no variable commodity uses such an edge as
well.

For all our hardness results, we use instances with different source and sink vertices
per commodity. In contrast, CNDP can be solved efficiently for instances in which
commodities share a common sink (or source), see Corollary 2.4.

4. Approximation. Given the APX-hardness of the problem, we study the ap-
proximation of CNDP. We first provide a detailed analysis of the approximation guar-
antees of two different approximation algorithms. Then, as the arguably most inter-
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esting result of this section, we provide an improved approximation guarantee for
taking the better of the two algorithms. The approximation guarantees proven in this
section depend on the set S of allowable cost functions and are in fact closely related
to the anarchy value value α(S) introduced by Roughgarden [26] and Correa et al. [9].
Intuitively, the anarchy value of a set of latency functions S is the worst case ratio
between the routing cost of a Wardrop equilibrium and that of a system optimum of
an instance in which all latency functions are contained in S. Roughgarden [26] and
Correa et al. [9] show that α(S) = 1

1−µ(S) , where

µ(S) = supS∈S supx≥0:S(x)>0 maxγ∈[0,1]

{
γ

(
1− S(γx)

S(x)

)}
.(4.1)

To simplify notation, we assume throughout this section that all latency functions
are strictly positive. This allows us to drop the condition that S(x) > 0 in (4.1). The
following lemma gives an alternative representation of µ(S).

Lemma 4.1. For a latency function S, the following values coincide:

1. supx≥0 maxγ∈[0,1]

{
γ
(
1− S(γx)

S(x)

)}
2. supx≥0

{
γ S′(x)x
S(x)+S′(x)x : γ ∈ [0, 1] with S(x/γ) = S(x) + xS′(x)

}
.

Proof. For any cost function S, the expression supx≥0 maxγ∈[0,1]

{
γ
(
1− S(γx)

S(x)

)}
is

non-negative and strictly positive for γ ∈ (0, 1) since S is strictly increasing. Moreover,

the function γ
(
1 − S(γx)

S(x)

)
is continuous in γ, thus, by the extreme value theorem of

Weierstrass a maximum will be attained on the compact interval [0, 1]. We conclude
that the inner maximum is attained for some γ ∈ (0, 1). Hence, γ satisfies the first
order optimality conditions

0 =

(
1− S(γx)

S(x)

)
− γx · S

′(γx)

S(x)
⇔ S(x) = S(γx) + γxS′(γx)

By substituting y = γx, we obtain

sup
x≥0

max
γ∈[0,1]

{
γ

(
1− S(γx)

S(x)

)}

= sup
y≥0

{
γ

(
1− S(y)

S(y/γ)

)
: γ ∈ [0, 1] with S(y/γ) = S(y) + yS′(y)

}

= sup
y≥0

{
γ · S′(y) y

S(y) + S′(y) y
: γ ∈ [0, 1] with S(y/γ) = S(y) + yS′(y)

}
,

which proves the lemma.

4.1. Two Approximation Algorithms. In this section, we present two ap-
proximation algorithms for CNDP. The first algorithm that we call BringToEqui-
librium (cf. Algorithm 1) was already proposed by Marcotte [23, Section 4.3] and
analyzed for monomial latency functions. Our contribution is a more general anal-
ysis of BringToEquilibrium that works for arbitrary sets of latency functions S,
requiring only Assumption 1. The second algorithm, that we call ScaleUniformly
(cf. Algorithm 2), is a new algorithm that we introduce in this paper.
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Algorithm 1 BringToEquilibrium

Input: Graph G = (V,E) with latency functions Se and construction costs `e, e ∈ E.
Output: Capacity vector z, corresponding Wardrop equilibrium f

1: (f∗, z∗)← solution to (CNDP’)
2: for all e ∈ E do
3: xe ← f∗e /z

∗
e

4: γe ← solution to Se(xe) + S′e(xe)xe = Se(xe/γe)
5: ze ← γez

∗
e

6: end for
7: return (f∗, z)

Algorithm 2 ScaleUniformly

Input: Graph G = (V,E) with latency functions Se and construction costs `e, e ∈ E.
Output: Capacity vector z, corresponding Wardrop equilibrium f

1: (f∗, z∗)← solution to (CNDP’)
2: p ← CR(f∗, z∗)/C(f∗, z∗)

3: λ← µ(S) +
√
µ(S) p

1−p
4: f ← Wardrop equilibrium with respect to λz∗

5: return (f , λz∗)

For both approximation algorithms, we first compute an optimum solution (f∗, z∗)
to a relaxation of CNDP without the equilibrium constraints, i.e., we compute a solu-
tion (f∗, z∗) to the problem minz≥0 minf∈F

∑
e∈E

(
Se(fe/ze) fe+ze `e

)
which can be

done in polynomial time (Proposition 2.3). Then, in both algorithms, we reduce the
capacity vector z∗, and determine a Wardrop equilibrium for the new capacity vector.
The algorithms differ in the way we adjust the capacity vector z∗. While in Bring-
ToEquilibrium, we reduce the edge capacities individually such that the optimum
solution to the relaxation (CNDP’) is a Wardrop equilibrium, in ScaleUniformly,
we scale all capacities uniformly by a factor λ (cf. line 2-3) and compute a Wardrop
equilibrium for the scaled capacities.

We first show that the approximation guarantee of BringToEquilibrium is at
most 1+µ(S). For the proof of this result we use the first order optimality conditions
for the vector of capacities f∗ obtained as a solution to the relaxed problem (CNDP’)
in combination with the variational inequalities technique used in the price of anarchy
literature (e.g. Roughgarden [26] and Correa et al. [9]).

Theorem 4.2. The approximation guarantee of BringToEquilibrium is at
most 1 + µ(S).

Proof. Let (f∗, z∗) be the relaxed solution computed in the first step of BringTo-
Equilibrium. By the necessary Karush-Kuhn-Tucker optimality conditions, (f∗, z∗)
satisfies

`e = S′e(f
∗
e /z
∗
e )(f∗e /z

∗
e )2 for all e ∈ E with z∗e > 0.(4.2)

Eliminating `e in the statement of the relaxed problem (CNDP’) we obtain the fol-
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lowing expression for the total cost of the relaxation:

C(f∗, z∗) =
∑
e∈E

(
Se(f

∗
e /z
∗
e ) + S′e(f

∗
e /z
∗
e )(f∗e /z

∗
e )
)
f∗e .(4.3)

For each e ∈ E let xe = f∗e /z
∗
e , if z∗e > 0, and xe = 0, otherwise. We define a new

vector of capacities z by ze = γe · z∗e , e ∈ E, where γe ∈ [0, 1] is a solution to the
equation

Se(xe) + S′e(xe)xe = Se(xe/γe).(4.4)

By Proposition 2.1, We are interested in bounding C(f∗, z). To this end, we calculate

C(f∗, z) =
∑
e∈E

(Se(xe/γe)f
∗
e + `e ze)

(4.4)
=
∑
e∈E

((
Se(xe) + S′e(xe)xe

)
f∗e + γe `e z

∗
e

)
(4.2)
=
∑
e∈E

((
Se(xe) + S′e(xe)xe

)
f∗e + γe S

′
e(xe)xe f

∗
e

)
.(4.5)

By (4.1),(4.4), and Lemma 4.1, we have γe S
′
e(xe)xe ≤ µ(S) (Se(xe) + S′e(xe)xe).

Combining this inequality with (4.5), gives

C(f∗, z) ≤ (1 + µ(S))
∑
e∈E

((
Se(xe) + S′e(xe)xe

)
f∗e

(4.3)
= (1 + µ(S))C(f∗, z∗),

which proves the claim.
We proceed by showing that ScaleUniformly achieves the same approximation

guarantee of 1+µ(S). Recall that ScaleUniformly first computes a relaxed solution
(f∗, z∗). Then, this relaxed solution is used to compute an optimal scaling factor
λ ≤ 1 with which all capacities are scaled subsequently. The algorithm then returns
the scaled capacity vector λz∗ together with a corresponding Wardrop equilibrium
f ∈ W(λz∗).

It is interesting to note that a (worse) approximation guarantee of 2 can be
inferred directly from a bicriteria result of Roughgarden and Tardos [28] who showed
that for any instance the routing cost of a Wardrop equilibrium is not worse than
system optimum that ships twice as much flow. This implies that for λ = 1/2 we have
C(f , λz∗) ≤ 2C(f∗, z∗), as claimed.

For the proof of the following result, we take a different road that allows us
to express the approximation guarantee of ScaleUniformly as a function of the
parameter p defined as the fraction of the total cost C(f∗, z∗) of the relaxed solution
allotted to the routing costs CR(f∗, z∗). This is an important ingredient for the
analysis of the best-of-two algorithm.

Theorem 4.3. The approximation guarantee of ScaleUniformly is at most
1 + µ(S).

Proof. The algorithm first computes an optimum solution (f∗, z∗) of the relaxed
problem (CNDP’). Then p ∈ [0, 1] is defined as the fraction of C(f∗, z∗) that corre-
sponds to the routing cost CR(f∗, z∗), i.e.,

CR(f∗, z∗) =
∑
e∈E

Se(f
∗
e /z
∗
e ) f∗e = pC(f∗, z∗).
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Now, we define λ = µ(S) +
√
µ(S) p

1−p and consider the capacity vector λz∗, in which
the capacities of the optimal solution to the relaxation are scaled uniformly by λ.
Finally, we compute a Wardrop equilibrium with respect to capacities λz∗. Let f the
corresponding equilibrium flow. We now bound the routing and installation cost of
(f , λz∗) separately. For the installation cost, we obtain

CZ(f , λz∗) =
∑
e∈E

λ `e ze = λ(1− p)C(f∗, z)

and for the routing cost

CR(f , λz∗) =
∑
e∈E

Se
(
fe
λz∗e

)
fe ≤

∑
e∈E

Se
(
fe
λz∗e

)
f∗e

= pC(f∗, z∗) +
∑
e∈E

(
Se
(
fe
λz∗e

)
f∗e − Se

( f∗e
z∗e

)
f∗e

)
,(4.6)

where the first inequality uses the variational inequality (2.2). We proceed to bound

Se(
fe
λz∗e

)f∗e − Se(
f∗e
z∗e

)f∗e in terms of the routing cost Se(
fe
λz∗e

)fe for that edge e. To this

end, note that for each edge e ∈ E with f∗e > 0 we have

Se(
fe
λz∗e

)f∗e − Se
( f∗e
z∗e

)
f∗e

Se(
fe
λz∗e

)fe
≤ supS∈S supx,y≥0,z>0

S( y
λz )x− S(xz )x

S( y
λz )y

= supS∈S supx,y≥0

S( yλ )x− S(x)x

S( yλ )y

= supS∈S supx,y≥0

S(y)x− S(x)x

S(y)λy
.

This implies y ≥ x and we may substitute x = γy with γ ∈ [0, 1]. We then obtain for
each edge e ∈ E with f∗e > 0 that

Se(
fe
λz∗e

)f∗e − Se
( f∗e
z∗e

)
f∗e

Se(
fe
λz∗e

)fe
≤ supS∈S supy≥0 maxγ∈[0,1]

γS(y)− γS(γy)

λS(y)

= supS∈S supy≥0 maxγ∈[0,1]
γ

λ

(
1− S(γ y)

S(y)

)
=
µ(S)

λ
.(4.7)

Plugging (4.7) in (4.6), we obtain for the routing cost CR(f , λz∗) ≤ pC(f∗, z∗) +
µ(S)
λ CR(f , λz∗) or, equivalently, CR(f , λz∗) ≤ p

1−µ(S)/λC(f∗, z∗). Thus, we can

bound the total cost of the outcome of ScaleUniformly by

C(f , λz∗) = CR(f , λz∗) + CZ(f , λz∗)

≤ p

1− µ(S)/λ
C(f∗, z∗) + λ(1− p)C(f∗, z∗)

= λ
( p

λ− µ(S)
+ 1− p

)
C(f∗, z∗).

Since λ = µ(S) +
√
µ(S) p

1−p , we obtain

C(f , λz∗)

C(f∗, z∗)
≤ p+ 2

√
p(1− p)µ(S) + µ(S)(1− p) =

(√
p+

√
µ(S)(1− p)

)2
.(4.8)
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Elementary calculus shows that
(√
p +

√
µ(S)(1− p)

)2
attains its maximum at p =

1
1+µ(S) . Substituting this value into (4.8) gives C(f , λz∗)/C(f∗, z∗) ≤ 1 + µ(S) as

claimed.

For particular sets S of latency functions, we compute upper bounds on µ(S) in
order to obtain an explicit upper bound on the approximation guarantees of Bring-
ToEquilibrium and ScaleUniformly.

We then obtain the following corollary of Theorem 4.2 and Theorem 4.3. The
formal proof of this corollary is deferred to Appendix C.

Corollary 4.4. For a set S of latency functions satisfying Assumption 1, the ap-
proximation guarantee of BringToEquilibrium and ScaleUniformly is at most

(a) 2, without further requirements on S.
(b) 5/4, if S contains concave latencies only,

(c) 1 + ∆
∆+1

(
1

∆+1

)1/∆
, if S contains only polynomials with non-negative coeffi-

cients and degree at most ∆, i.e., each S ∈ S is of the form S(x) =
∑
j∈J ajx

j

for a finite set J ⊂ R≥0 with max J = ∆ and aj ≥ 0 for all j.

4.2. Best-of-Two Approximation. In this section we show that although both
algorithms, BringToEquilibrium and ScaleUniformly, achieve an approxima-
tion guarantee of 1+µ(S) taking the better of the two algorithms we obtain a strictly
better performance guarantee.

The key idea of the proof is to extend the analysis of the BringToEquilibrium
algorithm in order to express its approximation guarantee as a function of the param-
eter p that measures the proportion of the routing cost in the total cost of a relaxed
solution. This allows us to determine the worst-case p for which the approximation
factor of both algorithm is minimized.

Our improved upper bound uses µ(S) as defined in (4.1) and a second parameter
γ(S), which is defined as follows:

γ(S) = supS∈S supx>0 sup
{
γ ≥ 0 : S(x/γ) = S(x) + xS′(x)

}
.(4.9)

Recall that by Lemma 4.1, µ(S) = supS∈S supx≥0{γ
S′(x)x

S(x)+S′(x)x} where γ solves

S(x/γ) = S(x) + xS′(x). Intuitively, γ(S) is an upper bound on the values of γ that
satisfy this equation.

Theorem 4.5. Taking the better solution of BringToEquilibrium and Scale-
Uniformly has an approximation guarantee of at most

(γ(S) + µ(S) + 1)2

(γ(S) + µ(S) + 1)2 − 4µ(S)γ(S)
< 1 + µ(S).

Proof. Recall from (4.8) that the approximation guarantee of the algorithm
ScaleUniformly is

(√
p+

√
µ(S)(1− p)

)2
, where p = CR(f∗, z∗)/C(f∗, z∗). We

extend our analysis of BringToEquilibrium using this parameter p. With the no-
tation in Theorem 4.2, by (4.5), BringToEquilibrium returns a feasible solution
(f∗, z) with

C(f∗, z) =
∑
e∈E

((
Se(xe) + S′e(xe)xe

)
f∗e + γe S

′
e(xe)xe f

∗
e

)
,
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where xe = f∗e /z
∗
e . We obtain

C(f∗, z) = pC(f∗, z∗) +
∑
e∈E

S′e(xe)xe f
∗
e (1 + γe)

(4.9)

≤ pC(f∗, z∗) + (1 + γ(S))
∑
e∈E

S′e(xe)xe f
∗
e

= pC(f∗, z∗) + (1 + γ(S))(1− p)C(f∗, z∗)

=
(
1 + γ(S)(1− p)

)
C(f∗, z∗).

Thus, by taking the best of the two heuristics, we obtain an approximation guarantee
of

maxp∈(0,1) min

{
1 + γ(S)(1− p),

(√
p+

√
µ(S)(1− p)

)2
}
.

We claim that

maxp∈(0,1) min

{
1 + γ(1− p),

(√
p+

√
µ(1− p)

)2
}

=
(γ + µ+ 1)2

(γ + µ+ 1)2 − 4µγ

< 1 + µ,

(4.10)

for all γ, µ ∈ (0, 1], which implies the result.
To see the claim, first observe that 1 + γ(1 − p) is linearly decreasing in p. Ele-

mentary calculus shows that the expression
(√

p+
√
µ(1− p)

)2
attains its maximum

at p = p̂ := 1
1+µ , is increasing when p < p̂ and decreasing afterwards. Further,(√

p̂+
√
µ(1− p̂)

)2

= 1 + µ,

and

1 + γ(1− p̂) = 1 + µ
γ

1 + µ
< 1 + µ,

thus, the inequality in (4.10) follows.
Moreover, it follows that the maximum on the left hand side of (4.10) is attained

for the unique p∗ ∈ (0, p̂) such that 1 + γ(1− p∗) =
(√
p∗ +

√
µ(1− p∗)

)2
. Thus, p∗

is a solution to the equation

0 = −(1− p∗)− γ(1− p∗) + 2
√
p∗(1− p∗)µ+ µ(1− p∗)

= (1− p∗)
(

2
√
µ p∗

1−p∗ + µ− γ − 1
)

and since p∗ < 1

0 = 2
√
µ p∗

1−p∗ + µ− γ(S)− 1.

The unique solution to this equation is

p∗ =
(γ − µ+ 1)2

(γ − µ+ 1)2 + 4µ
.(4.11)
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Plugging this into the left hand side of (4.10) gives

(γ + µ+ 1)2

(γ + µ+ 1)2 − 4µγ
,

which proves the identity in (4.10).

It is not necessary to run both approximation algorithms to get this approxima-
tion guarantee. After computing the optimum solution to the relaxation (CNDP’),
we can determine the value for p = CR(f∗, z∗)/C(f∗, z∗) and proceed with Scale-
Uniformly if p ≤ p∗ (cf. (4.11)) and with BringToEquilibrium otherwise.

For particular sets S of latency functions, we evaluate µ(S) and γ(S) and obtain
the following corollary of Theorem 4.5. The formal proof of this corollary is deferred
to Appendix C.

Corollary 4.6. For a set S of latency functions satisfying Assumption 1, the
approximation guarantee in Theorem 4.5 is at most

(a) 9/5, without further requirements on S,
(b) 49/41 ≈ 1.195, if S contains concave latencies only.

(c) 1 + 4∆(∆+1)
2(2∆+1)(∆+1)1+1/∆+(∆+1)2(1+1/∆)+1

, if S contains only polynomials with

non-negative coefficients and degree at most ∆, i.e., each S ∈ S is of the
form S(x) =

∑
j∈J ajx

j for a finite set J ⊂ R≥0 with max J = ∆ and aj ≥ 0
for all j.

5. Conclusion. We reconsidered a variant of the continuous network design
problem (CNDP) and established, to the best of our knowledge, the first hardness
results for CNDP. Further, we provided a general approximation guarantee for an
algorithm studied by Marcotte [23], which depends on the set of allowed cost functions.
Interestingly, the approximation guarantee is related to the anarchy value of the set
of cost functions. We then introduced a new approximation algorithm and showed
that it achieves the same approximation guarantee as Marcotte’s algorithm. Finally,
we showed that the approximation guarantees can be improved by taking the best of
both approximation algorithms.

There are several open questions that deserve further research. All results work
so far for the case of edge-separable latency functions. The case of non-separable
latencies is – from the approximation point of view – not well understood. Design-
ing the network infrastructure assuming dynamic equilibrium models seems another
challenging area for further research. In particular, it would be interesting to design
approximation algorithms for rather simple dynamic flow models (e.g., using simple
graph topologies and deterministic queuing models).

Acknowledgments. We would like to thank the two anonymous referees for
their detailed and helpful suggestions that helped to improve the exposition of the
paper.
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Appendix A. Additional Material for the Proof of Proposition 2.3.
Lemma A.1. Let S satisfy Assumption 1. Then, the following holds:
1. limx↓0 S

′(x)x2 = 0
2. limx↑+∞ S′(x)x2 = +∞

Proof. We first observe that differentiability and semi-convexity of S implies for
any x, y ≥ 0:

S(y)y ≥ S(x)x+
(
S′(x)x+ S(x)

)
(y − x).

For 1., take y = 2x. We obtain

S(2x)2x ≥ S(x)x+
(
S′(x)x+ S(x)

)
x

⇔ S′(x)x2 ≤ (S(2x)− S(x))2x.

Taking the limit limx↓0 on both sides of the inequality proves the first claim.
For 2., take y = 1. We obtain

S(1) ≥ S(x)x− x
(
S′(x)x+ S(x)

)
+ S′(x)x+ S(x)

⇔ S′(x)x2 ≥ S′(x)x+ S(x)− S(1).

Taking the limit limx↑+∞ on both sides of the inequality and using that S is un-
bounded and strictly increasing proves the second claim.

Appendix B. Additional Material for the Proofs of Theorem 3.1 and
Theorem 3.2.

Lemma B.1. Let E ⊆ {1, 2, 3} be nonempty, m ∈ [0, 1] and

Q = infge∈[0,1],e∈E
xe>0,e∈E
h∈[0,1]

∑
e∈E

(
(ge + h)2

xe
+ xe − 2ge −

4

3
h

)

s.t.:
∑
e∈E

ge+h
xe

≥ 4, if h < 1,

ge ≥ m for all e ∈ E
ge + h > 0 for all e ∈ E.

Then, Q = 1
4m, which is attained for h = 0 and ge = m,xe = 3

4m for all e ∈ E.
Proof. We show the proof only for the case m > 0. The case m = 0 follows from

the case m > 0 by considering the limit m→ 0.
We consider the problem

Q′ = infge≥0,e∈E
xe>0,e∈E
h∈[0,1]

∑
e∈E

(
(ge + h)2

xe
+ xe − 2ge −

4

3
h

)

s.t.:
∑
e∈E

ge+h
xe

≥ 4, if h < 1,

ge ≥ m for all e ∈ E
ge + h > 0 for all e ∈ E.

where the upper bounds on the variables ge, e ∈ E are dropped.
Let (ge)e∈E , (xe)e∈E , h be an optimal solution to Q′. To show that the solution

has the desired structure, we will gradually reduce the possible space of the solution.
First, let us consider the case h < 1. We claim that h = 0 in that case. Suppose

not, for a contradiction. Then, the alternative solution (g′e)e∈E , (x′e)e∈E , h defined
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as g′e = ge + h, x′e = xe and h′ = 0 satisfies all constraints and strictly reduces the
objective value, which is a contradiction to the optimality of the original solution. We
substitute ye = ge/xe for all e ∈ E. We then obtain the problem

Q′′ = infge>0,e∈E
ye>0,e∈E

∑
e∈E

ge

(
ye +

1

ye
− 2
)

s.t.:
∑
e∈E ye ≥ 4

ge ≥ m for all e ∈ E.

When m > 0, the problem Q′′ is clearly minimized when ge = m for all e ∈ E. Since
the term

∑
e∈E ye + 1

ye
− 2 is convex and the constraint

∑
e∈E ye = 4 is linear, the

optimal solution of Q′′ is attained for ye = 4/3 for all e ∈ E. After resubstitution,
we derive that the optimal solution to Q′ is ge = m and xe = 3

4m. As this solution is
also feasible for Q, it also solves Q to optimality and we obtain Q = 1

4m.

For the second case, let us assume that h = 1. Then, we obtain the minimization
problem

Q = infge∈[m,1],e∈E
xe>0,e∈E

∑
e∈E

(
(ge + 1)2

xe
+ xe − 2ge −

4

3

)
.

By first order conditions, the optimal capacities are xe = ge + 1 for all e ∈ E. We
then obtain

Q = minge∈[m,1],e∈E
∑
e∈E

(
2(ge + 1)− 2ge −

4

3

)
= 2,

which is larger than 1
4m for all m ∈ [0, 1] and the claimed result follows.

Appendix C. Additional Material for the Proofs of Corollary 4.4 and
Corollary 4.6.

For the proofs of Corollary 4.4 and Corollary 4.6, we give bounds on µ(S) and γ(S)
for the respective sets S of allowable latency functions. Theorem 4.2, Theorem 4.3
and Theorem 4.5 then give the claimed approximation guarantees.

Arbitrary latency functions. First, we consider case (a) of both Corollaries, where
S is a class of arbitrary non-negative and strictly increasing latencies. We observe
that

µ(S) = supS∈S:S(x)>0 supx≥0 maxγ∈[0,1] γ

(
1− S(γx)

S(x)

)
≤ 1,

γ(S) = supS∈S supx>0 sup{γ ≥ 0 : S(x/γ) = S(x) + xS′(x)} ≤ 1.

Now Corollary 4.4 (a) follows immediately and Corollary 4.6 (a) follows from the fact
that

(γ(S) + µ(S) + 1)2

(γ(S) + µ(S) + 1)2 − 4µ(S)γ(S)
(C.1)

is strictly increasing in γ(S) and µ(S).
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Concave latency functions. Next, consider case (b) of both Corollaries, where S
contains concave latencies only. Observe that

µ(S) = supS∈S supx≥0 maxγ∈[0,1]

{
γ

(
1− S(γx)

S(x)

)}

≤ supS∈S supx≥0 maxγ∈[0,1]

{
γ

(
1− γ − (1− γ)S(0)

S(x)

)}
≤ maxγ∈[0,1] γ(1− γ)

= 1/4,

where the first inequality uses the concavity of all functions S ∈ S.
We next show that γ(S) ≤ 1/2. Let S ∈ S be arbitrary. Since S is concave, we

get for any x ≥ 0, y ≥ 0 that

S(y) ≤ S(x) + S′(x)(y − x).

Take y = 2x, which yields

S(2x) ≤ S(x) + S′(x)x.

Thus, we get for any γ ≥ 0 satisfying S(x/γ) = S(x)+S′(x)x the following inequality

S(x/γ) = S(x) + S′(x)x ≥ S(2x).

Since S is strictly increasing we obtain γ ≤ 1/2.
Polynomial latency functions. Finally, consider case (c) of both Corollaries, where

there is a finite set J ⊂ R≥0 of exponents with max J = ∆ such that S contains only
latency functions of type S(x) =

∑
j∈J ajx

j , with aj ≥ 0 for all j. Denote a = (aj)j∈J .
We calculate

µ(S) = supS∈S supx≥0 maxγ∈[0,1]

{
γ

(
1− S(γx)

S(x)

)}

= supa≥0 supx≥0 maxγ∈[0,1]

{
γ

(
1−

∑
j∈J ajγ

jxj∑
j∈J ajx

j

)}

= supa≥0 supx≥0 maxγ∈[0,1]

{
γ

(∑
j∈J ajx

j(1− γj)∑
j∈J ajx

j

)}

As (1 − γj) is increasing in j for every γ ∈ (0, 1), it follows that the supremum over
a ≥ 0 is attained if a∆ > 0 and aj = 0 for all j ∈ J \ {∆}. We obtain

µ(S) = maxγ∈[0,1] γ(1− γ∆)

=
( 1

∆ + 1

)1/∆(
1− 1

∆ + 1

)
=
( 1

∆ + 1

)1/∆( ∆

∆ + 1

)
,

which directly implies the statement of Corollary 4.4 (c).
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We next show that γ(S) ≤
(

1
∆+1

)1/∆
. To this end we show that for any latency

function in S and γ :=
(

1
∆+1

)1/∆
, we have S(x/γ) ≤ S(x) + S′(x)x for any x > 0.

Observe that

S(x) + S′(x)x =
∑
j∈J

ajx
j +

∑
j∈J

jajx
j =

∑
j∈J

(1 + j) · ajxj

and

S(x/γ) = S(x · (∆ + 1)1/∆) =
∑
j∈J

(∆ + 1)j/∆ajx
j .

Since aj ≥ 0 for all j, it suffices to show that (∆ + 1)j/∆ ≤ 1 + j, for all j ∈ J . This
follows from the fact that (∆ + 1)j/∆ is convex in j, and we get equality for j = 0

and j = ∆. It follows that γ(S) ≤
(

1
∆+1

)1/∆
.

Plugging these values in (C.1) and rearranging terms, we obtain the approxima-
tion guarantee claimed in Corollary 4.6 (c).


