
Edit-Distance between Visibly Pushdown
Languages

Yo-Sub Han1 and Sang-Ki Ko2

1 Department of Computer Science, Yonsei University
50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

emmous@yonsei.ac.kr
2 Department of Computer Science, University of Liverpool

Ashton Street, Liverpool, L69 3BX, United Kingdom
sangkiko@liverpool.ac.uk

Abstract. We study the edit-distance between two visibly pushdown
languages. It is well-known that the edit-distance between two context-
free languages is undecidable. The class of visibly pushdown languages is
a robust subclass of context-free languages since it is closed under inter-
section and complementation whereas context-free languages are not. We
show that the edit-distance problem is decidable for visibly pushdown lan-
guages and present an algorithm for computing the edit-distance based
on the construction of an alignment PDA. Moreover, we show that the
edit-distance can be computed in polynomial time if we assume that the
edit-distance is bounded by a fixed integer k.

Keywords: visibly pushdown languages, edit-distance, algorithm, de-
cidability

1 Introduction

The edit-distance between two words is the smallest number of operations re-
quired to transform one word into the other [9]. We can use the edit-distance
as a similarity measure between two words; the shorter distance implies that
the two words are more similar. We can compute this by using the bottom-up
dynamic programming algorithm [15]. The edit-distance problem arises in many
areas such as computational biology, text processing and speech recognition [11,
13, 14]. This problem can be extended to a problem of computing the similarity
or dissimilarity between languages [4, 5, 11].

The edit-distance between two languages is defined as the minimum edit-
distance of two words, where one word is from the first language and the other
word is from the second language. Mohri [11] considered the problem of com-
puting the edit-distance between two regular languages given by finite-state au-
tomata (FAs) of sizesm and n and showed that it is computable in O(mn logmn)
time. He also proved that it is undecidable to compute the edit-distance between
two context-free languages [11] using the undecidability of the intersection empti-
ness of two context-free languages. As an intermediate result, Han et al. [5]

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Liverpool Repository

https://core.ac.uk/display/80781145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Yo-Sub Han and Sang-Ki Ko

considered the edit-distance between a regular language and a context-free lan-
guage. Given an FA and a pushdown automaton (PDA) of sizes m and n, they
proposed a polynomial-time algorithm that computes the edit-distance between
their languages [5].

Here we study the edit-distance problem between two visibly pushdown lan-
guages. Visibly pushdown languages are recognizable by visibly pushdown au-
tomata (VPAs), which are a special type of pushdown automata for which stack
behavior is driven by the input symbols according to a partition of the alphabet.
Some literature call these automata input-driven pushdown automata [10].

The class of visibly pushdown languages lies in between the class of regular
languages and the class of context-free languages. Recently, there have been many
results about visibly pushdown languages because of nice closure properties. Note
that context-free languages are not closed under intersection and complement
and deterministic context-free languages are not closed under union, intersection,
concatenation, and Kleene-star. On the other hand, visibly pushdown languages
are closed under all these operations. Moreover, language inclusion, equivalence
and universality are all decidable for visibly pushdown languages whereas unde-
cidable for context-free languages.

Visibly pushdown automata are useful in processing XML documents [1, 12].
For example, a visibly pushdown automaton can process a SAX representation
of an XML document, which is a linear sequence of characters along with a
hierarchically nested matching of open-tags with closing tags. Note that the
edit-distance between two visibly pushdown languages is undecidable if two lan-
guages are defined over different visibly pushdown alphabets since the intersec-
tion emptiness is undecidable [8]. Therefore, we always assume that two visibly
pushdown languages are defined over the same visibly pushdown alphabet.

We show that the edit-distance between visibly pushdown languages is de-
cidable and present an algorithm for computing the edit-distance. Moreover, the
edit-distance can be computed in polynomial time if we assume that the edit-
distance is bounded by a fixed integer k.

2 Preliminaries

Here we recall some basic definitions and fix notation. For background knowledge
in automata theory, the reader may refer to textbooks [6, 16].

The size of a finite set S is |S|. Let Σ denote a finite alphabet and Σ∗ denote
the set of all finite words over Σ. For m ∈ N, Σ≤m is the set of words over Σ
having length at most m. The ith character of a word w is denoted by wi for
1 ≤ i ≤ |w|, and the subword of a word w that begins at position i and ends at
position j is denoted by wi,j for 1 ≤ i ≤ j ≤ |w|. A language over Σ is a subset
of Σ∗. Given a set X, 2X denotes the power set of X. The symbol λ denotes the
null word.

A (nondeterministic) finite automaton (FA) is specified by a tuple A =
(Q,Σ, δ, s, F), where Q is a finite set of states, Σ is an input alphabet, δ :
Q × Σ → 2Q is a multi-valued transition function, s ∈ Q is the start state and

Edit-Distance between Visibly Pushdown Languages 3

F ⊆ Q is a set of final states. If F consists of a single state f , we use f instead
of {f} for simplicity. When q ∈ δ(p, a), we say that state p has an out-transition
to state q (p is a source state of q) and q has an in-transition from p (q is a
target state of p). The transition function δ is extended in the natural way to a
function Q × Σ∗ → 2Q. A word x ∈ Σ∗ is accepted by A if there is a labeled
path from s to a state in F such that this path spells out the word x, namely,
δ(s, x) ∩ F ̸= ∅. The language L(A) is the set of words accepted by A.

A (nondeterministic) pushdown automaton (PDA) is specified by a tuple
P = (Q,Σ, Γ, δ, s, Z0, F), where Q is a finite set of states, Σ is a finite input

alphabet, Γ is a finite stack alphabet, δ : Q × (Σ ∪ {λ}) × Γ → 2Q×Γ≤2

is a
transition function, s ∈ Q is the start state, Z0 is the initial stack symbol and
F ⊆ Q is the set of final states. Our definition restricts that each transition of P
has at most two stack symbols, that is, each transition can push or pop at most
one symbol. We use |δ| to denote the number of transitions in δ. We define the
size |P | of P as |Q|+ |δ|. The language L(P) is the set of words accepted by P .

A (nondeterministic) visibly pushdown automaton (VPA) [2, 10] is a restricted
version of a PDA, where the input alphabet Σ consists of three disjoint classes,
Σc, Σr, and Σl. Namely, Σ = Σc ∪ Σr ∪ Σl. The class of the input alphabet
determines the type of stack operation. For example, the automaton always
pushes a symbol onto the stack when it reads a call symbol in Σc. If the input
symbol is a return symbol in Σr, the automaton pops a symbol from the stack.
Finally, the automaton neither uses the stack nor even examine the content of
the stack for the local symbols in Σl. Formally, the input alphabet is defined as
a triple Σ̃ = (Σc, Σr, Σl), where three components are finite disjoint sets.

A VPA is formally defined by a tuple A = (Σ̃, Γ,Q, s, F, δc, δr, δl), where
Σ = Σc ∪ Σr ∪ Σl is the input alphabet, Γ is the finite set of stack symbols,
Q is the finite set of states, s ∈ Q is the start state, F ⊆ Q is the set of final
states, δc : Q × Σc → 2Q×Γ is the transition function for the push operations,
δr : Q× (Γ ∪ {⊥})×Σr → 2Q is the transition function for the pop operations,
and δl : Q × Σl → 2Q is the local transition function. We use ⊥ /∈ Γ to denote
the top of an empty stack.

A configuration of A is a triple (q, w, v), where q ∈ Q is the current state,
w ∈ Σ∗ is the remaining input, and v ∈ Γ ∗ is the content on the stack. Denote
the set of configurations of A by C(A) and we define the single step computation
with the relation ⊢A⊆ C(A)× C(A).

– Push operation: (q, aw, v) ⊢A (q′, w, γv) for all a ∈ Σc, (q
′, γ) ∈ δc(q, a), γ ∈

Γ,w ∈ Σ∗ and v ∈ Γ ∗.
– Pop operation: (q, aw, γv) ⊢A (q′, w, v) for all a ∈ Σr, q

′ ∈ δr(q, γ, a), γ ∈
Γ,w ∈ Σ∗ and v ∈ Γ ∗; furthermore, (q, aw, ϵ) ⊢A (q′, w, ϵ), for all a ∈
Σr, q

′ ∈ δr(q,⊥, a) and w ∈ Σ∗.
– Local operation: (q, aw, v) ⊢A (q′, w, v), for all a ∈ Σl, q

′ ∈ δl(q, a), w ∈ Σ∗

and v ∈ Γ ∗.

An initial configuration of a VPA A = (Σ̃, Γ,Q, s, F, δc, δr, δl) is (s, w, ϵ),
where s is the start state, w is an input word and ϵ implies an empty stack. A

4 Yo-Sub Han and Sang-Ki Ko

VPA accepts a word if A arrives at the final state by reading the word from the
initial configuration. Formally, we write the language recognized by A1 as

L(A) = {w ∈ Σ∗ | (s, w, ϵ) ⊢∗
A (q, ϵ, v) for some q ∈ F, v ∈ Γ ∗}.

We call the languages recognized by VPAs the visibly pushdown languages.
The class of visibly pushdown languages is a strict subclass of deterministic
context-free languages and a strict superclass of regular languages. While many
closure properties such as complement and intersection do not hold for context-
free languages, visibly pushdown languages are closed under most operations
including other basic operations such as concatenation, union, and Kleene-star.

3 Edit-Distance

The edit-distance between two words is the smallest number of operations that
transform a word to the other. People use different edit-operations according
to own applications. We consider three basic operations, insertion, deletion and
substitution for simplicity. Given an alphabet Σ, let Ω = {(a → b) | a, b ∈
Σ ∪ {λ}} be a set of edit-operations. Namely, Ω is an alphabet of all edit-
operations for deletions (a → λ), insertions (λ → a) and substitutions (a → b).
We say that an edit-operation (a → b) is a trivial substitution if a = b. We call
a word ω ∈ Ω∗ an edit string [7] or an alignment [11].

Let the morphism h between Ω∗ and Σ∗ × Σ∗ be h((a1 → b1) · · · (an →
bn)) = (a1 · · · an, b1 · · · bn), where ai, bi ∈ Σ ∪ {λ} for 1 ≤ i ≤ n. For example, a
word ω = (a → λ)(b → b)(λ → c)(c → c) over Ω is an alignment of abc and bcc,
and h(ω) = (abc, bcc). Thus, from an alignment ω of two words x and y, we can
retrieve x and y using h: h(ω) = (x, y).

We associate a non-negative edit cost to each edit-operation ωi ∈ Ω as a
function C : ωi → R+. We can extend the function to the cost C(ω) of an
alignment ω = ω1 · · ·ωn as follows: C(ω) =

∑n
i=1 C(ωi).

Definition 1. The edit-distance d(x, y) of two words x and y over Σ is the
minimal cost of an alignment ω between x and y: d(x, y) = min{C(ω) | h(ω) =
(x, y)}. We say that ω is optimal if d(x, y) = C(ω).

Note that we use the Levenshtein distance [9] for edit-distance. Thus, we
assign cost 1 to all edit-operations (a → λ), (λ → a), and (a → b) for all
a ̸= b ∈ Σ. We can extend the edit-distance definition to languages.

Definition 2. The edit-distance d(L1, L2) between two languages L1, L2 ⊆ Σ∗

is the minimum edit-distance of two words, one is from L1 and the other is from
L2: d(L1, L2) = min{d(x, y) | x ∈ L1 and y ∈ L2}.

Mohri [11] revealed that the edit-distance between two context-free languages
is undecidable from the undecidability of the intersection emptiness of two
context-free languages. Moreover, he presented an algorithm to compute the
edit-distance between two regular languages given by FAs of size m and n in

Edit-Distance between Visibly Pushdown Languages 5

O(mn logmn) time. Han et al. [5] considered the intermediate case where one
language is regular and the other language is context-free. Given a PDA and an
FA for the languages, it is shown that the problem is computable in polynomial
time while computing an optimal alignment corresponding to the edit-distance
requires an exponential runtime.

4 Edit-Distance between Two VPLs

First we study the decidability of the edit-distance between two visibly pushdown
languages. We notice that the edit-distance between two context-free languages
is undecidable, whereas the edit-distance between two regular languages can be
computed in polynomial time.

Interestingly, it turns out that the edit-distance between two visibly push-
down languages is decidable. Here we show that we can compute the edit-distance
between two visibly pushdown languages L1 and L2 given by two VPAs by con-
structing the alignment PDA [5], which accepts all the possible alignments be-
tween two languages of length up to k. By setting k to be the upper bound of the
edit-distance between given two visibly pushdown languages L1 and L2, we can
compute the edit-distance between L1 and L2 by choosing the minimum-cost
alignment accepted by the alignment PDA.

The alignment PDA is first proposed by Han et al. [5] to compute the edit-
distance between a regular language and a context-free language. Given an FA A
and a PDA P , we can construct an alignment PDA A(A,P) that accepts all
possible alignments that transform a word accepted by the FA A to a word
accepted by the PDA P . After we construct an alignment PDA for two languages,
we can compute the edit-distance between the two languages by computing the
length of the shortest word accepted by the alignment PDA. Furthermore, we
can obtain an optimal alignment between two languages by taking the shortest
word.

An interesting point to note is that the construction of the alignment PDA
does not imply that we can compute the edit-distance. For example, the edit-
distance between two context-free languages is undecidable even though it is
possible to construct an alignment PDA with two stacks that accepts all possible
alignments between two PDAs [11]. This is because we cannot compute the
length of the shortest word accepted by a two-stack PDA, which can simulate a
Turing machine [6]. Here we start from an idea that we do not need to consider
all possible alignments between two visibly pushdown languages to compute
the edit-distance and an optimal alignment. If we know the upper bound k of
the edit-distance between two visibly pushdown languages, we can compute the
edit-distance and an optimal alignment by constructing an alignment PDA that
accepts all possible alignments of cost up to k between two visibly pushdown
languages. This can be done because the stack operation of VPAs is determined
by the input character.

Assume that we have two VPAs A1 and A2 over the same alphabet Σ. Then,
the alignment PDA A(A1, A2) of A1 and A2 simulates all possible alignments

6 Yo-Sub Han and Sang-Ki Ko

between the two languages L(A1) and L(A2). Note that A(A1, A2) simulates two
stacks from two VPAs simultaneously by reading each edit-operation. Whenever
A(A1, A2) simulates a trivial edit-operation (a → a), a ∈ Σ which substitutes
a character into the same one, the difference in height of two stacks does not
change since two VPAs read characters in the same class. The height of two stacks
becomes different when A(A1, A2) reads insertions of call (or return) symbols,
deletions of call (or return) symbols, or substitutions between two characters in
different classes. For example, the height of two stacks becomes different by 1
when A(A1, A2) read an insertion (λ → a) of a call symbol a ∈ Σc since A1

does not change its stack while A2 is pushing a stack symbol onto its stack. The
height of two stacks becomes different the most when A(A1, A2) reads an edit-
operation that substitutes a call (resp. return) symbol into a return (resp. call)
symbol since A1 pushes (resp. pops) a stack symbol while A2 pops (resp. pushes)
a stack symbol. Therefore, if the upper bound of the edit-distance between two
visibly pushdown languages is k, the maximum height difference between two
stacks can be at most 2k whenever we simulate an alignment that costs up to k.
Note that we can easily compute the upper bound of the edit-distance between
two visibly pushdown languages by computing the shortest words from each
visibly pushdown language. Let lsw(L) be the length of the shortest word in L.

Proposition 3. Let L ⊆ Σ∗ and L′ ⊆ Σ∗ be the languages over Σ. Then,
d(L,L′) ≤ max{lsw(L), lsw(L′)} holds.

Now we give the alignment PDA construction for computing the edit-distance
between two visibly pushdown languages. The basic idea of the construction is
to remember the top stack symbols from two stacks by using the states of the
alignment PDA. Intuitively, we store the information of the top 2k stack symbols
from both stacks in the states instead of pushing into the stack of the alignment
PDA.

Let Ai = (Σ̃, Γi, Qi, si, Fi, δi,c, δi,r, δi,l) for i = 1, 2 be two VPAs. We con-
struct the alignment PDA A(A1, A2) = (QE , Ω, ΓE , sE , FE , δE), where

– QE = Q1 ×Q2 × Γ≤2k
1 × Γ≤2k

2 is the set of states,
– Ω = {(a → b) | a, b ∈ Σ ∪ {λ}} is the alphabet of edit-operations,
– ΓE = (Γ1 ∪ {λ})× (Γ2 ∪ {λ}) \ {(λ, λ)} is a finite stack alphabet,
– sE = (s1, s2, λ, λ) is the start state, and

– FE = F1 × F2 × Γ≤2k
1 × Γ≤2k

2 is the set of final states.

Now we define the transition function δE . There are seven cases to consider
as follows. The alignment PDA A(A1, A2) reads an edit-operation that

(i) pushes on two stacks simultaneously,
(ii) pushes on the first stack,
(iii) pushes on the second stack,
(iv) pops from two stacks simultaneously,
(v) pops from the first stack,
(vi) pops from the second stack, and

Edit-Distance between Visibly Pushdown Languages 7

(vii) not perform stack operation.

Assume that x ∈ Γ≤2k
1 and y ∈ Γ≤2k

2 . Simply, x and y are words over the
stack alphabet of A1 and A2 whose lengths are at most 2k. For a non-empty
word x over Γ1, recall that we denote the first character and the last character
of x by x1 and x|x|, respectively. We also denote the subword that consists of
characters from xi to xj by xi,j , where i < j.

Suppose that there are transitions defined in VPAs A1 and A2 as follows:

– (q′, γ) ∈ δ1,c(q, ac), [push operation in A1]
– q′ ∈ δ1,l(q, al), [local operation in A1]
– q′ ∈ δ1,r(q, γ, ar), [pop operation in A1]
– (p′, µ) ∈ δ2,c(p, bc), [push operation in A2]
– p′ ∈ δ2,l(p, bl), and [local operation in A2]
– p′ ∈ δ2,r(p, µ, br). [pop operation in A2]

By reading an edit-operation (ac → bc), we define δE to operate as follows:

– (q′, p′, xγ, yµ) ∈ δE((q, p, x, y), (ac → bc)) if |x| < 2k and |y| < 2k,
– ((q′, p′, x2,|x|γ, y2,|y|µ), (x1, y1)) ∈ δE((q, p, x, y), (ac → bc)) otherwise.

By the above transitions, we simulate the push operations on the stacks
of A1 and A2 at the same time. We store the information of the top 2k stack
symbols in the states instead of using “real” stack. If a state already contains the
information of 2k symbols, we start using the stack by pushing the bottommost
pair of stack symbols onto the stack.

We also define δE to operate as follows by reading an edit-operation (ac → bl):

– (q′, p′, xγ, y) ∈ δE((q, p, x, y), (ac → bl)) if |x| < 2k,
– ((q′, p′, x2,|x|γ, y2,|y|), (x1, y1)) ∈ δE((q, p, x, y), (ac → bl)) otherwise.

Similarly, we define δE for an edit-operation (ac → λ) as follows:

– (q′, p, xγ, µ) ∈ δE((q, p, x, y), (ac → λ)) if |x| < 2k,
– ((q′, p, x2,|x|γ, y2,|y|), (x1, y1)) ∈ δE((q, p, x, y), (ac → λ)) otherwise.

Note that the cases of reading (al → bc) or (λ → bc) are completely symmetric
to the previous two cases. We also consider the cases when we have to pop at
least one of two stacks by reading an edit-operation. First, we define δE for the
case when we read an edit-operation (ar → br) that pops from both stacks at
the same time.

– (q′, p′, γtopx1,|x|−1, µtopy1,|y|−1) ∈ δE((q, p, x, y), (γtop, µtop), (ar → br)) if x|x| =
γ, y|y| = µ and the top of the stack is (γtop, µtop),

– (q′, p′, x1,|x|−1, y1,|y|−1) ∈ δE((q, p, x, y), (ar → br)) if x|x| = γ, y|y| = µ and
the stack is empty.

When we simulate pop operations on A(A1, A2), we remove the last stack
symbols stored in the state. Then, we pop off the top of the stack, say (γtop, µtop),
and move the pair to the front of the stored stack symbols in the state.

For the case when we have to pop only from the first stack, we define δE to
be as follows:

8 Yo-Sub Han and Sang-Ki Ko

– (q′, p′, γtopx1,|x|−1, µtopy) ∈ δE((q, p, x, y), (γtop, µtop), (ar → bl)) if |x| = 2k,
|y| < 2k, and the top of the stack is (γtop, µtop),

– (q′, p′, x1,|x|−1, y) ∈ δE((q, p, x, y), (ar → bl)) otherwise.

Note that x|x| = γ should hold for simulating pop operations on the first
stack. We also define the transitions for the edit-operations of the form (ar → λ)
similarly. Again, the pop operations on the second stack are completely sym-
metric. Lastly, we define δE for the case when we do not touch the stack at all.
There are three possible cases as follows:

– (q′, p′, x, y) ∈ δE((q, p, x, y), (al → bl)),
– (q′, p, x, y) ∈ δE((q, p, x, y), (al → λ)), and
– (q, p′, x, y) ∈ δE((q, p, x, y), (λ → bl)).

Now we prove that the constructed alignment PDA A(A1, A2) simulates all
possible alignments of cost up to k between L(A1) and L(A2).

Lemma 4. Given two VPAs A1 and A2, it is possible to construct the alignment
PDA A(A1, A2) that accepts all possible alignments between L(A1) and L(A2) of
cost up to the constant k.

Proof. Let us consider the simulations of two VPAsA1 andA2 for an alignment ω.
Given h(ω) = (x, y), the VPA A1 has to simulate a word x while the VPA A2

is simulating a word y. Suppose that x has 2k call symbols and y has k′ call
symbols, where k′ < 2k, and no return symbols. Then, the stack contents of A1

and A2 should be γ1γ2 · · · γ2k and µ1µ2 · · ·µk′ , respectively, where γi ∈ Γ1 for
1 ≤ i ≤ 2k and µj ∈ Γ2 for 1 ≤ j ≤ k′. See Fig. 1 for illustration of this example.

γ2k
γ2k−1

...
γ2
γ1

⊥

µk′

...
µ2

µ1

⊥
⊥

On state q
in VPA A1

On state p
in VPA A2

On state (q, p, γ1γ2 · · · γ2k, µ1µ2 · · ·µk′)
in alignment PDA A(A1, A2)

Fig. 1. Illustration of how we store the information of two stacks in the states of the
alignment PDA A(A1, A2).

After this, we push the pair (γ1, µ1) of two stack symbols in the bottom of
two stacks onto the stack of A(A1, A2) if we read an edit-operation (a → b)
where a is a call symbol of A1. Let us assume that A1 pushes γ2k+1 by reading
a and A2 pushes µk′+1 by reading b. Then, we push two stack symbols γ2k+1

Edit-Distance between Visibly Pushdown Languages 9

and µk′+1 onto the simulated stacks stored in the state. See Fig. 2 to see what
happens after reading (a → b).

γ2k+1

γ2k

...
γ2

γ1

⊥

µk′+1

µk

...
µ2

µ1

⊥

γ1, µ1

⊥

q

q′

In VPA A1 In VPA A2
p

p′

In alignment
PDA A(A1, A2)

(q, p, γ1 · · · γ2k,
µ1 · · ·µk′)

(q′, p′, γ1 · · · γ2k+1,
µ1 · · ·µk′+1)

a b

(a → b)

Fig. 2. Illustration of how we store the information of two stacks in the states of the
alignment PDA A(A1, A2). Underlined stack symbols γ2k+1 and µk′+1 are pushded by
the current transitions of VPAs.

In this way, we can make the stack of A(A1, A2) to be always synchronized.
Note that we only push stack symbols onto the stack of A(A1, A2) when we need
to push a stack symbol onto the stack where the simulated stack stored in the
state is full. Therefore, the stack of A(A1, A2) should be empty if the maximum
height of two stacks stored in the state is less than 2k. When we read an edit-
operation that pops a stack symbol from A1 or A2, we pop the stack symbols
from the stack contents stored in the states. If the height of the stack in the
state is 2k before we pop a stack symbol, we pop a stack symbol from the top
of the real stack of A(A1, A2) and move to the bottom of the simulated stack
stored in the state of A(A1, A2).

By storing stack information in the states instead of real stacks, A(A1, A2)
accepts alignments where the height difference of two stacks during the simula-
tion can be at most 2k. We mention that A(A1, A2) also accepts alignments of
cost higher than k if the simulation of the alignments does not require the stack
height difference to be larger than 2k.

Now we prove that the alignment PDA A(A1, A2) accepts an alignment ω,
where C(ω) ≤ k if and only if ω is an alignment satisfying C(ω) ≤ k and h(ω) =
(x, y), where x ∈ L(A1) and y ∈ L(A2).
(=⇒) Since A(A1, A2) accepts an alignment ω, where C(ω) ≤ k, there exists an
accepting computation Xω of A(A1, A2) on ω ending in a state (f1, f2) where
f1 ∈ F1, f2 ∈ F2. We assume that ω = w1 · · ·wl, where wi ∈ Ω for i ≤ i ≤ l.
Denote the sequence of states ofA(A1, A2) appearing in the computationXω just
before reading the lth symbol of ω as C0, . . . , Cl−1, and denote the state (f1, f2)
where the computation ends as Cl. Consider the first component qi ∈ Q1 of the
state Ci ∈ QE , for 0 ≤ i ≤ l, and the first component aj ∈ Σ ∪ {λ} of the
edit-operation wj , for 1 ≤ j ≤ l. From the construction of A(A1, A2), it follows
that

10 Yo-Sub Han and Sang-Ki Ko

– (qi+1, γ) ∈ δA,c(q, ai+1), if ai+1 ∈ Σc

– qi+1 ∈ δA,l(q, ai+1), if ai+1 ∈ Σl

– qi+1 ∈ δA,r(q, γ, ai+1), and if ai+1 ∈ Σr

– qi+1 = qi. if ai+1 = λ

for 0 ≤ i ≤ l − 1. Note that the transitions of δE reading an “insertion op-
eration” (λ → b) do not change the first components of the states. Thus, the
first components of the state C0, . . . , Cl spell out an accepting computation of
A1 on the word x = a1 · · · al obtained by concatenating the first components of
the edit-operations of ω. Using a similar argument for the word y obtained by
concatenating the second components of ω, we can show that the computation
yields an accepting computation of A2 on y.

(⇐=) Let ω = (ωL(1) → ωR(1))(ωL(2) → ωR(2)) · · · (ωL(l) → ωR(l)) be an align-
ment of length l for x = ωL(1)ωL(2) · · ·ωL(l) ∈ L(A1) and y = ωR(1)ωR(2) · · ·ωR(l) ∈
L(A2). Let C = C0C1 · · ·Cm,m ∈ N, be a sequence of configurations of the
VPA A1 that traces an accepting computation XA,x on the word x. Assuming
that Ci is (qi, γi), the configuration Ci+1 is obtained from Ci by applying a tran-
sition (qi+1, γi+1) ∈ δA(qi, a, γi), where a ∈ Σ ∪ {λ}. Note that ωL(j) or ωR(j)

may be the empty word if (ωL(j) → ωR(j)) is an edit-operation representing an
insertion or a deletion operation. Suppose that the computation step Ci → Ci+1

consumes h empty words. Then in the sequence C after the configuration Ci,
we add h − 1 identical copies of Ci. Then, we denote the modified sequence of
configurations C′ = C ′

0C
′
1 · · ·C ′

l , l ∈ N. Analogously, let D = D′
0D

′
1 · · ·D′

l be a
sequence of configurations of the VPA A2 that traces an accepting computation
XB,y on the word y.

From the sequences C′ and D, we obtain a sequence of configurations of
A(A1, A2) describing an accepting computation on the alignment ω. For the
deletion operations (ωL(j) → λ), the state is changed just in the first component
and the configuration of A2 remains unchanged. Recall that we have added the
identical copies of configurations for simulating this case. The deletion operations
can be simulated symmetrically. For the substitution operations (ωL(j) → ωR(j)),
the computation step simulates both a state transition of A1 on ωL(j) and a state
transition of A2 on ωR(j).

This implies that two modified sequences of configurations of A1 and A2 can
be combined to yield an accepting computation of A(A1, A2) on ω. ⊓⊔

Let us consider the size of the constructed alignment PDA A(A1, A2). Let
mi = |Qi|, ni = |δi,c|+ |δi,r|+ |δi,l|, and li = |Γi| for i = 1, 2.

Note that each state contains an information of a pair of states from A1 and
A2, and a stack information of at most 2k stack symbols of A1 and A2. If we
represent a stack where the height of the stack is restricted to 2k with a word
over the stack alphabet Γ1, we have

l′1 =
2k∑
i=0

li1 = 1 + l1 ·
l2k1 − 1

l1 − 1

Edit-Distance between Visibly Pushdown Languages 11

possible words. Similarly, we define l′2 to be the number of possible words over
Γ2. Therefore, the number of states in A(A1, A2) is in

m1m2 · l′1l′2 = m1m2 ·

(
2k∑
i=0

li1

)
·

(
2k∑
i=0

li2

)
.

The size of the stack alphabet ΓE is l1l2 since we use all pairs of the stack
symbols where the first stack symbol is from Γ1 and the second stack symbol is
from Γ2. The size of the transition function δE is

m1m2 · n1n2 ·

(
2k∑
i=0

li1

)
·

(
2k∑
i=0

li2

)
.

By Lemma 4, we can obtain an alignment PDA from two VPAs A1 and A2

to compute the edit-distance d(L(A1), L(A2)). Recently, Han et al. [5] studied
the edit-distance between a PDA and an FA. The basic idea is to construct an
alignment PDA from a PDA and an FA and compute the length of the shortest
alignment from the alignment PDA. As a step, they present an algorithm for
obtaining a shortest word and computing the length of the shortest word from
a PDA. For the sake of completeness, we include the following proposition.

Proposition 5 (Han et al. [5]). Given a PDA P = (Q,Σ, Γ, δ, s, Z0, FP),

we can obtain a shortest word in L(P) whose length is bounded by 2m
2l+1 in

O(n · 2m2l) worst-case time and compute its length in O(m4nl) worst-case time,
where m = |Q|, n = |δ| and l = |Γ |.

Now we establish the following runtime for computing the edit-distance be-
tween two VPAs.

Theorem 6. Given two VPAs Ai = (Σ,Γi, Qi, si, Fi, δi,c, δi,r, δi,l) for i = 1, 2,
we can compute the edit-distance between L(A1) and L(A2) in O((m1m2)

5 ·n1n2 ·
(l1l2)

10k) worst-case time, where mi = |Qi|, ni = |δi,c|+ |δi,r|+ |δi,l|, li = |Γi| for
i = 1, 2 and k = max{lsw(L(A1)), lsw(L(A2))}.

If we replace k with the length 2|Q|2·|Γ |+1 of a shortest word from a VPA
from the time complexity obtained in Theorem 6, we have double exponential
time complexity for computing the edit-distance between two VPAs. It is still
an open problem to find a polynomial algorithm for the problem or to establish
any hardness result. Instead, we can observe that the edit-distance problem for
VPAs can be computed in polynomial time if we limit the edit-distance to a
fixed integer k.

Corollary 7. Let A1 and A2 be two VPAs and k be a fixed integer such that
d(L(A1), L(A2)) ≤ k.Then, we can compute the edit-distance between L(A1) and
L(A2) in polynomial time.

12 Yo-Sub Han and Sang-Ki Ko

As a corollary of Theorem 6, we can also establish the following result. A
visibly counter automaton (VCA) [3] can be regarded as a VPA with a single
stack symbol. It is interesting to see that we can compute the edit-distance
between two VCAs in polynomial time when we are given t

Corollary 8. Given two VCAs A1, A2 and a positive integer k ∈ N in unary
such that d(L(A1), L(A2)) ≤ k, we can compute the edit-distance between L(A1)
and L(A2) in polynomial time.

References

1. R. Alur. Marrying words and trees. In Proceedings of the 26th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’07,
pages 233–242, 2007.

2. R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the
36th Annual ACM Symposium on Theory of Computing, pages 202–211, 2004.

3. V. Bárány, C. Löding, and O. Serre. Regularity problems for visibly pushdown
languages. In Proceedings of the 23rd Annual Symposium on Theoretical Aspects
of Computer Science, pages 420–431, 2006.

4. C. Choffrut and G. Pighizzini. Distances between languages and reflexivity of
relations. Theoretical Compututer Science, 286(1):117–138, 2002.

5. Y.-S. Han, S.-K. Ko, and K. Salomaa. The edit-distance between a regular language
and a context-free language. International Journal of Foundations of Computer
Science, 24(7):1067–1082, 2013.

6. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, MA, 2nd edition, 1979.

7. L. Kari and S. Konstantinidis. Descriptional complexity of error/edit systems.
Journal of Automata, Languages and Combinatorics, 9:293–309, 2004.

8. J. Leike. VPL intersection emptiness. Bachelor’s Thesis, University of Freiburg,
2010.

9. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

10. K. Mehlhorn. Pebbling mountain ranges and its application to DCFL-recognition.
In Automata, Languages and Programming, volume 85, pages 422–435. 1980.

11. M. Mohri. Edit-distance of weighted automata: General definitions and algorithms.
International Journal of Foundations of Computer Science, 14(6):957–982, 2003.

12. B. Mozafari, K. Zeng, and C. Zaniolo. From regular expressions to nested words:
Unifying languages and query execution for relational and xml sequences. Proceed-
ings of the VLDB Endowment, 3(1-2):150–161, 2010.

13. P. A. Pevzner. Computational molecular biology - an algorithmic approach. MIT
Press, 2000.

14. K. Thompson. Regular expression search algorithm. Communications of the ACM,
11(6):419–422, 1968.

15. R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21:168–173, 1974.

16. D. Wood. Theory of Computation. Harper & Row, 1987.

Edit-Distance between Visibly Pushdown Languages 13

Appendix

Context-free grammar (CFG). A context-free grammar (CFG) G is a four-
tuple G = (V,Σ,R, S), where V is a set of variables, Σ is a set of terminals,
R ⊆ V × (V ∪Σ)∗ is a finite set of productions and S ∈ V is the start variable.
Let αAβ be a word over V ∪ Σ, where A ∈ V and A → γ ∈ R. Then, we say
that A can be rewritten as γ and the corresponding derivation step is denoted
αAβ ⇒ αγβ. A production A → t ∈ R is a terminating production if t ∈ Σ∗. The
reflexive, transitive closure of ⇒ is denoted by

∗→ and the context-free language
generated by G is L(G) = {w ∈ Σ∗ | S ∗→ w}. We say that a variable A ∈ V is

nullable if A
∗→ λ.

Proposition 3. Let L ⊆ Σ∗ and L′ ⊆ Σ∗ be the languages over Σ. Then,

d(L,L′) ≤ max{lsw(L), lsw(L′)}

holds.

Proof. Assume that lsw(L) = m and lsw(L′) = n where n ≤ m. It is easy to see
that the edit-distance between two shortest words can be at most m since we can
substitute all characters of the shortest word of length n with any subsequence
of the longer word and insert the remaining characters. ⊓⊔

Proposition 5. (Han et al. [5]) Given a PDA P = (Q,Σ, Γ, δ, s, Z0, FP), we

can obtain a shortest word in L(P) whose length is bounded by 2m
2l+1 in O(n ·

2m
2l) worst-case time and compute its length in O(m4nl) worst-case time, where

m = |Q|, n = |δ| and l = |Γ |.

Proof. Recall that we can convert a PDA into a CFG by the triple construc-
tion [6]. Let us denote the CFG obtained from P byGP . Then,GP has |Q|2·|Γ |+1
variables and |Q|2 · |δ| productions. Moreover, each production of GP is of the
form A → σBC,A → σB,A → σ or A → λ, where σ ∈ Σ and A,B,C ∈ V . Since
we want to compute the shortest word from GP , we can remove the occurrences
of all nullable variables from GP . Then, we pick a variable A that generates the
shortest word t ∈ Σ∗ among all variables and replace its occurrence in GP with t.
We can compute the shortest word of L(P) by iteratively removing occurrences
of such variables. We describe the algorithm in Algorithm 1.

Since a production of GP has at most one terminal followed by two variables,
the length of the word to be substituted is at most 2m − 1 when we replace
mth variable. Since we replace at most |Q|2 · |Γ | variables to have the shortest

word, the length of the shortest word in L(P) can be at most 2|Q|2·|Γ |+1. Since
there are at most 2|R| occurrences of variables in R and |V | variables, we replace
2|R|
|V | occurrences of a given variable on average. Therefore, the worst-case time

complexity for finding a shortest word is O(n · 2m2l). We also note that we can
compute only the length of the shortest word in O(m4nl) worst-case time by
encoding a shortest word to be substituted with a binary number. ⊓⊔

14 Yo-Sub Han and Sang-Ki Ko

Algorithm 1: ShortestLength(P)

Input: A PDA P = (Q,Σ, Γ, δ, s, Z0, FP)
Output: lsw(L(P))
1: convert P into a CFG GP = (V,Σ,R, S) by the triple construction
2: eliminate all nullable variables
3: for B → t ∈ R, where t ∈ Σ∗ and |t| is minimum among all such t in R do
4: if B = S then
5: return |t|
6: else
7: replace all occurrences of A in R with t
8: remove A from V and its productions from R
9: end if
10: end for

Theorem 6. Given two VPAs Ai = (Σ,Γi, Qi, si, Fi, δi,c, δi,r, δi,l) for i = 1, 2,
we can compute the edit-distance between L(A1) and L(A2) in O((m1m2)

5 ·n1n2 ·
(l1l2)

10k) worst-case time, where mi = |Qi|, ni = |δi,c|+ |δi,r|+ |δi,l|, li = |Γi| for
i = 1, 2 and k = max{lsw(L(A1)), lsw(L(A2))}.

Proof. In the proof of Lemma 4, we have shown that we can construct an align-
ment PDA A(A1, A2) = (QE , Ω, ΓE , sE , FE , δE) that accepts all possible align-
ments between two VPAs A1 and A2 of length up to k. From Proposition 5, we
can compute the edit-distance in O(m4nl) time, where m = |QE |, n = |δE | and
l = |ΓE |. Recall that

m = m1m2 ·

(
2k∑
i=0

li1

)
·

(
2k∑
i=0

li2

)
, n = m1m2 · n1n2 ·

(
2k∑
i=0

li1

)
·

(
2k∑
i=0

li2

)
,

and l = l1l2. Note that(
2k∑
i=0

li1

)
∈ O(l2k1) and

(
2k∑
i=0

li2

)
∈ O(l2k2)

if l1, l2 > 0.
Therefore, the time complexity of computing the edit-distance between two

VPAs A1 and A2 is

(m1m2)
5 · n1n2 ·

(
2k∑
i=0

li1

)5

·

(
2k∑
i=0

li2

)5

· l1l2 ∈ O((m1m2)
5 · n1n2 · (l1l2)10k),

where k is the maximum of the length of the two shortest words from L(A1) and
L(A2). ⊓⊔

Corollary 8. Given two VCAs A1, A2 and a positive integer k ∈ N in unary
such that d(L(A1), L(A2)) ≤ k, we can compute the edit-distance between L(A1)
and L(A2) in polynomial time.

Edit-Distance between Visibly Pushdown Languages 15

Proof. If l1 = l2 = 1,(
2k∑
i=0

li1

)
∈ O(k) and

(
2k∑
i=0

li2

)
∈ O(k).

If we replace l2k1 and l2k2 by k from the time complexity, we obtain the time
complexity O((m1m2)

5 · n1n2 · k10) which is polynomial in the size of input.

