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Abstract: Polymer mechanochemistry is an emerging field at 

the interface of chemistry, materials science, physics and engi-

neering. It aims at understanding and exploiting unique reactivi-

ties of polymer chains confined to highly non-equilibrium 

stretched geometries by interactions with their surroundings. 

Macromolecular chains or their segments become stretched in 

bulk polymers under mechanical loads or when polymer solu-

tions are sonicated or flow rapidly through abrupt contractions. 

Increasing amount of empirical data suggest that mechano-

chemical phenomena are widespread wherever polymers are 

used. In the past decade, empirical mechanochemistry has 

progressed enormously, from studying fragmentations of com-

modity polymers by simple backbone homolysis to demonstra-

tions of self-strengthening and stress-reporting materials and 

mechanochemical cascades using purposefully designed mon-

omers. This progress has not yet been matched by the devel-

opment of conceptual frameworks within which to rationalize, 

systematize and generalize empirical mechanochemical obser-

vations. As a result, mechanistic and/or quantitative understand-

ing of mechanochemical phenomena remains, with few excep-

tions, tentative. In this review we aim at systematizing reported 

macroscopic manifestations of polymer mechanochemistry, and 

critically assessing the interpretational framework that underlies 

their molecular rationalizations from a physical chemist’s per-

spective. We propose a hierarchy of mechanochemical phe-

nomena which may guide the development of multiscale models 

of mechanochemical reactivity to match the breadth and utility of 

the Eyring equation of chemical kinetics. We discuss the limita-

tions of the approaches to quantifying and validating mechano-

chemical reactivity, with particular focus on sonicated polymer 

solutions, in order to identify outstanding questions that need to 

be solved for polymer mechanochemistry to become a rigorous, 

quantitative field. We conclude by proposing 7 problems whose 

solution may have a disproportionate impact on the development 

of polymer mechanochemistry. 

1. Introduction 

Polymer mechanochemistry aims at understanding and exploit-

ing reactivity of macromolecular chains in highly non-equilibrium 

stretched geometries resulting from interactions between the 

chains and their surroundings. The most common means of 

creating such highly stretched chains (or at least parts of chains) 

is to mechanically load a bulk polymer, hence the “mechano” 

part of the name. At the macroscopic scale, such loading com-

presses, stretches, shears and/or twists the material. These 

macroscopic dimensional changes are ultimately accommodated, 

at least in part, by stretching of individual polymer chains. An 

unknown, but probably very small, fraction of the chains is 

stretched enough to manifest chemical reactivity that is consid-

erably different from that observed in the same polymer in its 

minimum-energy geometry. For example, force of 5 nN stretch-

ing a single chain of polystyrene reduces the half-life of its back-

bone C-C bonds from 1038 years to the microsecond time scale 

at 300 K.  

Such load-induced polymer fragmentation was discovered 

soon after the modern concept of the polymer emerged.[1] Be-

cause polymers are subject to mechanical loads throughout their 

lifecycle, from production to recycling, the technological im-

portance of polymer mechanochemistry is probably far greater 

than is currently appreciated. Polymer mechanochemistry is 

almost certainly a key yet poorly understood determinant in the 

origination and growth of microcracks that contribute to cata-

strophic failure of polymers.[2] Mechanochemical polymer degra-

dation probably affects the behavior of tires, desalination mem-

branes and polymer-modified surfaces, such as the ones used in 

microfluidic diagnostics[3] and high-performance liquid chroma-

tography. It’s likely important in jet injections (for example in 

inkjet printing of organic electronic circuits), polymer melt pro-

cessing, high-performance lubrication,[4] enhanced oil recovery 

by polymer flooding[5, 6] and turbulent drag reduction schemes.[7, 

8] Importance of mechanochemical fragmentation of biopolymers 

during handling of their solutions has long been recognized[9] 

and occasionally exploited.[9, 10] The connection between tri-

bochemistry and mechanochemistry is well appreciated.[11, 12] In 

most (but not all) of these examples, mechanochemical effects 

are deleterious, leading to, or accelerating, the loss of function.  

Exploiting mechanochemical phenomena can yield new ma-

terials and processes, including very tough elastomers; materi-

als capable of autonomously reporting their “overstressed” re-

gions at high risk of catastrophic failure; and/or are self-

reinforcing, i.e., capable of autonomously generating more than 

1 new load-bearing bond per each bond lost by load-induced 

molecular fragmentation. Carefully designed mechanochemical 

reaction cascades may yield fundamentally new tools to study 

polymer dynamics at high temporaspatial resolutions. Exploiting 

the coupling between localized reactivity and macroscopic dy-

namics could yield practical photoactuation,[13] which is direct 

conversion of light into motion to power autonomous microme-

chanical devices and control information flow in optical compu-

ting without the intermediacy of thermal or electrostatic gradients 

and methods to capture waste mechanical energy. A few of 

these potential applications have been prototyped and demon-

strated at the proof-of-concept level, but most remain specula-

tive.  

A major challenge in learning how to engineer macroscopic 

mechanical properties of materials at the single-monomer level, 

whether or not they involve chemical reactions, is the coupling of 

dynamic processes across multiple length and timescales.[14] In 

mechanochemistry, this means that dynamics at the macroscop-

ic scale is governed by and directly controls correlated motion of 

atoms responsible for chemical reactions, which therefore can-

not be averaged out and hence adequately “coarse-grained” into 

a few continuum parameters, but must be considered explicitly. 

In contrast, in conventional chemistry reaction rates are almost 

always independent of the motion of macroscopic objects. In the 

rare cases of a dependence (e.g., flame chemistry in the cham-

ber of an internal combustion engine[15]) coupling between the 

macroscopic and molecular dynamics can be adequately de-

scribed by time-dependent macroscopic parameters, such as 

pressure or temperature.  

In chemical kinetics, the Eyring equation relates the macro-
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scopic control parameter (temperature and pressure) to the rate 

constant by means of free energy of activation.[16] The equation 

is so useful in part because every parameter in it has a clear 

molecular interpretation, at least in the ideal gas approximation, 

arising either from the kinetic theory of gases or the statistical-

mechanical definitions of thermodynamic functions. As a result 

the rate of a chemical reaction can often be predicted, with a 

reasonably useful accuracy, from quantum-chemical calculations. 

More broadly, reaction rates and how they change with tempera-

ture and pressure can be related to, and rationalized in terms of, 

molecular parameters of the reacting molecules. Without the 

ability to do so, modern chemistry would hardly exist. 

The same cannot yet be achieved in mechanochemistry. 

Mechanochemistry introduces another macroscopic control 

parameter, such as stress tensor, that we know affects the kinet-

ics of chemical reactions in the material. Empirical expressions 

relating stress to reaction rates have been proposed (see sec-

tion 3, Mechanochemistry of polymers in solids below), but their 

parameters lack any molecular interpretation, making the equa-

tions neither general nor predictive and therefore of very limited 

utility. One problem is the lack of a theoretically sound molecular 

definition of mechanical stress.[17-19] In its absence, it may be 

possible to develop at least semi-quantitative models of polymer 

mechanochemistry that would be somewhat general and predic-

tive by defining a hierarchy of mechanochemical phenomena 

(Figure 1). This hierarchy would allow the existing models that 

perform reasonably well within individual rungs of the hierarchy 

(e.g., chemical kinetics, statistical-mechanical models of quasi-

universal chain dynamics[20], continuum mechanics, etc.) to be 

applied systematically to relating the macroscopic stress tensor 

(or other quantifiers of mechanical load) to rates of chemical 

reactions. A similar multiscale approach has proven successful 

in diverse areas of physical[21] and biological[22] sciences, and 

engineering.[23] 

 
Figure 1. A plausible hierarchy of mechanochemical phenomena. Model 

studies of mechanochemistry using small-molecule (“molecular force probes”) 
and overcrowded polymers at interfaces were reviewed in 

[24]
. All other mani-

festations of polymer mechanochemistry are discussed below. 

An example of such an approach, based on the concept of 

restoring force, is sketched in Figure 2. The restoring force of a 

strained object is the force that attempts to recover the original, 

unstrained shape of this object: for example, when we stretch a 

rubber band, the restoring force of the band is what pulls our 

hands closer together. First, the macroscopic control parame-

ter(s) that govern the macroscopic response of the material to 

mechanical deformation are related to the distribution of single-

chain forces of the constituent macromolecules (or their seg-

ments between, for example, entanglement points or chemical 

cross-links). It seems reasonable to assume such a relationship 

to be quasi universal, e.g., the same for chemically distinct pol-

ymers with comparable chain stiffness. Knowing the tensile force 

acting along a polymer chain (or its segment) may allow the 

force experienced by the constituent monomers (or more formal-

ly, the restoring forces of the relevant molecular degrees of 

freedom of the stretched chain[25]) to be estimated. The distribu-

tion of local restoring forces along the chain certainly depends 

on the chain composition[26] but it may be amenable to accurate 

description using simple force fields of molecular mechanics. 

This is already possible for the simplest examples of polymer 

mechanochemistry, observed in single-molecule force experi-

ments,[26, 27] which allow direct measurements of the relationship 

between single-chain force and local reactivity as discussed 

below. Finally, the local restoring force is then used to estimate 

the changes in the chemical reactivity of the anisotropically 

strained reactive site. It appears that for most (or maybe any) 

highly anisotropically strained reactive site, a local molecular 

coordinate exist whose restoring force uniquely determines the 

strain-induced perturbation of the reactivity. This relationship is 

available from quantum-chemical calculations[11, 12] (see below) 

and usefully accurate estimates can even be obtained in some 

cases without extensive calculations.[27, 28] Experimentally it has 

been elucidated using purposefully designed non-polymeric 

models of reactive sites in stretched polymers that allow fairly 

straightforward quantification of the molecular strain by force (so 

called molecular force probes[29-35]). 

 
Figure 2. A plausible hierarchy of the control parameters describing dynamics 

at various scales determining the chemical response of polymer materials to 

mechanical loads. 
[36]

 

The advantage of discussing mechanochemical reactivity in 

terms of force-dependent reaction rates (i.e., of integrating force 
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into the standard formulations of chemical kinetics) is the same 

that favors Newtonian vs. Lagrangian formulation of classical 

mechanics: force offers a “kind of approximate, truncated de-

scription of the dynamics of matter [that] is easier to use and 

focuses on the relevant”[37] than the alternatives. Although this 

force-based modelling of mechanochemical kinetics introduces 

some conceptual difficulty (e.g., how to quantify molecular strain 

in terms of force), which is avoided when limiting oneself to 

energies, force is an intensive property. This means that it cap-

tures equally well the reactivity-perturbing effect of the distortion 

imposed on a small molecule by constraining one of its non-

binding internuclear distances to a non-equilibrium distance in a 

quantum-chemical calculation or in a polymer stretched in an 

elongational flow, regardless of the length of the polymer or the 

small-molecule model. 

1.1. Hierarchy of mechanochemical phenomena 

Mechanochemistry aims at understanding and exploiting the 

changes in chemical reactivity induced by stretching polymer 

chains. Chains can only be stretched if they couple to their sur-

roundings in a specific way. Details of this coupling determine 

how much, how fast and for how long a chain is stretched and 

hence the range of chemical reactions that may be observed. 

The complexity of the coupling also determines how amenable 

the resulting mechanochemical response is to detailed atomistic 

description and how generalizable it is. 

At a minimum a stretched polymer chain must couple to its 

surroundings at two points to maintain its high-energy non-

equilibrium geometry. Single-molecule force spectroscopy 

(SMFS) comes closest to realizing this conceptually simplest 

coupling mode. In SMFS an isolated polymer chain is connected 

to a surface of a positional scanner at one end and an AFM tip 

at the other (Figure 3)[38]. The resulting macromolecular bridge is 

stretched by translating these two microscopic objects away 

from each other. Unlike any other manifestation of polymer 

mechanochemistry, SMFS allows direct control of how much 

and how fast the chain is stretched and a reasonably accurate 

estimate of the force needed to achieve this strain. The output of 

a SMF measurement is a force/extension curve and the fact that 

stretching a chain induces a chemical reaction is established by 

the existence of specific features of such curves.  

Because on the time scale of milliseconds or longer the 

stretched chain is in an internal mechanical equilibrium, a fairly 

simple relationship exists between the strain (or force) imposed 

on the chain termini and that of any of its constituent mono-

mers.[25] Consequently, an adequate model of a SMF experiment 

is the polymer chain (or its portion) with a compressed (harmon-

ic or overdamped) spring connecting two of its atoms. Because 

such a model is compatible with molecular electronic structure 

methods, such as DFT, force/extension curves are the only 

examples of polymer mechanochemistry that can be predicted 

semi-quantitatively by quantum-chemical calculations.[33, 39] 

While the technical aspects of SMFS limit the range of reactions 

and rate constants that are amenable to such studies and pre-

clude the use of spectroscopic techniques to establish the prod-

uct(s) of these reactions[36], it is a powerful tool to study polymer 

mechanochemistry in its simplest. Mechanochemistry of certain 

dihalocyclopropanes, cyclobutanes, spiropyrans and azoben-

zene observed by SMFS appears to be qualitatively similar to 

that induced by mechanical loading of amorphous samples 

and/or sonication of dilute polymer solutions. An important if 

rarely discussed conceptual challenge in generalizing the results 

of SMF experiments to practically relevant manifestations of 

polymer mechanochemistry is how closely, especially quantita-

tively, the force/extension curves measured in SMFS represent 

ensemble-average behavior of the same polymer. The latter 

controls the chemical response of bulk materials to load, which 

controls practical manifestations of mechanochemistry. Whereas 

conventional chemical measurements represent an averaged 

behavior of trillions of molecules, each force/extension curve 

results from reactions of at best ~102 sites[39-48] (and sometimes 

as few as one[38, 49-51]) and most but not all studies of single-

chain mechanochemistry reported to date are based on fewer 

than 15 curves. With such a limited number of events, even the 

most basic ideas of statistical data analysis, e.g., that the force 

at which a mechanochemical reaction is observed to occur is 

distributed normally around its ensemble-average value and 

hence the uncertainty of the estimated values can be represent-

ed by a variance, are not obviously applicable. 

  

Figure 3. Basic setup of single-molecule force (SMF) spectroscopy with AFM 

(a) and force/extension curve obtained in a simple SMF experiment (b). In this 

example, when stretched to a sufficiently high force the chain simply frag-

ments or detaches from one of the surfaces resulting in a mechanical instabil-

ity as evidenced by a negative slope of the force/extension curve (b). Reprint-

ed with permission from ref 
[52]

.  Copyright 2015 Springer International Publish-

ing Switzerland 

Isolated polymer chains in elongational solvent flows[53] con-

stitute the next level of conceptual complexity in polymer mech-

anochemistry. In such flows the chain dynamics is determined 

by intermolecular interactions among thousands of its atoms and 

those of the surrounding solvent, and maintaining these interac-

tions require constant input of energy into the system, i.e., elon-

gational flows are dissipative.  

Steady-state planar elongational flows with a stagnation 

point (Figure 4) are most amenable to quantitative microscopic 

modelling.[54] A polymer chain can be trapped at a stagnation 

point and kept in a stretched state for hours, under favorable 

conditions.[55] Chain dynamics in such flows has been extensive-

ly studied both experimentally and computationally[53] although 

no clearly established examples of a mechanochemical reaction 

in a polymer chain trapped at a stagnation point have ever been 

reported (early claims[56-58] are now thought to reflect mechano-

chemistry in turbulent flows away from the stagnation point[54, 59]). 

Because of the technical difficulties of generating flow rates high 

and stable enough to induce mechanochemistry in trapped 

chains, steady-state planar elongational flows have not found 

their application in modern polymer mechanochemistry despite 

being the simplest examples of polymer stretching by multi-site 

coupling between the chain and its surroundings. 
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Figure 4. A schematic illustration of the flow field (arrows) in a steady-state 
planar elongational flow with a stagnation point (marked with x).  Reprinted 
with permission from ref 

[60]
. Copyright 2009 American Chemical Society. 

[56]
 

Widely-studied, technically simple but atomistically intracta-

ble realizations of polymer mechanochemistry in solvent flows 

are created by sonicating polymer solutions. The technique is 

characterized by a highly heterogeneous reaction environment 

where the macroscopic effects (e.g., changes in the chemical 

composition of the sonicated solution) result from a tiny but 

unknown fraction of the polymer solute subject to extreme mi-

croscopic conditions (e.g., flow strain rates) that change on the 

sub-µs timescales. Consequently, in contemporary mechano-

chemistry polymer solutions are sonicated primarily for qualita-

tive demonstrations that a particular chemical reaction is in-

duced by stretching a polymer containing a specific reactive site. 

Microscopic (much less atomistic) descriptions of mechano-

chemical response of sonicated polymer solutions are lacking. 

Given the likely extreme conditions responsible for polymer 

mechanochemistry during sonication, even semi-quantitative 

description of mechanochemical kinetics would represent a very 

demanding test of our understanding of chemical reactivities of 

molecules subject to very large anisotropic strain. 

At least as conceptually intractable is polymer mechano-

chemistry in amorphous materials and melts. In such systems 

chain are stretched by complex, constantly changing chain-chain 

interactions that have so far proven resistant to theoretical de-

scription or atomistic computations. Consequently, molecular 

interpretation of load-induced chemical changes in amorphous 

polymers remains largely qualitative and the main focus in this 

area of polymer mechanochemistry has been on empirical ex-

ploration and some proof-of-concept exploitation of materials 

created by incorporating force-sensitive reactive sites into more 

inert polymer matrices. 

Several examples were reported of overcrowded polymers at 

gas/liquid, liquid/solid and gas/solid interfaces and of surface-

crafted polymer brushes undergoing spontaneous chain frag-

mentation or other reactions that were also observed in poly-

mers under mechanical loads.[24] These systems are probably 

best viewed as models of polymer mechanochemistry because 

in most if not all the examples the polymers are confined to high 

energy reactive geometries not as a result of externally imposed 

load. 

1.2. Experimental, computational and theoretical models of 

mechanochemistry 

Most manifestations of mechanochemistry, particularly in tech-

nologically relevant contexts, remain intractable at the molecular 

level. This situation necessitates the use of model studies both 

to interpret and rationalize the existing phenomenology of poly-

mer mechanochemistry and to develop, validate and refine the 

conceptual frameworks and quantitative descriptions of mecha-

nochemistry. Experimental models of polymer mechanochemis-

try attempt to reproduce, either in non-polymeric molecules or in 

polymers not subject to mechanical load, the molecular strain 

that localized reactive sites experience in mechanically loaded 

macromolecules. The most important examples of non-

macromolecular models are strained macrocycles based on stiff 

stilbene.[31, 36, 61] Overcrowded polymers stretch when placed at 

liquid/gas or liquid/solid interfaces, allowing reactive sites to be 

strained without loading the macromolecules mechanically.[24]  

Although chemists have studied the effect of molecular strain 

on chemical reactivity for over a century, the strain responsible 

for mechanochemical reactivity of polymers is so different that 

reproducing it outside mechanically stretched chains requires 

new molecular architectures. The intrinsically high anisotropy of 

linear polymers means that localized reactive sites in stretched 

macromolecules are strained primarily along a single molecular 

axis, with several implications. First, this strain can be quantified 

as the strain energy gradient along this axis (i.e., restoring force 

of a specific molecular coordinate) instead of the traditional 

strain energy of physical organic chemistry. Second, the reactivi-

ty depends on what molecular axis the strain is applied to. Com-

pared to classical strained organic molecules, models of polymer 

mechanochemistry are useful only if the underlying molecular 

architectures allow the tensile strain to be varied in sufficiently 

small increments over a reasonably wide range, including 0 

force (i.e., strain-free reference). In contrast, most small strained 

molecules manifest compressive strain, lack well-defined strain-

free references and do not come in series of gradually increas-

ing strain.  

The main advantage of non-polymeric models is their size, 

which makes them amenable to accurate quantum-chemical 

calculations. This not only allows the restoring forces of all inter-

nal molecular coordinates to be quantified (thus validating the 

assumption that the strain distribution of the reactive site mimics 

that in a stretch polymer and allowing direct mapping of the 

kinetics measured in such models to mechanochemical behavior 

of polymers[36]) but also explicit atomistic description of chemical 

kinetics to be compared with approximate, force-based one. 

Perhaps the main disadvantage of stiff-stilbene based models is 

the limited range of restoring forces that can be generated in the 

reactive site, which is mostly limited by the thermal stability of 

strained E stiff stilbene to ~1 nN. Overcrowded polymers allow 

localized reactive sites to be strained to much larger forces 

(probably up to ~2+ nN), but offer no means of quantifying these 

forces accurately. 

Likewise, because direct quantum-chemical calculations of 

mechanochemical response of polymer chains remains beyond 

reach, computational mechanochemistry uses models of 

stretched polymers, typically by replacing most of the polymer, 

except for the reactive site, with a constraining potential[11, 12] 

(which is often, if not necessarily correctly, referred to as “force”). 

In other words, the stretched polymer is modelled by the reactive 

site with the pair of atoms at which it is connected to the polymer 

backbone constrained to a non-equilibrium value. In these mod-

els the constraining potential is a coarse-grained representation 
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of tens of thousands of molecular degrees of freedom of a 

stretched polymer. Such coarse-graining allows meaningful 

estimates of the reaction kinetics and mechanism in a stretched 

polymer because the polymer beyond the reactive site contrib-

utes to the kinetic barriers only by changes in its strain energy. 

Geometrical changes in the reactive site during the reaction 

allow the rest of the stretched polymer to partially relax, stabiliz-

ing the transition state(s) and reducing the height(s) of the kinet-

ic barriers (in theory the strain of the rest of the polymer can also 

increase as a localized reaction happens, corresponding to load-

inhibited reactions, but these cases have not yet been demon-

strated experimentally in synthetic polymers). Fortunately, rea-

sonable quantitation of these changes in the strain energy of the 

rest of the stretched polymer do not require detailed atomistic 

description of polymer geometries but can be approximated 

reasonably accurately as a product of the stretching force and 

the change in the length of the constrained distance between the 

reactant and the rate-determining transition state (so-called 

work).  

Several implementations of this approach have appeared 

that are equivalent conceptually but vary technically in which 

parameter is under the user control: constraining force, con-

strained distance or the compliance of the constraining potential. 

The first two are the limiting cases of the third one, correspond-

ing to the infinitely compliant and infinitely stiff constraining 

potential, respectively. In geometry optimizations under constant 

force (so-called EFEI (external force explicitly included) or EGO 

(enforced geometry optimization) models), molecular geometry 

relaxes until the restoring force of the constrained distance 

equals the applied force. In constrained optimizations the con-

strained distance remains fixed while the rest of the molecule 

relaxes, which typically decreases the restoring force of the 

constrained distance. All methods yield the same parameters 

and are equally appropriate for quantifying how the molecular 

geometry and energy changes in response to changing applied 

force using a series of static geometry optimizations. 

Occasionally quantum-chemical models of localized reac-

tions in stretched polymers are classified as isotensional or 

isometric (Figure 5), corresponding to either the constraining 

force or the constrained distance being constant in the reactant 

and kinetically significant transition states and intermediates. 

Isotensional models reflect the physical reality better when the 

molecular model is small but as the size of the model of the 

polymer increases, the difference between parameters (e.g., 

activation energies, reaction paths) computed under isotensional 

and isometric conditions decreases. QM molecular dynamic 

simulations are generally limited to very small polymer frag-

ments and are therefore more physical when performed under 

isotensional conditions, as do reaction path calculations. Isomet-

ric conditions assume that the geometry and therefore the strain 

energy of the coarse-grained parts of the stretched polymer do 

not change during the reaction. This assumption is poor when 

the stretched polymer is modelled by just the reactive site, but 

when a sufficiently large part of the polymer is included, the 

energetic contribution of the coarse-grained parts becomes 

relatively insignificant (Figure 5).  

 
Figure 5. An illustration of the difference between isometric and isotensional models of cyclobutene isomerization in a stretched macromolecule using the minimal 
model of the reactive site (a) and a larger more realistic polymer fragment (b). Graphs are projections of the free energy reaction surface of cyclobutene isomeri-
zation along the internal coordinate defined by the separation of the C atoms of the methyl groups, qMe…Me. Dashed arrows describe the transition in the absence 
of load and the solid arrows are transitions in the polymer stretched to 1.5 nN. In the minimal model (a) isometric and isotensional models are very different, with 
the isometric model corresponding to a nonphysical situation where isomerization of cyclobutene under 1.5 nN of tensile force generates the transition state with 
the geometry corresponding to 2.1 nN of compressive force. With the more physically realistic larger model (b) the difference between isotensional and isometric 
models is much smaller. The vertical displacement of the points connected by each arrow equals the activation free energy of isomerization in the strain-free and 
isometric regimes but does not include the changes in the strain energy of the constraining potential (so called “work potential”) in the isotensional regime. With 
the work potential included, the activation free energy is smallest in the isotensional regime, with the isometric approximation approaching the isotensional value 
in the limit of large polymer fragment. 

The timescales at which a small reactive site traverses an 

activation barrier, a long macrochain adjusts its conformation, 

and microscopic objects, such as an AFM tip adjust to changes 

in the geometry of the attached macrochain differ by orders of 

magnitude.[62] This means that during a mechanochemical reac-

tion only a portion of the stretched polymer adjusts to changes in 



REVIEW          

7 

 

the local geometry, with the rest of the polymer and the envi-

ronment being stationary.[62] Consequently, a sufficiently large 

atomistic model of a polymer coupled to an infinitely stiff poten-

tial is probably the most realistic representation of mechano-

chemical reaction in a stretched polymer, at least in single-

molecule force experiments. Sufficiently large means that at the 

same length of the constrained distance in the reactant and the 

rate-determining transition state the corresponding restoring 

forces are within a few percent of each other; alternatively, at the 

same applied force, the constrained distance in these two kinet-

ically significant geometries is within <0.1%. 

The question of the proper size of the polymer fragment con-

taining the reactive site that has to be treated atomistically to 

correctly reproduce the mechanochemical reactivity has attract-

ed much less attention that it deserves. Computed force-

dependent free energies of activation using complete conforma-

tional ensembles of all kinetically significant stationary states of 

increasingly large fragments of macrochains clearly depend both 

on the length of the fragment and its composition.[27, 28, 33, 34, 63] A 

few single-molecule force experiments suggest that the molecu-

lar structure of the polymer beyond the immediate reactive site 

can affect the force at which the reaction is observed,[40] alt-

hough the molecular mechanism of this effect has not been 

convincingly established.[26] In contrast the relationship between 

the restoring force of a local molecular coordinate of the reactive 

site (e.g., the separation of the methylene C atoms immediately 

adjacent to the cyclobutene ring in Figure 5b) and the changes 

in the activation free energies are fairly independent of the size 

of the polymer fragment.  

Little is known about the accuracy with which quantum-

chemical calculations, especially at the DFT level, can predict 

the kinetics, mechanisms or product distribution of localized 

reactions in stretched polymers. Single-molecule force spectros-

copy is the only technique available to date for characterization 

of mechanochemical kinetics and accurate quantum-chemical 

predictions of measured force/extension curves of 3 mechano-

chemically active polymers have been reported.[33, 39] Success in 

predicting the product distribution of mechanochemical reactions 

is mixed,[40, 64] although the situation is complicated by the very 

small number of experimental examples and the frequent lack of 

sufficient details to allow meaningful comparisons between the 

experiment and calculations. Most reported quantum-chemical 

calculations of mechanochemical reactions have not been com-

pared with experiment, and experimental benchmarking of the 

methods of quantum-chemical calculations of mechanochemical 

reactivity is probably the most important outstanding question in 

computational mechanochemistry. 

Quantum-chemical calculations of mechanochemical reactiv-

ity, especially using complete conformational ensembles of 

homologous series of increasingly large polymer fragments and 

exhaustive search of all plausible reaction paths requires ex-

traordinary computational resources and considerable expertise. 

As a result such calculations are generally beyond most re-

search labs working in the field of polymer mechanochemistry 

and may be too resource-demanding to be broadly useful in 

initial screening of candidate reactions with specific mechano-

chemical profiles. This motivates continued search for simple 

models that allow semi-quantitative extrapolations of force-

dependent activation barriers from strain-free values, which are 

generally much easier to obtain experimentally or computational-

ly.  

First attempts to develop a theoretical model of polymer 

mechanochemistry go back to Eyring, who postulated that that 

activation energy of a chain fragmentation in an elongational 

flow is proportional to the force stretching the chain.[65] This 

approach was applied to cell adhesion[66] and to bulk materials 

by replacing force with stress[70, 71] (see section 3, “Mechano-

chemistry of polymers in solids”). It was extended to time-

varying force[67, 68] (in context of dynamic force spectroscopy) 

within the formalism of Kramers’ formulation of reaction rates. 

Subsequent elaborations[69] of these ansatzs included consider-

ing different shapes of the free energy profile along the molecu-

lar coordinate defining the pulling axis (i.e., the pair of atoms at 

which the molecule is stretched) and attempts to extend this 

approach to the 2nd dimension in a way that is analogous to the 

classical physical organic approach of analyzing the effect of 

external parameters (e.g., solvent polarity) on the reaction 

mechanisms and structures of the transition states (sometimes 

called “bema-hapothle”).[31, 72]  

The main drawback of these empirical models is that they of-

fer no molecular interpretation of the model parameters in a way 

that would enable predictions of mechanochemical reactivity 

from chemical structure or inform about structural changes in 

reacting molecules, beyond the most general qualitative state-

ments that the rate-determining transition state is longer or 

shorter than the reactant along the pulling axis.[36] In their empir-

icism these Eyring-Bell-Evans models of mechanochemical 

kinetics resemble the Arrhenius equation of chemical kinetics: 

While they have contributed considerably to the development of 

phenomenological mechanochemistry, particularly in single-

molecule force experiments, their potential to support the devel-

opment of a general, predictive and theoretically-sound founda-

tion of the field appears rather limited.  

We and others suggested that it may be possible to move 

beyond the empirical relationships between force-dependent 

activation energies and applied force by treating the Eyring 

proportionality as the 1st order Taylor expansion of the activation 

energy of the reaction with respect to the externally imposed 

perturbation, i.e., applied force, f.[25, 36, 61] The next logical step 

would then be to improve the model by including the 2nd order 

Taylor expansion coefficient (eq. 1, where G‡
o and G‡

f are the 

activation free energies in strain-free reaction and reaction under 

force f, respectively). Eq. 1 is fairly unambiguous for elementary 

(single-barrier) reactions, but for multi-barrier mechanisms, the 

reaction activation free energy in general deviates from the 

relative free energy of the least-stable transition state, potentially 

introducing another source of uncertainty.[35] Eq. 1 assumes that 

the force does not change as the molecule reacts, i.e., the reac-

tion occurs under isotensional conditions. How physical this 

assumption is remains to be established. 

∆G𝑓
‡ − ∆G𝑜

‡ ≈ (𝑓
𝜕𝐺𝑡𝑠
𝜕𝑓

|
𝑓=0

+
𝑓2

2

𝜕2𝐺𝑡𝑠
𝜕𝑓2

|
𝑓=0

+⋯)
⏟                      

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛−𝑠𝑡𝑎𝑡𝑒 (𝑡𝑠) 𝑒𝑛𝑒𝑟𝑔𝑦 

− (𝑓
𝜕𝐺𝑟
𝜕𝑓
|
𝑓=0

+
𝑓2

2

𝜕2𝐺𝑟
𝜕𝑓2

|
𝑓=0

+⋯)
⏟                    

𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 (𝑟) 𝑒𝑛𝑒𝑟𝑔𝑦

     (eq. 1) 

This approach is more useful than the existing empirical 

models only if it allows molecular definition of the parameters, 
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i.e., the derivatives. Assuming that f is the restoring force of the 

constrained internuclear distance allows the difference of the 1st 

and 2nd Taylor expansion coefficients, ∂Gts/∂f-∂Gr/∂f and 

∂2Gts/∂f2-∂2Gr/∂f2, to be equated to the difference in the con-

strained distance and the difference of its harmonic compliances 

between the rate-determining transition state and the reactant, 

both in the absence of force. These definitions allow, at least in 

theory, to predict force-dependent activation energy without 

laborious optimizations of force-coupled molecular geometries. 

In practice, however, this approach presents 2 potential 

complications for which no solution appears to exist. First, with 

the exception of single-molecule force experiments, macromole-

cules in mechanochemical phenomena are not stretched by 

constraining a single internuclear distance to a non-equilibrium 

value. The definition of f becomes more ambiguous when a 

stretched chains couples to its surroundings through more than 

2 atoms. If such a stretched macrochain (or its fragment contain-

ing the reactive site) is in internal mechanical equilibrium, the 

restoring forces of molecular coordinates are related by the 

molecular compliance matrix.[25] Extensive quantum-chemical 

computations[27, 28, 30, 32, 34, 35, 63] indicate that in such a case, 

multiple internuclear coordinates (including coordinates localized 

to the reactive site) can be used in eq. 1 to yield reasonably 

accurate predictions of G‡
f under isotensional conditions, pro-

vided that f is the restoring force of the selected coordinate, 

which may differ from the applied force (the ratio of the restoring 

force of a local coordinate to that of the constrained distance, 

which equals the applied force, is called “chemomechanical 

coupling coefficient”). The local coordinate approach was 

demonstrated to predict the critical force at which mechano-

chemical reactivity is observed in single-molecule force experi-

ments.[33, 39] It seems plausible that stretched macrochains in 

sonicated solutions or loaded amorphous materials are also 

reasonably close, on average, to internal mechanical equilibrium, 

but this speculation remains to be tested experimentally and 

computationally.  

The other complication is the effect of conformational en-

sembles. The states whose relative energies determine reaction 

kinetics are comprised of multiple conformers and the relative 

contributions of these conformers to the kinetically relevant 

states in general changes with force. This role of conformers 

explains the fact that the early hope, by us[25, 27, 28, 36, 61, 62] and 

others[73-75] that the 2nd order Taylor expansion may improve the 

accuracy of extrapolated activation energies, was not realized. 

Local coordinates appear to be sufficiently stiff that at applied 

forces <3 nN the main contributor to the force dependence of the 

1st Taylor coefficient (∂G/∂f) are changes in the relative contribu-

tions of different conformers to the reactant and/or transition 

states.[27, 63] These contributions cannot be captured by the 2nd 

Taylor coefficient (∂2G/∂f2) but require much more complex mod-

els.[28, 63] At the same time, the Taylor expansion fails for softer 

coordinates (e.g., the constrained distance) because in strain-

free molecules such coordinates are so anharmonic that the 2nd 

Taylor (harmonic) coefficient accounts for only a small fraction of 

the actual force-dependent change of the corresponding ∂G/∂f 

values. 

Attempts to extrapolate activation free energies of reactions 

under force from force-free values must consider the possibility 

that the reaction mechanism changes with force. Failure to do so 

can lead to qualitatively incorrect predictions as illustrated re-

cently by an attempt to extrapolate force-dependent activation 

energy of dissociation of an adduct of anthracene and malei-

mide[74], Figure 6a. According to DFT calculations the adduct 

dissociates by a concerted mechanism in the absence of force. 

Depending on the functional, an alternative 2-step radical disso-

ciation path may or may not exist in the absence of force. For 

those functionals (e.g., uMPW1K) that predict its existence, the 

radical path is considerably higher in energy than the concerted 

alternative. Even small force reverses the order of these two 

mechanisms, with the stepwise path becoming dominant at 

applied force of ~0.1 nN and the concerting mechanism disap-

pearing altogether at 0.4 – 0.8 nN (depending on the substitu-

ents R and R’ and the functional). The reason is that the con-

certed mechanism is destabilized by force (Figure 6b black line), 

whereas the stepwise analog is strongly stabilized by it (grey 

lines). As a result, dissociation is marginally inhibited by tensile 

force below ~0.1 nN but is accelerated at higher force when the 

stepwise mechanism dominates (grey line, Figure 6c). Not sur-

prisingly, extrapolating the strain-free barrier of the concerted 

process using the Taylor expansion yields a qualitatively incor-

rect prediction of force inhibited dissociation kinetics (black line, 

Figure 6c).  

1.3. Scope and objective of the review 

Numerous reviews of polymer mechanochemistry have been 

published in the last decade, including extensive compilations of 

experimental[60, 76, 77] and computational[11, 12] phenomenology, 

outlines of plausible conceptual basis of polymer mechanochem-

istry[25, 36]; its possible applications[13, 78-80]; its current and proba-

ble future place in the broader field of polymer science[81-84] or 

chemistry,[62] approaches to modelling of mechanochemical 

phenomena with strained small molecules and overcrowded 

polymers[24], and narrower summaries of individual authors’ 

research in the field.[84-88]. What is missing from the literature is a 

critical assessment of interpretative frameworks that underlie 

(often implicitly) molecular rationalizations of macroscopic mani-

festations of mechanochemistry. Being a conceptually complex 

but fairly new field at the interface of chemistry, physics and 

engineering, at present mechanochemistry lacks the intellectual-

ly rigorous foundation that guides and informs the work in more 

mature fields, such as synthetic polymer chemistry and physical 

organic chemistry.  
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Figure 6. Changes in the reaction mechanism with force must be considered 
when attempting to extrapolate force-dependent activation energies from 
strain-free values as illustrated on the example of dissociation of anthra-
cene/maleimide adduct. (a) the two reaction mechanisms; (b) changes in the 
free energies of the concerted and stepwise transition states relative to that of 
the reactant as a function of applied force at the uMPW1K/6-31+G(d) level of 
theory; (c) a comparison of the explicitly calculated dissociation barrier (grey 
line) with that predicted in ref. 74 using the 2

nd
 order Taylor expansion on the 

concerted dissociation mechanism. The data in (b) and (c) is for the adduct 
derivative shown pulled along the molecular axis specified by the arrows.  

The absence of such a foundation makes macroscopic mani-

festations of mechanochemistry especially susceptible to overin-

terpretation, overgeneralization and oversimplification. It also 

allows claims that are more expansive and/or made with greater 

confidence that is warranted by our currently primitive under-

standing of the relationship between macroscopic parameters 

that are amenable to control by an experimentalist and micro-

scopic conditions that determine the bulk response. The situa-

tion is not unique to mechanochemistry[89, 90]. By systematizing 

and analyzing various approaches to interpretation of mechano-

chemical observations that appeared in the literature and explic-

itly summarizing the underlying assumptions and the limits of 

their applicability we hope to achieve two objectives. The first is 

to articulate research opportunities, particularly in developing 

new experimental and data processing protocols, whose pursuit 

will accelerate the evolution of the field. The second is to con-

vince the practitioners of the importance of disclosing more of 

the measured data (instead of just conclusions drawn from it) to 

enable its re-interpretation as new models emerge. Short of this, 

we hope at least to prompt a more complete disclosure of the 

uncertainties underlying the molecular interpretations of experi-

mental observations than appears to be the norm now. Some of 

the points we make below echo those of Price from 1990[91], 

albeit in a slightly different context, which judging by the con-

temporary literature in polymer mechanochemistry, have not 

necessarily been embraced by the community. 

We hope that the review would be of value to broader re-

search community by placing polymer mechanochemistry in a 

proper context. All mechanochemical phenomena are manifesta-

tions of the effect of molecular strain on chemical reactivity. 

Thus polymer mechanochemistry may appear superficially to be 

an extension of the long studied field of strained small molecules. 

However, molecular strain responsible for most mechanochemi-

cal phenomena in polymers is unlike anything chemists are 

familiar with from small molecules, both qualitatively and quanti-

tatively. In most cases, its magnitude far exceeds that in any 

small strained molecule reported to date and it is far more aniso-

tropic (i.e., reactive sites are strained primarily along a single 

molecular axis). These differences mean that chemical intuition 

based on generalizations of trends established in small strained 

molecules does not map particularly well to polymer mechano-

chemistry and can even be misleading. It seems reasonable to 

say that the most interesting mechanochemical phenomena 

would most likely appear counterintuitive to both a chemist and a 

polymer scientist. At the same time, whether a particular mech-

anochemical reaction follows the reactivity patterns of small 

strained molecules probably has no impact on the likelihood that 

it is real. 

The bulk of our review focuses on sonication, because it is 

the most commonly used method of demonstrating and studying 

polymer mechanochemistry (in addition to other types of mech-

anochemistry[92]). Sonication experiments are as easy to do 

technically as they are challenging to interpret mechanistically 

and/or quantitatively. A more realistic and physically justified 

framework for systematizing, rationalizing and extrapolating 

results of such sonication experiments would probably do more 

to advance polymer mechanochemistry than any other research 

development we can think of. We limit our discussion of mecha-

nochemical phenomenology to a few examples that illustrate the 

trends, outstanding questions or competing interpretations. The 

currently limited molecular understanding of mechanochemical 

phenomena in solution or solid means that when we can point 

out unresolved issues or seeming inconsistencies in the report-

ed interpretations of observations far more often than we can 

offer alternative explanations. 
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2. Mechanochemistry of polymers in soni-
cated solutions 

Ultrasonication of dilute solutions of polymers is an example of a 

mechanochemical phenomenon with complex coupling between 

an isolated polymer chain and its environment. High frequency 

sound waves passing through a liquid create cavitation (Figure 

7), which is the generation, growth and violent collapse of bub-

bles. This collapse creates a transient solvent flow with a con-

siderable elongational component. Because the flow velocities 

decrease very rapidly away from the edge of the collapsing 

bubble, segments of polymer chains closer to the bubble are 

subject to a higher flow rate (and hence a larger hydrodynamic 

drag) than those farther away, which stretches the chain.  

 
Figure 7. A cartoon representation of a polymer solute (red) in the vicinity of a 

collapsing cavitation bubble (not to scale). Blue arrows signify the elongational 

component of the solvent flow with longer arrows corresponding to faster 

motion. It’s not known if an average chain becomes stretched from a terminus 

or from an internal segment or how long the stretched polymer segment is. 

Adapted from ref 
[60]

 with permission. Copyright 2009 American Chemical 

Society.  

Polymer chain dynamics is complex even in planar steady-

state elongational flows[53, 93] and it is further complicated in the 

rapidly changing flow fields generated by the collapsing bubble. 

At the typically used sonication frequency of 20 kHz in low vis-

cosity solvents a cavitation bubble collapses within <10 s and 

significant fluid strain rates are only generated at the latest stag-

es of the collapse[94]. Thus during sonication a chain may evolve 

from a strain-free to highly stretched geometry corresponding to 

restoring forces in the nN range on a sub-microsecond timescale. 

Under these conditions, it may no longer be meaningful to dis-

cuss mechanochemical kinetics in terms of force acting on the 

chain, but rather loading rates (change of force with time) the 

chain experiences. Replacing a time independent perturbation 

(force) with a time-variable one (loading rate) eliminates what-

ever residual intuition could be employed to think about the 

kinetics of the mechanochemical reaction. At sufficiently high 

loading rates, one can no longer define the rate-determining and 

product–determining steps for complex reaction mechanisms 

and closed-form integral rate laws become unavailable for all but 

unimolecular reactions with the simplest dependence of the 

activation free energy on force. Moreover, the key postulate of 

the transition state theory – that vibrational energy redistributes 

among various molecular degrees of freedom much faster than 

the reaction rate[95] – may break down at the loading rates and 

lifetimes that are likely responsible for mechanochemical reac-

tions in sonicated polymer solutions. Finally, all discussions of 

the microscopic conditions responsible for mechanochemistry 

are implicitly based at best on models of single-bubble soni-

cation[96] (or more often on even-less relevant planar steady-

state elongational flows[97, 98]), whereas all mechanochemical 

studies reported to date were performed in the multi-bubble 

regime. The simultaneous generation of multiple cavitation bub-

bles induces new phenomena, including bubble entrainment and 

coalescence, microstreaming and shock waves. The latter also 

produce elongational flows potentially capable of stretching 

macromolecule.[94, 99, 100] The standard practice of using short 

on/off cycles of sonication, designed to minimize temperature 

increases in the sonicated solutions, further complicates fluid 

dynamics.[101] Consequently, very few attempts to model chain 

behavior under conditions relevant to mechanochemistry in 

sonicated solutions have been reported.[96] Single-bubble dy-

namics in acoustic fields is reasonably well understood[94] and at 

present is probably the only starting point for developing a quan-

titative microscopic model of sonication-induced mechanochem-

istry. 

Cleverly designed “mechanophores” (reactive sites which 

respond to tensile load by undergoing reactions more complex 

than simple bond homolysis) and/or mechanochemical reaction 

cascades[39] may allow experimental validation of such models 

by enabling usefully accurate quantitation of the microscopic 

conditions experienced by reacting macromolecules in soni-

cation solutions. Such effort remains to be reported. To date, the 

focus of sonication studies has been primarily empirical with only 

few tentative attempts to apply the simplest microscopic models 

of chain dynamics at the stagnation point of steady-state planar 

elongational flows to rationalize bulk mechanochemical re-

sponse of polymers to sonication[97, 98]. 

Historically, polymer solutions were sonicated to study how 

the rate of molar mass degradation of common synthetic (poly-

styrene, polyalkylacrylates) or biological (cellulose, dextran) 

polymers was affected by the chemical composition, degree of 

polymerization and side chains of the polymer, by the solvent, 

the presence of non-macromolecular solutes, the temperature, 

pressure and acoustic power flux[91]. These studies were moti-

vated as much if not more by engineering rather than chemical 

interests and therefore rarely focused on molecular interpreta-

tion of the observations. A few generalizations can be made 

from this considerable, albeit fairly contradictory, body of empiri-

cal observations. For example, all other things being equal, 

shorter chains degrade slower than longer chains and a sonicat-

ed polymer chain fragments with the highest probability close to 

its center of mass (although claims of random fragmentations 

also appear in the literature[102]). Beyond this, studies of non-

selective fragmentation have not yet yielded insights into the 

microscopic conditions responsible for mechanochemical chain 

scission during sonication. In the last decade, by far the most 

common objective of sonicating polymer solutions became 

demonstrations that reactions more complex than simple bond 

homolysis are accelerated by stretching polymer chains. Accel-

eration of over 20 such complex (albeit exclusively unimolecular) 

reactions was demonstrated convincingly in sonicated solutions 

of polymers.[39, 43, 96-98, 103-130] For 4 additional reactions subse-

quent reports raised questions about the original claims or the 

original publications did not provide sufficient information for us 

to assess independently the plausibility of their claims, which 

have not been followed up in subsequent literature reports.  

For 6 reactions[43, 97, 98, 104, 106, 115, 119-121, 130-140] qualitatively 

similar results were observed in sonication and bulk amorphous 
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or semicrystalline materials under mechanical loads, suggesting 

that polymer sonication can at least qualitatively mimic the 

chemical response of macromolecules to mechanical loads in 

practically relevant (but technically harder-to-study) contexts. 

Conversely, we are aware of three kinetically-controlled reac-

tions that were reported[141-143] to occur in loaded amorphous 

polymers, but, despite some publicity[144] that the reports gar-

nered, the behaviour of the same polymers in sonicated solution 

has never been described (thermodynamically controlled mech-

anochemical reactions are much harder to detect in solution 

than in a solid due to rapid reestablishment of the equilibrium 

once the macrochain escapes the elongational flow). It is both 

technically easier to demonstrate a mechanochemical reaction 

in a sonicated polymer solution than in loaded solid samples and 

an accepted practice in contemporary mechanochemistry to 

substantiate claims of any new such reactions by establishing its 

occurrence in sonicated solutions. Consequently, we are tempt-

ed to speculate that sonicating the same polymers did not (or 

would not) result in productive chemistry. If this speculation is 

correct, the reactions would be valuable for helping quantify the 

vast difference in the conditions responsible for mechanochem-

istry in sonication and loaded bulk samples (an alternative ex-

planation is that the chemistry observed in loaded bulk polymers 

occurred by mechanism other than strain-induced acceleration, 

such as pressure effects, a possibility noted by others[104, 145, 146]).  

Several well-defined reaction cascades have been demon-

strated whereby sonication-induced mechanochemical reaction 

produced a reactant or a catalyst for a subsequent, non-

mechanochemical reaction[103, 104, 108, 130, 140, 147, 148]. Three cas-

cades were shown to occur both in sonicated solutions and in 

sheared or axially compressed bulk polymers, further supporting 

the utility of sonicating polymer solutions as a means of mimick-

ing the mechanochemical response of solid polymers[130, 139, 140]. 

2.1. Kinetic laws for polymer degradation by sonication 

In chemistry, kinetic studies yield data that contains important 

insights into the reaction mechanism(s), allows estimations of 

reaction rates at different temperatures and benchmarking of 

quantum-chemical calculations of the reaction mechanisms and 

energies. None of these goals is yet achievable with any report-

ed kinetic study of polymer degradation in sonication. The main 

reason is that during sonication only a tiny, but unknown, frac-

tion of polymer solute is stretched. As a result, the measured 

bulk rate constants do not reflect the microscopic reaction prob-

ability as they do in conventional chemical kinetics, but rather a 

complex convolution of probabilities, including the probability of 

a chain to be trapped in the elongational flows, of the trapped 

chain to accumulate sufficient total (Hencky[53]) strain to be 

stretched, and of the stretched chain to react. Consequently, 

bulk rate constants have no relationship to the kinetic barriers of 

the underlying reactions or the range of the forces or loading 

rates that an average fragmented macrochain experiences (a 

similar problem is present in relating the rates of chemical re-

modeling of bulk materials under load to microscopic kinetics of 

underlying chemical reactions, as described below). 

Furthermore, whereas conventional rate constants reflect the 

rate of the disappearance of the reactant, or appearance of the 

product(s), kinetics of polymer sonication is routinely discussed 

in terms of changes in the molar mass distribution (MMD) of the 

sample, often reduced to a single parameter, such as number- 

or weight- averaged molar mass (Mn and Mw, respectively). The 

focus on changes in Mn or Mw instead of the fractions of the 

reactant/product(s) is motivated by the common use of polymers 

too disperse and/or of analytical methods too crude to distin-

guish original polymer chains from those produced by polymer 

fragmentation and hence to measure MMDs of the reactant and 

the product separately. Even when such individual MMDs are 

available, the data is relatively rarely analyzed in terms of the 

rate of depletion of the initial polymer (notable exceptions are [149, 

150]). Such analyses are very valuable for establishing if a single 

rate constant rather than a distribution of rate constants is suffi-

cient to describe the observed reactivity and for validating the 

more unconventional kinetic models, as demonstrated below.  

A confusing plethora of formulas describing the evolution of 

Mn with sonication time, t, exists in the literature. Most assume 

unimolecular kinetics (exceptions are some early studies) and 

either random or midchain scission (i.e., either every backbone 

bond in a stretched chain breaks with equal probability or the 

chain only breaks to two identical fragments). More complex 

distributions of fragmentation probabilities along the polymer 

chains were derived mathematically,[151] but the resulting formu-

las have not yet been applied to the analysis of experimental 

data. The most commonly used models for random and mid-

chain scission yield eqs. 2-3, respectively, with a number of 

further (largely empirical) elaborations of eq. 3 appearing in the 

literature (e.g., eqs. 4-5), where m0 is the molecular weight of the 

monomer, c is the concentration and Mlim is an empirical fitting 

parameter discussed below[102, 152-155]. Note that the rate con-

stant in eq. 4 has the units of s-1M, not s-1 despite the underlying 

assumption of unimolecularity. 

𝑘𝑡 =
𝑚0

𝑀𝑛(𝑡)
−

𝑚0

𝑀𝑛(0)
                (2) 

𝑘𝑡 = 𝑙𝑛(
1 −

𝑀𝑙𝑖𝑚
𝑀𝑛(0)

1 −
𝑀𝑙𝑖𝑚
𝑀𝑛(𝑡)

)               (3) 

𝑘𝑡
𝑀𝑙𝑖𝑚
𝑐𝑚0

= 𝑙𝑛 (
1 −

𝑀𝑙𝑖𝑚
𝑀𝑛(0)

1 −
𝑀𝑙𝑖𝑚
𝑀𝑛(𝑡)

)                 (4) 

𝑘𝑡 (
𝑀𝑙𝑖𝑚
𝑚0

)
2

+
𝑀𝑙𝑖𝑚
𝑀𝑛(0)

+
𝑀𝑙𝑖𝑚
𝑀𝑛(𝑡)

= 𝑙𝑛 (
1 −

𝑀𝑙𝑖𝑚
𝑀𝑛(0)

1 −
𝑀𝑙𝑖𝑚
𝑀𝑛(𝑡)

)           (5) 

Eq. 2 is based on two assumptions: each backbone bond 

has the same probability to break, and the total probability of 

chain fragmentation is independent of the number of backbone 

bonds. Because the latter is a product of the former and the 

number of bonds in the backbone, together these two assump-

tions require that as the polymer size increases, the probability 

that any of its backbone bond breaks during sonication decreas-

es proportionally. In other words, the probability of any backbone 

bond of a sonicated chain to break is inversely proportional to 

the number of bonds in the chain. Since the intrinsic reactivity of 

a chemical bond is not affected by substituents further than a 

few bonds away (<1 nm), eq. 2 implicitly assumes that the force 

experienced by a fragmenting chain in an elongational flow 

decreases with chain length, the opposite to what might be 
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expected from steady-state elongational flows with a stagnation 

point[53] (the only relevant benchmark for which a fair under-

standing of single-chain forces exists). We are not aware of any 

rationalization of such a counterintuitive relationship between the 

polymer chain and force at fragmentation. 

Although eq. 2 was derived for random chain scission, it is 

often used to model the supposedly site-specific fragmentation 

kinetics of polymers containing a single scissile mechanophore 

per chain[74, 105, 109, 122, 125]. “Mechanophore” is sometimes used to 

describe a reactive site whose chemical response to tensile 

strain is more complex than simple fragmentation by homolysis 

of a single bond (although mechanochemical reactions of all 

“mechanophores” reported to date are based on dissociation of 

one or more covalent bonds). While such polymers typically 

fragment both at the mechanophore and elsewhere in the back-

bone, the probabilities of the two paths are sufficiently different 

that application of eq. 2 to such kinetics appears to typically yield 

nonphysical results. An illustrative example is a recent report of 

fragmentation kinetics of poly(methyl acrylates) (PMA) probably 

containing a single cyclobutane derivative per chain (Figure 

8),[122] which were claimed to fragment exclusively by [2+2] 

cycloreversion of cyclobutane. The paper presented gel-

permeation chromatograms (GPCs) for sonication of one poly-

mer sample, which allow the reported rate constant (derived by 

eq. 2) to be compared with the rate at which MMD of the poly-

mer changes. For this sample, fitting Mn(t) to eq. 2 yielded the 

rate constant of 5×10-6 min-1 (the authors erroneously reported 

the rate constant as the slope of the Mn
-1(t) vs. sonication time 

correlation, which was ~6×10-5 min-1kDa-1; the number we cite is 

the rate constant obtained by dividing the slope by mo, the mo-

lecular weight of methyl acrylate, as required by eq. 2). This rate 

constant corresponds to the half-life of ~102 days of sonication. 

In contrast, the reported GPCs (which reflect the underlying 

MMD) suggest that at least 75% of the initial polymer fragment-

ed after only 110 min of sonication. In other words, the applica-

tion of a kinetic equation derived for random chain scission to 

the supposedly selective fragmentation of polymer chains con-

taining a single dissociatively labile group per chain underesti-

mated the fragmentation kinetics by ~103-fold. The very large 

discrepancy between the kinetic model and the changes in MMD 

can potentially be diagnostic of site-specific vs. non-specific 

fragmentation, but it also means that the fitted rate constants 

probably lack physical significance (see below). Another difficul-

ty in quantifying the observed fragmentation kinetics is the high 

dispersity of the initial polymer: the strong dependence of the 

fragmentation probability on the polymer size means that the 

reactivity of such a sample cannot be adequately described by a 

single rate constant. The preferential depletion of the high-molar 

mass fraction of the initial polymer is obvious in the reported 

GPCs.  

 
Figure 8. Sonication of PMA containing a derivative of cyclobutane (highlight-

ed in bold) was claimed
[122]

 to result in selective mechanochemical [2+2] 

cycloreversion but the fragmentation kinetics was analyzed assuming equal-

probability fragmentation of every backbone bond. 

Whereas eq. 2 is derived for a hypothetical randomly frag-

menting polymer, eq. 3 lies at the other extreme: it assumes that 

above a certain critical size (Mlim when expressed as molar 

mass) chains only break in the middle, at a rate that is inde-

pendent of their size while smaller chains do not fragment at all. 

The nonphysical nature of this assumption and hence the corre-

sponding parameter (Mlim) was discussed in the past,[57] but Mlim 

obtained by fitting the experimental data to eq. 3-5 is still used to 

quantify the polymer susceptibility to fragmentation in sonication. 

A fundamental limit on the size of the chain which undergoes 

mechanochemistry during sonication is almost certainly exists. It 

is probably determined both by the properties of the polymer (its 

molar mass, contour length and backbone compliance), which 

define the longest relaxation time and hence the critical strain 

rate of the solvent flow below which the chain cannot be 

stretched by the flow, and on the maximum fluid strain rate 

achievable by sonication, whose dependence on experimental 

conditions is not understood. Yet no evidence appears to exist 

that this limit is related to Mlim in eqs. 3-5 or that Mlim derived by 

application of eqs. 3-5 to polymers of different compositions or 

for different sonication conditions even qualitatively reflect the 

variation of this fundamental limit with chemical composition or 

sonication conditions.  

Data in ref. [97] illustrate why under certain conditions chang-

es in Mn of a sonicated polymer can be fitted to eq. 2 even if the 

fragmentation probability of different backbone bonds varies 

considerably. The paper reports the fragmentation kinetics of a 

series of polymers with the backbones made of C-C, C-O and C-

S bonds. Increasing the fraction of C-S and C-O bonds (i.e., 

increasing the n to m ratio, Figure 9) increases the apparent 

fragmentation rate concomitantly with producing increasingly 

non-linear Mn(t)
-1-Mn(0)-1 vs. t correlations (Figure 9). The in-

creasing non-linearity is unlikely to represent a change in the 

distribution of fragmentation probabilities from random scission 

(for which Mn(t)
-1-Mn(0)-1 is postulated to be proportional to soni-

cation time t) to primarily midchain scission. Instead it reflects 

the fact that up to modest conversions the right-hand site of eq. 

3 (fragmentation only at the center of mass) is accurately ap-

proximated as Mn(t)
-1-Mn(0)-1 (fragmentation anywhere along the 

chain), i.e., eqs. 2-3 are numerically indistinguishable (the 

slopes, however, have very different physical meaning: for a 

randomly fragmenting polymer the slope equals k/mo but for the 

polymer fragmenting at the center, the slope is k/Mlim so that 

using eq. 2 for approximately site-specific fragmentation equa-

tion vastly underestimates the fragmentation rate constant, as 

illustrated by the previous example of cyclobutane containing 

PMAs). The more labile a selectively fragmenting polymer, the 

larger its molar mass reduction over the fixed sonication period, 

and the more its fragmentation kinetics will deviate from that of a 

randomly fragmenting chain as evident in Figure 9. 

Confusingly, some studies quantify the fragmentation kinet-

ics by eq. 2 and also report Mlim usually from a linear regression 

of the rate constants derived from applying eq. 2 to a series of 

polymers with different initial molar masses, Mn(0), despite the 

assumption of eq. 2 that the fragmentation kinetics is independ-

ent of molar mass. This hodgepodge of incompatible assump-

tions sometimes yields curious results. For example, the data in 

Tables S1 and S3 of ref. [156] obtained from fitting Mn(t) of a 

sonicated polymer to eq. 2 suggest that the fragmentation rate of 

this supposedly selectively-fragmenting polymer decreases with 

increasing polymer size, and the extrapolated limiting molar 

mass, Mlim, below which the reported polymer does fragment in 
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sonicated solution is larger than any polymer whose fragmenta-

tion the study reports. Although Mlim obtained by an extrapolation 

of the fitting parameter of eq. 2, and Mlim appearing in eqs. 3-5 

are both interpreted as defining the largest polymer which does 

not fragment when sonicated, these two parameters reflect 

mutually exclusive sets of assumptions about how the chain 

fragments when trapped in the solvent flow. The 2 examples 

above illustrate that Mlim extrapolated from rate constants ob-

tained by eq. 2 more likely reflects one’s patience, equipment 

base and experimental techniques than some physically-

significant parameter.  

 

 
Figure 9. Kinetics of fragmentation of polymers with increasing content of C-S 

bonds (poly(CS-gDCC) during sonication fitted to eq. 1. Adapted from ref  
[97]

. 

Given the current absence of any examples of randomly 

fragmenting polymers (i.e., in which every backbone bond frag-

ments with equal probability), it is internally far more consistent 

(if not necessarily more insightful physically) to treat the experi-

mental fragmentation kinetics by eq. 3, with single Mlim applied 

across any series of chemically-identical polymers of different 

molar masses. The current use of eq. 2 is especially problematic 

when slopes of Mn
-1(t) vs. t dependences are used to differenti-

ate between site-specific and non-selective fragmentations of 

different polymers.[105, 109] Contrary to the assumption implicit to 

this use of such slopes, their differences may reflect distinct M lim 

values rather than different rate constants particularly in the view 

of previous literature reports that Mlim values are far more sensi-

tive to the chemical composition of the chain than rate con-

stants[122] making them unsuited for differentiating between site-

specific and non-specific fragmentations. 

Much energy has been expanded arguing whether the rate 

of molar mass degradation is determined by polymer’s Mn, its 

equivalently-averaged degree of polymerization (DP), its contour 

length or some other quantifier of chain size[102, 106, 122, 150, 157-162]. 

The standard method of changing Mn without changing DP or 

the contour length, or of keeping Mn constant while changing 

both DP and the contour length is to vary the side chains. When 

the variation is small (e.g., 1 H atom per monomer is replaced by 

Br or a Me group is substituted by Et), polymers of the same DP 

(and hence the same contour length) fragment at the same rate. 

When polymers with very different side groups but otherwise 

identical monomers are compared (e.g., methyl vs. octadecyl 

acrylates), Mn appears to be a better predictor of relative sus-

ceptibility to fragmentation than DP. The significance of the 

observed trends is somewhat obscured by the fact that many of 

these studies were performed on fairly disperse polymers (Ð up 

to 4.7) so that the measured rates represent complex averaging 

over a broad range of intrinsic reactivities, which depends on the 

extent of the reaction and the method of quantifying Mn.  

Analyses of MMD evolution during sonication attempt to es-

tablish not only the probability that a randomly selected chain 

would fragment (which in theory is reflected in the rate con-

stant(s)) but also the probability that the fragmentation yields 

products of given fractional molar masses, i.e., the distribution of 

fragmentation probabilities along the chain length[163, 164]. This 

approach is typically considered a more sophisticated form of 

kinetic analysis than the time evolution of a single parameter of 

the distribution, e.g. Mn(t). Yet, it suffers from the current lack of 

understanding of the microscopic conditions experienced by the 

mechanochemically fragmenting chain and the limited number of 

observables to constrain the modelling properly. The MMD of 

the products of primary fragmentation of a uniform (Ð = 1) poly-

mer equals the distribution of the fragmentation probabilities 

along the polymer chain. For practically relevant disperse sam-

ples, multiple unique distributions of fragmentation probabilities 

are in general consistent with typically observed MMDs of the 

initial polymer and products of its fragmentation.  

All published analyses assume, without justification, a 

Gaussian distribution of fragmentation probabilities, centered at 

the chain’s center of mass. This choice can be rationalized by 

assuming that the activation energy of fragmentation decreases 

linearly with force, which decreases as a square of the fractional 

distance from the chain center of mass. Superficially, these 

dependences may seem plausible. The former assumption is 

supported by quantum-chemical calculations of activation free 

energies of C-C bond homolysis, which decrease linearly with 

force above ~5 kcal/mol, but manifest more complex depend-

ence at smaller values. At the likely loading rates experienced 

by fragmenting chains during sonication, the reaction probably 

proceeds over barriers <5 kcal/mol. The quadratic decrease of 

the hydrodynamic force from the center of mass reflects the 

consensus for chains trapped at the stagnation point of steady-

state planar elongational flows, where the solvent flow rate 

decreases linearly with distance from the stagnation point (uni-

form velocity gradients)[165]. However, this assumption is not 

obviously applicable to the flow fields generated by a collapsing 

cavitation bubble. First, the existing models of single-bubble 

sonication suggest that within the regions of the highest straining 

rates (within <5 times the radius of the bubble at rest away from 

the bubble edge) the flow rate varies at least as a cube of the 

distance[94]. Linearizing such dependence over the 0.1-0.5 µm 

contour length of the macrochains whose fragmentation is typi-

cally studied by sonication probably introduces large errors. 

Second, the parabolic distribution of force along the chain implic-

itly assumes that the reacting chain is (nearly) fully stretched, 

which is expected under the stretching conditions leading to the 

abrupt coil-to-stretch transition (CST). However, at the very large 

deformation rates caused by bubble implosion the relevance of 

CST is uncertain. Instead, under such conditions few-monomer 

long highly strained segments may exist with the rest of the 

chain remaining largely strain-free.[53] These effects may cancel 

each other, resulting in a Gaussian distribution of fragmentation 

probabilities, but such a distribution is at best unproven. 

In practice analysis of MMDs is further complicated by the 

fact that the product MMD has contributions not only from the 
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fragmentation of the original polymer (primary fragmentation) but 

also from fragmentation of its fragments (secondary and subse-

quent fragmentations). We are aware of only a few reported 

attempts[149, 163, 166, 167] to accommodate sequential fragmentation 

in analyses of MMD evolution during sonication. Unfortunately, 

all these attempts relied on implausible or unsupported assump-

tions regarding the dependence of the kinetics of sequential 

fragmentation on the polymer mass and/or on mathematical 

processing of experimental GPCs that likely introduced consid-

erable bias in the resulting MMDs.[149, 167] This illustrates a 

broader problem that fragmentation of homopolymers is unlikely 

to provide enough observable data to constrain the multitude of 

plausible microscopic conditions responsible for mechanochem-

istry during polymer sonication. Considerably more diverse set 

of kinetic information is available when stretching a polymer 

results in competition between multiple reaction pathways with 

distinct microscopic mechanochemical kinetics. This new family 

of polymers should probably contain one or two distinct reactive 

sites, which could be placed at arbitrary positions relative to the 

chain’s center of mass to enable direct “mapping” of the mecha-

nochemical reaction probabilities along the polymer chain. In this 

scheme non-selective backbone fragmentation would act as an 

“internal standard” to account for variations in the total fragmen-

tation probabilities (see below). Additional mechanistically signif-

icant information should be available from directly measuring the 

bulk rate constants of primary, secondary and tertiary fragmen-

tation as a function of the molar mass of the polymer, although 

to avoid ambiguities of mass-dependent kinetic heterogeneities 

of polymer ensembles, such experiments would have to be 

conducted on nearly uniform (Ð <1.01) samples and use high-

resolution methods of quantifying MMD. 

Two attempts have been reported to use polymers that un-

dergo competing mechanochemical reactions when stretched to 

gain molecular insights into polymer dynamics in sonicated 

solutions[97, 98]. Sonication of a polymer of dichlorocyclopropane 

(Figure 10) reduced the average molar mass of the sample and 

yielded polymers with cyclopropane moieties isomerized to 

olefin (the analytical methods employed did not allow one to 

established if the fragmented polymers were enriched in cyclo-

propane or the product of its isomerization, i.e., if the polymer 

fragmentation was accompanied by cyclopropane isomerization 

at the level of individual chains or these two reactions occurred 

in separate chains).  

 
Figure 10. Sonication of a polymer of dichlorocyclopropane leads to isomerization of cyclopropane moiety and chain fragmentation, although it is not known if the 

two processes happen in the same or different chains.
[98]

 

The ratio of the fraction of the isomerized cyclopropane moi-

eties to the log of the fractional change of the average molar 

mass ln(Mn(t)/Mn(0)) was independent of the experimental condi-

tions (temperature, acoustic power, polymer concentration and 

solvent). The importance of this finding lies in demonstrating that 

the bulk mechanochemical selectivity is independent of overall 

bulk reactivity (i.e., that partitioning among competing reaction 

channels averaged over the sample is independent of the prob-

ability that a randomly selected chain will have reacted over a 

specific sonication period). It is important to be mindful that 

these bulk probabilities are not indicative of single-chain proba-

bilities and the observed independence is consistent with a 

number of microscopic mechanisms. For example, the total bulk 

reaction probability may be determined by a non-chemical (i.e., 

non-thermally activated) process, such as the probability of the 

chain to be trapped in the flow field. Any trapped chain is then 

guaranteed to react. Alternatively, any chain that becomes 

stretched enough to react then undergoes a rapid sequence of 

further reactions without ever escaping the flow. This scenario 

would produce a mixture of intact chains and chains that under-

went multiple fragmentations and containing primarily isomer-

ized cyclopropanes. Modifying the experimental procedures to 

distinguish among these possibilities would considerably ad-

vance our understanding of microscopic conditions responsible 

for observed mechanochemistry.  

A related work studied sonication of polymers with back-

bones containing a mixture of dichlorocyclopropane moieties 

and either S-C, benzylic C-O or N=N bonds as “weak links”[97]. 

The ratio of the fraction of intact cyclopropane, cp, to the log of 

the fractional decrease in the number-average molar mass, 

log(Mn(t)/Mn(0)) was independent of the sonication time but 

varied with the nature of the weak link. The mechanistic signifi-

cance of this study is two-fold. First, it provided another exam-

ple[30] that the bond dissociation energy is not the primary de-

terminant of the probability of bond dissociation under force, 

thus addressing a common misconception[57] in polymer mecha-

nochemistry. Second, it illustrates the extreme challenge of 

inferring chain-level behavior from bulk observations. In this 

case, it requires a series of assumptions whose validity has not 

yet been established experimentally, computationally or theoret-

ically. The observed dependence of cp/log(Mn(t)/Mn(0)) ratio on 

the composition of the chains reports on the microscopic condi-

tions only if the fragmentation and cyclopropane isomerization 

kinetically compete in an average chain (as opposed to fragmen-

tation and isomerization occurring primarily in separate chains). 

If this assumption is true the observed bulk reactivity is deter-

mined by a complex convolution of several parameters: (1) the 

difference of the activation free energies of the competing paths 

(cyclopropane isomerization and homolysis of various backbone 

bonds) as a function of the force; (2) the loading rate; (3) the 
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fraction of the backbone that is stretched and, (4) if only a part of 

the chain is stretched, the distribution of probabilities that a 

particular segment of the chain is stretched, its length and the 

rate at which the stretched segment grows. While the differ-

ences of the activation free energies are accessible with useful 

accuracy from quantum-chemical calculations, we are not aware 

of any experimental or computational methods to estimate the 

values of the remaining parameters. Even postulating the pref-

erentially midchain fragmentation does not constrain the range 

of the force/loading rate and their distribution along the chain 

that are responsible for the observed chemistry. If one further 

assumes that the mechanochemical reactions only occur in a 

fully stretched chain (another assumption that lack experimental 

support and seems fairly unlikely[53]), only uniform distribution of 

force/loading rate along the chain can be eliminated. While the 

authors suggested that the observations may be consistent with 

the force experienced by the reacting chain decreasing as a 

square of the fractional distance from the chain’s center of mass, 

any dependence of force on fractional distance that assumes 

maximum at the center of mass appears to reproduce the exper-

imental data with only small variations of the loading rate (which 

is unknown even at the order-of-magnitude accuracy). 

  
Figure 11. Sonication of polymers containing cyclopropane moieties (gDCC, 

blue) and weak bonds (S-C, C-O or N=N, green) in the backbone leads to 

isomerization of cyclopropane moieties to olefins (red) and fragmentation of 

the polymer . Adapted from ref  
[97]

 under Creative Commons License. 

2.2. Parameters affecting polymers degradation kinetics 

during sonication 

At least 30 reported studies have been devoted to quantifying 

the effects of macroscopic control parameters on the kinetics of 

linear polymer degradation during sonication (the literature on 

degradation of topologically complex polymers is very limited[76]). 

The fairly contradictory literature probably reflects the complexity 

of the problem and the limitations of both experimental design 

and data interpretation. For example, many studies were con-

ducted on polymers (a) with dispersities >1.1, and thus repre-

sent implicit averaging of a wide range of reactivities in a man-

ner that is difficult to reproduce, that depends on the model used 

to fit the measured changes in Mn and on the degree of molar 

mass degradation; and (b) at concentrations considerably above 

the “ultradilute” limit (<10-2[ƞ]-1 where [ƞ] is intrinsic viscosity),[168] 

so that the observed variations in the kinetics may reflect the 

contributions from changing interactions between partially 

stretched chains in addition to the intrinsic behavior of the chain. 

In several studies, the kinetics were analyzed with equations 

that were not consistent with the observed changes in the MMD 

(e.g., eq. 2 while primarily midchain scission is expected or 

suggestive by the shapes of GPCs), reported in quantities that 

are not directly comparable among or even within studies, and 

only rarely with statistical analysis, making assessment of statis-

tical significance of fairly small variations typically observed in 

response to changes in control parameters impossible to assess. 

Thus the reported observations can only be generalized qualita-

tively: increasing acoustic power at constant reaction volume 

probably increases the bulk fragmentation rate, while increasing 

the temperature or polymer concentration decreases it.  

The effect of acoustic power is traditionally ascribed to “an 

increase in both the size and density of the cavitation bubbles”[98] 

but is likely more complex. Sonications of pure liquids or non-

polymer solutions suggest that increasing acoustic power (by 

increasing the oscillation amplitude of the horn) changes the 

shape of the multibubble cloud, increases its size, leads to 

lensing of acoustic power along the axis of the horn and period 

doubling (which decreases the number of collapses per unit 

time), with the cloud increasingly behaving as a single bubble.[94] 

Because of the tendency of bubbles to self-organize in complex 

structures, the effect of power on the density of the bubbles in 

such structures is not obvious but calculations suggest that the 

mean size of the bubble increases with increasing power up to a 

threshold value that depends on the solvent and solutes. For 

isolated non interacting bubbles, higher acoustic pressure ampli-

tudes (which correlate directly with acoustic power) result in 

higher accessible velocities of the bubble wall during implosion, 

which translates into higher fluid strain rates. At higher powers, 

the interaction between the sound and shock waves with the 

walls of the container may also be important.[169] We are una-

ware of approaches or assumptions that would allow a guesti-

mate of the contribution of each of these factors to changes the 

chain dynamics in the elongational flow.  

The inhibiting effect of temperature on the mechanochemical 

kinetics in sonicated solutions is traditionally attributed to “an 

increase in the amount of solvent vaporization into a forming 

cavitation bubble”[98]. The relative importance of this contributing 

factor is unknown. Temperature change also correlates nega-

tively with changes in solvent viscosity and surface tension, the 

pressure amplitude of shock waves[94] and the relaxation times 

of the chain[53], which may determine the range of strain rates 

that are necessary and sufficient to induce mechanochemistry. 

The speed of sound in the solvent (which determines the acous-

tic loss from the bubble) increases with temperature and tem-

perature likely affects interactions among bubbles. The difficulty 

of disentangling such influences is illustrated by the lack of 

consensus on the origin of the temperature dependence of 

single-bubble sonoluminescence, despite many careful studies 

and understood bubble dynamics. Because sonication subjects 

solutions to considerable thermal fluxes (e.g., as much as 100 W 

in 2-5 mL of solvents with moderate heat capacities) and proba-

bly creates thermal gradients that may persist on the timescales 

comparable to the rates of mechanochemical transformations, 

the mechanochemical kinetics may reflect local temperature that 

considerably exceeds bulk solution temperature, and the thermal 

contributions may depend on parameters that are difficult to 

reproduce, such as the shape of the reaction vessel and the rate 

at which heat is removed from the sonicated solution. 
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Similarly, the origin of the inhibition of the rate of polymer 

fragmentation with increasing polymer concentration (e.g., eq. 4 

above) remains unknown, being variously assigned to increases 

in “chain entanglement”[85], “solution viscosity that raises the 

cavitation threshold and to [decrease in] the solution volume 

available for cavitation bubbles to form”[98], and/or “the larger 

number of polymer chains will break up the solvent flows around 

the bubble and hence lessen its effect”[149], as well as the in-

creased probability of recombination of mechanochemically 

generated macroradicals and the effect of concentration of con-

formational ensembles of chains.[57, 60, 91] The effect of “dilute-

ness” in sonication of polymer solutions has not received nearly 

as much experimental and theoretical attention as in elongation-

al rheology of polymer solutions.[53] Extrapolating from the latter 

field, polymer mechanochemistry in sonicated solutions should 

be studied by default under “ultradilute” conditions (<10-2[ƞ]-1, 

where [ƞ] is intrinsic viscosity; for example the maximum con-

centrations should be ~200 g/mL and ~30 g/mL for polysty-

rene of 0.1 MDa and 1 MDa, respectively, in THF at 25 oC), 

unless one establishes that the rate remains the same at higher 

concentrations (which might be better suited for the analytical 

techniques used) or is interested in the effect of polymer con-

centration. This would eliminate the contributions to observed 

kinetics of hard-to-reproduce interactions between partially 

stretched chains in elongational fields and the concomitant 

perturbations of the flow. We are aware of a single report[149] of 

the kinetics of polystyrene fragmentation during sonication as a 

function of the concentration down to ~10 g/mL (Mp = 1 MDa, Ð 

< 1.05): the rate of the depletion of the initial polymer was inde-

pendent of its concentration at 10 g/mL and 20 g/mL and 

decreased monotonically with concentration at ≥100 g/mL. 

However, the reliability of this data is somewhat weakened by 

the mathematical manipulations of the gel-permeation chroma-

tograms that likely introduced bias as discussed below. 

Little experimental evidence appears to support literature 

claims[85] of any discernible trends in the dependence of the 

degradation rates during sonication on the solvent’s vapor pres-

sure or viscosity, or “gas solubility of solvent”. The effect of 

solvent parameters, small-molecule solutes (including dissolved 

gasses) and the static pressure on the dynamics of cavitation 

bubble and some of the physical manifestation of bubble col-

lapse, such as sonoluminescence, is fairly well understood,[94] 

but similarly careful and extensive experiments have not been 

conducted for polymer solutions. Design and interpretation of 

experiments aiming to understand the effect of solvent parame-

ters on mechanochemical kinetics are further complicated by the 

difficulty of changing solvent viscosity without affecting its va-

pour pressure, surface tension and/or solvent/polymer interac-

tions, all of which likely affect the bubble and chain dynamics. 

Perhaps the only statement that can be made with reasonable 

confidence at present is that the solvent can affect the polymer 

degradation rate but for typical solvents used in mechanochem-

istry (THF, toluene, ethyl acetate, etc.) the effect may well be 

within the limit of experimental reproducibility. 

Several studies have been devoted to measuring the effect 

of the molar mass on the rate of fragmentation of chemically 

identical polymers.[91, 102, 122, 149, 150, 158, 159] Such molar-mass 

scaling potentially allows differentiation among various models 

of chain dynamics,[53, 57, 93] but at present the required high quali-

ty experimental data and quantitative models are lacking. As 

with other studies of fragmentation kinetics in sonicated solu-

tions of polymers, the existing literature is contradictory, with 

most studies reporting scaling of variously defined rate con-

stants as Mx, where x varies from 0 to >3 among different au-

thors and M is typically either number- or weight-average molar 

mass. The dependent of the fragmentation rate constant on Mx 

is inconsistent with the existence of the Mlim (limiting molecular 

weight below which a polymer chain does not fragment), claimed 

in many of these studies (unless x = 0). In only one case the rate 

was proposed to scale as (M-Mlim)x, but the underlying kinetic 

data was obtained after extensive mathematical manipulation of 

the measured GPCs to remove what authors considered to be 

excessive broadening of the peaks due to significant axial dis-

persion[149]. The original GPCs had poorly resolved peaks of the 

reactant and fragmentation products, forcing the authors to 

assume Gaussian shape of the product peaks, thus biasing 

subsequent processing.  

The effect of backbone chemistry on the kinetics of mecha-

nochemical fragmentation is one area where notable progress 

has been made in the last 30 years. Modest but detectable 

selectivity of fragmentation was observed both in sonication[97, 

158, 161] and other forms of transient elongational flows.[93] For 

example, replacing some C-C bonds in a polymer backbone with 

N=N or C-S bonds, which are generally thought to be more 

susceptible to homolysis under tensile load, increased the frag-

mentation rate by 2-3 fold.[97] The relatively weak mechano-

chemical selectivity during sonication probably accounts the 

failure of the early studies[91] to detect any effect of backbone 

chemistry on fragmentation kinetics. The low selectivity may 

reflect the fact that most chains that undergo mechanochemical 

reactions are trapped in the flow field until they break (which 

could be attributed to the rapid increase in the fluid straining rate 

and consequently the stretching force acting on the trapped 

chain during bubble collapse). Alternatively, it may reflect the 

low intrinsic selectivity of mechanochemical relaxation of highly 

stretched chains, which is tentatively supported by quantum-

chemical calculations demonstrating that the differences in the 

activation free energies of homolysis of diverse covalent bonds 

(e.g., C-C bonds in polystyrene and polyethylene, C-O bonds in 

polyethylene oxide and C-N bonds in polyamides) decrease with 

applied force. The question, however, has not been studied 

carefully enough and the capacity of DFT-level calculations to 

reproduce quantitatively the kinetic barriers for homolysis of 

highly strain covalent bonds is unknown. In the view of the large 

empirical body of evidence of low mechanochemical selectivity 

during sonication, the recent claim[74] that the fragmentation 

stability of PMA containing a single moiety of anthra-

cene/maleimide adduct was increased “over 100-fold” by simply 

changing the atom of the anthracene moiety to which a PMA 

arm was connected is quite remarkable if not improbable. 

Other parameters that may affect the kinetics of mechano-

chemical reactions in sonicated solutions include the shape of 

the reactor and of the ultrasound source but we are not aware of 

any attempts to quantify such effects, which arguably may be 

quite difficult to do systematically.[170] 

2.3. Demonstration of mechanochemical acceleration of 

complex reactions by polymer sonication 

Since ~2005 the focus in sonicating polymer solutions largely 
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shifted from studying the fragmentation of commodity polymers 

in transient elongational flows to demonstrating acceleration of 

mechanistically diverse dissociation reactions by tensile load. 

The goal is accomplished by incorporating a small-molecule 

reactive site (“mechanophore”) into a polymer backbone. Poly-

mers containing on average one mechanophore per chain have 

been studied most commonly. Such polymers are synthesized 

by modifying the “mechanophore” to act as a dual-site polymer 

initiator from which a pair of “mechanochemically inert” macro-

chains (almost exclusively polyacrylate) is grown.[104] This strat-

egy rarely produced polymers with dispersities below 1.1-1.2, 

which means that most of the chains contained the mechano-

phore far from the center of mass. For the typically reported 

number-average degree of polymerization of 500-103 simple 

calculations suggest that <15% of the chains contain the mech-

anophore within the central 10% of the chain; and <75% of the 

chains contain the mechanophore within the middle third. These 

estimates are broadly consistent with a single experimental 

attempt to quantify the location of the mechanophore in such 

polymers[110]. The location of the mechanophore relative to the 

center of mass of the chain is important because the probability 

of a sonicated chain to undergo a mechanochemical reaction of 

any type appears to be highest at the center of mass and de-

creases fairly quickly away from it (which may or may not reflect 

the distribution of force experienced by an average chain in an 

elongational flow). Even more problematic is the likelihood that 

the high-molar mass fraction of the polymers obtained by this 

method is enriched in chains containing 2 “mechanophores” 

separated by about a half of the chain length.[110] Because the 

probability of a chain to react mechanochemically in a sonicated 

solution probably increases faster than linearly with polymer size, 

most reported studies of such polymers were likely dominated 

by the high-molar mass fractions, potentially biasing the results 

in a manner that is difficult to quantify.  

Fewer reported studies focused on multi-mechanophore pol-

ymers despite such polymers offering distinct advantages for 

product characterization[98, 117, 126, 171]. Most such multi-

mechanophore polymers were prepared either by polycondensa-

tion or ROMP of suitably derivatized “mechanophores” and had 

dispersities >1.2, thus complicating quantitative interpretations of 

their mechanochemical kinetics observed in sonication (but not 

in single-molecule force experiments[39-41, 43, 46, 47, 172]). Cyclopro-

panation of commercial polybutadienes, which are available in 

very low dispersities, was reported[41] but the method has been 

rarely used and is of limited substrate scope. 

It is now established that any macrochain would undergo 

non-selective backbone fragmentation during sonication irre-

spective of how dissociatively labile the “mechanophore” it may 

contain is[97, 109, 122, 173]. In other words, in a bulk sample mech-

anophore-centered chemistry, whether or not it results in chain 

dissociation, always competes with chain fragmentation else-

where along the backbone (whether this competition occurs at 

the level of individual macromolecules, or selective and non-

selective chemistries happen in different chains, potentially 

trapped in elongational flows created by different mechanisms, 

is not known). This means that the observation of the reduction 

of the average molar mass of the polymer during sonication by 

itself does not establish the mechanochemical dissociation of 

the “mechanophore”, despite recurrent literature attempts[122, 156] 

to use it as such. A somewhat more convincing evidence of 

mechanophore-centered reactivity is the appearance of a spec-

troscopic signal attributable to the expected product. This ap-

proach was used mostly[106, 174] for mechanochromic reactions, 

i.e., mechanochemical reactions whose product, but not the 

reactant, possesses detectable absorption or emission. The 

problem with this approach is that the fraction of the mechano-

chemically reacted polymer that generated the chromophore or 

fluorophore is rarely quantified. An instructive example is a 

recent claim of “selective” mechanochemical dissociation of a 

Diel-Alder adduct of anthracene and maleimide based on the 

appearance of absorption of the anthracene chromophore (Fig-

ure 12)[74]. 

Comparison of the reported UV-vis spectra of the solution 

before and after sonication (Figure 12c), using the reported 

extinction coefficients of the polymer, anthracene and maleimide 

reveals that dissociation of the anthracene/maleimide adduct 

contributed <0.1% to the observed halving of the molar mass of 

the polymer during sonication. In other words, 99.9% of polymer 

fragmented without dissociation of the “mechanophore” (Figure 

12a). The only reason that such a minor reaction path is detect-

able at all is that its product has the extinction coefficient that 

exceeds that of the major pathway by orders of magnitude. 

Other studies demonstrated much greater selectivity for chain 

fragmentation by dissociation of anthracene/maleimide ad-

duct[114] and related compounds[132]. 

UV-vis detection was also applied to non-mechanochromic 

reactions by reacting a non-chromophoric product with a small-

molecule chromophore and demonstrating that the resulting 

polymer adduct manifests the expected absorbance[128, 148, 156]. 

Reliable quantitative interpretation of the results requires rea-

sonable certainty that the chromophore is incorporated in the 

polymer by reaction with the product of the mechanochemical 

reaction instead of by alternative mechanisms, including reac-

tions mediated by sonolytically generated small-molecule radi-

cals, or macroradicals originating from non-selective backbone 

fragmentation as well as reactions with sonolytically-modified 

“inert” parts of the polymer outside the “mechanophore” gener-

ated during sonication. The susceptibility of this method to such 

false positives is probably higher than is generally acknowl-

edged in the literature, as illustrated by results in ref. [156] where 

considerable incorporation of the chromophore in the polymer 

was observed even prior to sonication. The chemistry responsi-

ble for this incorporation is not known. 
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Figure 12. a) Sonication of a polymer containing a Diels-Alder adduct of anthracene and maleimide (highlighted in bold) leads primarily to non-selective backbone 

scission. The contribution of selective fragmentation by mechanochemical dissociation of the Diels-Alder adduct to total fragmentation rate was calculated from 

the known extinction coefficients of anthracene and maleimide (b) and the UV-vis spectra of the polymer before and after sonication as shown in ref. 
[74]

 using the 

formula (green) for the absorbance of the solution as a function of the sonication time, t, peak molar masses of the polymer prior to sonication (Mp(0)) and at time t, 

Mp(t); the rate constants for polymer fragmentation by dissociation of the adduct, ks and of any other backbone bond, kns; and the molar extinction coefficients of 

PMA,  anthracene and maleimide, PMA, an and mal ,respectively (c). 

NMR analysis of polymers containing a single mechano-

phore per chain is rarely informative because the mechanophore 

signals are obscured by those of the rest of the polymer, unless 

the mechanophore contains a label, such as 13C or CF3. In con-

trast, multi-mechanophore polymers are well suited to character-

ization of their sonication-induced reactivity by 1H- and/or 13C 

NMR spectroscopy. Because both the intact mechanophore and 

its product(s) are detectable, the product distribution and the 

degree of conversion are quantifiable. Combined with the de-

termination of the molar mass distribution (MMD) or at least one 

of its moments (i.e., Mn or Mw), the method allows accurate 

estimates of the selectivity for mechanophore-centered chemis-

try vs. chain fragmentation. The main drawback of this approach, 

as currently implemented, is the inability to determine the frac-

tion of the reacted and intact mechanophores as a function of 

the polymer molar mass. For example, sonicating solutions of 

polymers of dihalocyclopropanes reduces their average molar 

mass while also generating 1,2-dihaloalkene isomers (Figure 

10)[98]. In one study, halving of Mn of the sample was accompa-

nied by isomerization of ~60 %mol of the cyclopropane moieties. 

However, since the measured fraction of the reacted cyclopro-

pane was averaged over intact and fragmented polymer chains, 

one cannot conclude if cyclopropane ring opening occurs with-

out chain fragmentation and vice versa, or backbone fragmenta-

tion always accompanies cyclopropane isomerization. Such 

information, together with quantum-chemical calculations of 

force-dependent kinetic barriers of the isomerization and frag-

mentation, would provide important clues to the range of micro-

scopic conditions reacting chains experience during sonication. 

For example, demonstrating the presence of 1,2-dihaloakene 

moieties in polymers of the original molar mass or of polymer 

fragments containing only intact cyclopropane moieties would 

strongly suggest that the two reactions occur primarily in differ-

ent chains, i.e., independent of each other.  

Because of the lack of any direct evidence that (parts of) 

polymer chains are stretched in sonicated solutions, the asser-

tion that the observed changes in the chemical composition of 

the solution result from stretched mechanophore-containing 

chains is based on failing to observe the same chemistry in 

control experiments. These include sonicating polymers with 

mechanophores at a chain terminus (or in a side chain), where it 

cannot be strained when the chain is stretched, or polymers with 

the size below which no reactions can be detected under given 

sonication conditions. While the control experiments established 

that stretching a polymer is a necessary requirement for the 

observed chemistry, it offers no indication of the contribution of 

local temperature and sonolitically generated small-molecule 

radicals to the observed chemistry. Because the implosion of an 

isolated cavitation bubble is thought to occur mostly adiabatically, 

the temperature of the generated elongational flows remains 

close to ambient. In contrast, shock waves generated by syn-
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chronous implosion of a bubble cloud would likely be accompa-

nied by significant thermal fluxes. If the observed mechano-

chemistry occurs primarily in flow fields generated by shock 

waves, the contribution of local heating cannot be excluded. This 

thermal effect will not be detectable in control experiments be-

cause a modest temperature raise will have a much more readily 

detectable effect on kinetics over activation barriers already 

reduced by tensile load. For example, increasing the local tem-

perature from 300 to 350 K will accelerate a reaction with the 

activation free energy of 25 kcal/mol ~340-fold to the still unde-

tectable half-life of >400 s in a control experiment. If the same 

barrier is reduced by force to 10 kcal/mol, the reaction is much 

more likely to occur at the timescale of the imploding bubble at 

350 K (t1/2 < 0.2 µs) than at 300 K (t1/2 >2 µs). We are aware of a 

single attempt to quantify the thermal contribution to observed 

polymer mechanochemistry during sonication[175]. A systematic 

study would require a reactive site whose kinetic stability is 

insensitive to tensile load but is strongly accelerated thermally.  

In contrast, sonolitically generated small-molecule species 

were demonstrated to affect the non-mechanochemical reactivity 

of intact polymers or their mechanochemically generated prod-

ucts.[175] Since radical traps have long been used to demonstrate 

and quantify the formation of macroradicals (presumably gener-

ated by homolysis of a backbone bond in a stretched chain) and 

the generation of biradical intermediates,[118] it seems quite likely 

that sonolitically produced radicals (e.g., from the solvent) would 

also participate in similar reactions, affecting the kinetics and/or 

product distribution of a diverse set of mechanochemical reac-

tions. Such a contribution is rarely discussed, and has not been 

systematically studied but could probably be easily detected by 

NMR spectroscopy using isotopically-enriched solvents or sol-

vents containing F atoms. This effect would be particularly signif-

icant for reactions that proceed through biradical intermediates, 

which definitely include isomerization of difluorocyclopropane, 

and dissociation of cyclobutane, oxirane and dioxetane deriva-

tives, and may also include isomerization of other dihalocyclo-

propanes and of spyropyranes[106, 117, 121, 122, 126]; and reactions 

whose products are susceptible to radical addition, such as 

anthracene. Particularly interesting is the possibility that adventi-

tious radicals may create new reaction paths by adding to highly 

strained C=C bonds, or transiently abstracting H atoms bound to 

highly strained backbones, or stabilize mechanisms that in the 

absence of radicals are not kinetically competitive. Understand-

ing the effects of reaction pathways that are created or greatly 

stabilized only under the extreme local conditions in the vicinity 

of an imploding bubble (or bubble cloud) on the observed bulk 

chemistry in sonicated polymer solutions is one of the most 

overlooked aspects of the area. 

2.4. Summary of polymer mechanochemistry in sonicated 

solution 

Sonicating polymer solutions is so technically simple that it is 

currently the most commonly used technique to study polymer 

mechanochemistry. No direct evidence exists that in sonicated 

solutions chains (or their segments) are stretched but several 

mechanochemical reactions observed in single-molecule force 

spectroscopy and bulk loaded materials also occur in sonicated 

solutions, suggesting that (a fraction of) sonicated macromole-

cules are stretched in a manner qualitatively similar to that in 

other manifestations of mechanochemistry. However, there are 

reasons to speculate that only a subset of mechanochemical 

reactions can be observed in sonicated solutions, probably 

illustrating the differences of the timescale on which the highly 

stretched geometries can be maintained in SMFS, sonicated 

solutions and loaded bulk polymers. Despite the widespread use 

of sonication, even qualitative interpretation of changes in chem-

ical compositions of sonicated polymer solutions is far more 

uncertain than is generally acknowledged. Empirical evidence 

suggests that non-selective backbone fragmentation always 

competes with site-specific chemistries (i.e., chemistries of reac-

tive sites – occasionally called mechanophores – designed to 

undergo reactions more complex than simple bond homolysis 

when stretched). In some reported examples, only a tiny fraction 

of the reacted macrochains appears to undergo selective chem-

istry. While carefully designed control experiments can probably 

rule out purely thermal or sonolytic mechanisms, we lack any 

methods of quantifying the contributions of local heating, sono-

lytically produced small-molecule radicals and (probably) very 

high loading rates to the observed chemistry. 

Although sonication of polymer solution is increasingly pre-

sented[85] as a quantitative tool, the physical significance of the 

numbers that have so far been measured on sonicated solutions 

of polymers is far from obvious. The literature offers very few 

indications that the bulk kinetics of mechanochemical reactions 

in such solutions can be quantified reproducibly much less at a 

level of detail and accuracy expected by a physical chemist. It 

seems justified to say that the parameters obtained by fitting 

experimental measurements to any of the proposed kinetic laws 

have far less mechanistic significance than they are typically 

credited with. Quantitation of bulk selectivity (e.g., non-selective 

chain fragmentation vs. site-specific chemistry[97, 98] or speciation 

of distinct mechanochemical products[64]) is probably more re-

producible than absolute rate constants, but no less mysterious 

from the viewpoint of inferring microscopic conditions responsi-

ble for the observed chemistry. Nothing is known about these 

conditions at any reasonable degree of confidence. Estimates of 

forces or straining rates in fragmenting polymers, or their distri-

butions along the chain length that appear in the literature are 

best treated as educated guesses.  

While the microscopic conditions responsible for mechano-

chemistry in sonicated polymer solutions are very challenging 

both intellectually and technically to quantify, experience of other 

fields, including multi-bubble sonoluminescence and chain dy-

namics in turbulent flows suggest that they are not intractable. 

Progress will most likely require new polymer designs, more 

precise methods of quantifying molar mass distributions, and a 

tighter integration of measurements, quantum-chemical calcula-

tions and physical models than has been the norm so far. The 

paucity of literature reports of detailed physicochemical studies 

of the conditions experienced by mechanochemically reacting 

macrochains in sonicated solutions despite the recognized need 

for such data,[82, 83] may reflect both the scale of the problem and 

the fact that the field still has too many low-hanging fruit (i.e., 

qualitative demonstrations of new reactions in sonicated solu-

tions) to justify investing the resources into much more challeng-

ing pursuits, however important they might be for the long-term 

vitality of the field or its technological impact. 

3. Mechanochemistry of polymers in solids 
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Mechanical loads acting on bulk polymeric materials change 

their dimensions, which is accommodated by stretching of indi-

vidual macromolecules (or their segments), eventually altering 

the kinetic stability of the constituent monomers. The diverse 

physical (entanglements) and chemical (covalent and non-

covalent cross-links) interactions among individual chains in 

such materials lead to a complex, and only tentatively under-

stood, distribution of forces experienced by individual chains and 

chain segments.[176, 177] Consequently, quantitative molecular 

interpretation of observed changes in the chemical composition 

of loaded polymer samples, much less predictions of such 

changes are at present impossible, although simple extrapola-

tions of the existing body of empirical observations allow in 

certain cases plausible qualitative guestimates of the range of 

chemical reactions that may be induced in a polymer sample by 

loading it mechanically.  

The chemical effects of loading bulk polymers have been 

studied for decades with the simplest examples being homolysis 

of covalent bonds of polymer backbones, transiently producing 

macroradicals detectable by EPR. The usually high reactivity of 

such radicals means that they react further by multiple mecha-

nisms at rates that may or may not be sensitive to the applied 

load. A few examples of stress induced changes in the chemical 

composition of bulk polymer samples, presumably caused by 

reactions more complex than bond homolysis, were also report-

ed[178, 179]. For example, stretching highly oriented polyamides 

films in the presence of water resulted in the growth of IR signals 

corresponding to the COOH groups, probably by mechanochem-

ical hydrolysis of amides.[179] Observed rates of changes in the 

chemical composition of bulk samples under load and the de-

pendence of such rates on this load are routinely discussed in 

terms of stress-dependent rate constants  or activation energies 

Uo. These are derived from fitting the observable parameters to 

the Zhurkov equation[70, 71] (or its later variants), 𝜏 = 𝜏0 ×

𝑒𝑥𝑝 (
−(𝑈0−𝛾𝜎)

𝑅𝑇
)  where σ, R, T are the applied stress, the gas 

constant and the temperature, respectively; and 0,  are fitting 

constants. Molecular interpretation of parameters 0 and Uo is far 

from straightforward because of the lack of information about the 

rate determining steps in the complex sequences of elementary 

steps, both physical and chemical, that are responsible for 

changes in the chemical composition of stressed bulk polymers. 

While it may be tempting to postulate that these changes reflect 

accelerations of individual elementary chemical steps (implicitly 

assuming that chemical reactions are rate-determining), such 

assumptions are neither justified nor universally applicable.  

An instructive example is a series of the kinetics of oxygena-

tion of stretched polypropylene films in the presence of O3.
[180, 

181] The rate of propagation of the volume of the material contain-

ing carboxylic groups increased with strain in the elastic regime 

(up to 10%) but decreased at larger strains corresponding to 

plastic deformations of the material. While these results were 

later overinterpreted as indicating stress-induced inhibition of an 

unspecified chemical reaction[182], the authors ascribed the inhi-

bition to the increased crystallinity of plastically deformed sam-

ples, which suppressed both the chain mobility and O3 diffusion 

through the material (thus explicitly assigning the rate-

determining steps to physical rather than chemical processes). 

Stretching a polypropylene film undoubtedly increases the prob-

ability of backbone fragmentation, thus accelerating initiation of 

the radical cascades responsible for oxygenation by increasing 

the flux of C-based radicals with very high reactivity toward O2 

and O3
[183]. The kinetics of the remaining steps, including chain 

propagation, branching and termination remains unknown [184]. 

The rates of these steps depend on chain mobility, which is 

reasonably well established to decrease with increased crystal-

linity of the polymer, which often increases under plastic defor-

mation[185].  

Little progress appears to have been made in the last 20 years 

towards understanding the molecular mechanisms and micro-

scopic kinetics of chemical remodelling of commodity polymers 

in solid state. Instead the focus seems to have shifted to poly-

mers incorporating purposefully designed moieties in which 

imposition of an axial molecular strain accelerates reactions 

more complex than backbone fragmentation by bond homolysis. 

Mechanochromic polymers have attracted most attention alt-

hough some intriguing preliminary work on manipulation of bulk 

mechanical properties of polymers using mechanochemical 

reactions was reported. Examples include mechanochemical 

toughening of gels,[186] and polymers that are potentially self-

strengthen (i.e., form more than 1 new load-bearing bond per 

each failed bond) thank to a sequence of reactions initiated by 

mechanical load.[139, 140] 

3.1. Mechanochromism 

Mechanochromic materials change their optical properties 

(e.g., absorption or emission color) under load. The existing 

mechanochromic polymeric materials are based either on a 

physical process, and occur at length scales above ~10 nm, or 

chemical reactions, which are typically localized within sub-nm3  

volumes. Examples of physical mechanochromism include rap-

ture of dye-containing microcapsules, load-dependent spacing of 

layers of photonic crystals, phase transitions, aggregation and 

conformational changes[79, 187]. Chemical mechanochromism 

requires a reaction, such as load-dependent equilibria between 

aggregates and isolated molecules of certain aromatic dyes[79] or 

between spyropyrane and merocyanine isomers[188], or load-

accelerated thermal dissociations of 1,2-dioxetane deriva-

tives[121], which transiently creates chemiluminescence, of hex-

aarylbisimidazole[104], diarylbibenzofuranone[189], dianthra-

cene[190] or dicinnamate derivatives[191] (Figure 13). Proposed or 

realized applications of mechanochromic materials include au-

tonomous indicators of mechanical damage, camouflage[192], 

security paper and labels[193], optical storage[194] and fundamen-

tal studies of polymer adhesion, friction, crack propagation and 

plastic flow.  

The mechanochromic response of aggregatochromic dyes 

and probably spiropyrans is thermodynamically controlled, i.e., 

its intensity is controlled by the effect of the force experienced by 

the dye on the equilibrium between the aggregate (or spiropy-

ran) and monomer (or merocyanine). The mechanochromic 

response of the remaining molecular mechanophores is kinet-

ically controlled, i.e., it is observed only above a threshold force 

at which mechanochromic reaction occurs on the timescale 

comparable to or shorter than that at which the local load dissi-

pates. Research on mechanochromism of aggregatochromic 

dyes was recently reviewed[195]. 

Most reported studies of mechanochromic materials were 
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aimed at qualitative demonstration of mechanochromism in 

response to mechanical load, including axial stretching[121, 135, 136, 

138, 188, 196] or axial compression[135, 188], shearing[197], bending,[190, 

191] swelling,[198] electro-mechanochemical contraction[192] and 

shockwaves[199]. Coloration of glassy polymers containing dimers 

of anthracene or cinnamate (Figure 13)[190, 191] but not diox-

etane[121] was reported in the immediate vicinity of a crack gen-

erated by impact. Thermal dissociation of anthracene dimers 

has activation barriers <27 kcal/mol and therefore may proceed 

even in strain-free polymer chains because local temperatures 

around a propagating crack in polymers may exceed 500 oC 

above ambient.[200] Because coloration of anthracene-dimer 

containing polymers was only observed around cracks and 

control experiments designed to rule out the contribution of local 

heating were not reported, claims of anthracene dimers being 

mechanochromic should at present be viewed as tentative.  

 
Figure 13. Mechanochromic reactions reported to occur in the solid state. 

By far the most extensively studied mechanochrome is spi-

ropyran (Figure 13), which was incorporated in the main chain 

and/or as a cross-link in PMA[188], PMMA[198], PDMS[143] and 

polyurethanes[136, 201]. In most polymers, spiropyran appears to 

be thermodynamically more stable than its merocyanine isomers 

in the absence of load, as evidenced by strain-free materials 

being colorless and colored materials bleaching upon removal of 

load. In one study, as-synthesized colorless polyurethane be-

came blue on storage in the dark, suggesting spontaneous 

isomerization of spiropyran to a merocyanine isomer. Spiropyran 

is known to be solvatochromic,[202] i.e., solvent polarity and H-

bonding capacity shift the equilibrium between spiropyran and at 

least one of merocyanines from endergonic (unfavorable) or 

exergonic (favorable). The outstanding questions are the rate of 

spontaneous coloration of this polyurethane in the absence of 

load, and whether it reflects the kinetics of spiropy-

ran/merocyanine equilibration or of microscopic remodeling of 

the material with the color reporting changes in the chemical 

composition of the polymer matrix surrounding chromophore. 

The distinction is important because it determines which process 

the kinetic measurements performed on the colorless material 

characterized.  

The intensity and/or rate of mechanochromism was studied 

as a function of the chemical composition of the polymer matrix, 

the method of mechanical loading, the loading rate, the position 

of spiropyran in the polymer network and the temperature.[135, 203, 

204] In all but 2 cases,[131] colorless materials developed color 

when loaded, with the absorption maxima varying between 

studies. Insufficient data is available to ascribe these variations 

to differences in the peripheral substitution of the spiropyrans 

used, solvatochromism due to differences in the microenviron-

ment of the chromophore, or different speciation of the merocy-

anine isomers. Isomerization between different merocyanines is 

most likely responsible the initially produced blue color evolving 

to purple before bleaching after load removal observed in two 

cases.[136, 143] In most studies, coloration was detectable only in 

plastically deformed samples,[136, 188, 197] with the color intensity 

correlating with the accumulated plastic strain in PMA elasto-

mers[188]. The spatial distribution of fluorescence intensity of 

merocyanines in axially-compressed beads of glassy spiropyran-

derivatized PMMA was reported to correlate with the calculated 

distribution of normalized traverse stress (Figure 14), but micro-

scopic significance of this correlation is unknown[188]. Little ap-

pears to be known at present how common such correlations 

are because mechanochromic intensity appears to be quite 

sensitive to the loading rate[135] and the loading geometry. In 

contrast, spiropyran-derivatized PDMS was reported to undergo 

reversible coloration upon elastic deformation[143]. No case has 

been reported of the color persisting after load removal. Molecu-

lar interpretation of all these results is complicated by the lack of 

a detailed mechanism of thermal and photochemical intercon-

version between spiropyran and its various merocyanine iso-

mers (of which there are at least 4), including respective stand-

ard and activation enthalpies and entropies and the quantum 

yields (or at least compositions of photostationary states) and 

the effect of molecular strain, temperature and environment on 

these parameters. 
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Figure 14. a) Compression of beads of glassy crosslinked spiropyran-

derivatized PMMA (called “Active PMMA-4” in the figure) yields color and 

fluorescence with spatial distribution of intensity (solid line in b) consistent with 

the calculated distribution of normalized traverse stress (dashed line in b). 

Reprinted with permission from ref. 
[188]

. Copyright © 2009, Rights Managed by 

Nature Publishing Group. 

The major drawback of all spiropyrans reported to date as 

mechanochromes either for practical applications or for funda-

mental studies of chain dynamics and local stress distribution in 

loaded materials is the very low single-chain force at which the 

mechanochromic response saturates. In single-force experi-

ments, spiropyran converts quantitatively into an isomer of mer-

ocyanine at applied force <0.3 nN.[47] In bulk spiropyran-modified 

polymers that were axially stretched to failure, coloration is not 

confined to the area around the newly formed interface (as 

happens with other mechanochromic compounds) but appears 

to be quite uniform throughout the sample[136, 143, 188] (we are not 

aware of literature analyses of the spatial distribution of absorp-

tion/fluorescence intensities in such samples). As a result, spiro-

pyran cannot be used to distinguish overstressed regions of a 

loaded material (i.e., volumes where the material is most likely to 

fail), where a large fraction of chains may experience forces 

above 1 nN from only weakly stressed regions, where single-

chain forces are <1 N, because in both cases, spiropyran will 

have converted to merocyanine quantitatively. 

In contrast, luminogenic dissociation of dioxetane appears to 

be highly localized when polymers incorporating dioxetanes in 

backbones or as cross-links are loaded (Figure 15a)[77, 115, 121, 137]. 

Mechanochromism of dioxetane results from force-accelerated 

generation of triplet ketone, which reverts to the single state with 

emission of blue light. As a result, dioxetane mechanochromism 

is both transient and irreversible and can only be observed in 

real time. Unlike spiropyrans, emission intensity of dioxetane-

derivatized polymers under load is localized in front of a propa-

gating crack tip[121, 138] (Figure 15b). Light-emitting dioxetane 

dissociation was also demonstrates as a non-mechanochemical 

part of a reaction cascade induced by load.[108] 

Perhaps the main limitations of dioxetane are the non-

adiabatic dissociation mechanism[205] that largely precludes 

quantum-chemical calculations of force-dependent kinetics and 

the difficulty of synthetic elaborations of the dioxetane core to 

adjust the threshold force that triggers luminescence or the 

sensitivity of the rate to the applied force. Fairly low thermal 

stability also limits processing methods suitable for dioxetane-

containing polymers.  

 
Figure 15. a) Force induced cycloreversion of  1,2-dioxetane leads to bright blue chemiluminescence; b) Time-lapsed images of a elastomeric film of linear PMA 

with 1,2-dioxetane incorporated near the center of the chains under uniaxial stretching and the corresponding emission intensity graphs. Reprinted with permis-

sion from ref. 
[121]

. Copyright © 2012, Rights Managed by Nature Publishing Group. 

4. Outlook: 7 challenges for polymer mecha-
nochemists 

It seems safe to speculate that the number of demonstrated 

mechanochemical reactions will continue to increase, with most 

demonstrations in sonicating polymer solutions. This effort is 

facilitated by the well-understood principles of designing reactive 



REVIEW          

23 

 

sites whose dissociation is accelerated by stretching macromol-

ecules containing them and the accepted protocols for demon-

strating such mechanochemical acceleration. This work will be 

particularly impactful if it ventured beyond the reasonably estab-

lished idea that stretching force accelerates dissociations of 

covalent bonds along the pulling axis. It also seems likely that 

the diversity and sophistication of mechanochemical cascades, 

involving sequences of mechanochemical and purely thermal 

reactions or multiple mechanistically and/or kinetically coupled 

mechanochemical reactions will grow. More excitingly, polymer 

mechanochemistry may be reaching the level of sophistication 

where complex problems of broad interdisciplinary significance 

are becoming addressable. Below we propose 7 such problems. 

1. New patterns of mechanochemical reactivity. All 

mechanochemical reactions demonstrated to date involve disso-

ciation of at least one covalent bond and are accelerated by 

stretching the macrochain. Yet theoretical considerations[61, 62] 

and computations[63, 73, 206, 207] suggest that the effect of tensile 

load on localized reactions is much more diverse, including 

inhibition of dissociation of loaded bonds and accelerated frag-

mentation of unloaded bonds that are not directly coupled to the 

applied force (i.e., bonds whose restoring force remains close to 

0 regardless of the applied force). Although the possibility of 

tensile force inhibiting molecular fragmentation reactions has 

long been speculated (e.g., ref. [208]), such inhibition has never 

been demonstrated experimentally (early claims of such inhibi-

tion resulted either from misinterpretation of the original papers 

or are now recognized to be experimental artefacts[184]) The 

primary reason appears to be the fact that the existing experi-

mental tools for studying mechanochemistry are not suitable for 

reactions that are inhibited by force. For example, sonication of 

a polymer containing an adduct whose dissociation is inhibited 

by force will simply result in chain fragmentation at other back-

bone bonds. Single-molecule force spectroscopy allows quanti-

tative studies of force-dependent inhibition of certain dissociation 

reactions with favorable strain-free kinetics, but only at modest 

forces (<0.5 nN) and weak inhibitions (<2-fold). Other challenges 

include designing molecular architectures that allow reactive 

sites to be stretched along the necessary molecular axes and 

the development of quantitative protocols to measure the mech-

anochemical kinetics and selectivity of such reactions accurately. 

These challenges are worth overcoming because experimental 

validation of “unconventional” patterns of mechanochemical 

response will not only expand the diversity of reactions that 

could be exploited to yield new stress-responsive materials but 

also constitute a valuable dataset for testing the performance of 

theoretical models of mechanochemistry. 

2. Efficient and accurate methods of determining activa-

tion free energies of mechanistically diverse reactions as a 

function of applied force. This data is essential for improving 

our understanding of how force affects chemical reactivity and 

for enabling efficient design of materials with desired mechano-

chemical profiles. At present the only source of such data are 

quantum-chemical computations. Although such calculations 

can be performed fairly routinely, the accuracy of the resulting 

activation energies and mechanisms is not obvious. Single-

molecule force experiments are useful for benchmarking the 

computations over a fairly narrow range of forces, corresponding 

to half-lives on the order of 100 ms.[33, 39] Incorporation of the 

reactive sites into properly designed macrocycles (molecular 

force probes[29-35]) allows benchmarking of the computed results 

at forces <1 nN. Neither method is however particularly simple 

or has a broad substrate range. Neither can access forces 

needed to reduce the half-lives of most reactions to the 10 s 

range, or achieve high loading rates that might be relevant at a 

tip of a propagating crack. Related to this problem is the lack of 

data to establish any trends in the performance of DFT function-

als for calculations of force-dependent activation energies and 

mechanisms.  

3. Quantitative microscopic models of mechanochemis-

try in sonicated solutions. Sonicating polymer solution is and 

will probably remain the primary method of demonstrating cova-

lent polymer mechanochemistry. It is technically simple, has 

broader substrate scope than single-molecule force spectrosco-

py, requires relatively little material and is compatible with a full 

array of spectroscopic analytical techniques. At present its role 

in mechanochemistry is limited to qualitative demonstrations of 

acceleration of unimolecular reactions in stretched polymers. 

While several reactions were demonstrated both in sonicated 

polymer solutions and in bulk solids under load, so far sonication 

experiments do not appear to add much to simple qualitative 

considerations based on molecular geometry in rationalizing 

mechanochemical behaviour of solids or guiding the selection of 

monomers to yield desired solid-state mechanochemical re-

sponse. Given that of all manifestations of polymer mechano-

chemistry, sonication is best suited for a high-throughput auto-

mated use, improving our capacity to extract quantitative molec-

ular (or microscopic) data from sonication experiments has the 

potential to significantly improve the quality and quantity of ex-

perimental data needed to identify broad trends in mechano-

chemical reactivity as a function of molecular geometry, strain-

free reactivity and potentially loading parameters. 

4. The effect of polymer architecture on its mechano-

chemical properties. With very few exceptions, in contempo-

rary mechanochemistry polymer chains are treated simply as 

inert transducers of a macroscopic mechanical load to reactive 

sites. Topologically complex polymers (with star, H and hyper-

branched architectures) manifest chain dynamics that is often 

remarkably different from that of linear analogs. Such differ-

ences played a key role in fundamental studies of chain dynam-

ics in entangled polymer liquids[209] and are increasingly exploit-

ed technologically.[103] Detailed quantitative studies of the effect 

of polymer topology on the mechanochemical kinetics and load-

dependent mechanisms of localized reactions would likely be of 

considerable applied and fundamental value. For example, 

complex polymer topologies may allow the field to move beyond 

single-axis straining, which would be important for advancing our 

understanding of the relationship between anisotropic strains 

and reactivity. Although topologically complex polymers are not 

essential, they could be quite helpful for systematically exploring 

mechanochemical anisotropy of reaction kinetics, i.e., the sensi-

tivity of force/activation energy correlations to the pulling axis. 

Given the much longer relaxation times of topologically complex 

polymers relative to their linear analogs in entangled liquids (e.g., 

polymer melts or solids above Tg) under load, derivatizing such 

polymers with “mechanophores” may yield qualitatively new 

patterns of mechanochemical response than has been observed 

to date. In other words, combining localized load-dependent 

chemistry with polymer topology may widen considerably the 

range of design parameters to be exploited in creating bulk 

materials with complex mechanical and mechanochemical be-
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haviors. 

5. The distribution of single-chain forces in bulk poly-

mers. Mechanochemistry and specifically kinetically-controlled 

mechanochromic compounds offer exciting possibilities for stud-

ying the response of bulk polymeric materials at sub-m and 

sub-s scales, perhaps even at the molecular level. Single-chain 

forces and/or accumulated local strains in loaded materials 

could be quantified by monitoring the rate and/or extent of 

mechanochemical reactions as a function of the time the materi-

al was loaded. Realization of this potential, however, requires 

both accurate activation and standard free energies of reactions 

as functions of the local restoring and single-chain forces and 

reliable means of quantifying the extent of reactions in solids. 

The former is accessible by quantum-chemical calculations, 

ideally benchmarked against experimental data, including those 

from single-molecule force experiments and model studies. The 

empirical data available to date suggests that mechanochrom-

ism potentially offers a convenient method of quantifying reac-

tion progress in loaded solids by monitoring the changes in their 

optical (absorption and/or emission) properties. For such meas-

urements to yield quantitative information new mechanochromes 

are required with force/rate profiles that are amenable to accu-

rate quantitation (both computationally and experimentally by 

single-molecule force spectroscopy) and tuneable by simple 

chemical modifications over a broad range, and whose mecha-

nochemical response is persistent but reversible on energy input. 

No mechanochromic compound reported to date satisfies all 

these criteria and the chemical identity of such a “universal” 

mechanochrome is not yet apparent.  

6. Models of polymer mechanochemistry beyond local-

ized reactions. While it may be tempting to view polymer 

mechanochemistry simply as experimental system to study the 

effect of force on chemical reactivity, successful exploitation of 

mechanochemical phenomena in new materials, devices and 

processes may require a much broader perspective, both con-

ceptually and methodologically. With the exception of single-

molecule force spectroscopy, the single-chain force cannot be 

controlled even indirectly in any of the known manifestations of 

polymer mechanochemistry. Consequently, quantitative under-

stand of mechanochemistry in practically relevant contexts re-

quires means of relating macroscopic control parameters (e.g., 

stress tensors for solids, pressure gradients for flows and acous-

tic power fluxes for sonication) to single-chain forces of constitu-

ent macromolecules. One potentially productive approach is to 

estimate single-chain forces by studying bulk rates and product 

distributions of reactions with carefully established microscopic 

mechanochemical kinetics and mechanisms as a function of the 

macroscopic control parameters. Reactions that proceed by 

competing mechanisms with different force dependences could 

be particularly useful as such “internal competition” would be 

less sensitive to experimental parameters that are difficult to 

control and account for (e.g., the shape of the reaction vessel in 

sonication experiments). This data will have to be incorporated 

in multiscale, probably coarse-grained models, for example 

building on a recently reported attempt.[210]  

7. Technological importance of polymer mechanochem-

istry. Increasing amount of empirical data suggests that mecha-

nochemistry is an important determinant of mechanical proper-

ties of polymers in solution, melts and bulk materials, and mech-

anochemistry can limit processing methods and application 

niches for which the polymer is suitable. However, we are not 

aware of any literature reports of systematic studies of the na-

ture, extent, mechanisms and macroscopic manifestations of 

mechanochemical phenomena in technologically important 

processes. It seems quite likely that empirical solutions have 

been found and implemented to suppress, or compensate for, 

deleterious effects of mechanochemistry in common applications 

of polymers (e.g., antioxidant additives in polymers subject to 

large cyclic mechanical loads to suppress aging) and under-

standing them could yield valuable insights into the mechanism 

of coupling between mechanical loads and chemical reactivity. 

While such systematic studies would probably require close 

cooperation with industry, in part because some processes that 

appear susceptible to mechanochemical effects may be based 

on proprietary technology, they are likely to have significant 

technological and potentially economic impact and therefore 

may be of interest to industry. 
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REVIEW 

Polymer mechanochemistry aims to 

understand and exploit unique reactivi-

ties of highly stretched polymer chains. 

In this review we systematize reported 

macroscopic manifestations of mecha-

nochemistry, and critically assess the 

interpretational frameworks enabling 

their molecular rationalizations. We 

discuss the limitations of these ap-

proaches to identify outstanding ques-

tions that need to be solved for mecha-

nochemistry to become a rigorous, 

quantitative field. 
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