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Abstract  

The Mig10/RIAM/Lpd (MRL) adapter protein Lpd regulates actin dynamics through 

interactions with Scar/WAVE and Ena/VASP proteins to promote the formation of cellular 

protrusions and to stimulate invasive migration. However, the ability of MRL proteins to 

interact with multiple actin regulators and to promote Serum Response Factor (SRF) 

signalling has raised the question of whether MRL proteins employ alternative downstream 

mechanisms to drive oncogenic processes in a context-dependent manner. Here, using a 

Drosophila model, we show that overexpression of either human Lpd or its Drosophila 

orthologue Pico can promote growth and invasion of RasV12-induced cell tumours in the 

brain. Notably, effects were restricted to two populations of Repo-positive glial cells: an 

invasive population, characterised by JNK-dependent elevation of Mmp1 expression, and a 

hyperproliferative population lacking elevated JNK signalling. JNK activation was not 

triggered by reactive immune cell signalling, implicating the involvement of an intrinsic stress 

response. The ability to promote dissemination of RasV12-induced tumours was shared by a 

subset of actin regulators, including, most prominently, Chicadee/Profilin, which directly 

interacts with Pico, and, Mal, a cofactor for SRF that responds to changes in G:F actin 

dynamics. Suppression of Mal activity partially abrogated the ability of pico to promote 

invasion of RasV12 tumours. Furthermore, we found that larval glia are enriched for SRF 

expression, explaining the apparent sensitivity of glial cells to Pico/RasV12 overexpression. 

Taken together, our findings indicate that MRL proteins cooperate with oncogenic Ras to 

promote formation of glial tumours, and that, in this context, Mal/SRF activation is rate-

limiting for tumour dissemination. 
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Introduction 

Regulation of actin-based structures is critical for normal cell adhesion, morphology 

and motility1. Correspondingly, aberrant cytoskeletal dynamics are implicated in the motility 

and dissemination of cancer cells2, 3. In addition to the direct effects of actin reorganisation, 

for example on lamellipodia-like structures at the leading edge of invasive cells4, regulators 

of cytoplasmic actin also control the localisation and activity of myocardin-related 

transcription factors (MRTF/Mal), which are transcriptional coactivators of SRF, by regulating 

the availability of monomeric (G-)actin5. Depletion of nuclear and cytoplasmic G-actin in 

response to increased actin polymerization increases the rate of MRTF/Mal translocation to 

the nucleus, reduces the rate of nuclear export of MRTF/Mal and derepresses the 

expression of genes that require MRTF/Mal for transcription, leading to SRF-dependent 

transcription6-8.  

The Mig-10/RIAM/Lamellipodin (MRL) family of adapter proteins transduce signals 

derived from growth factor receptors, via interactions with Ras-like GTPases and/or 

phospholipids, to changes in the actin cytoskeleton, increased lamellipodia protrusion, cell 

motility and altered cell adhesion9, 10. Effects on the actin cytoskeleton are mediated by direct 

interactions with various actin regulatory proteins, including Ena/VASP, Scar/WAVE and 

Profilin9-11. MRL proteins are also capable of activating SRF signalling by altering the ratio of 

G:F actin12. MRL proteins are therefore good candidates for genes that drive tumour cell 

invasion and metastasis. Indeed, in breast cancer, Lpd is upregulated in tumours with lymph 

node metastases compared to lymph node-negative tumours13 and also in highly invasive 

MDA-MB231 breast cancer cells compared to non-invasive MCF7 breast cancer cells or 

normal breast tissue14. Furthermore, increased expression and membrane localization 

correlate with reduced metastasis-free survival and poor prognosis in breast cancer 

patients15. Mechanistically, MRL proteins promote invasive 3D breast cancer cell migration 

via interactions with the actin regulators Scar/Wave and Ena/VASP15. Lpd is also part of the 

“Ras cancer signature” as it is upregulated in human breast epithelial cells transformed with 

oncogenic Ras16. The “Ras signature” reflects the activation status of the Ras pathway and 

has been successfully used to identify patterns of pathway deregulation in human tumours 

and to identify clinically relevant associations with disease outcomes16. An understanding of 

the functional consequences of MRL-Ras interactions in cancer development is however 

currently lacking.  

Drosophila encodes only one MRL protein, called Pico, enabling the dissection of 

conserved cancer promoting effects of the MRL gene family in an animal model, with the 

potential to help guide studies in mammalian systems17. Many biological processes related 

to tumourigenesis and metastasis are well conserved in flies and nearly all of the genes 

linked to cancer progression in humans are present in the Drosophila genome17, 18. Here we 
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have tested the prediction that MRL proteins might cooperate with oncogenic Ras by 

promoting invasiveness of RasV12-induced tumours in the larval eye disc and brain. Notably, 

we observed tumour overgrowth and invasion, but these cooperative effects were restricted 

to cells expressing the pan-glial marker Repo; loss of overexpression in glia, and not in other 

cell types, completely suppressed oncogenic cooperation. Notably, SRF is strongly enriched 

in glia providing an explanation for why glia were specifically affected. Moreover, 

overexpression of mal, a cofactor for SRF, or chickadee, Drosophila profilin, also cooperated 

strongly with oncogenic Ras to drive glial invasion. Taken together, our findings provide 

experimental evidence for the role of MRL proteins in the hyperproliferation and 

transformation of glial tumours in vivo. Furthermore, Profilin and downstream SRF signalling 

predominantly drive this process rather than other MRL-interactors, Ena/VASP and 

Scar/WAVE, as is the case in other contexts. 

 
 
Results 

Pico co-operates with oncogenic Ras to promote tumour dissemination 

Oncogenic mutations in Ras are frequent events early stages of cancer development, 

driving proliferative overgrowth and contributing to tumour formation. The Ras pathway also 

modulates cytoskeleton organisation, cell motility and expression of metastasis signature 

genes19, but cooperation between oncogenic Ras and its downstream targets are poorly 

understood. To test the interaction between Pico and Ras, we used a cancer model in 

Drosophila in which genetically-defined tumours can be induced in the developing eye disc 

and brain20, 21. In this model (Fig.1A), expression of the Flp gene, under the control of the 

eyeless promoter (eyFLP), is used to irreversibly switch on constitutive, GAL4-mediated 

expression of UAS (upstream activator element) target genes in the developing eye. This is 

achieved by FLP-mediated recombination between two FRT (Flp recombination target) sites 

flanking a linker cassette that otherwise silences the Actin-GAL4 (ActGAL4) driver. Once 

induced, GAL4 binds to and drives the expression of UAS-containing transgenes.  

Using this approach, we examined the effect of overexpressing pico or RasV12 alone 

or together in GFP-labelled cells in the eye imaginal discs and optic lobes of wandering third 

instar larvae. Notably, coexpression of pico and RasV12 led to an accumulation of GFP-

labelled cells and redistribution to more distant sites. This effect was not observed whether 

either gene was overexpressed in isolation (Fig.1B). To quantify the effects on tissue 

overgrowth we captured images of optical sections through brains dissected from the 

different genotypes and measured the volume occupied by GFP-labelled cells. There was no 

significant difference in volume of GFP-labelled cells expressing pico or RasV12 alone 

compared to controls (Fig.1C,D). In contrast, pico and RasV12 co-overexpression resulted in 
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a 1.9 fold increase in volume of GFP-labelled cells in the optic lobes compared to GFP alone 

controls, P<0.001 (Fig.1D).  

Inspection of the distribution of GFP-labelled cells in the brain revealed that GFP-

labelled pico/RasV12 tumour cells had invaded into the ventral nerve cord (VNC) in the 

majority (82/100) of cases, whereas cells expressing pico or RasV12 alone never extended 

beyond the optic lobe (Fig.1C). To quantitate the tumour cell invasion phenotypes produced 

for each of the genotypes, brains were assigned to one of four categories based on the 

degree of VNC invasion observed:  Type 0, no invasion of the VNC; Type I, tumour cell 

invasion occurring down one side of the VNC only; Type II, tumour cells invading both sides 

of the VNC; Type III, significant tumour cell invasion of the VNC combined with fusion of the 

optic lobes (Fig.1E). Cephalic complexes dissected from animals expressing pico and 

RasV12 were entirely composed of Type 0 brains, whereas only 18% of RasV12/pico brains 

were found to exhibit no VNC invasion. 53% of RasV12/pico brains were found to have mild 

Type I invasion, and 21% and 8% of brains were assigned to Type II and Type III categories, 

respectively (Fig.1F). To test functional conservation, we examined the effect of ectopic 

overexpression of human Lpd (hLpd) in this system. Brains expressing hLpd showed no 

evidence of invasion, but, like pico, hLpd was able to drive invasion of RasV12-induced 

tumours, which occurred in 64/100 of cases (Fig.1F).  

 We previously showed that pico promotes coordinated growth and proliferation in 

the wing imaginal discs12 prompting us to wonder whether other promoters of tissue growth 

could also drive the dissemination of otherwise benign RasV12 tumour cells into neighbouring 

tissues. To address this, we tested the effects of co-overexpressing Drosophila cyclin-D 

(cycD) and cyclin-dependent kinase-4 (cdk4) in our assay. There was no significant 

difference in volume of GFP-labelled cells in optic lobes expressing RasV12 with or without 

overexpressed cycD and cdk4, and GFP-labelled cells were never located outside of the 

eye-antennal discs/optic lobe region (Fig.S1). This is in agreement with previous reports that 

proliferative cues such as cycD and cdk4 do not account for presence of tumour cells in the 

VNC21.  

 

Invasive Pico/RasV12 tumours are characterised by elevation of Mmp1 and 

extracellular matrix remodelling 

Degradation of the extracellular matrix by matrix metalloproteases (MMPs) is required during 

tissue remodelling and during the progression of many types of cancer22, 23. To investigate 

integrity of the extracellular matrix, we examined the distribution of Laminin, which is a major 

component both of the basement membrane underpinning the basal side of epithelial cells 

and of the gliovascular basal lamina of the blood brain barrier. In brains ectopically 
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expressing either pico or RasV12, Laminin staining of the optic lobes was found to be smooth 

and uninterrupted. In contrast, discontinuous Laminin staining was observed around the 

optic lobes of RasV12/pico brains, consistent with degradation of the extracellular matrix 

(Fig.2A). When we examined MMP expression we found that Mmp1 was found to be largely 

absent in brains overexpressing either pico or RasV12. In contrast, a marked increase in 

Mmp1 levels was observed in cephalic complexes expressing both pico and RasV12 (Fig.2B). 

Interestingly, Mmp1 expression was not detected in all RasV12, pico cells; Mmp1 staining was 

mainly observed in the marginal regions of the optic lobes and in the tumour cells that had 

invaded the VNC (Fig.2B).  

 

JNK activation is required for Pico/RasV12-mediated MMP expression and 

tumour cell spreading 

Studies of RasV12 tumours with impaired cell polarity (e.g. due to mutations in the tumour 

suppressor gene scrib) have revealed that JNK activation is critical for Mmp1 upregulation 

and tumour cell invasion of the VNC24. To assess the state of JNK signalling in RasV12/pico 

brains, we monitored the levels of puckered, a downstream target of JNK (Martin-Blanco et 

al., 1998) using a lacZ enhancer trap (puc-lacZ). We observed limited puc-lacZ staining in 

brains expressing RasV12 or pico alone, but in RasV12/pico brains we observed a significant 

increase in the number of puc-lacZ-positive nuclei (P<0.01) indicative of elevated JNK 

activation in these cells (Fig.3A,B). Not every cell showed puc-lacZ-positive nuclei indicating 

that JNK activation was not a necessary outcome of RasV12/pico overexpression (Fig.3A).  

 To determine the requirement for JNK signalling in RasV12/pico-mediated 

metastasis we tested the effect of coexpressing a dominant-negative form of the Drosophila 

JNK, encoded by basket (bskDN). Ectopic overexpression of bskDN strongly suppressed JNK 

activation as monitored with puc-lacZ (Fig.3B,C). Strikingly, overexpression of bskDN also 

reduced Mmp1 levels 4.1 fold (P<0.01) in GFP-labelled tumour cells (Fig.3D,E) and also 

almost completely blocked RasV12/pico-mediated tumour cell invasion of the VNC (Fig.3F). 

In the absence of bskDN, evidence of spreading was observed in 80/100 cases of RasV12/pico 

tumours, whereas in siblings co-expressing bskDN, invasion was only evident in 6/100 cases 

(Fisher’s exact test, P<0.0001). Using our scale of the extent of invasion (Fig.1D) the 

average stage score of invasion (ASI) in RasV12/pico larvae was 1.16 ±0.08 (mean ±SEM), 

but this was significantly reduced by coexpression of bskDN to 0.06 ±0.02, (student’s t-test, 

P<0.001). The effect of bskDN was not due to titration of GAL4 in these experiments because 

substitution of the UAS-bskDN element with UAS-GFP restored the invasive capability of 

RasV12/pico (Fig.3F). Taken together, these data indicate that pico cooperates with 
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oncogenic Ras to promote JNK activation, and that JNK activation is essential for invasion of 

RasV12/pico tumours. 

 

TNF-mediated immune response is not required for pico/RasV12-mediated 

invasion 

Accumulating evidence suggests that diversion of host immunity can contribute to the 

acquisition of invasive behaviour. In Drosophila, inflammatory responses, mediated by 

Eiger/TNF-producing haemocytes, trigger JNK activation leading to invasive behaviour of 

RasV12-induced tumours25 (Fig.4A). The mechanism of haemocyte recruitment to tumours is 

not well understood. To test the involvement of the immune response in RasV12/pico brains, 

we examined whether there was accumulation of haemocytes at sites of tumour invasion. 

Although we observed haemocyte recruitment to a proportion of RasV12/pico brains, 

haemocyte number was not correlated with presence or severity of cellular invasion; some 

invasive tumours lacked associated haemocytes (Fig.4B). To test whether pico-mediated 

metastasis is driven by diversion of the host immune response mediated byTNF/eiger, we 

tested the effect of RasV12 pico overexpression in an eiger null genetic background. Loss of 

eiger modestly suppressed invasion in RasV12/pico brains (Fig.4C); whereas 80/100 

RasV12/pico animals showed GFP-labelled cells in the VNC, invasion was observed in 

67/100 RasV12/pico animals lacking eiger (eiger3/eiger3), which was at the borderline of 

significance (Fisher’s exact test, P=0.054). However, there was little effect on the average 

stage of invasion, which reduced from 1.16 ±0.08 to 1.14 ±0.10 (student’s t-test, P=0.88) 

when eiger was absent. Taken together this indicates that pico does not primarily promote 

invasive behaviour through diversion of a TNF-mediated immune response. 

 

Pico cooperates with activated Ras to drive distinct oncogenic outcomes in 

glia  

When we looked at distribution of JNK activation more closely in RasV12 pico brains it was 

apparent that many puc-lacZ positive cells decorated the surface of the optic lobes. This 

non-random distribution made us wonder whether JNK activation was restricted to specific 

cell types. Indeed, we found the combination of eyFLP with AyGAL4 was capable of driving 

expression in a range of cells in the larval optic lobes including glia (Fig.5A), consistent with 

previous reports showing expression in neuroblasts, lamina and medulla neurons, neurophils 

and medulla cortex glia26. When we looked at the distribution of neuronal and glial markers 

in RasV12 pico tumours we found that 96% ±3% of puc-lacZ positive cells in GFP-labelled 

tumours also stained for the pan-glial marker Repo (n=4). GFP-labelled cells invading into 

the VNC were of this type (Fig.5B, arrow); puc-lacZ staining in these cells is consistent with 
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our genetic data indicating a requirement for JNK to mediate Mmp1 expression and 

extracellular matrix breakdown (see Fig.3). Although rare, we did observe a few Repo-

negative GFP-labelled cells with puc-lacZ staining, although interestingly these were 

typically juxtaposed directly next to Repo-positive glial cells (Fig.5B, white arrowhead and 

inset, see Discussion). We also observed a distinct Repo-positive population consisting of 

many small cells that were puc-lacZ negative, located in a region of the optic lobe that had 

appeared to have overproliferated (Fig.5B, yellow arrowhead; Fig.5C). When we counted 

the number of Repo-positive cells in GFP-labelled tumours within the optic lobes (Fig.5C,D), 

we found that RasV12 overexpression led to a 1.6 fold increase in glial number in GFP-

labelled regions compared to GFP only controls (P<0.01). The increase in glial number was 

not matched by a significant increase in GFP-labelled tumour volume (Fig.1), most likely 

because many RasV12-overexpressing cells were small27, suggesting RasV12-expressing glia 

move more quickly through the cell cycle without an accompanying increase in mass. Co-

overexpression of pico significantly enhanced the effect of RasV12 (Fig.5D), leading to a 2.3 

fold increase in glial number compared to GFP alone controls (P<0.05). Taken together, the 

data above indicate that ectopic RasV12 and pico cooperate to promote overproliferation of 

one glial cell population in the developing optic lobe without the activation of JNK, whilst 

promoting JNK activation and cell invasion in another glial population. 

 

Overexpression of RasV12 Pico in glia is necessary for an increase in tumour 

volume and cell invasion 

To test if the tumour overgrowth and invasion phenotypes we had observed in the optic lobe 

were due to ectopic expression of RasV12 and pico in eyFLP-expressing Repo+ glia, we 

repeated our experiments in a repo-GAL80 background to block GAL4-mediated expression 

specifically in repo-positive glia but not in other cell types (Fig.6A). When we measured the 

volume of GFP-labelled tumours in RasV12/pico optic lobes from animals with (n=8) or 

without repo-GAL80 (n=16), we found that repo-GAL80 reduced the mean tumour volume 

2.9 fold (P<0.001) (Fig.6C). The mean intensity of Mmp1 staining in GFP-labelled tumours 

was also reduced 5.1 fold (P<0.001) (Fig.6D). Correspondingly, there was a significant 

reduction in the instances of invasion into the VNC to 5/100 of cases (Fisher’s exact test, 

P<0.0001) and a corresponding reduction in the ASI to 0.05 ±0.02 (P<0.0001) (Fig.6E). As 

an additional test, we further validated these findings by using a more restricted eyeless-

driven FLPase, ey(3.5)FLP, which does not drive substantive expression in the optic lobes of 

the brain28, (Fig.S2). Overexpression of RasV12 pico with ey(3.5)FLP did not replicate the 

growth and invasion phenotypes observed with eyFLP, consistent with our observations that 

overexpression in glia was required, (Fig.S2). Expression of RasV12 specifically in GFP-
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labelled glia with repo-GAL4 was pupal lethal but led to overgrowth and extension of the 

larval VNC (mean VNC length 132% of control, Student’s t-test P<0.05, n=10). Co-

expression of RasV12 with pico, led to lethality at the wandering larval stages and extension 

of the VNC was significantly enhanced (to 187% of control, P<0.01, n=9), again consistent 

with a co-operative interaction in glia (Fig.S3). As part of the “Ras signature”, Lpd is 

implicated to act downstream of oncogenic Ras in human breast epithelial cells prompting us 

to test this possibility in our system. pico knockdown by RNAi did not significantly modify the 

extension of larval VNC exhibited in brains overexpressing RasV12 (P>0.05, Fig.S3), so we 

conclude that pico is not limiting for RasV12 in this context. 

  

SRF is enriched in larval glia in the CNS 

Why should glia be particularly sensitive to coexpression of ectopic pico and RasV12? We 

recently demonstrated that overexpression of pico reduces the ratio of G:F-actin and is 

capable of inducing activation of SRF signalling in vitro12. This prompted us to question 

whether the cooperation between pico and RasV12 was mediated by SRF signalling. Although 

SRF is expressed throughout the adult brain29, where it plays roles in sleep and visual 

memory29, 30, we wondered whether SRF expression is spatially regulated in the CNS earlier 

in development, as it is in other tissues such as the wing imaginal disc (data not shown). 

Notably, we detected strong anti-SRF antibody staining in glia from third instar optic lobes 

(Fig.7A-B). SRF staining was evident both in Repo positive surface glia (Fig.7A) and in other 

glial types (Fig.7B). 

 

The ability of Pico to promote tumour invasion is shared by selected actin 

regulatory genes 

To further examine the contribution of actin dynamics and SRF to the development of 

invasive cell behaviours, we tested the effect of co-overexpressing oncogenic RasV12 

together with Profilin/chic, which has multiple roles in the augmentation of F-actin dynamics, 

or with regulatory proteins that bind Pico and are known to control actin polymerisation by 

affecting the number of free barbed ends: Enabled/ena (anti-capping factor) and SCAR (actin 

nucleation)31. We also tested the effect of ectopic mal, which encodes a cofactor for SRF and 

responds to changes in actin dynamics to induce SRF-dependent gene expression. 

Overexpression of any of the above factors alone in the absence of RasV12 did not induce 

invasive behaviour as determined by the lack of GFP-positive cells in the VNC. However, 

overexpression of mal, chic, ena or scar was sufficient to promote the acquisition of invasive 

behaviour in otherwise benign RasV12-expressing tumours (Fig.7C). Based on the 

percentage number of larvae showing GFP-labelled cells in the VNC, these overexpression 
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constructs can be ranked according to their invasive potential in this system, as follows:  mal 

(88%)> pico (79%)> chic (77%)> ena (35%)> scar (25%), where percentage of larvae with 

invasion into the VNC are shown in parenthesis (n=100 in each case). This is also in 

agreement with the average stage of invasion for RasV12-induced tumours co-expressing 

these regulators: mal (1.38 ±0.09)> pico (1.16 ±0.09)> chic (0.92 ±0.06)> ena (0.35 ±0.05)> 

scar (0.25 ±0.04). When we tested the effect of co-expressing RasV12 and pico together with 

either mal, chic or ena we found the degree of invasion observed was not significantly 

increased compared to the effect of pairwise combinations of these inducers or pico alone 

with RasV12 (Fig.7C). The lack of an additive effect suggests that these proteins may act in 

the same pathway to induce invasion, albeit to different extents.  

MRL proteins interact directly with Profilin, Ena/VASP and the Scar/Wave complex 

via a number of proline-rich regions present in their C-terminal regions9-12, 32. To test whether 

these regions of Pico might be necessary for promoting invasion of RasV12 tumours, we 

expressed a truncated version of pico encoding only its central RA-PH domain (picoRA-PH). 

picoRA-PH failed to promote cell invasion into the VNC alone or together with coexpression of 

RasV12 (0/100 cases of invasion in each case), suggesting that physical interaction between 

Pico and its downstream effectors are important for cooperation with oncogenic Ras. To 

explore the requirement of chic, ena and scar for invasion driven by RasV12 pico we 

combined RasV12 pico with the following loss-of-function alleles or RNAi: chic05205, ena210 and 

scar RNAi (scarIR, VDRC-21908). Notably, chic dominantly suppressed the ability of RasV12 

pico to drive invasion when one copy of the gene was mutated (Fig.7D), significantly 

reducing both the number of cases of tumour invasion in siblings (from 80/100 to 64/100 

cases; Fisher’s exact test, P=0.02) and the average stage of invasion from 1.15±0.08  to 

0.84±0.07  (student’s t-test, P=0.01). Loss of one copy of ena had a more modest effect; 

there was not a significant reduction in the number of cases of invasion (P=0.11) but the 

stage of invasion was significantly reduced (P=0.04). scar knockdown did not significantly 

suppress invasion of RasV12 pico cells into the VNC (Fig.7D). Notably, the same line of scar 

RNAi was observed to suppress the effects of pico overexpression on developmentally 

regulated invasive border cell migration11, consistent with the idea that there are context-

dependent mechanisms by which MRL proteins drive invasion. 

Profilin, Ena/VASP and the Scar/Wave complex affect the actin cytoskeleton directly but are 

also capable of promoting Mal-SRF activity via altered actin dynamics. To assess the likely 

contribution of direct verses indirect effects on the actin cytoskeleton, we tested the effect of 

a dominant-negative version of Mal (malDN), which lacks its C-terminal transcription activation 

domain33. Compared to RasV12/pico control animals, there was a significant reduction in the 

number of cases of tumour invasion in siblings coexpressing malDN (82/100 to 52/100 cases, 

respectively; Fisher’s exact test, P<0.0001). There was also a significant reduction in the 
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average stage of invasion, from 1.19 ±0.08 to 0.64 ±0.07 (student’s t-test, P<0.0001) when 

malDN was present (Fig.7D). Taken together this indicates that indirect effects via Mal/SRF 

signalling is rate-limiting for invasion of RasV12/pico tumours (Fig.7E).  

 

Discussion 

Here, we find that pico overexpression is capable of promoting distinct oncogenic behaviours 

in RasV12-induced tumour cells. In particular, we observed an invasive cell population 

showing elevation of JNK signalling, and a hyperproliferative population lacking JNK 

activation. These effects were restricted to glia since the affected cell populations labelled 

positively with the pan-glial marker, Repo, and cooperation between RasV12/pico was lost 

upon transcriptional repression in glia with repo-GAL80. In glia, JNK is likely to act as a 

proapoptotic signal as it does in epithelia – indeed, subperineurial glial cells possess a 

cryptic JNK-dependent apoptotic programme34. However, any such programme must be 

suppressed by survival signals from oncogenic Ras as it is in other contexts35. We found that 

Mmp1 expression was JNK-dependent, supporting the idea that JNK activation is subverted 

by tumour cells to promote invasion. Haemocytes were not always observed at sites of 

invading RasV12/pico tumours, although we cannot rule out that they had not been present 

prior to the point at which we dissected samples for analysis. Nevertheless, invasion was not 

significantly affected by complete loss of eiger/TNF, which is a key haemocyte-secreted 

cytokine capable of eliciting immune responses, including JNK activation, in tumour cells25. 

One possibility is that transformed glial cells may be resistant to haemocyte attachment 

and/or signalling. Examination of the cell type specific expression pattern of TNF signalling 

components, such as the recently identified TNF/Eiger receptor Grindelwald36 may provide a 

mechanistic explanation for why glia respond differently from epithelial tumour cells to 

circulating immune cells. Alternatively, transformed glia may express inhibitory cell surface 

or secreted molecules making them refractory to the innate immune system, as is the case 

for human glioma cells37.  

 

Interestingly, a small number of Repo negative cells overexpressing RasV12/pico, adjacent to 

Repo positive RasV12/pico tumour cells, also displayed elevated JNK activity. In addition to 

roles in CNS development and function, glia are considered to be primary immune cells of 

the CNS that survey the CNS for neuronal damage, modulating inflammatory responses and 

engulfing debris or foreign material38. The JNK pathway mediates glial engulfment activity in 

Drosophila39, 40, raising the intriguing possibility that RasV12/pico stimulates glial phagocytosis 

of tissue damage caused by premalignant tumour cells. Diversion of the glial damage 

response program by carcinoma cells has previously been reported in murine organotypic 

brain slice co-cultures41, stimulating local invasion in tumours resistant to glial-induced 
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apoptosis. It will therefore be interesting to examine whether this phenomenon is JNK-

dependent. 

 

Recent work has shown the actin cytoskeleton acts both upstream and downstream of 

JNK42-44 and, conceptually, changes in cell tension resulting from altered actin cytoskeleton 

may trigger JNK as part of a stress response. We were interested to explore whether actin 

regulators that associate with Pico could similarly cooperate with RasV12. In breast cancer 

cells, the ability of Lpd to promote 3D invasion relies on its interactions with both Ena/VASP 

and Scar/WAVE15. Although both ena and scar were capable of cooperating with RasV12 in 

our model, their effect was modest compared to the effect of chic (Drosophila Profilin). This 

might be because Ena and Scar are not limiting, or it might reflect a specific requirement for 

Chic, which was also limiting for the effect of pico/RasV12. Interestingly, in this regard, Profilin 

assists in coordination of actin turnover45, 46, which is the driving force for membrane 

protrusion and spreading of some types of glia in the CNS47. Recent work has also 

demonstrated that changes in actin dynamics driven by MRL proteins and their binding 

partners can activate SRF signalling12, 48. Several lines of evidence suggest that Mal/SRF 

signalling is important for pico/RasV12 cooperation: firstly, SRF expression is enriched in glia; 

secondly, the effects of overexpression of mal were at least as potent as those of pico; 

thirdly, malDN suppressed the pico-mediated invasion of RasV12-induced tumours. In 

mammalian cells the majority of SRF target genes encode cytoskeletal components49 and 

recent work in Drosophila suggest that actin itself is a key homeostatic target50. Control of 

Mal/SRF activity therefore may provide a mechanism by which cytoskeletal gene expression 

is coordinated with cytoskeletal regulation.   

In summary, our data indicate that overexpression of MRL proteins is capable of driving 

invasion and overproliferation of RasV12-induced glial cell tumours in an in vivo experimental 

model. Notably, our findings, in glia, implicate Drosophila Profilin and SRF signalling in MRL-

mediated tumour dissemination, whereas interactions between Lpd and Ena/VASP and 

Scar/WAVE have been reported to be critical in the invasion of breast cancer cells. This 

points to important differences in the mechanism of action of MRL proteins depending on the 

cellular context. Given that SRF is capable of promoting human glioma cell migration51 and 

Lpd overexpression has been detected in glioma samples from patients52, investigation into 

whether Lpd or SRF levels are associated with disease progression and patient outcome is 

warranted.  
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Material and Methods 

Fly husbandry and genetics 

Flies were reared at 25°C under standard conditions. All initial Drosophila strains have been 

previously described. 3rd instar larvae were examined 6 days after egg laying. Genotypes 

are provided in a supplementary file. 

 

Immunohistochemistry  

Tissues were dissected from 3rd instar larvae were fixed and stained as ref.53 with minor 

modifications. After fixation for 20 min in 4% (w/v) paraformaldehyde in PBS, dissected 

brains from third instar larvae were washed in PBS with 0.1% Triton-X (PBST), then blocked 

for 2 h in PBST with 5% FCS (blocking solution). Primary antibody staining was done 

overnight at 4ºC in blocking solution, washed three times with PBST and incubated with 

secondary antibody in blocking solution for 2 h at room temperature. After three washes in 

PBST, brains were mounted in Vectasheild mounting media (Vectorlabs). Primary antibodies 

were as follows: mouse anti-phospho-Histone H3 (Abcam, 1:500); rabbit anti-Laminin 

(1:1000); guinea-pig anti-Repo (1:1000); rabbit anti-Repo (1:25,000); mouse anti-NimC1 P1 

54(1:30), mouse anti-Mmp1 (1:1:1 mix of 3A6B4, 3B8D12, 5H7B11 from DSHB diluted 

1:10); mouse anti-β−gal (Promega, 1:100); mouse anti-SRF (Active Motif, 1:100). Secondary 

antibodies were conjugated to Alexa-Fluor 555 or 633 (Invitrogen, 1:500). TO-PRO-3 Iodide 

(Invitrogen, 1:1000) or DAPI was used to visualise DNA.  

 

Image acquisition and analysis 

Dissected tissues were imaged on a Leica MZ10F stereomicroscope for scoring of invasion 

phenotypes, which was done blinded, or on Zeiss LSM710, 780 or 880 microscopes 

equipped with 405nm, 488nm, 568nm and 633nm lasers using either Fluor 20x or Plan 

Apochromat 40x/1.3NA oil immersion objective. Confocal images were imported into 

OMERO55 and adjusted for brightness and contrast uniformly across entire fields where 

appropriate. Figures were constructed in Adobe Photoshop. Quantitative analysis of raw 

confocal data was conducted using Bitplane Imaris version 8.2.0 (Oxford Instruments). The 

GFP channel was segmented into 3D volumes (5µm surface grain size) by absolute intensity 

using an automatically selected intensity threshold. To remove small unattached objects, 

only the two largest volumes were kept per experiment (corresponding in all cases to the 

optic lobes), and their volume measured. To count the number of Repo or puc-lacZ positive 

cells, the above volumes were used to mask the relevant intensity channel, which was then 

subject to spot segmentation using an estimated spot diameter of 5µm and background 

subtraction. Spots were subjected to an automatically-thresholded intensity filter. All 
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automatic thresholding was visually inspected and adjusted if necessary. For quantitation of 

Mmp1 staining, stacks were projected in 'z' and then background subtracted in the Mmp1 

channel. The GFP channel was used to segment, then the selection was measured in the 

Mmp1 channel. Whole animal micrographs were captured with a Leica ZF10 

stereomicroscope or Zeiss Z.1 Lightsheet microscope (see Supplementary Methods for 

details).  
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Figure legends 
 
Figure 1. Pico promotes spreading of RasV12-induced tumours. A, Schematic outlining 

heritable overexpression of UAS transgenes following expression of eyFLP and removal of 

an FRT-flanked linker from Act>GAL4 reconstituting the Act-GAL4 driver. This driver then 

constitutively drives expression of UAS-GFP and other UAS constructs in daughter cells. B, 

Images of whole larvae showing distribution of GFP expression induced in the eye- discs 

and optic lobes of larva of different genotypes, as indicated. Expression of GFP alone or 

together with the transgenes indicated, was driven by flipping-out an FRT-flanked linker from 

an Act>GAL4 element using eyFLP (eyFLP, Act>GAL4). Overexpression of RasV12 with pico 

resulted in a dramatic increase in GFP-marked tissue sometimes leading to the formation of 

GFP foci at more distant sites (arrow). C, Distribution of GFP expression in dissected brains 

showing overgrowth of the optic lobe and invasion of GFP-labelled cells into the ventral 

nerve cord in RasV12, pico brains (VNC, arrows). Scale bar 100μM. D, Quantification of the 

volume of GFP-labelled cells in the optic lobes of the indicated genotypes, based on optical 

sections taken throughout the entire brain. Mean value of individual data points ±SE is 

indicated. E-F, Quantification of the invasion phenotype. E, Individual cephalic complexes 

were assigned to one of four categories, depicted, based on the degree of VNC invasion 

observed: Type 0, no invasion of the VNC, Type I, tumour cell invasion occurring down one 

side of the VNC, Type II, tumour cells invading both sides of the VNC; and, Type III, 

significant tumour cell invasion of the VNC combined with overgrowth/fusion of the optic 

lobes. F, Stacked bar chart showing the percentage of brains expressing either RasV12, pico, 

hLpd, pico/RasV12 or hLpd/RasV12, classified into each of the four categories (n=100 

brains/genotype).  

 

Figure 2. Brains co-expressing RasV12 and pico display extracellular matrix 

degradation and ectopic expression of Mmp1. A, Optic lobes from larvae overexpressing 

pico, RasV12 or RasV12, pico under the control of eyFLP, Act>GAL4, stained with anti-Laminin 

antibody, which labels the surface of the optic lobes. Laminin staining was found to be 

severely interrupted in brains co-expressing RasV12 and pico but not from brains expressing 

pico or RasV12 alone. B, Distribution of the metalloproteinase Mmp1. Little or no Mmp1 

staining was observed in animals expressing RasV12 or pico alone. In contrast, animals co-

overexpressing RasV12 and pico had elevated Mmp1 around the edges of the optic lobes and 

at sites of invasion into the VNC (arrow).  
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Figure 3. Mmp1 accumulation and invasion into VNC is dependent on JNK activation. 

A, Co-overexpression of RasV12 and pico in GFP-labelled tumours (green) leads to JNK 

activation in some tumour cells, based on β-galactosidase staining to detect puc-lacZ (red). 

Top panels show low magnification images of brains, lower panels show magnified images 

of tumours invading into VNC, which are enriched in puc-lacZ staining. Scale bars, 100 µm. 

B, Quantitation of number of puc-lacZ positive foci in GFP-labelled areas of the optic lobes 

from the indicated genotypes. Mean value of individual data points ±SE is indicated. B,C 

Blockade of JNK activation with dominant-negative Bsk/JNK (BskDN) suppresses activation 

of the JNK pathway. C, Representative images showing puc-lacZ induction in RasV12 pico 

tumours and suppression of this effect by BskDN: the top row of images were taken from 

representative RasV12 pico larval brains; the bottom row were taken from siblings 

coexpressing BskDN. D,E Blockade of JNK activation with dominant-negative Bsk/JNK 

(BskDN) suppresses the induction of Mmp1. D, Representative images of RasV12 pico 

tumours with or without BskDN. E, Quantitation of mean intensity of Mmp1 within GFP-

labelled RasV12 pico tumours in the presence or absence of BskDN. Mean value of individual 

data points ±SE is indicated. F, BskDN suppresses RasV12/pico-mediated invasion into the 

VNC, whereas an additional "inert" UAS element (UAS-GFP) does not. Graph summarising 

extent of invasion in the different genotypes (n=100 brains of each type) according to the 

scale introduced in Figure 1, with 3 being the most severe and 0 corresponding to no 

invasion.  

Figure 4. Invasion is not driven by haemocyte recruitment and TNF/Eiger-dependent 

signalling. A, Possible model of extrinsic signalling from haemocytes to JNK activation in 

tumours. In the absence of RasV12, activated JNK leads to cell death, whereas in its 

presence, cell death is suppresed and JNK promotes Mmp1 expression. Consequently, JNK 

and RasV12 coooperate to drive tumour cell invasion. TNF/Eiger-secreting haemocytes that 

are recruited to sites of certain primary tumours, e.g. scrib-/- RasV12, have been reported to 

be capable of providing extrinsic cues that trigger JNK activation, raising the possibility this is 

also the case for pico RasV12 tumours. B, Images of dissected brains showing distribution of 

haemocytes, as detected with an anti-NimC1 P1 antibody. Haemocytes were not detected in 

brains expressing pico or RasV12 alone. In pico or RasV12 brains, haemocytes were 

sometimes observed at sites of invasion, but this was not a necessary outcome. C, Graph 

summarising extent of invasion in the different genotypes (n=100 brains of each type).  

 
Figure 5. Distinct oncogenic effects in glial populations. A-B, Optic lobes from third 

instar larvae, orientated with the VNC to the right of each image. GFP-expressing regions 

are in green, glia are marked with Repo in blue, and JNK activation is marked with puc-lacZ 
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in red. A, GFP-only expressing control showing that reconstitution of Actin-GAL4 after 

flipping out an FRT-flanked linker with eyFLP drives GFP expression heritably in glial 

lineages marked with Repo, as well as other lineages. Some cells are also labelled with puc-

lacZ, although the majority of these lie outside the GFP-labelled area. B, Co-expression of 

RasV12 and pico results in two distinct effects observable in Repo +ve glia (top panels): 

activation of JNK, marked with puc-lacZ expression, and accumulation of glial cells in a 

region proximal to the ventral nerve cord (yellow arrowhead), largely lacking puc-lacZ 

expression. Inset is a magnified image of a Repo -ve cell staining positive for puc-lacZ (white 

arrowhead). Magnified images (bottom) show a GFP and puc-lacZ labelled population that 

has invaded into the VNC (arrow). Scale bars, 50 µm. C, Anti-Repo staining showing the 

effect of RasV12 and pico co-overexpression on glial distribution and number in optic lobes. 

Repo-stained images are 2D projections of confocal z-stacks from the bottom and top of the 

same optic lobe. Bottom sections reveal stereotypical arrangement of glia (arrows) in control 

optic lobes and those overexpressing pico, which is lost upon expression of RasV12. Scale 

bar, 100 µm. D, Graph showing quantification of number of Repo-positive glia in GFP-

labelled areas of the optic lobes from the indicated genotypes. Mean value of individual data 

points ±SE is indicated. 

 
Figure 6. Transcriptional blockade in glia blocks cooperation between RasV12 and 

pico. A, Schematic showing suppression of GAL4-mediated overexpression in glia using 

repo-GAL80. B, Brains (outlined with dashed line in first set of panels) overexpressing 

RasV12, pico with or without repo-GAL80, showing distribution of GFP-labelled cells (green) 

and Mmp1 (red). Animals co-overexpressing RasV12, pico displayed invasion of Mmp1-

expressing cells into the VNC (arrow). Mmp1 staining and invasion were suppressed in 

siblings containing repo-GAL80; optic lobes of these animals were also reduced in size. 

Scale bars, 100 µm. C, Measurements of the volume of GFP-labelled RasV12, pico optic lobe 

tumours with or without repo-GAL80. D, Measurements of mean intensity of Mmp1 staining 

in RasV12, pico tumours with or without repo-GAL80. C-D, Mean value of individual data 

points ±SE is indicated. E, Stacked bar chart summarising extent of invasion in the different 

genotypes (n=100 brains of each type). 

Figure 7. Mal and Chic are rate limiting for tumour dissemination. A-B, Distribution of 

SRF in the third instar larval optic lobes. SRF antibody staining (red) overlaps that of Repo 

(blue) both at the surface (A) of the optic lobes and in cross-section (B). In cross-section, 

staining in epithelial (eg), marginal (mg) and medulla neurophil (mng) glia is evident. C, 

Cooperation between RasV12 and cytoskeletal regulators results in cancer cell invasion into 

the VNC. Stacked bar charts summarising extent of invasion in the different genotypes 
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(n=100 brains of each type) according to the scale introduced in Figure 1, with 3 being the 

most severe and 0 corresponding to no invasion. Shown above each group of charts is a 

summary of statistical tests for key pairwise combinations, as indicated, in each experiment; 

Frequency represents number of brains showing invasion/total number (100 in each case); 

FET, fisher’s exact test; ASI, average stage score of invasion; STT, Student’s t-test. D, 

malDN and chic loss of function partially suppress the effect of RasV12 pico cooverexpression. 

ena and scar loss of function have reduced or no effect, respectively. Results are grouped 

by sibling pairs (overexpressed pico RasV12 ± genetic modifier) and are displayed as in (C). 

E, Model of cooperation between Pico and RasV12 cooverexpression. Pico and RasV12 

cooperate to activate JNK, which is necessary for invasion of glia from the optic lobes into 

the ventral nerve cord. Mal, Chic, and to a lesser extent Ena, are rate limiting for invasion. 

These regulators may contribute directly or indirectly to invasion via changes in the actin 

cytoskeleton (see Discussion).  

Supplementary material 
 
List of genotypes (see file) 
 
Supplementary methods (see file) 
 

Fig.S1 CycD/cdk4 cooverexpression does not cooperate with RasV12 to drive tumour 

growth in the optic lobe or invasion into the Ventral Nerve Cord (VNC). A, 

Quantification of the volume of GFP-labelled cells in the optic lobes of the indicated 

genotypes, based on optical sections taken throughout the entire brain. Mean value of 

individual data points ±SE is indicated. There is no significant difference (student t-test 

P>0.05) in mean tumour volume between the different genotypes. B, Stacked bar chart 

summarising extent of invasion in the different genotypes (n=100 brains of each type). C, 

Representative image of 3rd instar larval brain co-overexpressing RasV12, cycD and cdk4, 

showing complete lack of invasion of GFP-labelled cells into the VNC (arrows). 

 
Fig.S2 Overexpression of RasV12 pico using ey(3.5)FLP does not drive invasion to the 

VNC. A-D, Distribution of GFP expression in dissected brains co-overexpressing the 

indicated genes using ey(3.5)FLP. A, Control brain with associated eye imaginal discs still 

attached (arrows), showing ey(3.5)FLP is relatively specific for the eye imaginal discs, where 

GFP expression is very strong, although a few spots of lower intensity GFP were visible in 

the brain. B-D, Images of brains showing that overexpression of pico and RasV12 alone or 

together do not drive invasion of GFP-labelled cells into the ventral nerve cord. Scale bar 

100μM. 
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Fig.S3 Overexpression of RasV12 pico in glia promotes extension of the Ventral Nerve 

Cord (VNC). A, Quantitation of VNC length from whole-mount larvae expressing GFP and 

the indicated transgenes in glia using repo-GAL4. AU, arbitrary units. P values are from 

student’s t-test. ns, not significant. B, Representative images of control larvae with GFP-

labelled glia and larvae overexpressing RasV12 with or without overexpressed pico captured 

on a Lightsheet (Zeiss Z.1) microscope. The VNC is indicated with a dashed line. Co-

expression of RasV12 and pico leads to extension and bifurcation of the VNC (red arrows). 

The GFP-expression with repo-GAL4 was also detected in the salivary glands (white 

arrows). 
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