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The numerical investigation of dynamic responses to atmospheric tur-

bulence is an important task during the aircraft design and certification

process. Efficient methods are desirable since large parameter spaces

spanned by e.g. Mach number, flight altitude, load case and gust shape

need to be covered. Aerodynamic non-linearities such as shocks and

boundary layer separation should be included to account for transonic

flight conditions. A linearised frequency-domain method is outlined to

efficiently obtain gust responses using computational fluid dynamics.

The Reynolds-averaged Navier–Stokes equations are linearised around

a steady-state solution and solved for discrete frequencies. The result-

ing large but sparse system of linear equations can then be evaluated

significantly faster than its time-domain counterpart. The method is

verified analysing sinusoidal gust responses for an aerofoil and a large

civil aircraft considering a broad range of reduced frequencies. Deriva-

tives of aerodynamic coefficients and complex-valued surface pressures

are compared for time- and frequency-domain approaches. Next, 1-cos

gusts are investigated using an incomplete inverse Fourier transform in

conjunction with a complex-valued weighting function to discuss time

histories of lift coefficients as well as surface pressures. Finally, intro-

duced techniques are applied to conditions arising from certification

requirements to demonstrate the technical readiness. The methods

discussed present an important step to establish computational fluid

dynamics in the routine aircraft loads process.
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Nomenclature
C L = lift coefficient

C M = pitching-moment coefficient

cp = pressure coefficient

cf = skin-friction coefficient

c = chord length

I = identity matrix

Lg = gust length

R = vector of non-linear residual functions

U∞ = freestream velocity

vg = vector of gust disturbances

w = vector of conservative variables

x = vector of grid point locations

ẋ = vector of grid point velocities

x0 = gust off-set

ε = finite difference step-size

ω∗ = reduced frequency

ϕ = vector of phase shifts

Ξ = complex-valued weighting function

I. Introduction

During aircraft design and certification many thousands of dynamic responses due to

atmospheric turbulence need to be investigated, and thus efficient and reliable tools are re-

quired. Since the vast majority of commercial aircraft operate at transonic cruise speeds,

these tools should be able to account for aerodynamic non-linearities, such as recompression

shocks and boundary layer separation, to predict airframe loads accurately. Linear poten-
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tial flow equations, mostly the doublet lattice method [1], are current industrial practice

and predict unsteady aerodynamic loads uncoupled from the steady flow field. Dynamic re-

sponses due to gust excitation are analysed using a frequency-domain sampling process and

afterwards projecting the obtained surface forces onto the structural modes. While offering

fast and robust dynamic response predictions, aforementioned aerodynamic non-linearities

are neglected. Thus, especially at transonic flow conditions, linear potential methods are not

predicting loads conservatively, which either requires correction techniques or more accurate

simulation tools to be applied.

Computational fluid dynamics (CFD) is offering more accurate results at non-linear con-

ditions and, with increasing computational resources, has become a feasible alternative. Gust

response simulations of large aircraft configurations have been accomplished solving the gov-

erning equations in an unsteady time-marching approach [2]. However, due to overwhelming

computational cost even for a single simulation, this approach quickly becomes prohibitive

in an industrial environment. Instead, within the range of their validity linearised

frequency-domain, also known as time-linearised, methods offer a large efficiency

improvement while maintaining the accuracy of the underlying non-linear CFD

model.

Time-linearised methods were initially applied in the field of turbomachinery to model

oscillatory blade motion inside a cascade [3, 4, 5]. The Euler equations are linearised around

a non-linear steady-state solution assuming small amplitude harmonic motion. The first

harmonic of the perturbation is compared with unsteady time-marching approaches [6, 7],

showing excellent agreement at several orders of magnitude reduced computational cost. Re-

sults for external flows are presented for an aerofoil undergoing forced-motion excitation [8].

Forced-motion responses are also published for an aerofoil, a wing and an aircraft in [9],

while a delta wing is discussed in [10] analysing small harmonic oscillations of elastic modes

and control surfaces. A significant speed-up compared with the unsteady non-linear Euler

equations solved in a time-marching approach is reported throughout.

Initial work solving the Reynolds-averaged Navier-Stokes (RANS) equations has again
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been published in the field of turbomachinery [11], showing good agreement between numer-

ical simulations and experimental data for stall flutter including large separation in a blade

cascade. Analysing forced-motion responses for external flows, time-saving factors between

one and two orders magnitude have been reported for aerofoils and wings [12, 13, 14]. A sim-

ilar decrease in cost was also demonstrated for a full civil aircraft at cruise conditions [15].

Independently of each other, several authors recently proposed an extension

of the frequency-domain method towards gust response simulations [16, 17, 18].

In [17] frequency-domain results are projected onto structural modes and a ratio-

nal function approximation is applied to analyse aperiodic 1-cos gust responses.

Instead, the current work proposes a direct complex-valued superposition of

frequency-domain response data which allows the analysis of aerodynamic gust

responses independently of structural dynamics.

After outlining the theory, the time-linearised gust approach is verified for

several test cases. Results are first presented for an aerofoil in sub- and transonic

attached-flow conditions and further in a challenging post-buffet, detached-flow

situation. The validity of the method at a broad range of reduced frequen-

cies is ensured by comparing transfer functions of lift coefficient. Furthermore,

complex-valued surface pressure distributions and influence of the gust ampli-

tude are analysed to discuss the assumption of a dynamically linear response.

Secondly, results are shown for a large civil aircraft at cruise conditions, again

comparing complex-valued surface pressures and global coefficients. Thirdly, 1-

cos gust excitations, as defined by international certification requirements, are

discussed to demonstrate the maturity of the method for industry-relevant ap-

plications.
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II. Method Formulation

A. Time-Linearised Aerodynamics

This section outlines the theory behind the time-linearised gust approach and

the complex-valued superposition to obtain aperiodic time-domain responses.

All presented equations contain only terms relevant to gust response to keep the

theory section as concise as possible. The governing equations in semi-discrete vector

form, representing the non-linear RANS equations as arising from the CFD formulation, are

written as

ẇ = R(w, vg) (1)

where w denotes the vector of conservative variables, R is the non-linear residual

corresponding to the unknowns and vg indicates external disturbances due to various gusts.

The difference between the vector of conservative variables w and an equilibrium solution

w0 is introduced as

∆w = w−w0 (2)

and accordingly for external disturbances ∆vg = vg − vg0. Assuming small perturba-

tions, a first-order Taylor expansion is applied around the equilibrium point

d∆w
dt

= R(w0, vg0) + ∂R
∂w

∆w + ∂R
∂vg

∆vg (3)

where ∂R
∂w describes the Jacobian matrix with respect to all fluid unknowns and ∂R

∂vg
denotes

changes in residual due to gust excitation. Since all derivatives are formed around the

same equilibrium point, |w0,vg0 is omitted in the notation. The first term on the

right-hand side of the latter equation is equivalent to the non-linear steady flow

residual which accounts for aerodynamic non-linearities and is assumed to be

converged to machine precision. While the steady flow solutions converge suffi-

ciently for all presented cases in this paper, a linearised system can be solved also

for steady flow fields not fully converged. However, the achieved accuracy highly
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depends on the investigated flow conditions. A rough and initial investigation is

presented in [19] reporting still fair agreement close to the buffet onset.

Subsequently, the system is transferred into frequency domain assuming the disturbance

vector ∆w and external excitation vector ∆vg change harmonically in time. Thus, Eq. (3)

becomes after re-arranging (
∂R
∂w
− iω∗I

)
ŵ = − ∂R

∂vg
v̂g (4)

with ŵ and v̂g denoting complex-valued Fourier coefficients. The reduced frequency ω∗

is normalised using the reference chord length cref and the freestream velocity

U∞.

Applying the chain rule, the right-hand side in Eq. (4) becomes

∂R
∂vg

v̂g = ∂R
∂ẋ

∂ẋ
∂vg

v̂g (5)

where ẋ describes the artificial mesh velocities applied to model the gust during

the CFD calculation using the field velocity method [20]. Since the relation

between gust disturbance vg and artificial mesh velocity ẋ is simply

ẋ = −vg (6)

the right-hand side term can be written as

∂R
∂vg

v̂g = −∂R
∂ẋ

v̂g (7)

A finite-difference evaluation

∂R
∂ẋ

v̂g = R(+εv̂g)−R(−εv̂g)
2ε

(8)

with a known gust shape vector v̂g and ε as the finite-difference step size is used to

solve Eq. (7) without computing the matrix explicitly. The cost of two additional
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Figure 1. Sketch of gust parameters

residual evaluations is necessary to construct the right-hand side before solving

the linear system, while the computational overhead of forming and storing the

matrix explicitly can be avoided.

Furthermore, an analytical description of the gust vector is introduced as

v̂g(x, ω∗) = vgzeiϕ(x,ω∗) (9)

where vgz and ϕ(x, ω∗) denote the constant vertical gust amplitude and the phase

shift vector according to the spatial location vector x, respectively. The phase

shift can either be obtained from a Fourier transform of a sinusoidal time-domain

signal or, more easily and based on linear potential theory [21], using the ex-

pression

ϕ(x, ω∗) = (x + x0) ω∗

cref
(10)

where x0 is the initial distance between gust and airframe. All gust parameters

are visualised in Fig. 1. The initial distance x0 can be chosen arbitrarily while

it is common to let the gust start close to the airframe to save computational

time, but not too close to avoid errors during the first few time-steps. Similar

expressions can also be derived for lateral gusts by applying the corresponding

amplitude and modifying the phase shift accordingly.

Once the discrete frequency response function is calculated, results to arbi-

trary gust excitations ∆w can be obtained applying a superposition in conjunc-

7 of 29

American Institute of Aeronautics and Astronautics



tion with a complex-valued weighting function denoted by Ξ(ω∗)

∆w =
∑

j

<
(
Ξ(ω∗j )ŵje

iω∗
j t
)

(11)

where < describes the real part of the following complex-valued coefficients.

While the linearised solutions ŵj are independent of the aperiodic gust shape of

interest, only the weighting function needs to be re-computed using a Fourier

transform on the excitation signal.

In general, non-periodic time-domain signals include an infinite range of fre-

quencies. However, assuming the magnitude of the excitation as a function

of reduced frequency is decaying, an incomplete, inverse Fourier transformation

can be applied considering only dominant frequencies. The time- and frequency-

domain representations for three different excitation types are shown in Fig. 2.

For sinusoidal gusts, only the frequency corresponding to the wavelength is of in-

terest. Contrary, both other signals excite an infinite range of frequencies. While

the 1-cos gust exhibits roots at several frequencies, the pulse excitation shows

no roots in the analysed frequency range [22]. The mathematical description

of the pulse excitation as well as its application to obtain dynamic derivatives

efficiently using CFD is presented in [23]. If the frequency response function is

created from a time-marching approach, the pulse function is computationally

more efficient compared to single-frequency excitation analysis since only one

simulation is required.

B. Computational Fluid Dynamics Method

Simulations for all presented test cases are performed using the DLR-TAU

code [24] solving the RANS equations in conjunction with the Spalart–Allmaras

turbulence model [25]. Inviscid fluxes are discretised applying a central scheme

with the scalar artificial dissipation of Jameson, Schmidt and Turkel [26]. Exact

gradients used for viscous and source terms are computed using the Green–
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a) Time domain b) Frequency domain

Figure 2. Excitation signals represented in time and frequency domain

Gauss approach. Steady-state solutions are obtained utilising the backward Eu-

ler method with lower-upper Symmetric–Gauss–Seidel iterations [27] and local

time-stepping. Convergence is accelerated further by applying a case-dependent

multigrid scheme. During unsteady simulations a dual time-stepping combined

with the second order backward differentiation formula is used. Gusts are in-

cluded using the field velocity approach which introduces an artificial mesh veloc-

ity [20]. The velocity term is added to the governing equations and is prescribed

based on the gust excitation while no deformation of the computational grid is

required.

Time-domain solver settings are summarised in Tab. 1. For the investigation

of sinusoidal excitations, the unsteady time-step size is chosen indirectly by

defining the number of steps per period. Analysing 1-cos gust excitations, time-

step size and number of time steps follow from numerical experiments. For pulse

excitations the number of steps is increased by a factor of four while the time-

step size is halved compared with a 1-cos excitation. Further when a Cauchy

convergence criterion is applied, a tolerance of 10−8 for the relative error of the

drag coefficient, in addition to an abort criterion based on the density residual
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excitation cases 1/2 case 3 aircraft case
Abort density residual both 10−3 10−5 10−3

Cauchy convergence crit. both 3 5 3

Multigrid cycle scheme both 3w++ sg 2v
Time-steps per period sine 64 128 128
Number of periods sine 10 15 15
Time-step size 1-cos 0.02 0.02 0.0015 s
Number of time-steps 1-cos 3000 3000 1280

Table 1. Time-domain numerical parameters

cases 1/2 case 3 aircraft case
Number of Krylov vectors 30 40 100
Number of deflation vectors 10 15 20
Abort density residual 10−8 10−8 10−6

Table 2. Frequency-domain numerical parameters

is used.

The linearised frequency-domain formulation is based on a first-discretise-

then-linearise, matrix-forming approach with an analytical, hand-differentiated

Jacobian matrix. Linear systems arising from this approach are solved using a

generalised conjugate residual solver with deflated restarting [28]. In all cases

a block incomplete lower-upper factorisation of the Jacobian matrix with zero

level of fill-in is applied for preconditioning [29]. The number of Krylov vectors

used to solve each linear system together with the linear convergence criteria

are given in Tab. 2. The higher number of vectors for aerofoil case 3 compared

to cases 1 and 2 accounts for the increased stiffness of the linear system caused

by the large shocked-induced separation.

The DLR-TAU code is widely used in the European aerospace sector and

validations of the code are available in the literature for steady [24, 30] as well as

unsteady cases [30, 31]. Since the time-linearised method provides results identi-

cal to the unsteady time-marching RANS equations for small amplitudes, results

in this paper are compared with their time-domain counterparts rather than ex-

perimental data. Further, experimental data for harmonic gust excitations are
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test case Mach number angle of attack (deg) attached flow
case 1 0.3 0.0 3

case 2 0.8 0.0 3

case 3 0.8 3.0 5

Table 3. Description of test cases for NACA0012 aerofoil

currently not available in the literature to the authors knowledge.

III. Aerofoil Results

Results are presented for a NACA0012 aerofoil using a mesh consisting of 70,000

grid points with a first wall-normal spacing of one or less in wall units. Two attached-flow

cases (case 1 and 2) and one post-buffet, detached-flow case (case 3) are investigated with

a Reynolds number of ten million. Mach number and angle of attack for all cases are given

in Tab. 3. The steady-state surface pressure distribution is shown in Fig. 3a for all three

cases after converging the density residual to machine precision. While no shock

is present for case 1, both transonic-flow cases feature a strong shock. In case 3 the strong

shock causes the flow to detach, resulting in a negative skin friction coefficient from the

shock foot to the trailing edge as presented in Fig. 3b.

The linearised frequency-domain (LFD) method is verified at several reduced frequen-

cies by comparing frequency response functions of the lift coefficient to equivalent time-

domain (TD) results. Instead of producing TD solutions separately for each frequency of

interest, a pulse signal is used to excite all relevant frequencies during one unsteady time-

marching simulation. A Fourier transform of the unsteady lift coefficient is then performed

and resulting complex-valued Fourier coefficients are weighted by the Fourier transform of

the pulse excitation signal. A dynamically linear response is ensured by setting the gust

excitation velocity to 0.001% of the freestream velocity. Perfect agreement between both

simulation methods is observed throughout for real and imaginary parts as seen in Fig. 4.

Real and imaginary parts for both attached-flow cases show only positive values in the in-

vestigated frequency range, whereas a change of sign in the real part and a maximum in the
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a) Surface pressure distribution b) Skin-friction distribution

Figure 3. Steady-state surface pressure and skin-friction distribution for NACA0012 aerofoil

a) Real part b) Imaginary part

Figure 4. Frequency response functions of lift coefficient for aerofoil test cases

imaginary part is present for case 3 at a reduced frequency of about 0.5. Similar behaviour

has been presented for forced-motion simulations close to the buffet onset [32, 33, 34].

Complex-valued surface pressure distributions for all three aerofoil cases obtained from

LFD simulations are compared with their corresponding TD counterparts in Fig. 5. A re-

duced frequency of 0.2, randomly chosen, is investigated for all flow conditions.
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a) Real part case 1 b) Imaginary part case 1

c) Real part case 2 d) Imaginary part case 2

e) Real part case 3 f) Imaginary part case 3

Figure 5. Complex-valued surface pressure coefficients for sinusoidal gust with ω∗=0.2.
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Results from TD are produced applying a Fourier transform to the instanta-

neous surface pressures, omitting the initial transient response. All values are

normalised by the gust excitation amplitude. Maximum values in the subsonic

case are located around the leading edge in real as well as imaginary parts and

excellent agreement between both simulations is observed in Figs. 5a and 5b.

For case 2 the highest amplified region is around the shock location, as shown

in Figs. 5c and 5d for real and imaginary parts, respectively. Again, coinciding

results between the TD and LFD approach are obtained. Even at the severe

flow conditions of case 3, including a strong shock followed by a large area of

shock-induced boundary layer separation, excellent agreement is achieved as vi-

sualised in Figs. 5e and 5f. Even though not shown here, results at different

reduced frequencies are as satisfying as the ones presented.

In terms of computational cost the frequency-domain solve is between one to two or-

ders of magnitude faster than the corresponding non-linear time-marching solution for both

attached-flow cases. While unsteady time-marching simulations are highly affected by the

investigated flow topology, resulting in increased computational cost at severe flow condi-

tions, the frequency-domain approach is much less sensitive provided a robust linear solver

is applied. Indeed, even higher time-saving factors are achieved for case 3.

The amplitude of the lift coefficient, normalised using the linearised response and consid-

ering the first harmonic only for TD data, over gust amplitude is shown in Fig. 6. Naturally,

a constant line is obtained from the LFD approach whereas non-linear time-marching so-

lutions start to differ with increasing gust amplitude. These differences are a measure of

non-linearity induced by the increased amplitude. For all cases, results coincide for very

small gust amplitudes, demonstrating that the linearised method is capable of fully repro-

ducing dynamically linear responses. With increasing amplitude of gust excitation, the

resulting magnitude of the lift coefficient decreases in cases 1 and 3, while for the transonic

attached-flow case no significant drop is observed. Once amplitudes are high enough to cause

either significant shock movement or separation, the unsteady lift increases extensively in
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Figure 6. Amplitude of lift coefficient over gust amplitude for sinusoidal gust with ω∗=0.2

a) Lg/cref = 5 b) Lg/cref = 20

Figure 7. Change in lift coefficient scaled by gust amplitude due to 1-cos gusts for case 1 with
varying number of retained frequencies

case 1 and 2. In case 3 on the other hand, the separation area increases with increasing gust

amplitudes and thus generated lift decreases.

Responses to 1-cos gusts excitation are finally obtained by an incomplete inverse Fourier

transform of several discrete frequency-domain results in conjunction with a complex-valued

weighting function as outlined in Sec. II. The influence of the reduced frequencies,

retained during the inverse Fourier transform, is analysed for two different gust
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a) case 2 b) case 3

Figure 8. Change in lift coefficient scaled by gust amplitude for 1-cos gusts with different gust
lengths

lengths for case 1 in Fig. 7 with a constant gust amplitude of 1% of the freestream

velocity. With the spacing kept constant at ∆ω∗ = 0.01 and sampling always start-

ing at ω∗ = 0, the number of frequencies nω∗ is varied between 15, 30 and 45. For

shorter gust lengths a higher number of frequency-domain results is necessary to

accurately predict loads, while with increasing gust length the affected frequency

range is reduced. Thus, 45 equally spaced reduced frequencies are needed for

Lg/cref = 5 to achieve an error ∆CL,LF D,max−∆CL,T D,max

∆CL,T D,max
below 1%, while this number

decreases to 15 for Lg/cref = 20. Although not shown here, the influence of the

step size ∆ω∗ is analysed as well. Whereas for shorter gust length a larger step

size is preferable, the applied step size can be reduced significantly if only long

gusts are of interest. However, the sampling process including the choices of ∆ω∗

and nω∗ highly depends on the aperiodic gust of interest analysed afterwards.

Dynamic results for both other cases are shown in Fig. 8 in comparison to the

corresponding unsteady time-marching results for non-dimensional gust lengths

of Lg/cref = 5, 10 and 20. While the gust amplitude for the transonic, attached-

flow case is 1% of the freestream velocity, for the detached-flow case a reduced
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value of 0.001% of the freestream velocity is used to ensuring a dynamically

linear response. Overall good agreement between both solution methods for all

gust lengths is observed. Computational cost, if 45 samples are computed, is

equivalent to one unsteady time-marching simulation. However, based on this

sampling data, various gust parameters of interest, e.g. gust shape, gust length

and gust off-set, can be analysed at minimal extra cost provided the affected

frequency range is covered. On the contrary, the time-domain analysis needs to

be redone for each gust-parameter change.

IV. Large Civil Aircraft Results

The final presented test case is a large civil aircraft. The computational mesh consists

of 130,000 points on the surface and nearly 8 million points throughout the computational

domain. A steady-state solution at a Mach number of 0.8 and an altitude of 10 km

is obtained using an elastic trimming procedure based on Broyden’s method [35], which bal-

ances lift and weight while ensuring zero pitching moment. The steady simulation includes

94 structural modes to represent elastic deformation while for trimming an artificial mode

for the elevator deflection is used. The elevator deflection and angle of attack are iteratively

adjusted until the desired coefficients are reached while applying the radial basis func-

tion method to deform the computational grid [36]. After each iteration step

surface loads are projected onto the structural degrees of freedom to determine

the structural deformation and subsequently deform the mesh. The final surface

mesh, after driving the density residual to converge seven orders of magnitude,

is visualised in Fig. 9a. A strong shock along the wingspan at roughly 70% chord length

can be seen in the steady surface pressure distribution in Fig. 9b. Furthermore, the effects

of the first wing bending mode in conjunction with the torsion mode cause a decrease of

sectional lift towards the wing tip. The elevator is deflected during the trimming process

resulting in a strong suction area around the leading edge but no shock formation.

First, the convergence behaviour of the density residual as well as the complex-valued
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a) Surface point distribution b) Steady surface pressure distribution

Figure 9. Surface mesh and steady-state surface pressure coefficient for civil aircraft

coefficients of lift and pitching moment are analysed while solving the frequency-domain sys-

tem for a reduced frequency of 0.073. Results are presented in Fig. 10 with coefficients

normalised by their converged values. Once the residual has converged five orders of mag-

nitude, both coefficients remain essentially unchanged. Therefore, if only integrated loads

are of interest, simulations can be stopped earlier, resulting in an additional time-saving of

50% compared with fully converging the system. For the remainder of the discussion, the

density residual is driven to drop six orders of magnitude, ensuring converged solutions for

integrated loads as well as surface pressures.

Investigating the same reduced frequency as before, the influence of the finite-difference

step size ε when forming the right-hand side in Eq. (8) is analysed. Figure 11 shows the

magnitudes of lift and pitching moment coefficients, normalised to converge towards one, for

a range of finite-difference step sizes. Results independent of the step size are obtained below

10−3 for both coefficients, while larger values result in increasing magnitudes with a higher

impact on the moment. A value of 10−4 is applied throughout in the following discussion to

ensure step-size independent results.

Comparing frequency response functions of lift and pitching moment coefficients, the

quality of the presented method is shown at several reduced frequencies for the complex

three-dimensional test case. Similar to the aerofoil test cases, a gust pulse excitation is used

18 of 29

American Institute of Aeronautics and Astronautics



Figure 10. Linear convergence of frequency-domain gust approach

Figure 11. Influence of finite-difference step size

to obtain the frequency response function with just one unsteady time-marching simulation.

A Fourier transform of the unsteady coefficients of lift and pitching moment is performed and

resulting complex-valued Fourier coefficients are weighted by the Fourier transform of the

input signal. The amplitude of the excitation during the time-marching simulation is set to

0.001% of the freestream velocity, ensuring a linear dynamic response. Real and imaginary

parts of the coefficients, presented in Figs. 12a and 12b, show excellent agreement at all

frequencies between time- and frequency-domain predictions.
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a) Real part b) Imaginary part

Figure 12. Frequency response functions of lift and moment coefficients

Complex-valued surface pressure distributions are compared at a reduced frequency of

0.073 to analyse the LFD gust method in more detail. Reference time-domain solutions

are generated simulating a sinusoidal gust with an excitation amplitude of 0.001% of the

freestream velocity for 15 periods and then performing a Fourier transform on the instan-

taneous surface pressures during the final period. Frequency-domain solutions on the other

hand are readily available once the linear system is solved. Starboard-wing results are dis-

played in Figs. 13a and 13b for real and imaginary parts with solid and dashed lines denoting

time- and frequency-domain solutions, respectively. Even at challenging flow topologies good

agreement between both methods is obtained. Around the shock at 70% chord length on the

upper surface the highest pressure perturbations occur, again with no differences between

the simulations. Excellent agreement is observed also around the wing-pylon junction, which

causes complex flow behaviour due to vortices. In addition, results are compared for the el-

evator and fin in Figs. 13c and 13d with similar good agreement. Highest perturbations

are located around the leading edge caused by the suction area since no shock formation is

present.

Results are also compared by extracting slices from the wing and elevator surfaces, the

locations of which are indicated by black lines in Fig. 13. Real and imaginary parts are nor-
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a) Real part on starboard wing b) Imaginary part on starboard wing

c) Real part on tail d) Imaginary part on tail

Figure 13. Complex-valued surface pressures for sinusoidal gust with ω∗ = 0.073 showing time-
and frequency-domain results as solid and dashed lines, respectively. Black lines indicate
locations of extracted sections.

malised by the excitation amplitude, while the x-axis is scaled by the local chord length. Fig-

ures 14a and 14b present complex-valued pressures for the first slice at 75% semi-wingspan,

showing good agreement between the two simulation techniques. The overall trend is similar

to the previously discussed aerofoil results of case 3 with maximum values around the shock

location. Some minor differences occur between LFD and TD simulations at the shock lo-

cation for both real and imaginary components. Reducing the excitation amplitude further
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a) Real part at 75% semi-wingspan b) Imaginary part at 75% semi-wingspan

c) Real part at 32% semi-wingspan d) Imaginary part at 32% semi-wingspan

e) Real part at 75% semi-elevatorspan f) Imaginary part at 75% semi-elevatorspan

Figure 14. Sectional complex-valued pressure distributions for sinusoidal gust with ω∗ = 0.073
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and imposing stricter unsteady convergence criteria, also these minor differences disappear.

The second location at 32% semi-wingspan investigates surface pressures at the junction of

wing, pylon and nacelle. Results for real and imaginary parts are displayed in Figs. 14c and

14d. Note that internal nacelle surfaces are ignored for visualisation purposes. Even in this

challenging flow region results from both methods are in excellent agreement. The third

slice is located at 75% semi-elevator span and results are presented in Figs. 14e and 14f. In

comparison to previous sections on the wing no shock formation is present on the elevator,

thus maximum values for real and imaginary part appear around the suction region with

excellent agreement between time- and frequency-domain methods.

The frequency-domain gust response approach for the large civil aircraft is now used

to investigate dynamic responses to realistic 1-cos gusts. First, the influence of the

chosen time-step size for all TD simulations is investigated for a 1-cos gust with

Lg = 116 m. Whereas doubling the time-step size from its baseline value of

0.0015 s induces an error of 0.75% on the maximum lift coefficient, halving the

time-step size results in a difference of 0.015%. Thus, the applied time-step

offers a reasonable trade-off between computational time and achieved accuracy.

Frequency-domain sampling data is produced at 15 reduced frequencies between

0 and 0.6 to cover the frequency range of interest for all gust lengths defined by

the European Aviation Safety Agency in CS 25.341 [37]. Three gust lengths of

Lg = 18, 116 and 214 m are analysed representing the shortest, longest and also

a medium value. Amplitudes are chosen in accordance with the certification

requirements and are in the order of 5% of the freestream velocity.

The change in lift coefficient for all three gust lengths is shown in Fig. 15a.

If the gust amplitude is set to 0.001% of the freestream velocity excellent agree-

ment between a (then-linearised) time-domain simulation and LFD is obtained

for Lg = 214 m once scaling the amplitude accordingly. Similar behaviour is

expected for the other gust lengths. While nearly perfect agreement is also

observed for the shortest gust length of Lg = 18 m, minor differences in the
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a) Lift coefficient history b) Difference in surface pressure

Figure 15. History of lift coefficient following different 1-cos gusts and surface-pressure dif-
ference at peak load for Lg = 116 m

maximum lift coefficient as well as in the lift decay are observed for longer

gusts. These discrepancies are caused by a dynamically non-linear response

near the maximum lift coefficient during the time-marching simulation since an

increasing gust length results in a larger gust amplitude due to the certification

requirements [37]. The frequency-domain approach, however, assumes a dynam-

ically linear response and is thus overpredicting the maximum lift coefficient. It

should be noted that once dynamically non-linear phenomena are present the

LFD method is, strictly speaking, no longer valid since the assumption of linear

superposition is not fulfilled. Nevertheless, loads are conservatively predicted at

several orders of magnitude reduced computational cost.

For Lg = 116 m the relative surface pressure difference at maximum lift co-

efficient is displayed in Fig. 15b showing values below 1% on the majority of

the surface. Since a non-linear shock motion and a corresponding amplitude de-

crease occur during the time-domain analysis, the highest difference of around

10% arises close to the steady shock location. In addition, some minor discrep-

ancies of 5% are present around the leading edge, caused by the same amplitude
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Task Cost
Time-domain simulation (single 1-cos response) 48.73 h
Frequency-domain sampling (15 frequencies) 9.78 h

a) Rebuilding global coefficients 0.01 h
b) Rebuilding surfaces pressure distributions 0.04 h

Table 4. Comparison of computational cost for aircraft case

mechanism.

Computational cost is presented for the two simulated approaches in Tab. 4.

Timings were obtained on the UK based high power computing facility ARCHERa

using 192 standard compute cores. Since the computational time for a TD 1-cos

simulation depends on the investigated gust length, the time listed with 48.73 h

is an average of all three gust responses. The time of 9.78 h covers the entire

solution time for all 15 linear systems including the calculation of the right-hand

side vector. Subsequent reconstruction of global coefficients and surface pressure

distributions is negligible. Thus, the LFD method already offers a speed-up fac-

tor of roughly 5 compared to a single 1-cos time-marching response. As discussed

in detail above, the frequency-domain solutions can be recycled to investigate an

arbitrary time-domain signal, as long as the excited frequency range is covered.

Unsteady time-marching simulations on the other hand need to be repeated for

each change in gust parameter. Based on [38] a number of 20 different gust

lengths at a given flight condition should be analysed during the certification

process. Hence, the LFD approach offers a speed-up of two orders of magnitude

compared to unsteady time-domain simulations for all gust lengths of interest,

while still predicting loads conservatively.

V. Conclusion

A method is presented to efficiently compute the aerodynamic response of a rigid aircraft

structure due to gust encounter. The Reynolds-averaged Navier–Stokes equations are first
aAdvanced Research Computing High End Resource.
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linearised around a non-linear steady-state solution, and resulting linear systems are then

solved with an appropriate right-hand side to describe the gust excitation. Responses to

various sinusoidal gusts are first computed to reconstruct an arbitrary gust encounter in the

following, utilising a complex-valued superposition in conjunction with an incomplete inverse

Fourier transform. In comparison with an unsteady time-marching approach computational

cost is significantly reduced by two orders of magnitude when running a sufficient number

of gust lengths.

Results are presented for a NACA0012 aerofoil at three different flow conditions, includ-

ing sub- and transonic attached-flow cases and a post-buffet, detached-flow case. Excellent

agreement compared with unsteady time-marching simulations is observed both for inte-

grated aerodynamic coefficients and complex-valued surface pressures at various frequencies.

The influence of the gust amplitude is visualised to analyse the assumption of a dynamically

linear response around a non-linear steady state. Responses to 1-cos gusts are reconstructed

from the individual sinusoidal responses with good agreement at all flow conditions.

A large civil aircraft is then analysed to build confidence in the method using a test

case of industrial interest. Again, excellent agreement between the time- and frequency-

domain results is achieved for complex-valued surface pressure distributions globally as well

as in chosen wing and elevator sections. Responses to characteristic 1-cos gusts as defined

by international certification authorities are reconstructed from sinusoidal responses and

compared with corresponding non-linear time-marching simulations. Even for this complete

aircraft configuration accurate predictions at two orders of magnitude cost reduction are

demonstrated, thus showcasing the maturity of the linearised frequency-domain approach

for industrial gust response simulations.

Besides analysing loads resulting from a dynamic response without struc-

tural deformation, the frequency-domain gust method offers the possibility to

be used for dynamic loads analysis including structural responses. While a pro-

jection of surface forces onto structural eigenmodes is a well known approach,

the construction of a reduced order model combining gust modes from proper
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orthogonal decomposition and structural modes is an alternative.
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