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ABSTRACT 

Previous studies have suggested that CD133+ cells isolated from human kidney biopsies have 

the potential to ameliorate injury following intravenous (IV) administration in rodent models 

of kidney disease by integrating into damaged renal tissue and generating specialised renal 

cells.  However, whether renal engraftment of CD133+ cells is a prerequisite for ameliorating 

injury has not yet been unequivocally resolved. Here, we have established a cisplatin-induced 

nephropathy model in immunodeficient rats to assess the efficacy of CD133+ human kidney 

cells in restoring renal health, and to determine the fate of these cells after systemic 

administration. Specifically, following IV administration, we evaluated the impact of the 

CD133+ cells on renal function by undertaking longitudinal measurements of the glomerular 

filtration rate using a novel transcutaneous device. Using histological assays, we assessed 

whether the human kidney cells could promote renal regeneration, and if this was related to 

their ability to integrate into the damaged kidneys. Our results show that both CD133+ and 

CD133- cells improve renal function and promote renal regeneration to a similar degree. 

However, this was not associated with engraftment of the cells into the kidneys. Instead, after 

IV administration, both cell types were exclusively located in the lungs, and had disappeared 

by 24 hours. Our data therefore indicate that renal repair is not mediated by CD133+ cells 

homing to the kidneys and generating specialised renal cells. Instead, renal repair is likely to 

be mediated by paracrine or endocrine factors.  
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INTRODUCTION   

Acute kidney injury (AKI) is associated with an abrupt decline in renal function, and is 

reported to have a mortality rate ranging from 18% to 80%1,2. The severity and duration of the 

acute injury correlates with the incidence of progression to chronic or even end stage renal 

disease (ESRD)3. Successful therapeutic interventions of AKI may not only promote recovery 

from acute injury, but could also decrease the incidence of ESRD.  

Cisplatin is a chemotherapy drug that is used to treat a wide range of solid  tumours4, but can 

cause severe nephrotoxicity, which is associated with 20-40% reduction in the glomerular 

filtration rate (GFR), increased serum urea, elevated serum creatinine (sCr) and acute tubular 

necrosis5,6.  

In rodent models, cisplatin-induced AKI is routinely used to test the efficacy of novel 

therapies7-11, including a range of cell-based regenerative medicine therapies12. Studies which 

tested the efficacy of mesenchymal stem/stromal cells (MSCs) showed that these cells 

promote repair through the secretion of paracrine factors that stimulate the regeneration of 

host renal tissue12-14. In contrast, nephron progenitor cells derived from human fetal kidneys 

appear to improve renal health by integrating into damaged rodent kidneys and generating 

specialised renal cells15.  

Recently, a population of putative progenitor cells expressing the glycosylated isoform of 

CD133 (Prominin-1) was identified in human adult kidneys16,17. CD133 is a marker of cancer 

stem cells and has been used to isolate stem and progenitor cells from several tissues18. 

Human adult kidney-derived CD133+ cells have been shown to ameliorate injury following 

intravenous (IV) administration in mouse models of glycerol-induced rhabdomyolysis16,19,20 

and adriamycin-induced nephropathy17. Specifically, it was suggested that CD133+ cells 

ameliorate injury by engrafting into the kidneys and differentiating into specialised renal 

cells17,19. These observations have raised the prospect of developing autologous cell therapies 

to replace damaged renal tissue in patients with kidney disease. 
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In order to track the fate of exogenous cells in preclinical models, cells are frequently labelled 

using membrane-bound dyes in order to allow their detection in histological sections at the 

study end point17,19,21. In previous studies assessing the role of CD133+ kidney-derived cells 

in ameliorating renal injury, cells labelled with the lipophilic fluorescent dye, PKH26, 

appeared to engraft in the kidney following IV administration and express markers of  

podocytes and proximal tubule cells (PTCs)17,19,21. However, PKH26 has been shown to be an 

unreliable tracking agent because it can be transferred to host cells, leading to false positive 

results22,23.  

In this study, we aimed to accurately assess the improvement of renal function in response to 

CD133+ human kidney cell administration in rats after cisplatin-induced AKI, and compare 

the therapeutic efficacy of the CD133+ cells with a negative control population of CD133- 

cells. The GFR is the most accurate measure of renal excretory function but classical GFR 

measurements involve the need for repeated blood and/or continuous urine sampling over a 

prolonged time period (5-24h), which is difficult to obtain in rodent models. In order to 

monitor kidney function, we used a novel transcutaneous device to determine longitudinally 

the half-life (t1/2) of fluorescein isothiocyanate (FITC)-sinistrin, a molecule that is exclusively 

filtered by the kidneys, as a measure of the GFR24-27. The device has recently been used by 

our group to monitor renal function in a mouse adriamycin model, where it was found to be a 

good predictor of histological damage28. In the current study, we measured FITC-sinistrin t1/2 

before cisplatin administration, before cell injection and at several points up to day 14 in rats 

administered with either CD133+ or CD133- human kidney cells, or saline (control group), to 

determine for each individual animal the extent by which the cell treatment affected kidney 

function.  

A further aim was to identify any association between therapeutic efficacy and the extent of 

renal engraftment. To address this question, we introduced a green fluorescent protein (GFP) 

reporter gene into the CD133+ and CD133- cells so that their location within specific organs 
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could be analysed histologically. We also labelled the cells with the lipophilic dye, PKH26, to 

investigate whether there was any propensity for this dye to separate from the GFP+ kidney 

cells and label host cells, thereby giving false positive results. 

 

MATERIALS AND METHODS  

Isolation and lentiviral transduction of human kidney cells.  

Infant renal tissue was obtained from kidneys deemed unsuitable for transplantation via UK 

National Health Service Blood and Transfusion (NHSBT). The tissue was minced in small 

pieces in sterile conditions and digested with collagenase I (1mg/mL, C0130, Sigma) for 90 

minutes at 37˚C, centrifuged and incubated with DMEM/F12 containing DNAse I (1%) 

(Sigma) for 15 minutes at room temperature. The cell suspension was filtered through a 70 

µm and a 40 µm sterile sieve and plated in the human renal progenitor cell (HRPC) medium 

previously used for fetal progenitor cells29. The medium was changed every two days until the 

cells reached 90% confluence. 

Lentiviral particles were produced as previously described30 using an unmodified eGFP 

vector (pHIV-eGFP, Addgene, 21373) with a multiplicity of infection (MOI) of 5, yielding 

>90% labelling efficiency. Typically, 2x105 cells were plated 8 hours before transduction. 

Once attached, the cells were incubated for 16 hours in complete medium containing the 

appropriate amount of lentiviral particles containing 8 µg/ml of Polybrene (Sigma, H9268). 

The medium was then appropriately discarded, and the cells were grown in normal medium.  

Details regarding cell sorting, cell characterisation and immunofluorescence protocols are 

provided in the online methods section. 

Animals 

All in vivo experiments were conducted at the University of Heidelberg in accordance with 

the German Animal Protection Law and approved by the local authority 
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(Regierungspräsidium Nordbaden, Karlsruhe, Germany, in agreement with EU directive 

2010/63/EU). 8-9 weeks old male immunodeficient athymic nude rats (Crl:NIH-Foxn1rnu, 

Charles River Laboratories) were housed in pairs in individually ventilated cages and 

acclimated for 1 week before the start of the experiments.  

Cisplatin-induced kidney injury 

Freshly prepared cisplatin solution (Sigma, dissolved in sterile 0.9% saline (AlleMan Pharma) 

was administered intraperitoneally (IP) at 7mg/100g body weight. For the two-week 

experiment, a total of twenty male immunodeficient athymic nude rats were used. Onset of 

renal damage following cisplatin administration was confirmed at day 2 via measurements of 

FITC-sinistrin (Fresenius Kabi, Linz, Austria) t1/2 as described below.  

Renal biomarker analysis 

Serum was collected from whole blood samples before the induction of damage, and then on 

days 7 and 14 after cisplatin administration via the ophthalmic venous plexus (orbital sinus), 

and stored at -20°C until use. For urine collection, the animals were housed for 16 hours in 

individual metabolic cages with free access to water and food. At the end of each collection 

period, the urine volume was recorded, and the samples were centrifuged (78g, 5 minutes) 

and immediately frozen at -20°C until analysed. Serum creatinine (sCr), serum urea and urine 

creatinine were determined using the Cobas c311 analyzer (Roche Diagnostics GmbH, 

Mannheim, Germany). Albumin levels in urine were determined by ELISA and the values 

were normalized to the amount of urinary creatinine over a 24 hour period. Assessment of 

glomerular filtration at baseline and on days 2, 7 and 14 after cisplatin administration was 

performed by administering FITC-sinistrin into the tail vein, and detecting the fluorescence 

signal transcutaneously for 90 minutes using a miniaturized device (Mannheim Pharma and 

Diagnostic, Mannheim, Germany). The FITC-sinistrin t1/2 was computed using a specifically 

designed software31.  
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Cell administration 

Before each injection, GFP-expressing CD133+ and CD133- cell populations were incubated 

with PKH26 (Sigma), following manufacturer’s instructions. Animals that displayed renal 

injury by day 2 following cisplatin administration (as indicated by the FITC-sinistrin t1/2 

measurements) were randomly assigned to three groups, two of which received either 106 

GFP-expressing CD133+ or CD133- cells in a 500 µl volume of sterile phosphate-buffered 

saline (PBS) via lateral tail vein injection; the cisplatin-injured control group received PBS 

(CD133+ group, 6 animals; CD133- group, 6 animals; cisplatin-injured control group, 7 

animals). A scheme of the experimental design is shown in Fig. 2A). On day 7, cell-treated 

animals received a second dose of either 106 GFP-expressing CD133+ or CD133- cells into the 

tail vein.  

For the biodistribution study, a total of eight male immunodeficient athymic nude rats were 

used. After assessment of cisplatin-induced renal damage on day 2, 106 CD133+ cells were 

injected into the lateral tail vein of 6 animals. 2 animals each were sacrificed at 1, 6 and 24 

hours after cell injection. Additionally, 2 uninjured control animals were sacrificed 1 hour 

after injection of saline.  

 

Morphological and histological analysis 

For the morphological and histological analysis, 4 uninjured rats were included in the study. 

Immediately after culling, kidneys and lungs were excised, fixed in 4% paraformaldehyde for 

24 hours and paraffin embedded or frozen for immunohistological analysis (see below). 3µm-

thick paraffin sections were stained with hematoxylin and eosin (H&E) or Masson’s 

Trichrome (MT). For the measurement of mean luminal area, 10 random fields of the renal 

cortex of each animal were imaged using a 20X objective. The images were transformed into 

black and white (B&W, 8 bit), and a B&W threshold was applied using Fiji software. The 

luminal areas on the edge of the image were excluded from the analysis. For measurement of 
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the fibrotic areas in MT-stained sections, 10 random fields of the renal cortex of each animal 

were imaged using a 20X objective. A colour threshold (blue) to all images was applied using 

Fiji software and the blue area was computed. Also, 5 to 7 MT images of two animals per 

group were stitched together using the ‘grid-collection stitching’ plug-in of the Fiji software. 

Immunostaining of tissue sections 

Frozen sections were blocked with 0.1% Triton-X 100 (Sigma) and 10% goat serum (Sigma) 

in PBS and incubated with anti-Calbindin (1:500, Sigma, C9848), anti-CD68 (1:500, Abcam, 

ab31630) anti-GFP (1:5000, Abcam, ab6556), anti-HLA (1:50, Santa Cruz, sc-25619), anti-

human nuclei (1:200, Millipore, MAB 1281), anti-IL10 (1:200, Abcam, ab9969), anti-

megalin (1:200, Acris antibodies, DM3613P) followed by incubation with the secondary 

antibodies Alexa Fluor® 488-coupled goat anti-rabbit IgG, Alexa Fluor® 633-coupled goat 

anti-mouse IgG1, Alexa Fluor® 647-coupled goat anti-rabbit, Alexa Fluor® 594-coupled goat 

anti-mouse IgG1 (Thermo-Fisher Scientific). Nuclei were counterstained with DAPI 

(Invitrogen). Fluorescence images were taken using a spinning disk confocal microscope 

CSU-X1 (3i Marianas), coupled with a digital camera (CMOS, Hamamatsu). The megalin 

stitched images were composed using the ‘pairwise stitching’ plug-in of the Fiji software 32.  

Statistics 

All data are presented as mean ± standard error mean (SEM). All statistical analysis was 

performed using GraphPad software, and a one-way ANOVA was used to compare three or 

more groups. The statistical significance was assumed for a p-value (p) < 0.05. 
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RESULTS   

Human kidney-derived cells express CD133 in culture 

In order to analyse the role of human kidney-derived cells in renal regeneration or repair, we 

generated primary cultures of renal cells by dissociating cortical fragments isolated from 

healthy infant renal tissue.  We analysed histological sections and primary renal cell cultures 

for expression of CD133, which has been previously described as a marker for kidney 

progenitor cells16,21,33. Immunohistological analysis of the kidney sections demonstrated 

CD133 localisation in cells of the Bowman’s capsule, and on the apical surface of scattered 

tubular cells (Fig. 1 A), similar to the pattern observed in adult human kidneys17,19,34. 

Following tissue dissociation, more than 65% of the cells in the primary cultures expressed 

CD133, as shown by immunofluorescence (Fig. 1 B) and flow cytometric analysis (Fig. 1 C). 

Since CD133+ renal progenitor cells have been reported to co-express CD2435, we verified by 

flow cytometry that all CD133+ expressed CD24; however, only 70% of CD24+ cells 

expressed CD133 (Fig. 1 D). Thus, our results show that following isolation, the majority of 

the kidney-derived cells expressed CD133 in culture.  

CD133+ and CD133- human kidney cells ameliorate renal function  

We induced kidney injury in 8-9 week old male athymic nude rats by injecting cisplatin at 

7mg /100g body weight. Animals were monitored for renal function by measuring the FITC-

sinistrin t1/2 at days 2, 7 and 14, and the serum injury markers sCr and urea at days 7 and 14. 

In 62.5% (20 out of 32) of the rats, an increase in the FITC-sinistrin t1/2 was detected at day 2 

when compared to baseline measurements before cisplatin administration. Only these animals 

were used for the subsequent study by assigning them to three groups which received on days 

2 and 7 by IV injection either (i) CD133+ passage 5 (P5) cells, (ii) CD133- P5 cells, or (iii) 

saline (Fig. 2A).  
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Prior to injection, the cells had been transduced with a pHIV-eGFP vector and sorted for 

CD133 expression using FACS (Supplemental Fig. 1A-D). Flow cytometry demonstrated 

that at passage 5, the GFP+ CD133+ population had a purity of 91.36 ± 9.17 %, and the GFP+ 

CD133- population had a purity of 92.99 ± 6.00 % (n=3) (Fig. 2B). The cell morphologies of 

the two populations after GFP-lentivirus transduction were very similar to the un-transduced 

CD133+ and CD133- cells (Supplemental Fig. 1 E). The CD133+ population appeared 

epithelial-like, whereas the CD133- population was composed of elongated mesenchymal-like 

cells. Compared with CD133+ cells, the CD133- cells expressed noticeably lower levels of the 

epithelial marker, Epcam (Supplemental Figure 2). To investigate if the CD133- cells 

resembled MSCs, which are known to reside in the kidney36, we performed flow cytometric 

analysis to determine the expression levels of key MSC markers. We found that in 

comparison with human bone marrow-derived MSCs, both the CC133+ and CD133- cells 

expressed very low levels of the MSC markers, CD90 and CD105 (Supplemental Figure 2). 

Thus, given that the CD133- cells are non-epithelial, and are also not MSCs, it is most likely 

that they are renal interstitial cells, which include various cell types, including interstitial 

fibroblasts37. Prior to administering the cells, as an additional method to track them, the cells 

were labelled  with the lipophilic fluorescent dye, PKH26, which had been used in previous 

studies17,19,21,38,39. 

Sequential measurements of the FITC-sinistrin t1/2 clearance revealed that on day 7, the FITC-

sinistrin t1/2 was significantly reduced in animals that received either CD133+ or CD133- cells, 

when compared to those of the cisplatin-injured group, indicating an improvement in renal 

function (Fig 2C, Supplemental Table 1). It is important to note that no significant 

differences in FITC-sinistrin t1/2 were observed between animals of the two cell-treated 

groups. By day 14, the FITC-sinistrin t1/2 had decreased in the cisplatin-injured animals, and 

was no longer significantly different from that of the cell-treated groups. No further decrease 
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in the FITC-sinistrin t1/2 was observed in the cell-treated groups after day 7, indicating that the 

second cell injection had no additional beneficial effects on renal function (Fig. 2C).  

In addition to the improvement in glomerular filtration function, the administration of 

CD133+ cells resulted in statistically reduced sCr (by 72.3%) and urea (by 74.2%) at day 7. In 

the CD133--treated group, sCr and urea values were also lower than in rats from the cisplatin-

injured group, though these were not statistically significant (Fig. 2D-E; Supplemental 

Table 1). By comparing the FITC-sinistrin t1/2 values at day 14 with the baseline values, it 

could be seen that renal function was not completely restored in either the CD133+ or CD133- 

treated rats (Fig. 2C). The comparison between serum creatinine baseline and d14 values also 

suggested that cell treatments failed to restore levels back to baseline (Fig. 2D), while the 

serum urea values suggested there was a complete restoration (Fig. 2E). However, given that 

both these biomarkers are less accurate indicators of renal function than FITC-sinistrin t1/2, we 

conclude that the cell therapy does not fully restore renal function.  

To further investigate the degree of tubular injury at the study end-point (day 14), kidney 

sections were stained for the PTC marker, megalin, and the collecting tubule marker, 

calbindin. No differences in the pattern of calbindin staining was observed between any of the 

groups, but megalin staining was atypical in the cisplatin-injured rats, consistent with PTC 

injury (Supplemental Figure 3 A-B). It is known that megalin plays an important role in re-

absorbing filtered albumin40. Thus, to investigate if the injured rats displayed higher levels of 

albuminuria compared with those that received cell therapy, the urinary albumin:creatine ratio 

was measured at days 2, 7 and 14. The results showed that the albumin:creatinine ratio 

increased from day 7 to day 14 in the injured rats, but was not significantly greater than 

background levels in rats that received the cell therapy (Supplemental Figure 3 C).   

Thus, our results demonstrate that CD133+ cells could ameliorate the acute phase of cisplatin-

induced renal injury in nude rats when compared to cisplatin-injured animals, as shown by the 

significant reduction in FITC-sinistrin t1/2, sCr, serum urea and urinary albumin (Fig. 2C-E 
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and Supplemental Figure 3C). Of note, CD133- cells had a similar beneficial effect on 

kidney function, since the differences in measurements of all 4 parameters between the 

CD133+ and CD133- -treated animals were not significant. 

CD133+ and CD133- human kidney cells ameliorate histological damage  

Next, we used histopathological analysis to investigate the impact of the administered cells on 

renal tissue health at day 14. In H&E-stained sections from kidneys of the cisplatin-injured 

group, abnormalities typical of acute tubular injury were observed, including cells with 

pyknotic nuclei and dilated tubules with flattened epithelia (Fig. 3A). By contrast, these 

features were rarely observed in kidneys from the cell-treated groups and uninjured control 

kidneys (Fig. 3A).  

We assessed the tubular damage by measuring the mean luminal area, which revealed that the 

tubular luminal area of cisplatin-injured rats was significantly greater than that of the cell-

treated groups and uninjured control rats (cisplatin-only: 5400µm2±739, n=7; CD133+: 

3000µm2±218 (p<0.01), n=7; CD133-: 3100µm2±301 (p<0.05), n=6; uninjured: 1350 µm±26 

(p<0.001)) (Fig. 3B).  

Previous studies have shown that by 14 days following cisplatin administration, extensive 

fibrosis is present in rat kidneys 41. To determine whether administration of the CD133+ and 

CD133- cells could ameliorate renal fibrosis, we performed Masson’s trichrome analysis. 

Despite widespread tubular dilation in the cisplatin-injured group, fibrotic lesions were 

minimal and no significant differences were observed between the cisplatin-injured and cell-

treated groups at day 14 (Fig. 3C, D, Supplemental Fig. 4). The negligible degree of renal 

fibrosis in these animals is likely due to the fact that they lack T cells, which are known to 

play a key role in the development of renal fibrosis42.  
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CD133+ and CD133- cells do not engraft in the kidneys following intravenous 

administration 

Previous studies have suggested that intravenously administered CD133+ human kidney cells 

ameliorate injury by engrafting in the kidney and generating podocytes and proximal tubule 

cells17,19. MSCs, on the other hand, become entrapped in the lung following intravenous 

administration and ameliorate renal injury via paracrine or endocrine factors12,14,43. To 

investigate whether CD133+ and CD133- human kidney cells were present in the kidneys or 

lungs following IV administration in the rat cisplatin model, tissue sections were analysed for 

the presence of GFP and PKH26 at day 14. 

PKH26 could be detected in the kidneys of rats that received human kidney cells, and was 

typically located close to tubular or interstitial cells, but there was no evidence of any GFP+ 

cells (Fig. 4B-C). Similarly, no GFP+ cells, but traces of PKH26 dye, were identified in the 

lungs of animals treated with human kidney cells (Fig. 4E-F). As expected, neither PKH26 

nor GFP+ cells were found in kidneys or lungs of cisplatin-injured animals that did not receive 

cells (Fig. 4A, D, see Supplemental Fig. 5 for a comparison between a GFP+ cell and an 

autofluorescent cell). The presence of PKH26 in the absence of GFP suggested that PKH26 

staining at day 14 was due to false positive staining of host cells. Overall, these results 

indicated that the administered cells were not detectable in kidneys or lungs by day 14. 

To demonstrate the presence of the human kidney cells and investigate their fate at earlier 

time points, CD133+ human kidney cells were IV injected into cisplatin-injured rats and tissue 

sections analysed for the presence of cells at 1, 6 and 24 hours after cell administration. Using 

GFP- and human-specific antibodies (i.e., against HLA and a human nuclear antigen), we 

could detect GFP+ human cells in sections of lungs collected one hour after cell 

administration (Fig. 5A-B). However, the presence of pyknotic nuclei and blebbing in some 

of the GFP+ cells suggested that they were undergoing cell death. In addition, we could 

identify a punctate pattern of PKH26 dye in or around the cells. In sections of lungs collected 
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six hours after cell administration, we found both fragmented and intact GFP+ cells. 

Importantly, we detected the PKH26 label not only in GFP+ cells, but also in neighbouring 

GFP- cells (Fig. 5C-C’). At the 24-hour time point, we could only identify the GFP signal in 

cell fragments close to PKH26+ puncta, but not in intact cells (Fig. 5D). By contrast, analysis 

of kidney sections at all three time points revealed only punctate PKH26 staining, but no 

GFP+ cells or fragments. HLA staining was occasionally detected in the kidney, but no human 

nuclei were observed, confirming the lack of engraftment of intact cells in this organ (Fig. 

5E-H). To investigate whether the cells had engrafted in the spleen and liver, tissue sections 

from these organs were stained for GFP and the human-specific antigens, but only 

background autofluorescence could be detected (see Supplemental Figure 6 for spleen data; 

liver data not shown). Therefore, our data demonstrate that following tail vein injection, the 

human kidney cells became entrapped in the lungs and died within 24 hours of administration. 

Importantly, our results provide no evidence of the cells engrafting in the kidneys. 

Intravenous injection of human kidney cells leads to macrophage infiltration in the 

lungs 

Dying cells and their fragments are known to be phagocytosed by resident macrophages44 and 

dendritic cells45. Furthermore, the process of macrophage-based removal of apoptotic cells 

has been shown to inhibit inflammation via anti-inflammatory cytokines46,47. To determine 

whether macrophages were recruited to the dying human cells, we performed 

immunofluorescence staining for the pan-macrophage marker CD68 on sections from lungs at 

1, 6 and 24 hours after administration of human kidney cells. We found that the CD68+ cells 

were evenly distributed across the tissue in sections of control lungs from all time points (Fig. 

6A). By contrast, at one and six hours after cell administration, CD68+ cells appeared to 

cluster closely around intact GFP+ cells and GFP+ cell fragments (Fig. 6B, B’, C). Confocal 

imaging and volume rendering of z-stacks revealed that some of the CD68+ cells also 

contained the PKH26 label (see Supplemental Video 1 and 2), suggesting that the 
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macrophages might be involved in phagocytosing the GFP+ CD133+ cell fragments. In 

sections of lungs at 24 hours after cell administration, the CD68+ cells remained in clusters 

around small GFP-labelled fragments while intact human cells were no longer present (Fig. 6 

D, D’). Analysis of expression of the anti-inflammatory cytokine IL10 in the lungs at 24 

hours showed IL10 within and surrounding CD68+ cells in close proximity to the dying 

human cells. These results suggest that IL10 may have been released by the macrophages 

following phagocytosis of the human cells (Supplemental Figure 7).  

 

DISCUSSION   

In this study we have shown that CD133+ cells isolated from human infant renal tissue could 

improve renal function and ameliorate tissue damage following intravenous administration in 

a rat cisplatin model. These findings are consistent with previous studies that showed adult 

kidney-derived CD133+ cells had beneficial effects following tail vein injection in mouse 

models of glomerular and tubular injury19,48. However, whereas these earlier studies reported 

no beneficial effects of CD133- cells, we found that in the rat cisplatin model, CD133+ and 

CD133- cells were similarly therapeutic (Table 1).  

CD133 has previously been identified as a marker for various types of stem cells18, and has 

been reported to be a progenitor cell marker in human fetal49 and adult kidneys16,17,19. In the 

fetal kidney, this was mainly based on evidence that CD133 was expressed in the metanephric 

mesenchyme49, a population of cells within the developing mammalian kidney that gives rise 

to all cell types of the nephron. However, more recent analysis has shown that CD133 is not 

co-expressed with the bona fide nephron progenitor marker, SIX2, and is instead expressed in 

differentiating cells50, suggesting that CD133 is not a progenitor marker in the fetal kidney. In 

adult human kidneys, CD133 is expressed in parietal epithelial cells17 and in a small 

population of scattered tubular epithelial cells within the proximal and distal tubules17,51,52, 

which is consistent with the staining pattern observed in infant kidneys in the current study. 
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The most compelling evidence for CD133 being a renal progenitor marker is based on studies 

showing that following IV administration into mice with renal injury, adult human kidney-

derived CD133+ cells could engraft in the kidneys and generate podocyte and proximal tubule 

cells17,19. However, this contrasts with our current study, where we found that following tail 

vein injection, infant kidney-derived CD133+ and CD133- cells did not engraft into injured 

kidneys, and instead, were entrapped in the lungs and did not survive beyond 24 hours. 

A possible explanation for these apparent differences in CD133+ biodistribution could be due 

to the fact that in the earlier studies, CD133+ cells were isolated from the ‘normal’ regions of 

adult kidneys affected by tumours. This raises the possibility that the adult CD133+ cells 

might have been renal carcinoma cells that had migrated from the primary lesion into the 

surrounding normal tissue, and perhaps as a result of their malignant phenotype, were able to 

traverse the pulmonary capillaries. It must also be considered that in the earlier studies, the 

cells were used at passage 0 (P0), whereas in the current study, the cells were used at passage 

5 (P5). Therefore, we cannot discount the possibility that P0 cells might be able to pass 

through the lung, whereas P5 cells cannot. However, it is more likely that the high level of 

renal engraftment reported in these previous studies was due to a combination of 

autofluorescence53 and false-positive staining, for it is known that the lipophilic dye, PKH26, 

that was used to monitor the fate of the CD133+ cells, can readily transfer to host cells22,54. 

Indeed, the problem with PKH26 false-positive staining was demonstrated in the current 

study, where we detected PKH26 dye in the kidneys despite the GFP-labelled CD133+ cells 

being located solely in the lungs. It is also worth noting that the high levels of renal 

engraftment reported in some earlier studies would be difficult to achieve (see Supplemental 

Table 2)17.  

The lack of renal engraftment in the current study indicates that the therapeutic effects of the 

CD133+ and CD133- cells in the rat cisplatin model are mediated by paracrine or endocrine 

factors. Our results are similar to those of a previous study by Geng and colleagues14 
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investigating the therapeutic effects of MSCs in a mouse tubular injury model, where it was 

found that following tail vein administration, cells were mainly located in the lungs and were 

not detected in the kidneys. Further experiments showed that the MSCs ameliorated renal 

injury by increasing the number of alternatively-activated (M2) macrophages14. It is well-

established that MSCs have immunomodulatory effects and ameliorate renal injury by 

paracrine mechanisms12,13, but more recently, it has been shown that the therapeutic effects of 

various other cell types, including human induced pluripotent stem cell (iPSC)-derived 

nephron progenitors, are also mediated by paracrine factors55. For instance, Toyohara and co-

workers showed that if iPSC-derived nephron progenitors were injected into the renal 

parenchyma of mice with ischemia reperfusion injury, the cells could integrate and generate 

new tubular cells, but did not ameliorate injury55. On the other hand, if the cells were injected 

under the kidney capsule, they did not integrate into the kidney, but had a significant 

therapeutic effect. Likewise, the administration of rat kidney-derived renal tubule cells into 

rats with subtotal nephrectomy reduced leucocyte infiltration and inflammation, and promoted 

repair via paracrine mechanisms56. Similar findings have been reported for other organs, such 

as the liver and heart, where it was respectively shown that the therapeutic effects of 

embryonic stem cell-derived hepatocytes and cardiac stem cells were mediated by trophic 

factors57,58.  

Our observation that the CD133+ and CD133- cells had similar therapeutic effects in the rat 

cisplatin model is interesting, especially given the differences in phenotype between the two 

cell types, with the former being predominantly epithelial cells, and the latter having a more 

mesenchymal-like morphology. An important finding from our study was that similarly to 

MSCs59, the human kidney cells died quite rapidly in the lung following intravenous 

administration and induced the infiltrating macrophages to express IL10. It is well established 

that apoptotic cells release ‘find me’ signals, such as fractalkine and lysophosphatidylcholine, 

which serve as chemo-attractants for macrophages45. Moreover, following the phagocytosis of 
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apoptotic cell debris, macrophages become polarised towards an alternatively activated (M2) 

phenotype and secrete anti-inflammatory cytokines, such as IL1060, which has been shown to 

ameliorate cisplatin-induced renal injury in rodents61. Thus, it is possible that the therapeutic 

effects of the dying human kidney cells might have been due to their ability to trigger 

macrophages to secrete IL10 (and perhaps other anti-inflammatory cytokines), which could 

stimulate renal repair by promoting an early resolution of the inflammatory response. In 

support of a role for dying cells, Thum and colleagues46 have previously hypothesised that 

immunomodulatory effects can be triggered by the apoptosis of exogenous stem cells, and 

more recently, Luk et al have shown that heat-inactivated (i.e., non-viable) MSCs can 

modulate macrophages and induce a dramatic increase in IL10 expression in mice62. 

Furthermore, dying (apoptotic) cells have also been reported to release microvesicles or 

apoptotic bodies which could potentially have immunomodulatory roles in kidney 

regeneration63. This is supported by the observation that microvesicles isolated from MSCs 

have renoprotective roles in mouse models of AKI64-66. 

Though beyond the scope of the present study, by understanding the mechanisms whereby 

dying cells modulate the behaviour of key immune effector cells and ameliorate renal injury, 

it should be possible to develop safer and more effective cell-free regenerative medicine 

therapies in the future. 

 

CONCLUSION  

Here we present data showing that cells isolated from human infant kidneys have the potential 

to ameliorate functional and histological damage in rats with cisplatin-induced kidney injury. 

Our results demonstrate that CD133 expression in the cells is not required for their beneficial 

effects. Furthermore, since the human kidney cells die in the lungs shortly after their 

administration and are not detected in the kidneys, our findings indicate that the cells exert 
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their therapeutic effects via paracrine factors, and that renal engraftment is not a prerequisite 

for ameliorating renal injury. 
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FIGURE LEGENDS 

Figure 1. Identification and isolation of a population of human kidney cells. (A) 

Representative confocal fluorescence images of human kidney cells from infant human renal 

tissue showing the expression pattern of CD133 within the Bowman’s capsule (highlighted by 

white arrows) and on the apical surface of scattered tubular cells. (B) Representative 

fluorescence images of bulk cultured cells at passage 1 after isolation, stained for CD133. 

Most of the cells appear CD133-positive. (C) FACS analysis showing the proportion of 

CD133+ and CD24+ cells within the bulk population at passage 2. The majority of the cells in 

the bulk population express CD133 (68.8% ± 9.2) and CD24 (86.10% ± 6.3). (D) 

Representative flow cytometry Dot Plot of the bulk population at passage 2 stained with 

CD133 (APC) and CD24 (FITC) antibodies. Magnification: (A-B) 400x, scale bar 50µm. 

 

Figure 2. Both CD133+ and CD133- human kidney cells can ameliorate renal function at day 

7. (A) Experimental design. (B) FACS analysis of the expression of CD133 in both CD133+ 

and CD133- populations at passage 5; mean values ± SEM of three independent sortings and 

expansions. (C) Mean FITC-sinistrin t1/2 values ± SEM. (D) Serum creatinine levels. (E) Urea 
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levels. The dotted line represents the average of the respective baseline values of all animals 

(n=20). A one-way ANOVA statistical test with Dunnet Post Hoc analysis was applied to 

each data set for each time point to compare the groups. p-values are indicated in the tables 

below the graphs. CD133+ group (n=6); CD133- group (n=6); cisplatin-injured group (n=7). 

 

Figure 3. Both CD133+ and CD133- human kidney cells ameliorate histological damage. (A) 

Representative images of H&E-stained kidney sections for each experimental group, 

including uninjured rats. The nephron tubules are noticeably damaged in the cisplatin-injured 

rats that did not receive cell therapy, but the glomeruli appear normal (see inset). 

Magnification 200x, scale bar 50µm. (B) The mean luminal area is significantly reduced in 

both cell-treated groups; CD133+, p=0.0084; CD133-, p=0.0147; one-way ANOVA statistical 

test with Dunnet Post Hoc analysis; error bars represent SEM. (C) Representative images of 

Masson’s trichrome staining of kidney sections for each experimental group, including 

uninjured rats. Magnification 100x, scale bar 50µm. (D) Quantification of the fibrotic area in 

histological kidney sections after processing of at least 10 images per animal for each group; 

one-way ANOVA statistical test with Bonferroni Post Hoc analysis; error bars represent 

SEM. Abbreviations: pn, arrowhead – Pyknotic nuclei; fe, arrows – flat epithelium; d – 

dilated tubuli. 

 

Figure 4. PKH26 dye but not GFP-positive cells are found in kidneys and lungs. Maximum 

intensity projection (MIP) confocal microscopy images of representative tissue sections of 

kidneys (A-C) and lungs (D-F). In the kidneys, green autofluorescence is observed in all 

groups (white arrows). No GFP+ cells could be detected in either the kidneys or the lungs. 

Punctate PKH26 label was found in both organs. Magnification: 400x, scale bars 100µm. 
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Figure 5. Human kidney cells are entrapped in the lungs and die within 24 hours. (A-B) 

Representative MIP confocal microscopy images of lung sections of animals at 1, 6 and 24 

hours following cell administration. One hour after injection, some GFP+ cells had apoptotic 

nuclei, indicated by the arrowheads (A). (B) To confirm the identity of the GFP+ cells, 

immunostaining was performed with the human specific antibodies, HLA and Human Nuclei-

HuNu. (C-C’) By 6 hours after injection, a few intact GFP+ cells were still present, and 

PKH26 was observed in neighbouring non-GFP host cells. (D) By 24 hours, PKH26 was 

found in a punctate pattern, near GFP-labelled cell fragments. (E-H) Representative confocal 

microscopy images showing the kidney cortex of animals sacrificed at 1 and 24 hours 

following cell administration, stained for HLA (E-F) or HuNu (G-H) and GFP. No GFP+ 

cells were detected in the kidneys at any time point. Magnification: (A-D) 1000x, (E-H) 200x, 

scale bars 50 µm unless specified. 

 

Figure 6. CD68+
 phagocytic cells cluster around the human kidney cells in the lungs. (A-D) 

Representative MIP confocal microscopy images showed CD68 signal (white) in lung 

sections from control and cell-administered animals at all time points. In sections from 

animals that received human kidney cells, CD68+ cells were clustered around the GFP-

labelled cells (white arrows). Scale bar is 100µm. (B’, D’) MIP confocal microscopy images 

at higher magnification, showing GFP (green), PKH26 (red) and CD68 (white). One hour 

after administration, CD68+ cells were found clustered around the human cells in sections of 

lungs. (D’) By 24 hours, some CD68+ cells were localised around GFP+ cell fragments (white 

arrow). Magnification: (A-D) 100x; (B’-D’) 400x, scale bars 50 µm. 

 

Table 1. Summary of the therapeutic efficacy observed in both cell-treated groups compared 

with the control groups. Percentage changes apply for FITC-sinistrin t1/2, sCr and BUN at day 

7, and for albumin:creatinine ratio, histological damage and fibrosis at day 14.  
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HUMAN KIDNEY-DERIVED CELLS AMELIORATE ACUTE KIDNEY 

INJURY WITHOUT ENGRAFTING INTO  RENAL TISSUE 

Running title: human kidney cells improve AKI without engrafting 
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SUPPLEMENTAL DATA 

SUPPLEMENTAL	METHODS	

HUMAN	CELLS	AND	TISSUE	IMMUNOFLUORESCENCE		

Upon reception, part of the human tissue was frozen for immunhistological analysis. 6 µm-

thick sections were blocked with 0.1% Triton-X 100 (Sigma) and 10% Goat Serum (Sigma) 

in PBS and incubated with anti-CD133/1 (1: 50, Miltenyi) followed by secondary antibody 

Alexa Fluor® 488 nm goat anti-mouse IgG1 (Thermo-Fisher Scientific). Fluorescence images 

were taken using a spinning disk confocal microscope CSU-X1 (3i), coupled with a digital 

camera (CMOS, Hamamatsu). 

For the immunofluorescence experiments with cells, freshly isolated cells were plated in 8-

well chamber slides (Corning), and grown until confluent. The cells were fixed in 4% PFA, 

blocked using 2% BSA (Sigma), 0.1% Triton-X in PBS and incubated with anti-CD133/2 

(1:50, Miltenyi) followed by secondary antibody Alexa Fluor® 594-coupled goat anti-mouse 

IgG (H+L) (Thermo-Fisher Scientific). Fluorescence images were taken using an 

epifluorescence Leica DM2500 microscope coupled to a Leica DFC420C camera. 

FLOW	CYTOMETRY	AND	FACS		



29	
	

For the flow cytometry analysis of the CD133+ and CD133- (shown in Figure 1C) cells, a BD 

FACS Calibur (BD Biosciences) was used. 5x105 cells were labelled with CD133/1 APC 

(Miltenyi, 1:11), CD24 FITC (Miltenyi, 1:11), or both in 1% (v/v) FBS, 0.1% NaN3 in PBS, 

according to the manufacturer instructions. Unlabelled cells were used to set the FSC, SSC 

and the fluorescence channels correctly. For FACS, a BD FACS Aria (BD Biosciences) was 

used. Cells were labelled with CD133/1 APC (1:11) in 1% (v/v) FBS at a concentration of 5-

7.5x106 cells/ml. 5x105 cells unlabelled or labelled cells were used to set the gates. Following 

the sorting, both populations were re-analysed to define the purity of the sorting and plated. 

EXPANSION	IN	CULTURE	OF	CD133+	AND	CD133-	CELLS	AND	FLOW	CYTOMETRIC	ANALYSIS	

CD133+ and CD133- cells were isolated using flow activated cell sorting (FACS) and 

expanded in culture. A low plating density was used for both cell types (2 x 105 per 10cm2 

plate). The expression of CD133/1 APC was analysed by flow cytometry at each passage, 

using a BD FACS Calibur (BD Biosciences). In order to maintain a pure population of 

CD133- cells, magnetic activated cell sorting (MACS) was performing using CD133/1 PE 

(Miltenyi, 1:11) and Anti-PE Microbeads (Miltenyi, 40µl on LD columns).  At passage 5 a 

sample of the CD133+ and CD133- cells that were administered to the animals were analysed 

using flow cytometry. 0.5-1 x 106 cells were labelled with CD133/1 APC, CD133/2 PE, 

CD24 FITC, CD90 FITC, CD73 PE, CD105 FITC, CD44 FITC, CD326 FITC, CD324 APC 

(all from Miltenyi, 1:11) in 1% (v/v) FBS, 0.1% NaN3 in PBS, according to the 

manufacturer’s instructions. Unlabelled cells were used to set the gates for the forward scatter 

(FSC) and side scatter (SSC) and isotype specific control antibodies were used to set the gates 

for the fluorescence channels. For analysis of CD133+ and CD133- cells, antibodies were used 

in combination with CD133/1 or CD133/2. Human MSCs were from Lonza and cultured 

according to the manufacturer’s recommendations. 0.5-1 x 106 cells at passage 3 or 4 were 

labelled with CD133/1 APC, CD133/2 PE, CD24 FITC, CD90 FITC, CD73 PE, CD105 
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FITC, CD44 FITC, CD326 FITC, CD324 APC (all from Miltenyi, 1:11) in 1% (v/v) FBS, 

0.1% NaN3 in PBS, according to the manufacturer’s instructions. 

SUPPLEMENTAL FIGURES 

Supplemental Figure 1. Sorting for GFP+ CD133+ and GFP+ CD133- kidney cells. (A) Dot 

Plot showing FSC-A (Forward Scatter-Area) and SSC-A (Side Scatter-Area) used to 

discriminate healthy and damaged or dying cells in the bulk population. (B) Dot plot of SSC-

A and FSC-W (Forward Scatter-Width) used to discriminate doublets, which might represent 

a false positive signal. (C) Density plot showing the signal from the excitation of cells with 

the 488-nm laser (GFP, FITC-A, log scale) against the signal from the FL4 laser (CD133, 

APC-A, log scale). A small percentage of CD133+
 cells was not efficiently transduced with 

GFP lentivirus (CD133+ 4.9% vs CD133- 1.4%). (D) Percentage of CD133-expressing cells 

after sorting into CD133+ and CD133- populations. (E) Representative images of transduced 

and un-transduced CD133+ cells and CD133- cells at passage 3. The CD133+ population 

mainly comprised epithelial cells, while the CD133- population contained mostly elongated 

mesenchymal-like cells. Magnification 100x, scale bars 100 µm.  

 

Supplemental Figure 2. (A) Flow cytometric analysis performed on CD133+ and CD133- 

cells from passage 2 (P2) to passage 6 (P6). In order to achieve a high purity of the CD133- 

population, CD133-specific MACS was used to purify the population at P3 and P4. The flow 

cytometric analysis of the cells at P5 (time-point of injection) is reported in (B). 

Characterization of the CD133+
, CD133- (P5, n=2) and human MSCs (hMSCs, P3-4, n=3) for 

mesenchymal and epithelial markers using flow cytometry. (C) Table indicating average ± 

SD of all the markers analysed in each cell type. 

Supplemental Figure 3.  Absence of GFP+ cells and evidence of tubular regeneration in the 

renal cortex 14 days after cell administration. (A) Representative stitched confocal images of 
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the renal cortex of animals belonging to the four experimental groups. Kidney sections were 

stained for megalin and GFP, and the confocal images stitched to a length of 2mm. In the 

cisplatin-injured group the pattern of megalin staining in some proximal tubules was atypical 

(arrows with triple heads), likely reflecting the fact that the PTCs in these tubules were 

injured. In contrast, the sections from cell-treated rats were indistinguishable from the 

uninjured animals.  While no GFP signal was detected, unspecific green fluorescence was 

present, which was particularly strong in protein casts (*) and in cross-sections of tubuli 

(white arrows). (B) Representative confocal images of the renal cortex of animals stained for 

calbindin showed no differences between the different groups.   (C) Albumin:creatinine ratio. 

The dotted line represents the average of the albumin:creatinine baseline values of all animals 

(n=20). An ANOVA one-way statistical test with Bonferroni’s Post Hoc analysis was applied 

to each data set to compare the groups at day 14. CD133
+
 group (n=7); CD133

-
 group (n=6); 

control group (n=7). * p=0.0295; * p=0.0498 Magnification (A) 100x (B) 200x, scale bars 

100 µm. 

 

Supplemental Figure 4. Masson’s trichrome staining shows negligible levels of fibrosis in 

cell-treated animals and injured controls. Representative stitched images of Masson’s 

trichrome staining of kidney sections from animals of cisplatin-injured group, CD133+-treated 

group, CD133--treated group and uninjured group. Magnification 100x, scale bar 100µm.  

 

Supplemental Figure 5. Representative confocal MIP of the lungs of an animal sacrificed 1 

hour after injection showing a GFP+
 cell (left side) and an autofluorescent cell (right). 

Magnification 630x, scale bars 10 µm. 

 

Supplemental Figure 6. Representative confocal images of the spleen of an uninjured rat 

(A), cisplatin-injured rat sacrificed 1 hour after injection of PBS (B), cisplatin-injured rat 
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sacrificed 1 hour after injection of CD133+ cells (C), stained for GFP (green) and HuNu 

(white). Background autofluorescence was present in all samples but no signal was detected 

for human nuclei. Magnification 400x, scale bar 50µm.  

 

Supplemental Figure 7. Representative confocal MIP of the lungs of animals sacrificed 1 

(B) and 24 (C) hours after injection of CD133+ cells stained for IL10 (red), CD68 (white), and 

GFP (green). At 24 hours, clusters of CD68+ were observed, with an increase in the staining 

for IL10. White arrows identify green fragments belonging to GFP+ cells. Magnification 

400x, scale bar 50 µm. 

SUPPLEMENTAL TABLES 

Supplemental table 1. Mean values ± SEM for FITC-sinistrin t1/2, serum creatinine, and urea 

for all groups at all time-points evaluated. An one-way ANOVA statistical test with 

Bonferroni Post Hoc analysis was applied to each data set to compare the values at baseline 

and at day 14. * P<0.05; ** P<0.01; *** P<0.001 one-way ANOVA with Bonferroni 

correction. 

 

Supplemental table 2. Estimation of the extent of renal engraftment of CD133+ cells reported 

in a previous studya 

 

a See Ronconi et al., where 0.75 x 105 PKH26-labelled CD133+ cells were injected into the tail vein of 

mice on the 1st and 4th day following the administration of adriamycin. On day 7, the total number of 

podocytes and proximal tubule cells (PTCs) were counted in histological sections by staining for 

podocin and LTL (Lotus tetragonolobus agglutinin). The proportion of podocin+ and LTA+ cells 

labelled with PKH26 was reported to be 11% and 7%, respectively. As indicated in the above table, 

the total number of podocytes and PTCs per mouse is estimated to be 3.6 x 105 and 12.8 x 106. Thus, 



33	
	

11% of podocytes and 7% of PTCs would be equivalent to ~0.4 x 105 and ~0.9 x 106 cells, giving a 

total cell number of 0.94 x 106, which would amount to 63% of the injected cell dose (two 

administrations of 0.75x106 cells). Even if none of the cells died, which would be unlikely, and all 

passed through the lungs into the left ventricle, an engraftment level of 63% does not seem feasible 

because the kidneys only receive 20% of the cardiac output. 

 

SUPPLEMENTAL VIDEOS 

Supplemental video 1. Volume rendering of human CD133+ cell in lung tissue 1 hour 

after cell injection.  

Volume rendering of rat lung sections show a human GFP+ CD133+ cell (green) labelled with 

PKH26 (red), surrounded by CD68+ cells (white). PKH26+ can be observed in the proximity 

1. Nicholas SB, Basgen JM, Sinha S. Using stereologic techniques for podocyte counting in the 

mouse: shifting the paradigm. Am J Nephrol. 2011;33 Suppl 1:1-7. 

2. Zhai XY, Birn H, Jensen KB, Thomsen JS, Andreasen A, Christensen EI. Digital three-

dimensional reconstruction and ultrastructure of the mouse proximal tubule. Journal of the 

American Society of Nephrology : JASN. 2003;14(3):611-619. 

3. Sakamoto H, Sado Y, Naito I, et al. Cellular and subcellular immunolocalization of ClC-5 

channel in mouse kidney: colocalization with H+-ATPase. Am J Physiol. 1999;277(6 Pt 

2):F957-965. 

4. Murawski IJ, Maina RW, Gupta IR. The relationship between nephron number, kidney size 

and body weight in two inbred mouse strains. Organogenesis. 2010;6(3):189-194. 

5. Ronconi E, Sagrinati C, Angelotti ML, et al. Regeneration of glomerular podocytes by human 

renal progenitors. Journal of the American Society of Nephrology : JASN. 2009;20(2):322-

332. 
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of the human cell, co-localizing with CD68+ cells. Imaris software was used to generate 

volume rendering, starting from a stack of confocal fluorescence images (section thickness 6 

µm). 

SUPPLEMENTAL	VIDEO	2.	VOLUME	RENDERING	OF	HUMAN	CD133+	CELL	 IN	 LUNG	TISSUE	24	

HOURS	AFTER	CELL	INJECTION.		

Volume rendering of rat lung sections show a fragment of a human GFP+CD133+ cell (green), 

surrounded by a cluster of CD68+ cells (white). PKH26+  (red) can be observed in the 

proximity of the human cell and within CD68+ cells. Imaris software was used to generate the 

volume rendering, starting from a stack of confocal fluorescence images (section thickness 6 

µm). 
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