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ABSTRACT
We study the complexity of ontology-mediated querying when on-
tologies are formulated in the guarded fragment of first-order logic
(GF). Our general aim is to classify the data complexity on the
level of ontologies where query evaluation w.r.t. an ontology O is
considered to be in PTIME if all (unions of conjunctive) queries
can be evaluated in PTIME w.r.t. O and CONP-hard if at least one
query is CONP-hard w.r.t. O. We identify several large and rele-
vant fragments of GF that enjoy a dichotomy between PTIME and
CONP, some of them additionally admitting a form of counting. In
fact, almost all ontologies in the BioPortal repository fall into these
fragments or can easily be rewritten to do so. We then establish a
variation of Ladner’s Theorem on the existence of NP-intermediate
problems and use this result to show that for other fragments, there
is provably no such dichotomy. Again for other fragments (such as
full GF), establishing a dichotomy implies the Feder-Vardi conjec-
ture on the complexity of constraint satisfaction problems. We also
link these results to Datalog-rewritability and study the decidabil-
ity of whether a given ontology enjoys PTIME query evaluation,
presenting both positive and negative results.
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1. INTRODUCTION
In Ontology-Mediated Querying, incomplete data is enriched

with an ontology that provides domain knowledge, enabling more
complete answers to queries [47, 10, 34]. This paradigm has re-
cently received a lot of interest, a significant fraction of the research
being concerned with the (data) complexity of querying [46, 14]
and, closely related, with the rewritability of ontology-mediated
queries into more conventional database query languages [16, 26,
28, 31, 27]. A particular emphasis has been put on designing ontol-
ogy languages that result in PTIME data complexity, and in delin-
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eating these from the CONP-hard cases. This question and related
ones have given rise to a considerable array of ontology languages,
including many description logics (DLs) [3, 37] and a growing
number of classes of tuple-generating dependencies (TGDs), also
known as Datalog± and as existential rules [13, 45]. A general and
uniform framework is provided by the guarded fragment (GF) of
first-order logic and extensions thereof, which subsume many of
the mentioned ontology languages [5, 6].

In practical applications, ontologies often need to use language
features that are only available in computationally expensive ontol-
ogy languages, but do so in a way such that one may hope for hard-
ness to be avoided. This observation has led to a more fine-grained
study of data complexity than on the level of ontology languages,
initiated in [42], where the aim is to classify the complexity of in-
dividual ontologies while quantifying over the actual query: query
evaluation w.r.t. an ontology O is in PTIME if every CQ can be
evaluated in PTIME w.r.t. O and it is CONP-hard if there is at least
one CQ that is CONP-hard to evaluate w.r.t.O. In this way, one can
identify tractable ontologies within ontology languages that are, in
general, computationally hard. Note that an even more fine-grained
approach is taken in [11], where one aims to classify the complexity
of each pair (O, q) withO an ontology and q an actual query. Both
approaches are reasonable, the first one being preferable when the
queries to be answered are not fixed at the design time of the ontol-
ogy; this is actually often the case because ontologies are typically
viewed as general purpose artifacts to be used in more than a single
application. In this paper, we follow the former approach.

The main aim of this paper is to identify fragments of GF (and
of extensions of GF with different forms of counting) that result in
a dichotomy between PTIME and CONP when used as an ontology
language and that cover as many real-world ontologies as possible,
considering conjunctive queries (CQs) and unions thereof (UCQs)
as the actual query language. We also aim to provide insight into
which fragments of GF (with and without counting) do not admit
such a dichotomy, to understand the relation between PTIME data
complexity and rewritability into Datalog (with inequality in rule
bodies, in case we start from GF with equality or counting), and to
clarify whether it is decidable whether a given ontology has PTIME
data complexity. Note that we concentrate on fragments of GF be-
cause for the full guarded fragment, proving a dichotomy between
PTIME and CONP implies the long-standing Feder-Vardi conjec-
ture on constraint satisfaction problems [23] which indicates that
it is very difficult to obtain (if it holds at all). In particular, we
concentrate on the fragment of GF that is invariant under disjoint
unions, which we call uGF, and on fragments thereof and their ex-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80780954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


No Dichotomy

CSP-Hard

(Datalog6= 6= PTIME)

Dichotomy

(Datalog6= = PTIME)

uGF−2 (2, f)
ALCIF` depth 2

ALCF depth 3 [42]

uGF2(1,=)
uGF2(2)

ALC depth 3 [42]
uGF2(1, f) ALCF` depth 2

uGF−(1,=) uGF(1) uGF−2 (2)
uGC−2 (1,=)

ALCHIQ depth 1
ALCHIF depth 2

Figure 1: Summary of the results—Number in brackets indicates depth, f presence of partial functions, ·2 restriction to two vari-
ables, ·− restricts outermost guards to be equality, F globally function roles, F` concepts (≤ 1R).

tension with forms of counting. Invariance under disjoint unions
is a fairly mild restriction that is shared by many relevant ontology
languages, and it admits a very natural syntactic characterization.

Our results are summarized in Figure 1. We first explain the frag-
ments shown in the figure and then survey the obtained results. A
uGF ontology is a set of sentences of the form ∀~x(R(~x) → ϕ(~x))
whereR(~x) is a guard (possibly equality) andϕ(~x) is a GF formula
that does not contain any sentences as subformulas and in which
equality is not used as a guard. The depth of such a sentence is the
quantifier depth of ϕ(~x) (and thus the outermost universal quanti-
fier is not counted). A main parameter that we vary is the depth,
which is typically very small in real world ontologies. In Figure 1,
the depth is the first parameter displayed in brackets. As usual, the
subscript ·2 indicates the restriction to two variables while a su-
perscript ·− means that the guard R(~x) in the outermost universal
quantifier can only be equality, = means that equality is allowed
(in non-guard positions), f indicates the ability to declare binary
relation symbols to be interpreted as partial functions, and GC2 de-
notes the two variable guarded fragment extended with counting
quantifiers, see [32, 48]. While guarded fragments are displayed
in black, description logics (DLs) are shown in grey and smaller
font size. We use standard DL names except that ‘F’ denotes glob-
ally functional roles while ‘F`’ refers to counting concepts of the
form (≤ 1R). We do not explain DL names here, but refer to the
standard literature [4].

The bottommost part of Figure 1 displays fragments for which
there is a dichotomy between PTIME and CONP, the middle part
shows fragments for which such a dichotomy implies the Feder-
Vardi conjecture (from now on called CSP-hardness), and the top-
most part is for fragments that provably have no dichotomy (unless
PTIME = NP). The vertical lines indicate that the linked results are
closely related, often indicating a fundamental difficulty in further
generalizing an upper bound. For example, uGF−(1,=) enjoys
a dichotomy while uGF2(1,=) is CSP-hard, which demonstrates
that generalizing the former result by dropping the restriction that
the outermost quantifier has to be equality (indicated by ·−) is very
challenging (if it is possible at all).1 Our positive results are thus
optimal in many ways. All results hold both when CQs and when
UCQs are used as the actual query; in this context, it is interesting
to note that there is a GF ontology (which is not an uGF ontol-
ogy) for which CQ answering is in PTIME while UCQ-answering
is CONP-hard. In the cases which enjoy a dichotomy, we also show
that PTIME query evaluation coincides with rewritability into Dat-
alog (with inequality in the rule bodies if we start from a fragment

1A tentative proof of the Feder-Vardi conjecture has very recently
been announced in [49], along with an invitation to the research
community to verify its validity.

with equality or counting). In contrast, for all fragments that are
CSP-hard or have no dichotomy, these two properties do provably
not coincide. This is of course independent of whether or not the
Feder-Vardi conjecture holds.

For ALCHIQ ontologies of depth 1, we also show that it
is decidable and EXPTIME-complete whether a given ontology
admits PTIME query evaluation (equivalently: rewritability into
Datalog6=). For uGC−2 (1,=), we show a NEXPTIME upper bound.
ForALC ontologies of depth 2, we establish NEXPTIME-hardness.
The proof indicates that more sophisticated techniques are needed
to establish decidability, if the problem is decidable at all (which
we leave open).

To understand the practical relevance of our results, we have
analyzed 411 ontologies from the BioPortal repository [52]. Af-
ter removing all constructors that do not fall within ALCHIF ,
an impressive 405 ontologies turned out to have depth 2 and thus
belong to a fragment with dichotomy (sometimes modulo an easy
complexity-preserving rewriting). ForALCHIQ, still 385 ontolo-
gies had depth 1 and so belonged to a fragment with dichotomy.
As a concrete and simple example, consider the two uGC−2 (1)-
ontologies

O1 = {∀x (Hand(x)→ ∃=5y hasFinger(x, y))}
O2 = {∀x (Hand(x)→ ∃y (hasFinger(x, y) ∧ Thumb(y)))}

which both enjoy PTIME query evaluation (and thus rewritability
into Datalog6=), but where query evaluation w.r.t. the unionO1∪O2

is CONP-hard. Note that such subtle differences cannot be captured
when data complexity is studied on the level of ontology languages,
at least when basic compositionality conditions are desired.

We briefly highlight some of the techniques used to establish our
results. An important role is played by the notions of materializ-
ability and unraveling tolerance of an ontology O. Materializabil-
ity means that for every instance D, there is a universal model of
D and O, defined in terms of query answers rather than in terms
of homomorphisms (which, as we show, need not coincide in our
context). Unraveling tolerance means that the ontology cannot dis-
tinguish between an instance and its unraveling into a structure of
bounded treewidth. While non-materializability of O implies that
query evaluation w.r.t. O is CONP-hard, unraveling tolerance of O
implies that query evaluation w.r.t. O is in PTIME (in fact, even
rewritable into Datalog). To establish dichotomies, we prove for
the relevant fragments that materializability implies unraveling tol-
erance which, depending on the fragment, can be technically rather
subtle. To prove CSP-hardness or non-dichotomies, very infor-
mally speaking, we need to express properties in the ontology that
a (positive existential) query cannot ‘see’. This is often very sub-
tle and can often be achieved only partially. While the latter is not



a major problem for CSP-hardness (where we need to deal with
CSPs that ‘admit precoloring’ and are known to behave essentially
in the same way as traditional CSPs), it poses serious challenges
when proving non-dichotomy. To tackle this problem, we establish
a variation of Ladner’s theorem on NP-intermediate problems such
that instead of the word problem for NP Turing machines, it speaks
about the run fitting problem, which is to decide whether a given
partially described run of a Turing machine (which corresponds to
a precoloring in the CSP case) can be extended to a full run that
is accepting. Also our proofs of decidability of whether an ontol-
ogy admits PTIME query evaluation are rather subtle and technical,
involving e.g. mosaic techniques.

Due to space constraints, throughout the paper we defer proof
details to the long version this paper available at http://cgi.csc.liv.
ac.uk/~frank/publ/publ.html.

Related Work. Ontology-mediated querying has first been consid-
ered in [40, 15]; other important papers include [16, 12, 5]. It is
a form of reasoning under integrity constraints, a traditional topic
in database theory, see e.g. [9, 8] and references therein, and it is
also related to deductive databases, see e.g. the monograph [44].
Moreover, ontology-mediated querying has drawn inspiration from
query answering under views [17, 18]. In recent years, there has
been significant interest in complete classification of the complex-
ity of hard querying problems. In the context of ontology-mediated
querying, relevant references include [42, 11, 41]. In fact, this
paper closes a number of open problems from [42] such as that
ALCI ontologies of depth two enjoy a dichotomy and that materi-
alizability (and thus PTIME complexity and Datalog-rewritability)
is decidable in many relevant cases. Other areas of database theory
where complete complexity classifications are sought include con-
sistent query answering [36, 35, 24, 21], probabilistic databases
[51], and deletion propagation [33, 25].

2. PRELIMINARIES
We assume an infinite set ∆D of data constants, an infinite set

∆N of labeled nulls disjoint from ∆D , and a set Σ of relation sym-
bols containing infinitely many relation symbols of any arity ≥ 1.
A (database) instance D is a non-empty set of factsR(a1, . . . , ak),
where R ∈ Σ, k is the arity of R, and a1, . . . , ak ∈ ∆D . We gen-
erally assume that instances are finite, unless otherwise specified.
An interpretation A is a non-empty set of atoms R(a1, . . . , ak),
where R ∈ Σ, k is the arity of R, and a1, . . . , ak ∈ ∆D ∪ ∆N .
We use sig(A) and dom(A) to denote the set of relation sym-
bols and, respectively, constants and labelled nulls in A. We al-
ways assume that sig(A) is finite while dom(A) can be infinite.
Whenever convenient, interpretations A are presented in the form
(A, (RA)R∈sig(A)) where A = dom(A) and RA is a k-ary relation
on A for each R ∈ sig(A) of arity k. An interpretation A is a
model of an instance D, written A |= D, if D ⊆ A. We thus make
a strong open world assumption (interpretations can make true ad-
ditional facts and contain additional constants and nulls) and also
assume standard names (every constant in D is interpreted as itself
in A). Note that every instance is also an interpretation.

Assume A and B are interpretations. A homomorphism h
from A to B is a mapping from dom(A) to dom(B) such that
R(a1, . . . , ak) ∈ A implies R(h(a1), . . . , h(ak)) ∈ B for all
a1, . . . , ak ∈ dom(A) and R ∈ Σ of arity k. We say that h pre-
serves a set D of constants and labelled nulls if h(a) = a for all
a ∈ D and that h is an isomorphic embedding if it is injective and
R(h(a1), . . . , h(ak)) ∈ B entails R(a1, . . . , ak) ∈ A. An inter-
pretation A ⊆ B is a subinterpretation of B if R(a1, . . . , ak) ∈
B and a1, . . . , ak ∈ dom(A) implies R(a1, . . . , ak) ∈ A; if

dom(A) = A, we denote A by B|A and call it the subinterpre-
tation of B induced by A.

Conjunctive queries (CQs) q of arity k take the form q(~x)← φ,
where ~x = x1, . . . , xk is the tuple of answer variables of q, and φ
is a conjunction of atomic formulas R(y1, . . . , yn) with R ∈ Σ of
arity n and y1, . . . , yn variables. As usual, all variables in ~x must
occur in some atom of φ. Any CQ q(~x) ← φ can be regarded as
an instance Dq , often called the canonical database of q, in which
each variable y of φ is represented by a unique data constant ay ,
and that for each atom R(y1, . . . , yk) in φ contains the atom
R(ay1 , . . . , ayk ). A tuple ~a = (a1, . . . , ak) of constants is an an-
swer to q(x1, . . . , xk) in A, in symbols A |= q(~a), if there is a ho-
momorphism h from Dq to A with h(ax1 , . . . , axk ) = ~a. A union
of conjunctive queries (UCQ) q takes the form q1(~x), . . . , qn(~x),
where each qi(~x) is a CQ. The qi are called disjuncts of q. A tuple
~a of constants is an answer to q in A, denoted by A |= q(~a), if ~a is
an answer to some disjunct of q in A.

We now introduce the fundamentals of ontology-mediated
querying. An ontology language L is a set of first-order sentences
over signature Σ (that is, function symbols are not allowed) and an
L-ontologyO is a finite set of sentences from L. We introduce var-
ious concrete ontology languages throughout the paper, including
fragments of the guarded fragment and descriptions logics. An in-
terpretation A is a model of an ontology O, in symbols A |= O, if
it satisfies all its sentences. An instance D is consistent w.r.t. O if
there is a model of D and O.

An ontology-mediated query (OMQ) is a pair (O, q), whereO is
an ontology and q a UCQ. The semantics of an ontology-mediated
query is given in terms of certain answers, defined next. Assume
that q has arity k and D is an instance. Then a tuple ~a of length k
in dom(D) is a certain answer to q on an instance D given O, in
symbols O,D |= q(~a), if A |= q(~a) for all models A of D and O.
The query evaluation problem for an OMQ (O, q(~x)) is to decide,
given an instance D and a tuple ~a in D, whether O,D |= q(~a).

We use standard notation for Datalog programs (a brief intro-
duction is given in the appendix). An OMQ (O, q(~x)) is called
Datalog-rewritable if there is a Datalog program Π such that for
all instances D and ~a ∈ dom(D), O,D |= q(~a) iff D |= Π(~a).
Datalog6=-rewritability is defined accordingly, but allows the use of
inequality in the body of Datalog rules. We are mainly interested
in the following properties of ontologies.

Definition 1 Let O be an ontology andQ a class of queries. Then

• Q-evaluation w.r.t. O is in PTIME if for every q ∈ Q, the query
evaluation problem for (O, q) is in PTIME.

• Q-evaluation w.r.t. O is Datalog-rewritable (resp. Datalog6=-
rewritable) if for every q ∈ Q, the query evaluation problem
for (O, q) is Datalog-rewritable (resp. Datalog6=-rewritable).

• Q-evaluation w.r.t. O is CONP-hard if there is a q ∈ Q such
that the query evaluation problem for (O, q) is CONP-hard.

2.1 Ontology Languages
As ontology languages, we consider fragments of the guarded

fragment (GF) of FO, the two-variable guarded fragment of FO
with counting, and DLs. Recall that GF formulas [1] are obtained
by starting from atomic formulasR(~x) over Σ and equalities x = y
and then using the boolean connectives and guarded quantifiers of
the form

∀~y(α(~x, ~y)→ ϕ(~x, ~y)), ∃~y(α(~x, ~y) ∧ ϕ(~x, ~y))



where ϕ(~x, ~y) is a guarded formula with free variables among ~x, ~y
and α(~x, ~y) is an atomic formula or an equality x = y that con-
tains all variables in ~x, ~y. The formula α is called the guard of the
quantifier.

In ontologies, we only allow GF sentences ϕ that are invariant
under disjoint unions, that is, for all families Bi, i ∈ I , of in-
terpretations with mutually disjoint domains, the following holds:
Bi |= ϕ for all i ∈ I if, and only if,

⋃
i∈I Bi |= ϕ. We give a

syntactic characterization of GF sentences that are invariant under
disjoint unions. Denote by openGF the fragment of GF that con-
sists of all (open) formulas whose subformulas are all open and in
which equality is not used as a guard. The fragment uGF of GF
is the set of sentences obtained from openGF by a single guarded
universal quantifier: if ϕ(~y) is in openGF, then ∀~y(α(~y)→ ϕ(~y))
is in uGF, where α(~y) is an atomic formula or an equality y = y
that contains all variables in ~y. We often omit equality guards in
uGF sentences of the form ∀y(y = y → ϕ(y)) and simply write
∀yϕ. A uGF ontology is a finite set of sentences in uGF.

Theorem 1 A GF sentence is invariant under disjoint unions iff it
is equivalent to a uGF sentence.

PROOF. The direction from right to left is straightforward. For
the converse direction, observe that every GF sentence is equivalent
to a Boolean combination of uGF sentences. Now assume that ϕ is
a GF sentence and invariant under disjoint unions. Let cons(ϕ) be
the set of all sentences χ in uGF with ϕ |= χ. By compactness of
FO it is sufficient to show that cons(ϕ) |= ϕ. If this is not the case,
take a model A0 of cons(ϕ) refuting ϕ and take for any sentence
ψ in uGF that is not in cons(ϕ) an interpretation A¬ψ satisfying ϕ
and refuting ψ. Let A1 be the disjoint union of all A¬ψ . By preser-
vation of ϕ under disjoint unions, A1 satisfies ϕ. By reflection of
ϕ for disjoint unions, the disjoint union A of A0 and A1 does not
satisfy ϕ. Thus A1 satisfies ϕ and A does not satisfy ϕ but by
construction A and A1 satisfy the same sentences in uGF. This is
impossible since ϕ is equivalent to a Boolean combination of uGF
sentences.

The following example shows that some very simple Boolean com-
binations of uGF sentences are not invariant under disjoint unions.

Example 1 Let

OUCQ/CQ = {(∀x(A(x) ∨B(x)) ∨ ∃xE(x)}
OMat/PTime = {∀xA(x) ∨ ∀xB(x)}

Then OMat/PTime is not preserved under disjoint unions since D1 =
{A(a)} and D2 = {B(b)} are models of OMat/PTime but D1 ∪ D2

refutes OMat/PTime; OUCQ/CQ does not reflect disjoint unions since
the disjoint union of D′1 = {E(a)} and D′2 = {F (b)} is a model
of OUCQ/CQ but D′2 refutes OUCQ/CQ. We will use these ontologies
later to explain why we restrict this study to fragments of GF that
are invariant under disjoint unions.

When studying uGF ontologies, we are going to vary several
parameters. The depth of a formula ϕ in openGF is the nest-
ing depth of guarded quantifiers in ϕ. The depth of a sentence
∀~y(α(~y)→ ϕ(~y)) in uGF is the depth of ϕ(~y), thus the outermost
guarded quantifier is not counted. The depth of a uGF ontology is
the maximum depth of its sentences. We indicate restricted depth in
brackets, writing e.g. uGF(2) to denote the set of all uGF sentences
of depth at most 2.

Example 2 The sentence

∀xy(R(x, y)→ (A(x) ∨ ∃zS(y, z)))

is in uGF(1) since the openGF formula A(x) ∨ ∃zS(y, z) has
depth 1.

For every GF sentence ϕ, one can construct in polynomial time a
conservative extension ϕ′ in uGF(1) by converting into Scott nor-
mal form [29]. Thus, the satisfiability and CQ-evaluation problems
for full GF can be polynomially reduced to the corresponding prob-
lem for uGF(1).

We use uGF− to denote the fragment of uGF where only equality
guards are admitted in the outermost universal quantifier applied to
an openGF formula. Thus, the sentence in Example 2 (1) is a uGF
sentence of depth 1, but not a uGF− sentence of depth 1. It is,
however, equivalent to the following uGF− sentence of depth 1:

∀x(∃y((R(y, x) ∧ ¬A(y))→ ∃zS(x, z)))

An example of a uGF sentence of depth 1 that is not equivalent to a
uGF− sentence of depth 1 is given in Example 3 below. Intuitively,
uGF sentences of depth 1 can be thought of as uGF− sentences
of ‘depth 1.5’ because giving up ·− allows an additional level of
‘real’ quantification (meaning: over guards that are not forced to
be equality), but only in a syntactically restricted way.

The two-variable fragment of uGF is denoted with uGF2. More
precisely, in uGF2 we admit only the two fixed variables x and y
and disallow the use of relation symbols of arity exceeding two. We
also consider two extensions of uGF2 with forms of counting. First,
uGF2(f) denotes the extension of uGF2 with function symbols,
that is, an uGF2(f) ontology is a finite set of uGF2 sentences and
of functionality axioms ∀x∀y1∀y2((R(x, y1)∧R(x, y2))→ (y1 =
y2)) [29]. Second, we consider the extension uGC2 of uGF2 with
counting quantifiers. More precisely, the language openGC2 is de-
fined in the same way as the two-variable fragment of openGF, but
in addition admits guarded counting quantifiers [48, 32]: if n ∈ N,
{z1, z2} = {x, y}, and α(z1, z2) ∈ {R(z1, z2), R(z2, z1)} for
someR ∈ Σ and ϕ(z1, z2) is in openGC2, then ∃≥nz1(α(z1, z2)∧
ϕ(z1, z2)) is in openGC2. The ontology language uGC2 is then
defined in the same way as uGF2, using openGC2 instead of
openGF2. The depth of formulas in uGC2 is defined in the expected
way, that is, guarded counting quantifiers and guarded quantifiers
both contribute to it.

The above restrictions can be freely combined and we use
the obvious names to denote such combinations. For example,
uGF−2 (1, f) denotes the two-variable fragment of uGF with func-
tion symbols and where all sentences must have depth 1 and the
guard of the outermost quantifier must be equality. Note that uGF
admits equality, although in a restricted way (only in non-guard po-
sitions, with the possible exception of the guard of the outermost
quantifier). We shall also consider fragments of uGF that admit no
equality at all except as a guard of the outermost quantifier. To em-
phasize that the restricted use of equality is allowed, we from now
on use the equality symbol in brackets whenever equality is present,
as in uGF(=), uGF−(1,=), and uGC−2 (1,=). Conversely, uGF,
uGF−(1), and uGC−2 (1) from now on denote the corresponding
fragments where equality is only allowed as a guard of the outer-
most quantifier.

Description logics are a popular family of ontology languages
that are related to the guarded fragments of FO introduced above.
We briefly review the basic description logic ALC, further details
on this and other DLs mentioned in this paper can be found in the
appendix and in [4]. DLs generally use relations of arity one and
two, only. An ALC concept is formed according to the syntax rule

C,D ::= A | > | ⊥ | ¬C | C uD | C tD | ∃R.C | ∀R.C



where A ranges over unary relations and R over binary relations.
An ALC ontology O is a finite set of concept inclusions C v D,
with C and D ALC concepts. The semantics of ALC concepts C
can be given by translation to openGF formulas C∗(x) with one
free variable x and two variables overall. A concept inclusion C v
D then translates to the uGF−2 sentence ∀x(C∗(x) → D∗(x)).
The depth of an ALC concept is the maximal nesting depth of ∃R
and ∀R. The depth on an ALC ontology is the maximum depth of
concepts that occur in it. Thus, every ALC ontology of depth n is
a uGF−2 ontology of depth n. When translating into uGF2 instead
of into uGF−2 , the depth might decrease by one because one can
exploit the outermost quantifier (which does not contribute to the
depth). A more detailed description of the relationship between
DLs and fragments of uGF is given in the appendix.
Example 3 The ALC concept inclusion ∃S.A v ∀R.∃S.B has
depth 2, but is equivalent to the uGF2(1) sentence

∀xy(R(x, y)→ ((∃S.A)∗(x)→ (∃S.B)∗(y))

Note that for any ontology O in any DL considered in this paper
one can construct in a straightforward way in polynomial time a
conservative extension O∗ of O of depth one. In fact, many DL
algorithms for satisfiability or query evaluation assume that the on-
tology is of depth one and normalized.

We also consider the extensions of ALC with inverse roles R−

(denoted in the name of the DL by the letter I), role inclusions
R v S (denoted by H), qualified number restrictions (≥ n R C)
(denoted byQ), partial functions as defined above (denoted by F),
and local functionality expressed by (≤ 1R) (denoted by F`). The
depth of ontologies formulated in these DLs is defined in the ob-
vious way. Thus, ALCHIQ ontologies (which admit all the con-
structors introduced above) translate into uGC−2 ontologies, pre-
serving the depth.

For any syntactic object O (such as an ontology or a query), we
use |O| to denote the number of symbols needed to write O, count-
ing relation names, variable names, and so on as a single symbol
and assuming that numbers in counting quantifiers and DL number
restrictions are coded in unary.

2.2 Guarded Tree Decompositions
We introduce guarded tree decompositions and rooted acyclic

queries [30]. A set G ⊆ dom(A) is guarded in the interpretation
A if G is a singleton or there are R ∈ Σ and R(a1, . . . , ak) ∈ A
such that G = {a1, . . . , ak}. By S(A), we denote the set of all
guarded sets in A. A tuple (a1, . . . , ak) ∈ Ak is guarded in A if
{a1, . . . , ak} is a subset of some guarded set in A. A guarded tree
decomposition of A is a triple (T,E, bag) with (T,E) an acyclic
undirected graph and bag a function that assigns to every t ∈ T a
set bag(t) of atoms such that A|dom(bag(t)) = bag(t) and

1. A =
⋃
t∈T bag(t);

2. dom(bag(t)) is guarded for every t ∈ T ;

3. {t ∈ T | a ∈ dom(bag(t))} is connected in (T,E), for every
a ∈ dom(A).

We say that A is guarded tree decomposable if there exists a
guarded tree decomposition of A. We call (T,E, bag) a con-
nected guarded tree decomposition (cg-tree decomposition) if, in
addition, (T,E) is connected (i.e., a tree) and dom(bag(t)) ∩
dom(bag(t′)) 6= ∅ for all (t, t′) ∈ E. In this case, we often as-
sume that (T,E) has a designated root r, which allows us to view
(T,E) as a directed tree whenever convenient.

A CQ q ← φ is a rooted acyclic query (rAQ) if there exists a cg-
tree decomposition (T,E, bag) of the instance Dq with root r such

that dom(bag(r)) is the set of answer variables of q. Note that, by
definition, rAQs are non-Boolean queries.

Example 4 The CQ

q(x)← φ, φ = R(x, y) ∧R(y, z) ∧R(z, x)

is not an rAQ since Dq is not guarded tree decomposable. By
adding the conjunct Q(x, y, z) to φ one obtains an rAQ.

We will frequently use the following construction: let D be an
instance and G a set of guarded sets in D. Assume that BG,
G ∈ G, are interpretations such that dom(BG) ∩ dom(D) = G
and dom(BG1) ∩ dom(BG2) = G1 ∩ G2 for any two distinct
guarded sets G1 and G2 in G. Then the interpretation

B = D ∪
⋃
G∈G

BG

is called the interpretation obtained from D by hooking BG to D
for all G ∈ G. If the BG are cg-tree decomposable interpretations
with dom(bag(r)) = G for the root r of a (fixed) cg-tree decom-
position of BG, then B is called a forest model of D defined using
G. If G is the set of all maximal guarded sets in D, then we call
B simply a forest model of D. The following result can be proved
using standard guarded tree unfolding [29, 30].

Lemma 1 LetO be a uGF(=) or uGC2(=) ontology, D a possibly
infinite instance, and A a model of D and O. Then there exists a
forest model B of D and O and a homomorphism h from B to A
that preserves dom(D).

3. MATERIALIZABILITY
We introduce and study materializability of ontologies as a nec-

essary condition for query evaluation to be in PTIME. In brief,
an ontology O is materializable if for every instance D, there is a
model A of O and D such that for all queries, the answers on A
agree with the certain answers on D given O. We show that this
sometimes, but not always, coincides with existence of universal
models defined in terms of homomorphisms. We then prove that in
uGF(=) and uGC2(=), non-materializability implies CONP-hard
query answering while this is not the case for GF. Using these re-
sults, we further establish that in uGF(=) and uGC2(=), query
evalution w.r.t. ontologies to be in PTIME, Datalog6=-rewritable,
and CONP-hard does not depend on the query language, that is, all
these properties agree for rAQs, CQs, and UCQs. Again, this is not
the case for GF.

Definition 2 (Materializability) Let O be an FO(=)-ontology,Q
a class of queries, andM a class of instances. Then

• an interpretation B is aQ-materialization ofO and an instance
D if it is a model of O and D and for all q(~x) ∈ Q and ~a in
dom(D), B |= q(~a) iff O,D |= q(~a).

• O isQ-materializable forM if for every instance D ∈M that
is consistent w.r.t. O, there is aQ-materialization of O and D.

If M is the class of all instances, we simply speak of Q-
materializability of O.

We first observe that the materializability of ontologies does not
depend on the query language (although concrete materializations
do).

Theorem 2 Let O be a uGF(=) or uGC2(=) ontology andM a
class of instances. Then the following conditions are equivalent:

1. O is rAQ-materializable forM;



2. O is CQ-materializable forM;

3. O is UCQ-materializable forM.

PROOF. The only non-trivial implication is (1) ⇒ (2). It can
be proved by using Lemma 1 and showing that if A is a rAQ-
materialization of an ontologyO and an instance D, then any forest
model B ofO and D which admits a homomorphism to A that pre-
serves dom(D) is a CQ-materialization of O and D.

Because of Theorem 2, we from now on speak of materializ-
ability without reference to a query language and of materializa-
tions instead of UCQ-materializations (which are then also CQ-
materializations and rAQ-materializations).

A notion closely related to materializations are (homomorphi-
cally) universal models as used e.g. in data exchange [22, 20]. A
model of an ontology O and an instance D is hom-universal if
there is a homomorphism preserving dom(D) into any model of
O and D. We say that an ontology O admits hom-universal mod-
els if there is a hom-universal model for O and any instance D.
It is well-known that hom-universal models are closely related to
what we call UCQ-materializations. In fact, in many DLs and in
uGC2(=), materializability of an ontologyO coincides withO ad-
mitting hom-universal models (although for concrete models, being
hom-universal is not the same as being a materialization). We show
in the long version that this is not the case for ontologies in uGF(2)
(with three variables). The proof also shows that admitting hom-
universal models is not a necessary condition for query evaluation
to be in PTIME (in contrast to materializability).

Lemma 2 A uGC2(=) ontology is materializable iff it admits hom-
universal models. This does not hold for uGF(2) ontologies.

The following theorem links materializability to computational
complexity, thus providing the main reason for our interest into this
notion. The proof is by reduction of 2+2-SAT [50], a variation of a
related proof from [42].

Theorem 3 Let O be an FO(=)-ontology that is invariant under
disjoint unions. If O is not materializable, then rAQ-evaluation
w.r.t. O is CONP-hard.

We remark that, in the proof of Theorem 3, we use instances and
rAQs that use additional fresh (binary) relation symbols, that is,
relation symbols that do not occur in O.

The ontology OMat/PTime from Example 1 shows that Theorem 3
does not hold for GF ontologies, even if they are of depth 1 and use
only a single variable. In fact, OMat/PTime is not CQ-materializable,
but CQ-evaluation is in PTIME (which is both easy to see).

Theorem 4 For all uGF(=) and uGC2(=) ontologies O, the fol-
lowing are equivalent:

1. rAQ-evaluation w.r.t. O is in PTIME;

2. CQ-evaluation w.r.t. O is in PTIME;

3. UCQ-evaluation w.r.t. O is in PTIME.

This remains true when ‘in PTIME’ is replaced with ‘Datalog6=-
rewritable’ and with ‘CONP-hard’ (and with ‘Datalog-rewritable’
if O is a uGF ontology).

PROOF. By Theorem 3, we can concentrate on ontologies that
are materializable. For the non-trivial implication of Point 3 by
Point 1, we exploit materializability to rewrite UCQs into a finite
disjunction of queries q ∧ ∧i qi where q is a “core CQ” that only
needs to be evaluated over the input instance D (ignoring labeled

nulls) and each qi is a rAQ. This is similar to squid decompositions
in [12], but more subtle due to the presence of subqueries that are
not connected to any answer variable of q. Similar constructions
are used also to deal with Datalog 6=-rewritability and with CONP-
hardness.

The ontology OUCQ/CQ from Example 1 shows that Theorem 4
does not hold for GF ontologies, even if they use only a single
variable and are of depth 1 up to an outermost universal quantifier
with an equality guard.
Lemma 3 CQ-evaluation w.r.t. OUCQ/CQ is in PTIME and UCQ-
evaluation w.r.t. OUCQ/CQ is CONP-hard.

The lower bound essentially follows the construction in the proof
of Theorem 3 and the upper bound is based on a case analysis,
depending on which relations occur in the CQ and in the input in-
stance.

4. UNRAVELLING TOLERANCE
While materializability of an ontology is a necessary condition

for PTIME query evaluation in uGF(=) and uGC2(=), we now
identify a sufficient condition called unravelling tolerance that is
based on unravelling instances into cg-tree decomposable instances
(which might be infinite). In fact, unravelling tolerance is even a
sufficient condition of Datalog 6=-rewritability and we will later es-
tablish our dichotomy results by showing that, for the ontology lan-
guages in question, materializability implies unravelling tolerance.

We start with introducing suitable forms of unravelling (also
called guarded tree unfolding, see [30] and references therein). The
uGF-unravelling Du of an instance D is constructed as follows.
Let T (D) be the set of all sequences t = G0G1 · · ·Gn where Gi,
0 ≤ i ≤ n, are maximal guarded sets of D and

(a) Gi 6= Gi+1,

(b) Gi ∩Gi+1 6= ∅, and

(c) Gi−1 6= Gi+1.

In the following, we associate each t ∈ T (D) with a set of atoms
bag(t). Then we define Du as

⋃
t∈T (D) bag(t) and note that

(T (D), E, bag) is a cg-tree decomposition of Du where (t, t′) ∈ E
if t′ = tG for some G.

Set tail(G0 · · ·Gn) = Gn. Take an infinite supply of copies of
any d ∈ dom(D). We set e↑ = d if e is a copy of d. We define
bag(t) (up to isomorphism) proceeding by induction on the length
of the sequence t. For any t = G, bag(t) is an instance whose
domain is a set of copies of d ∈ G such that the mapping e 7→ e↑

is an isomorphism from bag(G) onto the subinstance D|G of D
induced by G. To define bag(t′) for t′ = tG′ when tail(t) = G,
take for any d ∈ G′ \G a fresh copy d′ of d and define bag(t′) with
domain {d′ | d ∈ G′ \G}∪{e ∈ bag(t) | e↑ ∈ G′∩G)} such that
the mapping e 7→ e↑ is an isomorphism from bag(t′) onto D|G′ .
The following example illustrates the construction of Du.
Example 5 (1) Consider the instance D depicted below with the
maximal guarded sets G1, G2, G3. Then the unravelling Du of
D consists of three isomorphic chains (we depict only one such
chain):

G1

G2

G3
G1 G2G3G2 G3

(2) Next consider the instance D depicted below which has the
shape of a tree of depth one with root a and has three maximal



guarded sets G1, G2, G3. Then the unravelling Du of D consists
of three isomorphic trees of depth one of infinite outdegree (again
we depict only one):

G1

G2

G3

a

. . .

a

G1

G1

G2

G2

G3

G3

By construction, the mapping h : e 7→ e↑ is a homomorphism
from Du onto D and the restriction of h to any guarded set G is
an isomorphism. It follows that for any uGF(=) ontologyO, UCQ
q(~x), and ~a in Du, if O,Du |= q(~a), then O,D |= q(h(~a)). This
implication does not hold for ontologies in the guarded fragment
with functions or counting. To see this, let

O = {∀x(∃≥4yR(x, y)→ A(x))}
Then O,Du |= A(a) for the instance D from Example 5 (2) but
O,D 6|= A(a). For this reason the uGF-unravelling is not appro-
priate for the guarded fragment with functions or counting. By
replacing Condition (c) by the stronger condition

(c′) Gi ∩Gi−1 6= Gi ∩Gi+1,

we obtain an unravelling that we call uGC2-unravelling and that we
apply whenever all relations have arity at most two. One can show
that the uGC2-unravelling of an instance preserves the number of
R-successors of constants in D and that, in fact, the implication
‘O,Du |= q(~a) ⇒ O,D |= q(h(~a))’ holds for every uGC2(=)
ontology O, UCQ q(~x), and tuple ~a in the uGC2-unravelling Du

of D.
We are now ready to define unravelling tolerance. For a maximal

guarded setG in D, the copy in bag(G) of a tuple~a = (a1, . . . , ak)

in G is the unique ~b = (b1, . . . , bk) in dom(bag(G)) such that
b↑i = ai for 1 ≤ i ≤ k.

Definition 3 A uGF(=) (resp. uGC2(=)) ontology O is unravel-
ling tolerant if for every instance D, every rAQ q(~x), and every
tuple ~a in D such that the set G of elements of ~a is maximally
guarded in D the following are equivalent:

1. O,D |= q(~a);

2. O,Du |= q(~b) where~b is the copy of ~a in bag(G)

where Du is the uGF-unravelling (resp. the uGC2-unravelling)
of D.

We have seen above that the implication (2)⇒ (1) in Definition 3
holds for every uGF(=) and uGC2(=) ontology and every UCQ.
Note that it is pointless to define unravelling tolerance using the
implication (1)⇒ (2) for UCQs or CQs that are not acyclic. The
following example shows that (1)⇒ (2) does not always hold for
rAQs.

Example 6 Consider the uGF ontology O that contains the sen-
tences

∀x
(
X(x)→ (∃y(R(x, y) ∧X(y))→ E(x))

)
with X ∈ {A,¬A} and

∀x
(
E(x)→ ((R(x, y) ∨R(y, x))→ E(y))

)

For instances D not using A, O states that E(a) is entailed for all
a ∈ dom(D) that are R-connected to some R-cycle in D with an
odd number of constants. Thus, for the instance D from Example 5
(1) we have O,D |= E(a) for every a ∈ dom(D) but O,Du 6|=
E(a) for any a ∈ dom(Du).

We now show that, as announced, unraveling tolerance implies that
query evaluation is Datalog6=-rewritable.

Theorem 5 For all uGF(=) and uGC2(=) ontologies O, un-
ravelling tolerance of O implies that rAQ-evaluation w.r.t. O is
Datalog6=-rewritable (and Datalog-rewritable if O is formulated
in uGF).

PROOF. We sketch the proof for the case that O is a uGF(=)
ontology; similar constructions work for the other cases. Suppose
that O is unravelling tolerant, and that q(~x) is a rAQ. We construct
a Datalog 6= program Π that, given an instance D, computes the
certain answers ~a of q on D givenO, where w.l.o.g. we can restrict
our attention to answers ~a such that the set G of elements of ~a is
maximally guarded in D. By unravelling tolerance, it is enough to
check if O,Du |= q(~b), where ~b is the copy of ~a in bag(G) and
Du is the uGF-unravelling of D.

The Datalog6= program Π assigns to each maximally guarded
tuple ~a = (a1, . . . , ak) in D a set of types. Here, a type is a
maximally consistent set of uGF formulas with free variables in
x1, . . . , xk, where the variable xi represents the element ai. It can
be shown that we only need to consider types with formulas of the
form φ or ¬φ, where φ is obtained from a subformula ofO or q by
substituting a variable in x1, . . . , xk for each of its free variables, or
φ is an atomic formula in the signature of O, q with free variables
in x1, . . . , xk. In particular, the set of all types is finite. We further
restrict our attention to types θ that are realizable in some model of
O, i.e., there is a model B(θ) ofO containing all elements of~a that
is a model of each formula in θ under the interpretation xi 7→ ai.
The Datalog6= program Π ensures the following:

1. for any two maximally guarded tuples ~a = (a1, . . . , ak), ~b =
(b1, . . . , bl) in D that share an element, and any type θ assigned
to ~a there is a type θ′ assigned to~b that is compatible to θ (intu-
itively, the two types agree on all formulas that only talk about
elements shared by ~a and~b);

2. a tuple ~a = (a1, . . . , ak) is an answer to Π if all types assigned
to ~a contain q(x1, . . . , xk), or some maximally guarded tuple~b
in D has no type assigned to it.

It can be shown that ~a is an answer to Π iff O,Du |= q(~a).
The interesting part is the “if” part. Suppose ~a = (a1, . . . , ak)

is not an answer to Π. Then, each maximally guarded tuple~b in D
is assigned to at least one type, and for some type θ∗ assigned to ~a
we have q(x1, . . . , xk) /∈ θ∗. We use this type assignment to label
each maximally guarded tuple~b of Du with a type θ~b so that (1) for
each maximally guarded tuple ~c of Du that shares an element with
~b the two types θ~b and θ~c are compatible; and (2) θ∗ = θ~a∗ , where
~a∗ is the copy of ~a in G = {a1, . . . , ak}. We can now show that
the interpretation A obtained from Du by hooking B(θ~b) to Du,
for all maximally guarded tuples~b of Du, is a model of O and Du

with A 6|= q(~a∗).

5. DICHOTOMIES
We prove dichotomies between PTIME and CONP for query

evaluation in the five ontology languages displayed in the bottom-
most part of Figure 1. In fact, the dichotomy is even between



Datalog6=-rewritability and CONP. The proof establishes that for
ontologies O formulated in any of these languages, CQ-evaluation
w.r.t. O is Datalog6=-rewritable iff it is in PTIME iff O is unrav-
elling tolerant iff O is materializable for the class of (possibly in-
finite) cg-tree decomposable instances iff O is materializable and
that, if none of this is the case, CQ-evaluation w.r.t. O is CONP-
hard. The main step towards the dichotomy result is provided by
the following theorem.

Theorem 6 Let O be an ontology formulated in one of uGF(1),
uGF−(1,=), uGF−2 (2), uGC−2 (1,=), or an ALCHIF ontology
of depth 2. If O is materializable for the class of (possibly infinite)
cg-tree decomposable instances D with sig(D) ⊆ sig(O), then O
is unravelling tolerant.

PROOF. We sketch the proof for uGF(1) and uGF−2 (2) ontolo-
gies O and then discuss the remaining cases. Assume that O sat-
isfies the precondition from Theorem 6. Let D be an instance and
Du its uGF unravelling. Let ~a be a tuple in a maximal guarded set
G in D and~b be the copy in dom(bag(G)) of ~a. Further let q be an
rAQ such thatO,Du 6|= q(~b). We have to show thatO,D 6|= q(~a).
Using the condition thatO is materializable for the class of cg-tree
decomposable instances D with sig(D) ⊆ sig(O), it can be shown
that there exists a materialization B of O and Du.

By Lemma 1 we may assume that B is a forest model which
is obtained from Du by hooking cg-tree decomposable Bbag(t) to
maximal guarded bag(t) in Du. Now we would like to obtain a
model ofO and the original D by hooking for any maximal guarded
G in D the interpretation Bbag(G) to D rather than to Du. However,
the resulting model is then not guaranteed to be a model ofO. The
following example illustrates this. Let O contain

∀x∃y(S(x, y) ∧A(y)),

and for ϕ(x) = ∃z(S(x, z) ∧ ¬A(z))

∀xy(R(x, y)→ (ϕ(x)→ ϕ(y))

Thus in every model of O each node has an S-successor in A and
having an S-successor that is not in A is propagated along R. O
is unravelling tolerant. Consider the instance D from Example 5
(1) depicted here again with the maximal guarded setsG1, G2, G3.

G1

G2

G3

A A A A

¬A ¬A ¬A ¬A

G1

A A A A

¬A ¬A

G2

A A A A
G3

D

B

We have seen that the unravelling Du of D consists of three chains.
An example of a forest model B of O and Du is given in the fig-
ure. Even in this simple example a naive way of hooking the mod-
els BGi , i = 1, 2, 3, to the original instance D will lead to an
interpretation not satisfying O as the propagation condition for S-
successors not inA will not be satisfied. To ensure that we obtain a
model ofO we first define a new instance Du+ ⊇ Du by adding to
each maximal guarded set in Du a copy of any entailed rAQ. The
following facts are needed for this to work:

1. Automorphisms: for any t, t′ ∈ T (D) with tail(t) = tail(t′)
there is an automorphism ĥt,t′ of Du mapping bag(t) onto

bag(t′) and such that ĥt,t′(a)↑ = a↑ for all a ∈ dom(Du).
(This is trivial in the example above.) It is for this property that
we need that Du is obtained from D using maximal guarded
sets only and the assumption that Gi−1 6= Gi+1. It follows that
if tail(t) = tail(t′) then the same rAQs are entailed at bag(t)
and bag(t′) in Du.

2. Homomorphism preservation: if there is a homomorphism h
from instance D to instance D′ then O,D |= q(~a) entails
O,D′ |= q(h(~a)). Ontologies in uGF(1) and uGF−2 (2) have
this property as they do not use equality nor counting. Because
of homomorphism preservation the answers in Du to rAQs are
invariant under moving from Du to Du+. Note that the remain-
ing ontology languages in Theorem 6 do not have this property.

Now using that Du+ is materializable w.r.t. O one can uniformize
a materialization Bu+ of Du+ that is a forest model in such a way
that the automorphisms ĥt,t′ for tail(t) = tail(t′) extend to auto-
morphisms of the resulting model Bu∗ which also still satisfies O.
In the example, after uniformization all chains will behave in the
same way in the sense that every node receives an S-successor not
in A. We then obtain a forest model B∗ of D by hooking the in-
terpretations Bu∗

bag(G) to the maximal guarded sets G in D. (B∗,~a)

and (Bu∗,~b) are guarded bisimilar. Thus B∗ is a model of O and
B∗ 6|= q(~a), as required.

For uGF−(1,=) and uGC−2 (1,=) the intermediate step of con-
structing Du+ is not required as sentences have smaller depth and
no uniformization is needed to satisfy the ontology in the new
model. For ALCHIF ontologies of depth 2 uniformization by
constructing Du+ is needed and has to be done carefully to pre-
serve functionality when adding copies of entailed rAQs to Du.

We can now prove our main dichotomy result.

Theorem 7 Let O be an ontology formulated in one of uGF(1),
uGF−(1,=), uGF−2 (2), uGC−2 (1,=), or an ALCHIF ontology
of depth 2. Then the following conditions are equivalent (unless
PTIME = NP):

1. O is materializable;

2. O is materializable for the class of cg-tree decomposable in-
stances D with sig(D) ⊆ sig(O);

3. O is unravelling tolerant;

4. query evaluation w.r.t. O is Datalog6=-rewritable
(and Datalog-rewritable if O is formulated in uGF);

5. query evaluation w.r.t. O is in PTIME.

Otherwise, query evaluation w.r.t. O is CONP-hard.

PROOF. (1)⇒ (2) is not difficult to establish by a compactness
argument. (2) ⇒ (3) is Theorem 6. (3) ⇒ (4) is Theorem 5. (4)
⇒ (5) is folklore. (5) ⇒ (1) is Theorem 3 (assuming PTIME 6=
NP).

The qualification ‘with sig(D) ⊆ sig(O)’ in Point 2 of Theorem 7
can be dropped without compromising the correctness of the theo-
rem, and the same is true for Theorem 6. It will be useful, though,
in the decision procedures developed in Section 8.



6. CSP-HARDNESS
We establish the four CSP-hardness results displayed in the mid-

dle part of Figure 1, starting with a formal definition of CSP-
hardness. In addition, we derive from the existence of CSPs in
PTIME that are not Datalog definable the existence of ontologies in
any of these languages with PTIME query evaluation that are not
Datalog6= rewritability.

Let A be an instance. The constraint satisfaction problem
CSP(A) is to decide, given an instance D, whether there is a ho-
momorphism from D to A, which we denote with D → A. In
this context, A is called the template of CSP(A). We will gen-
erally and w.l.o.g. assume that relations in sig(A) have arity at
most two and that the template A admits precoloring, that is, for
each a ∈ dom(A), there is a unary relation symbol Pa such that
Pa(b) ∈ A iff b = a [19]. It is known that for every template A,
there is a template A′ of this form such that CSP(A) is polynomi-
ally equivalent to CSP(A′) [39]. We use coCSP(A) to denote the
complement of CSP(A).

Definition 4 Let L be an ontology language and Q a class of
queries. Then Q-evaluation w.r.t. L is CSP-hard if for every tem-
plate A, there exists an L ontology O such that

1. there is a q ∈ Q such that coCSP(A) polynomially reduces to
evaluating the OMQ (O, q) and

2. for every q ∈ Q, evaluating the OMQ (O, q) is polynomially
reducible to coCSP(A).

It can be verified that a dichotomy between PTIME and CONP
for Q-evaluation w.r.t. L ontologies implies a dichotomy between
PTIME and NP for CSPs, a notorious open problem known as the
Feder-Vardi conjecture [23, 7], whenQ-evaluation w.r.t. L is CSP-
hard. As noted in the introduction, a tentative proof of the con-
jecture has recently been announced, but at the time this article is
published, its status still remains unclear.

The following theorem summarizes our results on CSP-hardness.
We formulate it for CQs, but remark that due to Theorem 4,
a dichotomy between PTIME and CONP for any of the men-
tioned ontology languages and any query language from the set
{rAQ,CQ,UCQ} implies the Feder-Vardi conjecture.

Theorem 8 For any of the following ontology languages, CQ-
evaluation w.r.t. L is CSP-hard: uGF2(1,=), uGF2(2),
uGF2(1, f), and the class of ALCF` ontologies of depth 2.

PROOF. We sketch the proof for uGF2(1,=) and then indicate
the modifications needed for uGF2(1, f) and ALCF` ontologies
of depth 2. For uGF2(2), the result follows from a corresponding
result in [42] for ALC ontologies of depth 3.

Let A be a template and assume w.l.o.g. that A admits precolor-
ing. Let Ra be a binary relation for each a ∈ dom(A), and set

ϕ 6=a (x) = ∃y(Ra(x, y) ∧ ¬(x = y))

ϕ=
a (x) = ∃y(Ra(x, y) ∧ (x = y))

Then O contains

∀x(
∧
a 6=a′
¬(ϕ 6=a (x) ∧ ϕ 6=a′(x)) ∧

∨
a

ϕ 6=a (x))

∀x(A(x)→ ¬ϕ 6=a (x)) when A(a) 6∈ A

∀xy(R(x, y)→ ¬(ϕ6=a (x) ∧ ϕ 6=a′(y))) when R(a, a′) 6∈ A

∀xϕ=
a (x) for all a ∈ dom(A)

where A and R range over symbols in sig(A) of the respective
arity. A formula ϕ6=a (x) being true at a constant c in an instance D

means that c is mapped to a ∈ dom(A) by a homomorphism from
D to A. The first sentence in O thus ensures that every node in D
is mapped to exactly one node in A and the second and third set
of sentences ensure that we indeed obtain a homomorphism. The
last set of sentences enforces that ϕ=

a (x) is true at every constant
c. This makes the disjunction in the first sentence ‘invisible’ to the
query (in which inequality is not available), thus avoiding thatO is
CONP-hard for trivial reasons. In the long version, we show thatO
satisfies Conditions 1 and 2 from Definition 4 where there query q
used in Condition 1 is q ← N(x) with N a fresh unary relation.

For uGF2(1, f), state that a binary relation F is a function
and that ∀xF (x, x). Now replace in O the formulas ϕ 6=a (x) by
∃y(Ra(x, y)∧¬F (x, y)) and ϕ=

a (x) by ∃y(Ra(x, y)∧F (x, y)).
For ALCF` of depth 2, replace in O the formulas ϕ6=a (x) by
∃≥2yRa(x, y) and ϕ=

a (x) by ∃yRa(x, y). The resulting ontology
is equivalent to a ALCF` ontology of depth 2.

It is known that for some templates A, CSP(A) is in PTIME while
coCSP(A) is not Datalog 6=-definable [23]. Then CQ-evaluation
w.r.t. the ontologies O constructed from A in the proof of Theo-
rem 4 is in PTIME, but not Datalog6=-rewritable.

Theorem 9 In any of the following ontology languages L there ex-
ist ontologies with PTIME CQ-evaluation which are not Datalog 6=-
rewritable: uGF2(1,=), uGF2(2), uGF2(1, f), and the class of
ALCF` ontologies of depth 2.

The ontology languages in Theorem 5 thus behave provably dif-
ferent from the languages for which we proved a dichotomy in
Section 5, since there PTIME query evaluation and Datalog6=-
rewritability coincide.

7. NON-DICHOTOMY AND UNDECID-
ABILITY

We show that ontology languages that admit sentences of depth
2 as well as functions symbols tend to be computationally prob-
lematic as they do neither enjoy a dichotomy between PTIME
and CONP nor decidability of meta problems such as whether
query evaluation w.r.t. a given ontology O is in PTIME, Datalog6=-
rewritable, or CONP-hard, and whether O is materializable. We
actually start with these undecidability results.

Theorem 10 For the ontology languages uGF−2 (2, f) and
ALCIF` of depth 2, it is undecidable whether for a given ontol-
ogy O,

1. query evaluation w.r.t. O is in PTIME, Datalog6=-rewritable, or
CONP-hard (unless PTIME = NP);

2. O is materializable.

PROOF. The proof is by reduction of the undecidable finite rect-
angle tiling problem. To establish both Points 1 and 2, it suffices to
exhibit, for any such tiling problem P, an ontology OP such that
if P admits a tiling, then OP is not materializable and thus query
evaluation w.r.t. OP is CONP-hard and if P admits no tiling, then
query evaluation w.r.t.OP is Datalog 6=-rewritable and thus materi-
alizable (unless PTIME = NP).

The rectangle to be tiled is represented in input instances us-
ing the binary relations X and Y , and OP declares these relations
and their inverses to be functional. The main idea in the construc-
tion of OP is to verify the existence of a properly tiled grid in the
input instance by propagating markers from the top right corner
to the lower left corner. During the propagation, one makes sure
that grid cells close (that is, the XY-successor coincides with the



YX-successor) and that there is a tiling that satisfies the constraints
in P. Once the existence of a properly tiled grid is completed,
a disjunction is derived by OP to achieve non-materializability
and CONP-hardness. The challenge is to implement this construc-
tion such that when P has no solution (and thus the verification
of a properly tiled grid can never complete), OP is Datalog 6=-
rewritable. In fact, achieving this involves a lot of technical sub-
tleties.

A central issue is how to implement the markers (as formulas
with one free variable) that are propagated through the grid dur-
ing the verification. The markers must be designed in a way so
that they cannot be ‘preset’ in the input instance as this would
make it possible to prevent the verification of a (possibly defec-
tive) part of the input. In ALCIF`, we use formulas of the form
∃=1yP (x, y) while additionally stating in OP that ∀x∃yP (x, y).
Thus, the choice is only between whether a constant has exactly
one P -successor (which means that the marker is set) or more than
one P -successor (which means that the marker is not set). Clearly,
this difference is invisible to queries and we cannot preset a marker
in an input instance in the sense that we make it true at some con-
stant. We can, however, easily make the marker false at a constant
c by adding two P -successors to c in the input instance. It seems
that this effect, which gives rise to many technical complications,
can only be avoided by using marker formulas with higher quanti-
fier depth which would result in OP not falling within ALCIF`
depth 2. For uGF−2 (2, f) we work with ¬∃y(P (x, y)∧¬F (x, y)),
where F is a function for which we state ∀xF (x, x) (as in the CSP
encoding).

Full proof details can be found in the long version. We only men-
tion that closing of a grid cell is verified by using marker formulas
as second-order variables.

Theorem 11 For the ontology languages uGF−2 (2, f) and
ALCIF` of depth 2, there is no dichotomy between PTIME and
CONP (unless PTIME = CONP).

By Ladner’s theorem [38], there is a non-deterministic polyno-
mial time Turing machine (TM) whose word problem is neither in
PTIME nor NP-hard (unless PTIME = CONP). Ideally, we would
like to reduce the word problem of such TMs to prove Theorem 11.
However, this does not appear to be easily possible, for the follow-
ing reason. In the reduction, we use a grid construction and marker
formulas as in the proof of Theorem 10, with the grid providing
the space in which the run of the TM is simulated and markers rep-
resenting TM states and tape symbols. We cannot avoid that the
markers can be preset either positively or negatively in the input
(depending on the marker formulas we choose), which means that
some parts of the run are not ‘free’, but might be predetermined or
at least constrained in some way. We solve this problem by first
establishing an appropriate variation of Ladner’s theorem.

We consider non-deterministic TMs M with a single one-sided
infinite tape. Configurations of M are represented by strings vqw,
where q is the state, and v and w are the contents of the tape to
the left and to the right of the tape head, respectively. A partial
configuration of M is obtained from a configuration γ of M by
replacing some or all symbols of γ by a wildcard symbol ?. A
partial configuration γ̃ matches a configuration γ if it has the same
length and agrees with γ on all non-wildcard symbols. A partial
run of M is a finite sequence γ̃0, . . . , γ̃m of partial configurations
of M of the same length. It is a run if each γ̃i is a configuration,
and it matches a run γ0, . . . , γn if m = n and each γ̃i matches γi.
A run is accepting if its last configuration has an accepting state.
Note that runs need not start in any specific configuration (unless
specified by a partial run that they extend). The run fitting problem

for M is to decide whether a given partial run of M matches some
accepting run of M . It is easy to see that for any TM M , the run
fitting problem for M is in NP. We prove the following result in
the long version by a careful adaptation of the proof of Ladner’s
theorem given in [2].

Theorem 12 There is a non-deterministic Turing machine whose
run fitting problem is neither in PTIME nor NP-hard (unless
PTIME = NP).

Now Theorem 11 is a consequence of the following lemma.

Lemma 4 For every Turing machine M , there is a uGF−2 (2, f)
ontology O and an ALCIF` ontology O of depth 2 such that the
following hold, where N is a distinguished unary relation:

1. there is a polynomial reduction of the run fitting problem for M
to the complement of evaluating the OMQ (O, q ← N(x));

2. for every UCQ q, evaluating the OMQ (O, q) is polynomially
reducible to the complement of the run fitting problem for M .

To establish Lemma 4, we re-use the ontology OP from the proof
of Theorem 10, using a trivial rectangle tiling problem. When the
existence of the grid has been verified, instead of triggering a dis-
junction as before, we now start a simulation of M on the grid.
For bothALCIF` and uGF−2 (2, f), we represent states q and tape
symbols G using the same formulas as in the CSP encoding of ho-
momorphisms. Thus, for ALCIF` we use formulas ∃≥2yq(x, y)
and ∃≥2yG(x, y), respectively, using q and G as binary relations.
Note that here the encoding ∃=1yq(x, y) from the tiling problem
does not work because states and tape symbols can be positively
preset in the input instance rather than negatively, which is in cor-
respondence with the run fitting problem.

8. DECISION PROBLEMS
We study the decidability and complexity of the problem to de-

cide whether a given ontology admits PTIME query evaluation. Re-
alistically, we can only hope for positive results in cases where
there is a dichotomy between PTIME and CONP: first, we have
shown in Section 7 that for cases with provably no such dichotomy,
meta problems are typically undecidable; and second, it does not
seem very likely that in the CSP-hard cases, one can decide whether
an ontology admits PTIME query evaluation without resolving the
dichotomy question and thus solving the Feder-Vardi conjecture.
Our main results are EXPTIME-completeness of deciding PTIME-
query evalutation of ALCHIQ ontologies of depth one (the same
complexity as for satisfiability) and a NEXPTIME upper bound for
uGC−2 (1,=) ontologies. Note that, in both of the considered lan-
guages, PTIME-query evalutation coincides with rewritability into
Datalog6=. We remind the reader that according to our experiments,
a large majority of real world ontologies areALCHIQ ontologies
of depth 1. We also show that for ALC ontologies of depth 2, the
mentioned problem is NEXPTIME-hard.

Since the ontology languages relevant here admit at most binary
relations, an interpretation B is cg-tree decomposable if and only
if the undirected graph GB = {{a, b} | R(a, b) ∈ B, a 6= b} is
a tree. For simplicity, we speak of tree interpretations and of tree
instances, defined likewise. The outdegree of B is the outdegree
of GB.

Theorem 13 For uGC−2 (1,=) ontologies, deciding whether query
evaluation w.r.t. a given ontology is in PTIME (equivalently:
rewritable into Datalog6=) is in NEXPTIME. For ALCHIQ on-
tologies of depth 1, this problem is in EXPTIME-complete.



The main insight underlying the proof of Theorem 13 is that for
ontologies formulated in the mentioned languages, materializabil-
ity (which by Theorem 7 coincides with PTIME query evaluation)
already follows from the existence of materializations for tree in-
stances of depth 1. We make this precise in the following lemma.
Given a tree interpretation B and a ∈ dom(B), define the 1-
neighbourhood B≤1

a of a in B as B|X , where X is the union of
all guarded sets in B that contain a. B is a bouquet with root a if
B≤1
a = B and it is irreflexive if there exists no atom of the form

R(b, b) in B.

Lemma 5 Let O be a uGC−2 (1,=) ontology (resp. an ALCHIQ
ontology of depth 1). Then O is materializable iff O is materializ-
able for the class of all (respectively, all irreflexive) bouquets D of
outdegree ≤ |O| with sig(D) ⊆ sig(O).

PROOF. We require some notation. An instance D is called O-
saturated for an ontologyO if for all factsR(~a) with ~a ⊆ dom(D)
such that O,D |= R(~a) it follows that R(~a) ∈ D. For every O
and instance D there exists a unique minimal (w.r.t. set-inclusion)
O-saturated instance DO ⊇ D. We call DO the O-saturation of
D. It is easy to see that there is a materialization ofO and D if and
only if there is a materialization of O and the O-saturation of D.

We first prove Lemma 5 for uGC−2 (1,=) ontologiesO and with-
out the condition on the outdegree. Let Σ0 = sig(O) and assume
that O is materializable for the class of all Σ0-bouquets. By The-
orem 7 it suffices to prove that O is materializable for the class
of Σ0-tree instances. Fix a Σ0-tree instance D that is consistent
w.r.t. O. We may assume that D is O-saturated. Note that a for-
est model materialization B of an ontology O and an O-saturated
instance F consists of F and tree interpretations Ba, a ∈ dom(F),
that are hooked to F at a. Take for any a ∈ dom(D) the bou-
quet D≤1

a with root a and hook to D at a the interpretation Ba

that is hooked to D≤1
a at a in a forest model materialization B of

D≤1
a and O (such a forest model materialization exists since D≤1

a

is materializable). Denote by A the resulting interpretation. Using
the condition that O is a uGC−2 (1,=) ontology it is not difficult to
prove that A is a materialization of O and D.

We now prove the restriction on the outdegree. Assume O is
given. Let D be a bouquet with root a of minimal outdegree such
that there is no materialization of O and D. We show that the out-
degree of D does not exceed |O|. Assume the outdegree of D is at
least three (otherwise we are done). We may assume that D is O-
saturated. Take for any formula χ = ∃≥nz1α(z1, z2) ∧ ϕ(z1, z2)
that occurs as a subformula in O the set Zχ of all b 6= a such that
D |= α(b, a) ∧ ϕ(b, a). Let Z′χ = Zχ if |Zχ| ≤ n+ 1; otherwise
let Z′χ be a subset of Zχ of cardinality n + 1. Let D′ be the re-
striction D|Z of D to the union Z of all Z′χ and {a}. We show that
there exists no materialization of D′ andO. Assume for a proof by
contradiction that there is a materialization B of D′. Let B′ be the
union of D∪B and the interpretations Bb, b ∈ dom(D)\(Z∪{a}),
that are hooked to D|{a,b} at b in a forest model materialization of
D|{a,b}. We show that B′ is a materialization of D andO (and thus
derive a contradiction). Using the condition that D is O-saturated
one can show that the restriction B′|dom(D) of B′ to dom(D) co-
incides with D. Using the condition that O has depth 1 it is now
easy to show that B′ is a model of O. It is a materialization of D
and O since it is composed of materializations of subinstances of
D and O.

The proof that irreflexive bouquets are sufficient for ontologies
of depth 1 in ALCHIQ is similar to the proof above and uses the
fact that one can always unravel models of ALCHIQ ontologies
into irreflexive tree models.

We now develop algorithms that decide PTIME query evaluation
by checking the conditions given in Lemma 5, starting with the
(easier) case ofALCHIQ. Let D be a bouquet with root a. Call a
bouquet B ⊇ D a 1-materialization of O and D if

• there exists a model A of O and D such that B = A≤1
a ;

• for any model A of D andO there exists a homomorphism from
B to A that preserves dom(D).

It turns out that, when checking materializability, not only is it suf-
ficient to consider bouquets instead of unrestricted instances, but
additionally one can concentrate on 1-materializations of bouquets.

Lemma 6 Let O be an ALCHIQ ontology of depth 1. If for all
irreflexive bouquets D that are consistent w.r.t. O, of outdegree ≤
|O|, and satisfy sig(D) ⊆ sig(O) there is a 1-materialization of O
and D, then O is materializable for the class of all such bouquets.

PROOF. For brevity, we call an irreflexive bouquet F rele-
vant if it is consistent w.r.t. O, of outdegree ≤ |O| and satis-
fies sig(F) ⊆ sig(O). An irreflexive 1-materializability witness
(F, a,B) consists of a relevant irreflexive bouquet F with root a
and a 1-materialization B of F w.r.t.O. One can show that B is an
irreflexive tree interpretation.

Now let D be a relevant irreflexive bouquet with root a and as-
sume that D is 1-materializable w.r.t. O. We have to show that
there exists a materialization of O and D. Note that for every
relevant irreflexive bouquet F, there is a 1-materializability wit-
ness (F, a,B). We construct the desired materialization step-by-
step using these pairs also memorizing sets of frontier elements
that have to be expanded in the next step. We start with the ir-
reflexive 1-materializability witness (D, a,B) and set B0 = B
and F0 = dom(B) \ {a}. Then we construct a sequence of ir-
reflexive tree interpretations B0 ⊆ B1 ⊆ . . . and frontier sets
Fi+1 ⊆ dom(Bi+1) \ dom(Bi) inductively as follows: given Bi

and Fi, take for any b ∈ Fi its predecessor a in Bi and an irreflex-
ive 1-materializability witness (Bi

|{a,b}, b,Bb) and set

Bi+1 := Bi ∪
⋃
b∈Fi

Bb Fi+1 :=
⋃
b∈Fi

dom(Bb) \ {b}

Let B∗ be the union of all Bi. We show that B is a material-
ization of O and D. B is a model of O by construction since O
is an ALCHIQ ontology of depth 1. Consider a model A of O
and D. It suffices to construct a homomorphism h from B∗ to
A that preserves dom(D). We may assume that A is an irreflex-
ive tree interpretation. We construct h as the limit of a sequence
h0, . . . of homomorphisms from Bi to A. By definition, there
exists a homomorphism h0 from B0 to A≤1

a preserving dom(D).
Now, inductively, assume that hi is a homomorphism from Bi to
A. Assume c has been added to Bi in the construction of Bi+1.
Then there exists b ∈ Fi and its predecessor a in Bi such that
c ∈ dom(Bb) \ {b}, where Bb is the irreflexive tree interpretation
that has been added to Bi as the last component of the irreflexive
model pair (Bi

|{a,b}, b,Bb). But then, as Bb is a 1-materialization
of Bi

|{a,b} and hi is injective on Bi
|{a,b} (since A is irreflexive), we

can expand the homomorphism hi to a homomorphism to A with
domain dom(Bi) ∪ {c}. Thus, we can expand hi to a homomor-
phism from Bi+1 to A.

Lemma 5 and Lemma 6 imply that an ALCHIQ ontology O of
depth 1 enjoys PTIME query evaluation if and only if all irreflex-
ive bouquets D that are consistent w.r.t. O, of outdegree ≤ |O|,
and satisfy sig(D) ⊆ sig(O) have a 1-materialization w.r.t. O.



The latter condition can be checked in deterministic exponential
time since the satisfiability problem for ALCHIQ ontologies is
in EXPTIME. Moreover, there are only exponentially many rele-
vant bouquets. We have thus proved the EXPTIME upper bound in
Theorem 13. A matching lower bound can be proved by a straight-
forward reduction from satisfiability.

The following example shows that, in contrast to ALCHIQ
depth 1, for uGC−2 (1,=) the existence of 1-materializations does
not guarantee materializability of bouquets.
Example 7 We use ∃6=yW (x, y) to abbreviate ∃y(W (x, y)∧(x 6=
y)) and likewise for ∃ 6=yW (y, x). Let S, S′, R,R′ be binary rela-
tion symbols and O the uGF−2 (1,=) ontology O that contains

∀x
(
S(x, x)→ (R(x, x)→ (∃ 6=yR(x, y) ∨ ∃ 6=yS(x, y)))

)
∀x(∃ 6=yW (y, x)→ ∃yW ′(x, y))

where (W,W ′) range over {(R,R′), (S, S′)}. Observe that for
the instance D = {(S(a, a), R(a, a)} and the Boolean UCQ

q ← R′(x, y) ∨ S′(x, y),

we have O,D |= q. Also, for qR ← R′(x, y) and qS ← S′(x, y)
we have O,D 6|= qR and O,D 6|= qS . Thus, O is not materializ-
able. It is, however, easy to show that for every bouquet D there
exists a 1-materialization of D w.r.t. O.

In uGC−2 (1,=), we thus have to check unrestricted materializ-
ability of bouquets, instead of 1-materializability. In fact, it suffices
to consider materializations that are tree interpretations. To decide
the existence of such materialization, we use a mosaic approach.
In each mosaic piece, we essentially record a 1-neighborhood of
the materialization, a 1-neighborhood of a model of the bouquet
and ontology, and a homomorphism from the former to the latter.
We then identify certain conditions that characterize when a set of
mosaics can be assembled into a materialization in a way that is
similar to the model construction in the proof of Lemma 6. There
are actually two different kinds of mosaic pieces that we use, with
one kind of piece explicitly addressing reflexive loops which, as il-
lustrated by Example 7, are the reason why we cannot work with
1-materializations. The decision procedure then consists of guess-
ing a set of mosaics and verifying that the required conditions are
satisfied. Details are in the long version.

Theorem 13 only covers ontology languages of depth 1. It would
be desirable to establish decidability also for ontology languages of
depth 2 that enjoy a dichotomy between PTIME and CONP, such
as uGF−2 (2). The following example shows that this requires more
sophisticated techniques than those used above. In particular, ma-
terializability of bouquets does not imply materializability.
Example 8 We give a family of ALC-ontologies (On)n≥0 of
depth 2 such that eachOn is materializable for the class of tree in-
terpretations of depth at most 2n − 1 while it is not materializable.
The idea is that any instance D that witnesses non-materializability
of On must contain an R-chain of length 2n, R a binary relation.
The presence of this chain is verified by propagating a marker up-
wards along the chain. To avoid that O is 1-materializable, we
represent this marker by a universally quantified formula and also
hide some other unary predicates in the same way. For each unary
predicate P , let HP (x) denote the formula ∀y(S(x, y) → P (y))
and include in On the sentence ∀x∃y(S(x, y) ∧ P (y)). The re-
maining sentences in On are:

X1(x) ∧ · · · ∧Xn(x)→ HV (x)

Xi(x) ∧ ∃R.(Xi(y) ∧Xj(y))→ Hoki(x)

Xi(x) ∧ ∃R.(Xi(y) ∧Xj(y))→ Hoki(x)

Xi(x) ∧ ∃R.(Xi(y) ∧X1(y) ∧ · · · ∧Xi−1(y))→ Hoki(x)

Xi(x) ∧ ∃R.(Xi(y) ∧X1(y) ∧ · · · ∧Xi−1(y))→ Hoki(x)

Hok1(x) ∧ · · · ∧Hokn(x) ∧ ∃R.HV (y)→ HV (x)

∃R.Xi(y) ∧ ∃R.Xi(y)→ ⊥
X1(x) ∧ · · · ∧Xn(x) ∧HV (x)→ B1(x) ∨B2(x)

where x is universally quantified, ∃R.ϕ(y) is an abbreviation for
∃y(R(x, y)∧ϕ(y)), and i ranges over 1..n. Note thatX1, . . . , Xn
and X1, . . . , Xn represent a binary counter and that lines two to
five implement incrementation of this counter. The second last for-
mula is necessary to avoid that multiple successors of a node in-
teract in undesired ways. On instances that contain no R-chain of
length 2n, a materialization can be constructed by a straightfor-
ward chase procedure.

We also observe that the ideas from Example 8 gives rise to a NEX-
PTIME lower bound.

Theorem 14 For ALC ontologies of depth 2, deciding whether
query-evaluation is in PTIME is NEXPTIME-hard (unless
PTIME = CONP).

We remark that the decidability of PTIME query evaluation ofALC
ontologies of depth 2 remains open.

9. CONCLUSION
Perhaps the most surprizing result of our analysis is that it is

possible to escape Ladner’s Theorem and prove a PTIME/CONP di-
chotomy for query evaluation for rather large subsets of the guarded
fragment that cover almost all practically relevant DL ontologies.
This result comes with a characterization of PTIME query evalua-
tion in terms of materializability and unravelling tolerance, with the
guarantee that PTIME query evaluation coincides with Datalog6=-
rewritability, and with decidability of (and complexity results for)
meta problems such as deciding whether a given ontology enjoys
PTIME query evaluation. Our study also shows that when we in-
crease the expressive power in seemingly harmless ways, then of-
ten there is provably no PTIME/CONP dichotomy or one obtains
CSP-hardness. The proof of the non-dichotomy results comes with
a variation of Ladner’s Theorem that could prove useful in other
contexts where some form of precoloring of the input is unavoid-
able, such as in consistent query answering [43].

There are a number of interesting future research questions.
The main open questions regarding dichotomies are whether the
PTIME/CONP dichotomy can be generalized from uGF−2 (2) to
uGF−(2) and whether the CSP-hardness results can be sharpened
to either CSP-equivalence results (this is known for ALC ontolo-
gies of depth 3 [42]) or to non-dichotomy results. Also of in-
terest is the complexity of deciding PTIME query evaluation for
uGF(1), where the characterization of PTIME query evaluation via
hom-universal models fails. Improving our current complexity re-
sults to tight complexity bounds for PTIME query evaluation for
ALCHIF ontologies of depth 2 and uGF−2 (2) ontologies appears
to be challenging as well. It would also be interesting to study the
case where invariance under disjoint union is not guaranteed (as we
have observed, the complexities of CQ and UCQ evaluation might
then diverge), and to add the ability to declare in an ontology that a
binary relation is transitive.
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APPENDIX
A. INTRODUCTION TO DESCRIPTION

LOGIC
We give a brief introduction to the syntax and semantics of DLs

and establish their relationship to the guarded fragment of FO. We
consider the DL ALC and its extensions by inverse roles, role in-
clusions, qualified number restrictions, functional roles, and local
functionality. Recall that ALC-concepts are constructed according
to the rule

C,D := > | ⊥ | A | C uD | C tD | ¬C | ∃R.C | ∀R.C
where A ranges over unary relations and R ranges over binary re-
lations. DLs extended by inverse roles (denoted in the name of a
DL by the letter I) admit, in addition, inverse relations denoted by
R−, with R a relation. Thus, in ALCI inverse relations can be
used in place of relations in any ALC concept. DLs extended by
qualified number restrictions (denoted byQ) admit concepts of the
form (≥ n R C), (= n R C), and (≤ n R C), where n ≥ 1 is
a natural number, R is a relation or an inverse relation (if inverse
relations are in the original DL), and C is a concept. When extend-
ing a DL with local functionality (denoted by F`) one can use only
number restrictions of the form (≤ 1 R >) in whichR is a relation
or an inverse relation (if inverse relations are in the original DL).
We abbreviate (≤ 1 R >) with (≤ 1R) and use (= 1R) as an
abbreviation for (∃R.>)u (≤ 1R) and (≥ 2R) as an abbreviation
for (∃R.>) u ¬(≤ 1R).

In DLs, ontologies are formalized as finite sets of concept inclu-
sions C v D, where C,D are concepts in the respective language.
We use C ≡ D as an abbreviation for C v D and D v C. In the
DLs extended with functionality (denoted by F) one can use func-
tionality assertions func(R), where R is a relation or an inverse
relation (if present in the original DL). Such an R is interpreted as
a partial function. Extending a DL with role inclusions (denoted by
H) allows one to use expressions of the form R v S, where R and
S are relations or inverse relations (if present in the original DL),
and which state that R is a subset of S.

The semantics of DLs is given by interpretations A. The in-
terpretation CA of a concept C in an interpretation A is defined
inductively as follows:

>A = dom(A) ⊥A = ∅
AA = {a ∈ dom(A) | A(a) ∈ A} (¬C)A = dom(A) \ CA

(C uD)A = CA ∩DA (C tD)A = CA ∪DA

(∃R.C)A = {a ∈ dom(A) | ∃a′ : R(a, a′) ∈ A and a′ ∈ CA}
(∀R.C)A = {a ∈ dom(A) | ∀a′ : R(a, a′) ∈ A implies a′ ∈ AA}

(≥ n R C)A = {a ∈ dom(A) | |{b | R(a, b) ∈ A and b ∈ CA}| ≥ n}
(≤ n R C)A = {a ∈ dom(A) | |{b | R(a, b) ∈ A and b ∈ CA}| ≤ n}
(= n R C)A = {a ∈ dom(A) | |{b | R(a, b) ∈ A and b ∈ CA}| = n}

Then A satisfies a concept inclusion C v D if CA ⊆ DA. Alter-
natively, one can define the semantics of DLs by translating them
into FO; the following table gives such a translation:

>∗(x) = > ⊥∗(x) = ⊥
A∗(x) = A(x) (¬C)∗(x) = ¬(C∗(x))

(C uD)∗(x) = C∗(x) ∧D∗(x) (C tD)∗(x) = C∗(x) ∨D∗(x)

(∃R.C)∗(x) = ∃y (R(x, y) ∧ C∗(y))

(∀R.C)∗(x) = ∀y (R(x, y)→ C∗(y))

(≥ n R C)∗(x) = ∃≥ny(R(x, y) ∧ C∗(y))

We observe the following relationships between DLs and fragments
of the guarded fragment. For a DL L and fragment L′ of the

guarded fragment we say that an L ontology O can be written as
an L′ ontology if the translation given above translates O into an
L′ ontology.

Lemma 7 The following inclusions hold:

1. Every ALCHI ontology can be written as a uGF2 ontology. If
the ontology has depth 2, then it can be written as a uGF−2 (2)
ontology.

2. EveryALCHIF ontology can be written as a uGF−2 (f) ontol-
ogy.

3. Every ALCHIQ ontology can be written as a uGC2 ontology.
If the ontology has depth 1, then it can be written as a uGC−2 (1)
ontology.

B. INTRODUCTION TO DATALOG
We give a brief introduction to the notation used for Datalog. A

datalog 6= rule ρ takes the form

S(~x)← R1(~x1) ∧ · · · ∧Rm(~xm)

where S is a relation symbol, m ≥ 1, and R1, . . . , Rm are either
relation symbols or the symbol 6= for inequality. We call S(~x) the
head of ρ and R1(~x1)∧ · · · ∧Rm(~xm) its body. Every variable in
the head of ρ is required to occur in its body. We call a datalog6=

rule that does not use inequality a datalog rule. A Datalog6= pro-
gram is a finite set Π of datalog 6= rules with a selected goal relation
symbol goal that does not occur in rule bodies in Π and only in goal
rules of the form goal(~x)← R1(~x1)∧· · ·∧Rm(~xm). The arity of
Π is the arity of its goal relation. A Datalog program is a Datalog6=

program not using inequality.
For every instance D and Datalog 6= program Π, we call a

model A of D a model of Π if A is a model of all FO sen-
tences ∀~x∀~x1 · · · ∀~xm(R1(~x1) ∧ · · · ∧ Rm(~xm) → S(~x)) with
S(~x) ← R1(~x1) ∧ · · · ∧ Rm(~xm) ∈ Π. We set D |= Π(~a) if
goal(~a) ∈ A for all models A of D and Π.


