
“How Did They Know?” — Model-checking for
Analysis of Information Leakage in Social Networks

Louise A. Dennis1, Marija Slavkovik2, and Michael Fisher1

1 Department of Computer Science, University of Liverpool
2 Department of Information Science and Media Studies, University of Bergen

Abstract. We examine the use of model-checking in the analysis of information
leakage in social networks. We take previous work on the formal analysis of
digital crowds and show how a variation on the formalism can naturally model the
interaction of people and groups of followers in intersecting social networks. We
then show how probabilistic models of the forwarding and reposting behaviour of
individuals can be used to analyse the risk that information will leak to unwanted
parties. We illustrate our approach by analysing several simple examples.

1 Introduction

Can we use formal verification to check whether the privacy settings for accessing
posted content in social media are effective? In this work we make the first steps to-
wards answering this question in the positive.

The proliferation of social network services has made it possible for vast amounts
of contributed content to be shared online by users who simultaneously are members
of more than one social network service (SNS). Consider, for simplicity, one SNS user;
let us call him Bob. Most social network services allow for various privacy settings
to be specified, which should allow Bob to control who can access or further propa-
gate the content he contributes. We say “should allow control” instead of “does allow
control” because, in reality, it is not Bob’s privacy settings that ultimately determine
accessibility to his shared content, but the combination of the privacy settings of Bob
and the privacy settings of all of the users to whom Bob has allowed access to his shared
content, i.e., Bob’s followers. In the same vein let us call Bob’s followees all the users
who have allowed access to their shared content to Bob. What is worse with respect to
Bob’s control over the privacy of his shared content, is that many of his followers may
be users of more than one SNS, with automated interfacing set to synchronise their ac-
tivities among all the mediums either because one social network allows direct linkage
with the API of another (e.g., Livejournal3 allows posts to be automatically reposted
as a link to Facebook4) or via third party synchronisation services such as IFTTT5 and
Zapier6 which allow users to create customised rules to link their SNS accounts to each

3 livejournal.com
4 facebook.com
5 ifttt.com
6 zapier.com

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Liverpool Repository

https://core.ac.uk/display/80780592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
livejournal.com
facebook.com
ifttt.com
zapier.com

other (and often to additional services and devices such as home automation tools, cal-
endars, alerts and emails). It is thus very difficult for Bob to track information leakage
– information that Bob shares with his followers, but reach other agents who are not
directly authorised to share it. We give a very simple example of information leakage.

Let Bob and his friend Cathy both be members of social network service SN1. Cathy
and Bob are within each others’ networks on SN1, meaning they are both each other’s
followers and followees. In turn Bob’s boss, Jim, is neither a follower nor a followee
of Bob. Bob regularly posts content on SN1 and has chosen to make his content visi-
ble only to his followers, believing that his boss cannot access them. Bob makes really
sure of this, he checks Cathy’s followers and makes sure Jim is not among them. How-
ever Cathy and Jim are within each others networks on SN2 and Cathy automatically
synchronises her posts between these two SNSs. Bob, having a hard day, complains
about his boss on SN1. Cathy, sympathising with Bob acknowledges Bob’s message
thus making it visible to her followers on SN1, but due to her content synchronisation
with SN2, Bob’s message also becomes visible to Cathy’s followers on SN2. As a result
Jim finds out what Bob really thinks of him and rescinds his planned promotion.

It is not simple for one user such as Bob to keep track of all possible combinations
of privacy settings within his network and their ultimate effect on content accessibility.
Therefore we propose that this task of checking the effective content visibility, i.e., the
risk of information leakage occurring, should be automated. As a possible means to
accomplish such automation, we propose formal verification. Our aim is to make it
feasible for social network services to regularly model-check [4] user settings to ensure
that the content privacy settings are effective and efficient, although we are aware that
this is a very hard theoretical and engineering problem.

Formal verification is the process of establishing, typically via techniques based
on formal logic, that a designed system has its intended properties. Such approaches
have become widespread, enabling deep and (semi) automated formal analysis of both
software and hardware systems so providing greater clarity concerning reliability and
correctness. While logical proof techniques can be used, it is exhaustive state-space ex-
ploration, in the form of model-checking [4], that is the predominant approach. As we
wish to formally model SNSs, our aim here is to utilise formal verification tools to au-
tomatically verify their behaviour. In particular, we wish to establish formal properties
concerning information leakage using automatic model-checking systems.

Consequently we begin, in §2 and §3 by considering the general class of systems and
a specific formal model for these based on similar work for namely digital crowds [25]
Indeed, the formal model here provides a simplification of that in [25] in that agents
have much more limited capabilities. We then consider how model-checking can be
used to analyse information leakage properties within this framework. This we do in
§4, utilising the PRISM probabilistic model-checker [12]. Finally, in §5, we provide
concluding remarks, incorporating both related and future work.

2 System Representation

A rational agent is an agent that is capable of obtaining information about her envi-
ronment, including other agents, and using this information to select actions in order to

achieve her goals [27]. A multi-agent system (MAS) is a system of agents that share the
same environment and can cooperate or compete within it, as well coordinate their ac-
tions. A system of social network services (SNSs) and their users is not a “traditional”
MAS, foremost because the networks are not considered to be agents. We propose that
since the SNS does obtain information about the users it hosts, and adapts its services
and information to the particular needs of specific users, it can be modelled as a rational
agent. We use the catch-all phrase “social agent” to refer to both SNSs and their users.
We now discuss how to represent a social agent, so that we can formally analyse her
properties.

A rational agent can be represented by representing her mental attitudes, in par-
ticular her dynamic, informational and motivation aspects. This is exemplified by the
popular BDI paradigm for representing agents via mental attitudes [21,20]. “BDI” de-
notes Beliefs, Desires, and Intentions. In terms of the analysis of information leakage
we are primarily interested in the informational aspects of rational agency and so in
what follows we will ignore the issue of an agent’s desires and intentions7.

As flexible and powerful as the BDI paradigm is, it is not completely suited for
representing social agents since the mental attitudes of these agents, particularly if they
are a SNS, are not available or they may not be visible. E.g., a SNS may not have access
to what Bob truly believes about his boss, only to what Bob has posted about his boss.
Bob can know who Cathy’s followers are on the SNS they share, but not on the SNSs
they do not have in common. For reasons such as these, work in [25] introduces a new
mental state, the communicational attitudes to describe the information about herself
an agent shares with the world; MÒiϕ is used8 to describe that the modelled agent
has communicated ϕ to i, while MÓiϕ is used to describe that the modelled agent has
received communication ϕ from agent i.

An agent can be modelled by only using communicational attitudes, when nothing
of the private beliefs or goals of the agent is known. The agent representation in [25]
builds upon formal agent organisational structures introduced in [8] and further studied
in [7,10]. An extended agent, as given in [8], is one for which in addition to the agent’s
mental attitudes, two further sets of agents (or agent identifiers) are added, content and
context, allowing for both simple agents and a system of agents to be represented using
the same model. Content and context sets of agents are related, specifically if agent A1

is in the content set of agent A2 then A2 is in the context set of A1.
An extended agent, as defined in [7,10], can further include an agent’s specifica-

tion that is visible, or accessible, to the agent’s content or context respectively. This
paradigm of extended agents is particularly suitable for modelling the visibility of
posted content. We thus arrive at our model of social agents. Social agents model the
individuals who use social networks and the avatars they maintain on each network. An
individual has all the avatars of their followees in their context set and their own avatars
in their content set. Each avatar’s content contains the agent’s followers on that social

7 Though note that these could be included.
8 In [25], the formulas MÒiϕ and MÓiϕ have also subscripts that denote the nature of the com-

munication, i.e., whether it expresses a question, a statement, or an order, but we here only use
statements and thus omit subscripts.

network while its context contains the individual who owns the avatar and any other
agents or services to whom they have given posting access.

The model of a social agents and avators is given in Fig. 1. The mental attitudes
of the social agent are private and it is not necessary to include any information in this
agent part in order to specify a social agent. The information the agent shares to the
avatar is made accessible by the avatar to the agents that are her followers.

Social Agent

Private

Mental
Attitudes

Context:
Followees

Content: Avatars

Avatar

Context: Owner
and Proxies

Content:
Followers

Fig. 1: Basic structure of socal agents and avatars.

Using this social agent structure, we can construct a model for the simple information
leakage example outlined in §1. This model is given on Fig. 2.

3 Formal System Specification

The systems we need to specify are the SNS and their users. We represent both networks
and users as extended agents using a simplification of the extended agent representation
given in [25]. In [25], additional modalities were used to express language abilities as
well as the type of the message that the agent sends or receives, linguistic structures that
we do not have need for here.

LetAgt be a set of unique agent identifiers, let Prop be a set of atomic propositions
and constants, and Pred be a set of a first-order predicates of arbitrary arity. We begin
by defining a language Lp to be a set of grounded first order logic formulas without
function symbols, namely the set of all ϕp such that

ϕp ::“ p | ϕp | ϕp ^ ϕp | P px1, . . . , xmq

where p P Prop, P P Pred and x1, . . . , xm P Agt.
Depending on the specific needs for a specification, different BDI operators can be

used but, for demonstrating our specification approach, we use only the modal operator

Jim

Cathy
Content

Cathy's SN1 Avatar
Cathy's SN2 Avatar

Bob

Content

Bob's SN1 Avatar

Cathy's SN1 Avatar

IFTTT

Private

Bob's
Mental

Attitudues

Bob's SN1 Avatar

Content/Followers

Cathy

Private

Cathy's
Mental

Attitudues

Context/Followees

Bob's SN1 Avatar

Content/Followers

Bob, IFTTT

Content

Cathy's SN2 Avatar

Cathy's SN2 Avatar

Content/Followers

Jim

Content

Jim's SN2 Avatar
Private

Jim's
Mental

Attitudues Context/Followees

Cathy's SN2 Avatar

Fig. 2: The system of social agents from §1

B which denotes the agent’s informational attitudes.LBDI is then the set of all formulas
ϕ such that

ϕ ::“ ϕp | Bϕp | ϕ | ϕ^ ϕ

where ϕp P Lp.
Finally, we define the language for specifying communication among agents, LM .

For this language we add operators to indicate the sending and receiving of messages.
The language LM is the set of all formulas θ such that

θ ::“MÓjϕp |M
Òjϕp | θ | θ ^ θ

where i, j P Agt and ϕ P LBDI . In [25], temporal information can be included in
message formulas but we ignore that possibility here.

The messages are sent to an agent j, however either the context set CX or the
content setCN as a whole can be the target of message broadcast (in the general model,
both are agents). We use the shorthand9

MÒCNϕp ”
ľ

jPCN

MÒjϕp, MÒCXϕp ”
ľ

jPCX

MÒjϕp.

We interpret MÓjϕp as “Agent j told me that ϕp holds”, while MÒjϕp we read as “I
told agent j that ϕp holds”. The formulas in the scope of a message operator are propo-
sitional logic formulas. The language LBDI restricts the nesting of modal operators,
while LM forbids the use of BDI operators inside of the scope of a message operator
and does not allow nesting of M operators. Nested messages express meta communi-
cation, allowing agents to communicate about what was communicated to them or by
them. However, such nesting is not meaningful in our work here.

We can now give the following definition of an agent.

Definition 1. Let Agt be a set of unique agent identifiers. An agent is a tuple
xID , Bel, Com,CN,CXy, where ID P Agt is a unique agent identifier, Bel Ă Lp

is the set of beliefs the agent holds about the world, Com Ă LM is the set of messages
the agent has received and sent, CN P PpAgtztIDuq is the set of agents contained
and lastly CX P PpAgtztIDuq is the set of agents in which the agent is contained,
i.e., its set of contexts, where PpSq is the power set of S. The set Bel is consistent and
simplified.

In order to specify agents we have a language LS of formulas ϕS

ϕs ::“ ϕBDI | ϕM | CNpiq | CXpiq

where i P Agt, ϕBDI P LBDI and ϕM P LM .

9 Note: We define the messages with individual agents, not sets as in [8,7,10], because a message
can be broadcast to many agents, but it can be sent from one agent only, otherwise the sender
is unknown, which cannot happen here — if your contexts sends you a message it is from
exactly one context.

Definition 2. Given an agent i P Agt, an agent specification describes the agent’s state
as some point in time. An agent specification is a set SPEC piq Ă LS , where Bϕ is true
iff ϕ P Bel, CNpjq is true iff j P CN , CXpjq is true iff j P CX and MÓiϕp is true if
MÓiϕp P Com and MÒiϕp is true if MÒiϕp P Com.

Note that we do not develop an axiomatisation for LS and do not intend to prove sound-
ness for this language, because we aim ultimately to use it to create specifications for
model checking, where soundness is not necessary. The above, together with standard
modal and temporal logic semantic structures [26], provides a formal basis for describ-
ing agents and SNSs, communication and, hence, behaviour.

In order to specify the behaviour of a system for model-checking we combine prob-
abilistic and temporal operators.

α ::“ true | ϕs P SPECpiq | α^ α | α | P
“nψ

ψ :“ αUα |©α

where i P Agt ϕs P LS , 0 ď n ď 1. This is a simplication of the fragment of PCTL
used in the PRISM model checker [9] but which uses statements about the inclusion of
formulae in an agent specification instead of atomic propositions. The intuitive inter-
pretation of our probabilistic operator: P“nψ means that there is a probability of n that
ψ is true. For our temporal logic operators pUq means that p is continuously true up
until the point when q becomes true; ©r means that r is true in the next moment in
time. We will use the syntax ♦φ for trueUφ which means that φ will be true at some
moment in the future.

Finally, we assume, via (1), that if a message is sent then it will eventually be re-
ceived. This is a property of communication among agents that should hold in the envi-
ronment, for communication to be meaningful.

@i, j P Agt, MÒjϕp P SPEC piq ñ P“1♦MÓiϕp P SPEC pjq (1)

Here and in Definition 3 that follows, we use quantifiers. Note that this is only a
slight abuse of notation to improve readability. The quantification is over the subset of
agents which is finite, thus the quantified formulas stand as a shorthand for a set of
formulas grounded for each i P Agt.

In order to consider communication among social networks, let us define the con-
cept of reachability between two agents i and j. The agent i can reach agent j if, and
only if, a message sent from i is eventually forwarded to j, under the assumption that
avatar agents relay messages from one of their context agents to their followers. To help
analyse this in social networks we define an avatar context. This is one which broad-
casts to all its content agents the messages received from its context agents (i.e., the
agent for which it is an avatar or proxies or services authorised by that agent).

Definition 3. Let i be an agent s.t. CXpiq ‰ H. Agent i is an avatar context when all
the messages sent to i by an agent in its context are sent on to all of its content agents:

@j P CXpiq. pMÓjϕp ÑMÒCNϕpq P SPEC piq

To show that information leakage to agent j does not happen to content posted by agent
i we need to show that SPEC piavq (the specification for i’s avatar) satisfies property
(2):

pMÓiϕp ^ CNpjqq P SPEC piavq Ñ Dk. P“0♦MÓkϕp P SPEC pjq (2)

Recall that if iav is an avatar of i then CN are her followees on that network. The
property (2) states that it is not possible that what is posted to followers of i on any
network where she has an avatar can be received by j who is not among i’s followers.

Upon this basic framework we will now consider formal verification of key prop-
erties. To explain this, we will work through a relatively simple series of examples,
showing the properties that can be formally established via model-checking.

4 Model Checking Information Leakage

PRISM [12] is a probabilistic symbolic model-checker in continuous development since
1999, primarily at the Universities of Birmingham and Oxford. Typically a model of a
program (or in our case a network of agents) is supplied to PRISM in the form of a prob-
abilistic automaton. This can then be exhaustively checked against a property written
in PRISM’s own probabilistic property specification language, which subsumes several
well-known probabilistic logics including PCTL, probabilistic LTL, CTL, and PCTL*.
PRISM has been used to formally verify a variety of systems in which reliability and un-
certainty play a role, including communication protocols, cryptographic protocols and
biological systems [19]. In this paper we use PRISM version 4.1.beta2.

PRISM is an attractive option for modelling agents and social networks in our for-
malism since its probabilistic aspects allow us to reason not only about which messages
are definitely sent and received, but also about the chance, or risk, that information
leakage may occur.

We use a simple set of examples in order to illustrate our approach.

4.1 Basic Scenario

Alice, Bob, and Charlie share two social networks, SN1 and SN2. Alice is a follower
of Bob on SN1 but Charlie is not. Charlie is a follower of Bob on SN2 but Alice is
not. We treat all three agents, Alice, Bob and Charlie as modules in PRISM. Following
our formalism we also treat the avatars Bob on the two networks as agents and so also
as PRISM modules. The avatars of Bob on SN1 and SN2 are both ‘avatar’ contexts as
defined in Definition 3 – i.e. all information from Bob is automatically transmitted to
all content members.

The syntax of prism commands is [?label] guard -> prob 1:update 1
+ ...+ prob n:update n where label is an optional keyword used for syn-
chronisation, guard is a logical formula over the values of global and local variables,
prob 1 to prob n are probabilities which sum to 1 and update 1 to update n
specify changes to the global and local variables.

We modelled our scenario as a Discrete Time Markov Chain in PRISM10. Therefore
‘->’ indicates a transition from one discrete time step to another. Synchronisation labels
force commands in several modules to make a transitions at the same time.

We show the model for Bob’s avatar on SN1, SN1Bob, in Fig.3. In this model

module SN1Bob
sn1bob_relays_message: bool init false;

[bobmessagetosn1] bob_sent_message_to_sn1 = true ->
1.0:(sn1bob_relays_message’ = true);

[sn1bobmessage] sn1bob_relays_message = true ->
1.0:(sn1bob_relays_message’ = false);

endmodule

Fig. 3: A PRISM model of Bob’s followees on SN1.

bob sent message to sn1 is a variable in the Bob module that is true if Bob
has sent a message to SN1. sn1bob relays message is a variable in SN1Bob
that is true if SN1 relays a message from bob to all his followees on SN1. SN1Bob
contains two PRISM commands, both with synchronisation labels. The first specifies
that if Bob has sent a message to SN1 then, with a probability of 1.0, sn1 will relay
the message. This transition is synchronised with commands in other modules labelled
bobmessagetosn1 (specifically it synchronises with a command in the Bob mod-
ule that sends the message). The second specifies that if sn1 relays a message then a
synchronised transition will take place after which this variable is set to false (pending
receipt of a new message from Bob).

To represent the receipt of messages by Bob’s followers we use the synchronisation
label sn1bobmessage. All the commands with this label in all modules make transi-
tions together. In practice this means all Bob’s followers receive a message in the same
time step. So, for instance, in the representation of Alice in the model, when SN1 relays
Bob’s message she, with probability 1.0, has a message.

[sn1bobmessage] sn1bob_relays_message = true &
1.0:(alice_has_message’ = true);

If there were a second agent, Debbie say, among Bob’s SN1 followers then Debbie
would contain a similar command.
10 PRISM allows models to be created as Discrete Time Markov Chains (DTMCs), Continuous

Time Markov Chains (CTMCs) and Markov Decisions Procedures (MDPs). Since our models
had no continuous or non-deterministic aspects that would have required more complex mod-
els we opted to use the simplest of these (DTMCs) in modelling. We opted for a representation
based on Markov Chains since they capture stochastic processes well and it seemed plausible
that models of information leakage in social networks might need to be cyclic. If the possi-
bility of cyclic models could be ruled out then Bayesian Networks would also be a plausible
candidate formalism.

[sn1bobmessage] sn1bob_relays_message = true &
1.0:(debbie_has_message’ = true);

Taken together the synchronised commands in the content agents and the relaying com-
mand in SN1Bob ensure that SN1Bob meets the specification of an avatar context.

4.2 Example 1

In our first, and simplest, example Alice, Bob and Charlie are the only relevant actors
on each network. Bob posts a message to SN1. With the simple model and probabilities
PRISM tells us that there is a probability of 1 that eventually Alice will receive the
message11:

P“1♦MÓsn1bob message P SPECpaliceq (3)

This is expressed as P>=1 [F(alice has message = true)] in PRISM’s prop-
erty specification language.

We can also prove that there is probability of zero that Charlie will eventually know
the message, since the message was relayed only to Bob’s followers on SN1 and not to
those on SN2.

P“0♦MÓsn1bob message P SPECpcharlieq (4)

4.3 Example 2

We now expand our example to consider the addition of a synchronisation agent, SYNC.
Bob has set SYNC up so that when he posts a message to SN1 it is forwarded to the
SN2 as if it was Bob doing so – i.e., he has placed SYNC in the context of his avatar
agent on SN2. We use a global variable sync sends as bob to represent that sync
can send a message as if it were Bob. When this variable is true then the Bob module
sends the message to SN2 using the command

[] sync_sends_as_bob = true ->
1.0: (bob_sent_message_to_sn2’ = true) &

(sync_sends_as_bob’ = false);

The synchronisation agent is shown in Fig.4.
So, on receipt of a message from Bob’s avatar on the first network, the SYNC agent
forwards it to SN2 as if it was Bob doing so. Under these circumstances we can use
PRISM to show that the probability that eventually Charlie receives the message is 1.

4.4 Example 3

Let us now remove the synchronisation agent and consider the possibility that Bob’s
followers on SN1 may forward the message to their avatars. Assume both Alice and
Debbie follow Bob and that Charlie follows both Alice and Debbie. With both Alice
and Debbie there is a possibility of 0.1 that they may forward a message to their avatars.

11 We use the notation P“n to indicate that there is a probability of n that something will occur.

module SYNC
sync_has_message: bool init false;

[sn1bobmessage] sn1bob_relays_message = true &
sync_has_message = false ->

1.0:(sync_has_message’ = true);

[] sync_has_message = true ->
1.0: (sync_has_message’ = false) &

(sync_sends_as_bob’ = true);
endmodule

Fig. 4: PRISM model of a simple synchronisation service

@i. MÓiϕp P SPEC paliceq ñ P“0.1♦MÒsn1aliceϕp P SPEC paliceq (5)

@i. MÓiϕp P SPEC pdebbieq ñ P“0.1♦MÒsn1debbieϕp P SPEC pdebbieq (6)

The PRISM model for Debbie’s behaviour is shown in Fig.5 (Alice’s module is iden-
tical except for variable names and labels). We also add new synchronisation commands
to Charlie’s model to indicate a receipt of messages from Alice or Debbie’s SN1.

module Debbie
debbie_has_message: bool init false;
debbie_sent_message_to_sn1: bool init false;

[] debbie_has_message = true ->
0.9:(debbie_has_message’ = false)
+ 0.1:(debbie_has_message’ = false) &

(debbie_sent_message_to_sn1’ = true);

[sn1bobmessage] sn1bob_relays_message = true ->
1.0:(debbie_has_message’ = true);

[debbiemessagetosn1] debbie_sent_message_to_sn1 = true ->
1.0:(debbie_sent_message_to_sn1’ = false);

endmodule

Fig. 5: PRISM model for Debbie

In this network PRISM tells us there is a probability of 0.19 that Charlie will even-
tually receive the message having had it forwarded to him by either Alice or Debbie (or
by both of them).

4.5 Example 4

Suppose at the same time that Bob sends his message he requests that it not be reposted.
We view this request as the establishment of a norm and assume this further modifies
the chance that Alice or Debbie will forward the message to 0.01. We represent this by
modifying the behaviour of agents when they have a message as show in figure 6:

[] debbie_has_message = true & do_not_repost_norm = false ->
0.9:(debbie_has_message’ = false)
+ 0.1:(debbie_has_message’ = false) &

(debbie_sent_message_to_sn1’ = true);
[] debbie_has_message = true & do_not_repost_norm = true ->

0.99:(debbie_has_message’ = false)
+ 0.01:(debbie_has_message’ = false) &

(debbie_sent_message_to_sn1’ = true);

Fig. 6: PRISM command showing Debbie’s behaviour when a norm is in place

Under these circumstances, PRISM tells us that the probability of Charlie receiving
drops to 0.0199.

4.6 Example 5

Lastly we combine our various scenarios as follows: Bob is followed by Alice and
Debbie on SN1 and by Charlie on SN2. Debbie and Alice are followed by Charlie
on SN1. Debbie has a synchronisation agent set up on SN2 to forward her message
automatically to SN1. Debbie is not followed by Charlie on SN2. This set up is shown
in figure 7

If Bob asks that his message not be forwarded to Charlie then both Alice and Deb-
bie have a 0.01 probability of reposting the message to SN1. However there is a 0.09
probability that Debbie will forward the message to SN2 since Charlie does not follow
her there, forgetting that she has a synchronisation agent set up. In these circumstance
the probability that Charlie receives the message is 0.109, either because Alice or Deb-
bie has forwarded it directly to SN1, or because Debbie forwarded it to SN2 and then
SYNC reposted it to SN1.

4.7 Results Summary

We summarise the results of our examples in the table below, in each case showing the
probability, P“? that Alice, Charlie, Debbie or sync eventually receive Bob’s message.

Debbie SN1 Avatar

Alice SN1 Avatar

Debbie SN2 Avatar

Bob SN2 Avatar

Bob SN1 Avatar

SYNC

Debbie

Charlie

Alice
Bob

Fig. 7: Social Network for Example 5. Arrows indicate content/context relationships
between social agents and their avatars (i.e., “posting privileges”). Content/Context re-
lationships between avatars and followers are shown by inclusion; a social agent appears
within the avatars it follows.

Example
1 2 3 4 5

P“?♦MÓϕ P SPEC paliceq 1 1 1 1 1
P“?♦MÓϕ P SPEC pcharlieq 0 1 0.19 0.0199 0.109
P“?♦MÓϕ P SPEC pdebbieq n/a n/a 1 1 1
P“?♦MÓϕ P SPEC psyncq n/a 1 n/a n/a 0.09

5 Discussion

The analyses of information leakage that we have presented assume that it is possible
to gain some information about the composition of interlinked social networks in or-
der to construct a model for analysis. In particular we assume that we can model the
probability with which a user will forward messages; that we can gather information
about the followers of users on different social networks (and identify users across so-
cial networks); and that we can tell when a user is using a synchronisation agent. We
will briefly discuss each of these assumptions.

How likely is a user to forward a message? A decision made by an individual user over
whether or not to repost a message to their own followers on a Social Network is obvi-
ously highly dependent upon the user, the content of the message, and external factors
such as the time of day. However some work already exists in modelling the chances

that a message becomes disseminated within a social networks [15] so it is reasonable to
assume that realistic probabilities could be generated to assess both the risk of messages
in general, and of some specific message being forwarded within a network. Adding in
assumptions about normative behaviour clearly makes such modelling harder however
work also exists in modelling the norms of behaviour on social networking sites [3].

Can we gather information about a user’s followers on different social networks and
identify users across social networks. While some social networks make the list of a
user’s followers public, many do not and this obviously presents considerable difficulty
in modelling the intersection of these networks. Moreover, for practical reasons the
depth of exploration — i.e. the number of forwards — will need to be limited. However,
it would not be unreasonable to assume a model in which once a message has been
forwarded n times it can count as having “gone viral” and the information therein has
irrevocably leaked. We have not considered this possibility here. Typically forwarding
of messages happens primarily within the network where the message was generated.
In this instance the network itself could choose to offer information leakage analysis
from its vantage point of access to all follower groups.

How can we tell if a user is using a synchronisation agent? The main danger of infor-
mation leakage between networks arises when a user is employing a synchronisation
agent. While it is generally easy to tell if a person you follow on a social network is
using an agent to repost to that network from some other network, it is considerably
harder to tell if they have a synchronisation agent that posts from the network you share
to one that you don’t. It may be that the existence of such agents for other users will
need to be modelled as part of user behaviour. However it is easy to obtain informa-
tion about synchronisation agents owned by the user wishing to perform a risk analysis.
Since users can easily forget that they have set up synchronisations and the synchroni-
sation rules they have may interact in unexpected ways, explicit analysis of these agents
remains valuable.

Nevertheless, in spite of the difficulty in gaining accurate probabilistic data for the
behaviour of humans in the social networks we believe that model-checking does pro-
vide a tool which would allow some understanding of the risks of privacy violations and
information leaks in social networks. Services which allowed networks to be evaluated
on a regular basis in order to asses general risk could be of significant value. While only
applied here to very simple examples, we believe the approach described could form the
basis for exactly these services.

5.1 Related Work

Padget et al. have considered a formalisation of intersecting networks that has many
similar features to ours [17,16]. They use Answer Set programming to identify vulner-
abilities and to experiment with normative rules that modify the behaviour of agents
within these networks in order to reduce risk. Their analysis is not probabilistic but it
is the first example of which we are aware, in which someone applies techniques from
formal methods and verification to the analysis of privacy on social networks.

There is a large literature on security models which is obviously of relevance. Most
of this literature is focused on access permissions within a single enterprise sytems
(e.g., [11]) but [18] introduces socio-technical aspects into the models via the use of
obligations and prohibitions and analyses the models for attacks using answer set pro-
gramming and graph-based models.

“Information leakage” is a term typically used in the context of software engineer-
ing, to denote the event when a software system designed to be closed for unauthorised
parties reveals some information to them nonetheless. In [14] the use of an agent-based
approach to facilitate software information leakage is proposed.

Involuntary information leakage within the context of social network services has
been considered for sensitive information, such as personal data and location. A study
showed that even if people do not directly reveal their personal information in a social
networking service, this may happen indirectly with personal information becoming
either directly accessible or inferable from accessible information [13]. Multi-agent
system (MAS) technology use is proposed in [1] to assess the vulnerability of particular
user profiles on a social network service. Specifically, a software agent is associated
with each user profile to extract the user’s updates and send them to a controller agent
which saves the history of each user and analyses it for possible vulnerabilities.

The DEPNET and DEPINT systems [24,23] reason about social dependency in
multi-agent systems. They allow agents to reason about the goals, actions, resources and
plans of other agents in order to decide questions such as coalition formation, or where
to send requests. This framework doesn’t explicitly model information flow among the
agents but represents early work reasoning about social structures in mult-agent sys-
tems.

Logic-based representation of social network service users and their interactions is
an increasing area of research, although work is mainly aimed at studying the informa-
tion diffusion in a social network. In particular, [22] proposes a two-dimensional modal
logic for reasoning about the changing patterns of knowledge and social relationships in
networks. Model-checking as a method for verifying properties of information diffusion
in open networks has been studied in [2]. The authors, however, focus on modelling the
entire (open dynamic agent) network whereas we are modelling a software agent in a
social network service system.

5.2 Further Work

As this paper simply sets out a broad direction, and gives quite simple examples, there
is much further work to be done.

Although we define the LBDI language and we make it part of the agent specifi-
cation, we do not actually use these kind of formulas in our examples. The language
LBDI specifies the internal, or private reasoning of the agent that are not accessible
to either his avatars or to other agents. In the future we would like to use this part of
the specification to express how an agent reasons with respect to sending and receiving
messages. For example, including MÓbobϕ^MÓdebbieϕÑ Bϕ P SPEC paliceq repre-
sents that Alice believes some information holds, if she sees it shared by both Bob and
Debbie.

In the context of overlapping social network services, it may be more natural to have
multiple avatars representing the (real) user in each of the services with the relationships
between the avatars included in the specification of the user. This new model would
require further analysis of the relationships between an agent’s Content/Context on one
hand, and her internal specification involving LBDI formulas and publicly accessible
states involving only LM formulas.

We would also be interested in extending our system to look at, for instance, how
information through different routes (e.g. location information sent to one social net-
work service and information about companions sent to another) can be combined to
leak key information in unanticipated ways (e.g., someone can now know the location
of your companion). Formal verification would surely be more complex but still viable.

The examples we have provided have been built “by hand” and so it would be ad-
vantageous to provide a route whereby (some at least) social networks could be auto-
matically extracted into our formalism.

Finally, we here use a relatively standard model-checker, namely PRISM, as we
are not primarily concerned with anything more than the beliefs of our agents. As we
move to more complex systems it would be ideal to verify complex BDI behaviours. An
agent model-checker capable of this exists [6], and indeed this can also be configured
to export models to PRISM [5] if probabilistic results are desired. However, it would
be ideal to enhance the agent model-checker with explicit content/context constructs
in order to facilitate a more direct relationship between our formalism and the model
analysed by the tool than we could achieve via a direct translation into PRISM. This
would also allow for the practical verification of higher-level properties.

Acknowledgments This work was partially funded through EPSRC Grants EP/L024845
(“Verifiable Autonomy”) and EP/N007565 (“Science of Sensor System Software”). The
authors would also like to thank Dagstuhl for their facilities and hospitality, something
that provided the impetus for this work.

Access to Data The PRISM models used in this work will are
available in the University of Liverpool’s Data Catalogue at DOI:
10.17638/datacat.liverpool.ac.uk/163

References

1. Abdulrahman, R., Alim, S., Neagu, D., Holton, D.R.W., Ridley, M.: Multi Agent System
Approach for Vulnerability Analysis of Online Social Network Profiles over Time. Inter-
national Journal of Knowledge and Web Intelligence 3(3), 256–286 (Dec 2012), http:
//dx.doi.org/10.1504/IJKWI.2012.050854

2. Belardinelli, F., Grossi, D.: On the Formal Verification of Diffusion Phenomena in Open Dy-
namic Agent Networks. In: Proc. International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS). pp. 237–245 (2015), http://dl.acm.org/citation.
cfm?id=2772912

3. Bryant, E.M., Marmo, J.: The Rules of Facebook Friendship: A two-stage examination of in-
teraction rules in close, casual, and acquaintance friendships. Journal of Social and Personal
Relationships 29(8), 1013–1035 (2012), http://spr.sagepub.com/content/29/
8/1013.abstract

http://dx.doi.org/10.1504/IJKWI.2012.050854
http://dx.doi.org/10.1504/IJKWI.2012.050854
http://dl.acm.org/citation.cfm?id=2772912
http://dl.acm.org/citation.cfm?id=2772912
http://spr.sagepub.com/content/29/8/1013.abstract
http://spr.sagepub.com/content/29/8/1013.abstract

4. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
5. Dennis, L.A., Fisher, M., Webster, M.: Two-stage agent program verification. Jour-

nal of Logic and Computation (2016), http://logcom.oxfordjournals.org/
content/early/2015/02/16/logcom.exv002.abstract

6. Dennis, L.A., Fisher, M., Webster, M., Bordini, R.H.: Model Checking Agent Programming
Languages. Automated Software Engineering 19(1), 5–63 (2012)

7. Fisher, M., Dennis, L., Hepple, A.: Modular Multi-Agent Design. Tech. Rep. ULCS-09-002,
Department of Computer Science, University of Liverpool (2009), http://www.csc.
liv.ac.uk/research

8. Fisher, M., Kakoudakis, T.: Flexible Agent Grouping In Executable Temporal Logic. In:
Proc. 12th Int. Symposium on Languages for Intensional Programming (ISLIP). World Sci-
entific Press (1999)

9. Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. Formal Aspects
of Computing 6, 102–111 (1994)

10. Hepple, A., Dennis, L., Fisher, M.: A Common Basis for Agent Organisation in BDI Lan-
guages. In: Languages, Methodologies and Development Tools for Multi-Agent Systems,
LNAI, vol. 4908, pp. 71–88. Springer-Verlag (2008)

11. Holm, H., Sommestad, T., Ekstedt, M., Nordström, L.: CySeMol: a tool for cyber security
analysis of enterpises. In: Electricity Distribution (CIRED 2013), 22nd International Confer-
ence and Exhibition. pp. 1–4. IET (2013)

12. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-
time Systems. In: Proc. 23rd Int. Conf. Computer Aided Verification (CAV). LNCS, vol.
6806, pp. 585–591. Springer (2011)

13. Lam, I.F., Chen, K.T., Chen, L.J.: Involuntary Information Leakage in Social Network
Services. In: Advances in Information and Computer Security: Third International Work-
shop on Security, IWSEC 2008, Kagawa, Japan, November 25-27, 2008. Proceedings.
pp. 167–183. Springer, Berlin, Heidelberg (2008), http://dx.doi.org/10.1007/
978-3-540-89598-5_11

14. Lee, Y.C., Bishop, S., Okhravi, H., Rahimi, S.: Information Leakage Detection in Distributed
Systems using Software Agents. In: Proc. IEEE Symposium on Intelligent Agents. pp. 128–
135 (2009)

15. Lu, X., Yu, Z., Guo, B., Zhou, X.: Predicting the Content Dissemination Trends by Re-
post Behavior Modeling in Mobile Social Networks. Journal of Network and Computer
Applications 42, 197–207 (2014), http://www.sciencedirect.com/science/
article/pii/S1084804514000599

16. Padget, J., Elakehal, E.E., Satoh, K., Ishikawa, F.: On requirements representation and rea-
soning using answer set programming. In: 1st International Workshop on Artificial Intelli-
gence for Requirements Engineering (AIRE 2014). pp. 35–42. Karlskrona, Sweden (2014)

17. Padget, J.A., Satoh, K., Ishikawa, F.: A normative approach to exploring multi-agency pri-
vacy and transparency. In: Proceedings of the 7th Internation Workshop on Juris-informatics
(JURISIN 2013). pp. 9–22. Yokohama, Japan (2013)

18. Pieters, W., Padget, J., Dechesne, F., Dignum, V., Aldewereld, H.: Effectiveness of qualita-
tive and quantitative security obligations. Journal of Information Security and Applications
22, 3 – 16 (2015), http://www.sciencedirect.com/science/article/pii/
S2214212614000805, special Issue on Security of Information and Networks

19. PRISM: Probabilistic Symbolic Model Checker: http://www.prismmodelchecker.
org. Accessed 2013-05-31.

20. Rao, A.S., Georgeff, M.P.: Modelling Agents within a BDI-Architecture. In: Proc. Int. Conf.
Principles of Knowledge Representation and Reasoning (KR). Morgan Kaufmann (1991)

21. Rao, A.S., Georgeff, M.P.: BDI Agents: from Theory to Practice. In: Proc. 1st Int. Conf.
Multi-Agent Systems (ICMAS). pp. 312–319 (1995)

http://logcom.oxfordjournals.org/content/early/2015/02/16/logcom.exv002.abstract
http://logcom.oxfordjournals.org/content/early/2015/02/16/logcom.exv002.abstract
http://www.csc.liv.ac.uk/research
http://www.csc.liv.ac.uk/research
http://dx.doi.org/10.1007/978-3-540-89598-5_11
http://dx.doi.org/10.1007/978-3-540-89598-5_11
http://www.sciencedirect.com/science/article/pii/S1084804514000599
http://www.sciencedirect.com/science/article/pii/S1084804514000599
http://www.sciencedirect.com/science/article/pii/S2214212614000805
http://www.sciencedirect.com/science/article/pii/S2214212614000805
http://www.prismmodelchecker.org
http://www.prismmodelchecker.org

22. Seligman, J., Liu, F., Girard, P.: Facebook and the Epistemic Logic of Friendship. In: Proc.
14th Conf. Theoretical Aspects of Rationality and Knowledge (TARK) (2013), http://
www.tark.org/proceedings/tark_jan7_13/p229-seligman.pdf

23. Sichman, J.S.: DEPINT: Dependence-based coalition formation in an open multi-agent sce-
narios. J. Artif. Soc. Social Sim. 1(2) (1998)

24. Sichman, J.S., Conte, R., Demazeau, Y., Castelfranchi, C.: A social reasoning mechanism
based on dependence networks. pp. 188–192. John Wiley and Sons (1994)

25. Slavkovik, M., Dennis, L., Fisher, M.: An Abstract Formal Basis for Digital Crowds. Dis-
tributed and Parallel Databases 33(1), 3–31 (2015), http://dx.doi.org/10.1007/
s10619-014-7161-y

26. Stirling, C.: Modal and Temporal Logics. In: Handbook of Logic in Computer Science. Ox-
ford University Press (1992)

27. Wooldridge, M., Jennings, N.R.: Intelligent Agents: Theory and Practice. Knowledge Engi-
neering Review 10(2), 115–152 (1995)

http://www.tark.org/proceedings/tark_jan7_13/p229-seligman.pdf
http://www.tark.org/proceedings/tark_jan7_13/p229-seligman.pdf
http://dx.doi.org/10.1007/s10619-014-7161-y
http://dx.doi.org/10.1007/s10619-014-7161-y

	``How Did They Know?'' — Model-checking for Analysis of Information Leakage in Social Networks

