

Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child (Review)

Weston J, Bromley R, Jackson CF, Adab N, Clayton-Smith J, Greenhalgh J, Hounsome J, McKay AJ, Tudur Smith C, Marson AG

Weston J, Bromley R, Jackson CF, Adab N, Clayton-Smith J, Greenhalgh J, Hounsome J, McKay AJ, Tudur Smith C, Marson AG.
Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child. *Cochrane Database of Systematic Reviews* 2016, Issue 11. Art. No.: CD010224.
DOI: 10.1002/14651858.CD010224.pub2.

www.cochranelibrary.com

TABLE OF CONTENTS

HEADER	1
ABSTRACT	1
PLAIN LANGUAGE SUMMARY	2
BACKGROUND	3
OBJECTIVES	4
METHODS	4
RESULTS	
Figure 1	
Figure 2	
DISCUSSION	
AUTHORS' CONCLUSIONS	60
ACKNOWLEDGEMENTS	
REFERENCES	
CHARACTERISTICS OF STUDIES	
DATA AND ANALYSES	
Analysis 1.1. Comparison 1 CBZ vs Controls, Outcome 1 All Major Malformations.	
Analysis 1.2. Comparison 1 CBZ vs Controls, Outcome 2 Neural Tube Malformations.	152
Analysis 1.3. Comparison 1 CBZ vs Controls, Outcome 2 Cardiac Malformations.	154
Analysis 1.5. Comparison 1 CBZ vs Controls, Outcome 9 Cardiac Manofinations.	154
Analysis 1.4. Comparison 1 CBZ vs Controls, Outcome 4 Oro-ractal Cleft / Chambractan Manormations.	155
Analysis 1.5. Comparison 1 CB2 vs Controls, Outcome 5 Skeleta 7 Lindo Manormations.	150
Analysis 2.1. Comparison 2 GBP vs Controls, Outcome 1 All Major Malformations.	
	158
Analysis 4.1. Comparison 4 LTG vs Controls, Outcome 1 All Major Malformations.	159
Analysis 4.2. Comparison 4 LTG vs Controls, Outcome 2 Neural Tube Malformations.	160
Analysis 4.3. Comparison 4 LTG vs Controls, Outcome 3 Cardiac Malformations.	161
Analysis 4.4. Comparison 4 LTG vs Controls, Outcome 4 Oro-Facial Cleft / Crainofacial Malformations.	
Analysis 4.5. Comparison 4 LTG vs Controls, Outcome 5 Skeletal / Limb Malformations.	
Analysis 5.1. Comparison 5 OXC vs Controls, Outcome 1 All Major Malformations.	
Analysis 6.1. Comparison 6 PB vs Controls, Outcome 1 All Major Malformations.	
Analysis 6.2. Comparison 6 PB vs Controls, Outcome 2 Neural Tube Malformations.	
Analysis 6.3. Comparison 6 PB vs Controls, Outcome 3 Cardiac Malformations.	
Analysis 6.4. Comparison 6 PB vs Controls, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.	168
Analysis 6.5. Comparison 6 PB vs Controls, Outcome 5 Skeletal / Limb Malformations	169
Analysis 7.1. Comparison 7 PHT vs Controls, Outcome 1 All Major Malformations.	
Analysis 7.2. Comparison 7 PHT vs Controls, Outcome 2 Neural Tube Malformations.	171
Analysis 7.3. Comparison 7 PHT vs Controls, Outcome 3 Cardiac Malformations.	
Analysis 7.4. Comparison 7 PHT vs Controls, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.	
Analysis 7.5. Comparison 7 PHT vs Controls, Outcome 5 Skeletal / Limb Malformations.	
Analysis 8.1. Comparison 8 PRM vs Controls, Outcome 1 All Major Malformations	175
Analysis 9.1. Comparison 9 TPM vs Controls, Outcome 1 All Major Malformations	176
Analysis 9.2. Comparison 9 TPM vs Controls, Outcome 2 Neural Tube Malformations	177
Analysis 9.3. Comparison 9 TPM vs Controls, Outcome 3 Cardiac Malformations.	178
Analysis 9.4. Comparison 9 TPM vs Controls, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.	179
Analysis 9.5. Comparison 9 TPM vs Controls, Outcome 5 Skeletal / Limb Malformations.	180
Analysis 10.1. Comparison 10 VPA vs Controls, Outcome 1 All Major Malformations.	181
Analysis 10.2. Comparison 10 VPA vs Controls, Outcome 2 Neural Tube Malformations	182
Analysis 10.3. Comparison 10 VPA vs Controls, Outcome 3 Cardiac Malformations.	183
Analysis 10.4. Comparison 10 VPA vs Controls, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.	184
Analysis 10.5. Comparison 10 VPA vs Controls, Outcome 5 Skeletal / Limb Malformations	185
Analysis 11.1. Comparison 11 ZNS vs Controls, Outcome 1 All Major Malformations.	186
Analysis 12.1. Comparison 12 CBZ vs GBP, Outcome 1 All Major Malformations.	
- /	

Analysis 12.2. Comparison 12 CBZ vs GBP, Outcome 2 Neural Tube Malformations.	187
Analysis 12.3. Comparison 12 CBZ vs GBP, Outcome 3 Cardiac Malformations.	188
Analysis 12.4. Comparison 12 CBZ vs GBP, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations	188
Analysis 12.5. Comparison 12 CBZ vs GBP, Outcome 5 Skeletal / Limb Malformations	189
Analysis 13.1. Comparison 13 CBZ vs LEV, Outcome 1 All Major Malformations.	189
Analysis 13.2. Comparison 13 CBZ vs LEV, Outcome 2 Neural Tube Malformations.	190
Analysis 13.3. Comparison 13 CBZ vs LEV, Outcome 3 Cardiac Malformations	190
Analysis 13.4. Comparison 13 CBZ vs LEV, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations	191
Analysis 13.5. Comparison 13 CBZ vs LEV, Outcome 5 Skeletal / Limb Malformations	192
Analysis 14.1. Comparison 14 CBZ vs LTG, Outcome 1 All Major Malformations	193
Analysis 14.2. Comparison 14 CBZ vs LTG, Outcome 2 Neural Tube Malformations.	194
Analysis 14.3. Comparison 14 CBZ vs LTG, Outcome 3 Cardiac Malformations.	195
Analysis 14.4. Comparison 14 CBZ vs LTG, Outcome 4 Oro-Facial Cleft / Crainofacial Malformations.	196
Analysis 14.5. Comparison 14 CBZ vs LTG, Outcome 5 Skeletal / Limb Malformations.	197
Analysis 15.1. Comparison 15 CBZ vs OXC, Outcome 1 All Major Malformations.	198
Analysis 15.2. Comparison 15 CBZ vs OXC, Outcome 2 Neural Tube Malformations.	199
Analysis 15.3. Comparison 15 CBZ vs OXC, Outcome 3 Cardiac Malformations.	200
Analysis 15.4. Comparison 15 CBZ vs OXC, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.	200
Analysis 15.5. Comparison 15 CBZ vs OXC, Outcome 5 Skeletal / Limb Malformations.	201
Analysis 16.1. Comparison 16 CBZ vs PB, Outcome 1 All Major Malformations.	202
Analysis 16.2. Comparison 16 CBZ vs PB, Outcome 2 Neural Tube Malformations.	204
Analysis 16.3. Comparison 16 CBZ vs PB, Outcome 3 Cardiac Malformations.	205
Analysis 16.4. Comparison 16 CBZ vs PB, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.	206
Analysis 16.5. Comparison 16 CBZ vs PB, Outcome 5 Skeletal / Limb Malformation.	207
Analysis 17.1. Comparison 17 CBZ vs PHT, Outcome 1 All Major Malformations.	208
Analysis 17.2. Comparison 17 CBZ vs PHT, Outcome 2 Neural Tube Malformations	209
Analysis 17.3. Comparison 17 CBZ vs PHT, Outcome 3 Cardiac Malformations.	210
Analysis 17.4. Comparison 17 CBZ vs PHT, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.	211
Analysis 17.5. Comparison 17 CBZ vs PHT, Outcome 5 Skeletal / Limb Malformation	212
Analysis 18.1. Comparison 18 CBZ vs PRM, Outcome 1 All Major Malformations	213
Analysis 18.2. Comparison 18 CBZ vs PRM, Outcome 2 Neural Tube Malformations	214
Analysis 18.3. Comparison 18 CBZ vs PRM, Outcome 3 Cardiac Malformations.	214
Analysis 18.4. Comparison 18 CBZ vs PRM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.	215
Analysis 18.5. Comparison 18 CBZ vs PRM, Outcome 5 Skeletal / Limb Malformations	215
Analysis 19.1. Comparison 19 CBZ vs TPM, Outcome 1 All Major Malformations.	216
Analysis 19.2. Comparison 19 CBZ vs TPM, Outcome 2 Neural Tube Malformations.	216
Analysis 19.3. Comparison 19 CBZ vs TPM, Outcome 3 Cardiac Malformations.	217
Analysis 19.4. Comparison 19 CBZ vs TPM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.	218
Analysis 19.5. Comparison 19 CBZ vs TPM, Outcome 5 Skeletal / Limb Malformations.	218
Analysis 20.1. Comparison 20 CBZ vs VPA, Outcome 1 All Major Malformations.	219
Analysis 20.2. Comparison 20 CBZ vs VPA, Outcome 2 Neural Tube Malformations.	21)
Analysis 20.2. Comparison 20 CBZ vs VIA, Outcome 2 Aveniar Internations.	220
Analysis 20.5. Comparison 20 CBZ vs VFA, Outcome 9 Cardiac Manomations.	222
Analysis 20.5. Comparison 20 CBZ vs VPA, Outcome 5 Skeletal / Limb Malformations.	224
Analysis 21.1. Comparison 21 CBZ vs ZNS, Outcome 1 All Major Malformations.	225
Analysis 22.1. Comparison 22 GBP vs LTG, Outcome 1 All Major Malformations.	225
Analysis 22.2. Comparison 22 GBP vs LTG, Outcome 2 Neural Tube Malformations.	226
Analysis 22.3. Comparison 22 GBP vs LTG, Outcome 3 Cardiac Malformations.	226
Analysis 22.4. Comparison 22 GBP vs LTG, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations	227
Analysis 22.5. Comparison 22 GBP vs LTG, Outcome 5 Skeletal / Limb Malformations	227
Analysis 23.1. Comparison 23 GBP vs OXC, Outcome 1 All Major Malformations	228
Analysis 23.2. Comparison 23 GBP vs OXC, Outcome 2 Neural Tube Malformations	228
Analysis 23.3. Comparison 23 GBP vs OXC, Outcome 3 Cardiac Malformations.	229

Analysis 23.4. Comparison 23 GBP vs OXC, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.		229
Analysis 23.5. Comparison 23 GBP vs OXC, Outcome 5 Skeletal / Limb Malformations		230
Analysis 24.1. Comparison 24 GBP vs PB, Outcome 1 All Major Malformations.		230
Analysis 24.2. Comparison 24 GBP vs PB, Outcome 2 Neural Tube Malformations.		231
Analysis 24.3. Comparison 24 GBP vs PB, Outcome 3 Cardiac Malformations.		231
Analysis 24.4. Comparison 24 GBP vs PB, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations		232
Analysis 24.5. Comparison 24 GBP vs PB, Outcome 5 Skeletal / Limb Malformations		232
Analysis 26.1. Comparison 26 GBP vs TPM, Outcome 1 All Major Malformations		233
Analysis 26.2. Comparison 26 GBP vs TPM, Outcome 2 Neural Tube Malformations	 •	233
Analysis 26.3. Comparison 26 GBP vs TPM, Outcome 3 Cardiac Malformations.		234
Analysis 26.4. Comparison 26 GBP vs TPM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.		234
Analysis 26.5. Comparison 26 GBP vs TPM, Outcome 5 Skeletal / Limb Malformations		235
Analysis 27.1. Comparison 27 GBP vs ZNS, Outcome 1 All Major Malformations		235
Analysis 28.1. Comparison 28 LEV vs GBP, Outcome 1 All Major Malformations.		236
Analysis 28.2. Comparison 28 LEV vs GBP, Outcome 2 Neural Tube Malformations.		236
Analysis 28.3. Comparison 28 LEV vs GBP, Outcome 3 Cardiac Malformations.		237
Analysis 28.4. Comparison 28 LEV vs GBP, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.		237
Analysis 28.5. Comparison 28 LEV vs GBP, Outcome 5 Skeletal / Limb Malformation.		238
Analysis 29.1. Comparison 29 LEV vs LTG, Outcome 1 All Major Malformations.		238
Analysis 29.2. Comparison 29 LEV vs LTG, Outcome 2 Neural Tude Malformations.		239
Analysis 29.3. Comparison 29 LEV vs LTG, Outcome 3 Cardiac Malformations.		239
Analysis 29.4. Comparison 29 LEV vs LTG, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.		240
Analysis 29.5. Comparison 29 LEV vs LTG, Outcome 5 Skeletal / Limb Malformation.		241
Analysis 20.0. Comparison 20 LEV vs DIG, Outcome 1 All Major Malformations.		241
Analysis 30.2. Comparison 30 LEV vs OXC, Outcome 2 Neural Tube Malformations.		241
Analysis 30.2. Comparison 30 LEV vs OXC, Outcome 2 Feedral Tube Mathemations.		242
Analysis 30.4. Comparison 30 LEV vs OXC, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.		243
Analysis 30.5. Comparison 30 LEV vs OXC, Outcome 5 Skeletal / Limb Malformations.		243
		244 244
Analysis 31.1. Comparison 31 LEV vs PB, Outcome 1 All Major Malformations		
Analysis 31.2. Comparison 31 LEV vs PB, Outcome 2 Neural Tube Malformations.		245
Analysis 31.3. Comparison 31 LEV vs PB, Outcome 3 Cardiac Malformations.		245
Analysis 31.4. Comparison 31 LEV vs PB, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.		246
Analysis 31.5. Comparison 31 LEV vs PB, Outcome 5 Skeletal / Limb Malformation.		246
Analysis 32.1. Comparison 32 LEV vs PHT, Outcome 1 All Major Malformations.		247
Analysis 32.2. Comparison 32 LEV vs PHT, Outcome 2 Neural Tube Malformations.		247
Analysis 32.3. Comparison 32 LEV vs PHT, Outcome 3 Cardiac Malformations.		248
Analysis 32.4. Comparison 32 LEV vs PHT, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations		249
Analysis 32.5. Comparison 32 LEV vs PHT, Outcome 5 Skeletal / Limb Malformations		249
Analysis 34.1. Comparison 34 LEV vs TPM, Outcome 1 All Major Malformations		250
Analysis 34.2. Comparison 34 LEV vs TPM, Outcome 2 Neural Tube Malformations		251
Analysis 34.3. Comparison 34 LEV vs TPM, Outcome 3 Cardiac Malformations.		251
Analysis 34.4. Comparison 34 LEV vs TPM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.	 •	252
Analysis 34.5. Comparison 34 LEV vs TPM, Outcome 5 Skeletal / Limb Malformations	 •	253
Analysis 35.1. Comparison 35 LEV vs ZNS, Outcome 1 All Major Malformations		253
Analysis 36.1. Comparison 36 LTG vs OXC, Outcome 1 All Major Malformations		254
Analysis 36.2. Comparison 36 LTG vs OXC, Outcome 2 Neural Tube Malformations		254
Analysis 36.3. Comparison 36 LTG vs OXC, Outcome 3 Cardiac Malformation.		255
Analysis 36.4. Comparison 36 LTG vs OXC, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.		255
Analysis 36.5. Comparison 36 LTG vs OXC, Outcome 5 Skeletal / Limb Malformation.		256
Analysis 37.1. Comparison 37 LTG vs PB, Outcome 1 All Major Malformations.		256
Analysis 37.2. Comparison 37 LTG vs PB, Outcome 2 Neural Tube Malformations.		257
Analysis 37.3. Comparison 37 LTG vs PB, Outcome 3 Cardiac Malformations.		258
Analysis 37.4. Comparison 37 LTG vs PB, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.		258
	 -	

Analysis 37.5. Comparison 37 LTG vs PB, Outcome 5 Skeletal / Limb Malformations		
Analysis 38.1. Comparison 38 LTG vs PHT, Outcome 1 All Major Malformations.		
Analysis 38.2. Comparison 38 LTG vs PHT, Outcome 2 Neural Tube Malformations.		
Analysis 38.3. Comparison 38 LTG vs PHT, Outcome 3 Cardiac Malformations		
Analysis 38.4. Comparison 38 LTG vs PHT, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations		
Analysis 38.5. Comparison 38 LTG vs PHT, Outcome 5 Skeletal / Limb Malformations		
Analysis 39.1. Comparison 39 LTG vs TPM, Outcome 1 All Major Malformations	 •	. 265
Analysis 39.2. Comparison 39 LTG vs TPM, Outcome 2 Neural Tube Malformations	 •	. 265
Analysis 39.3. Comparison 39 LTG vs TPM, Outcome 3 Cardiac Malformations.	 •	. 266
Analysis 39.4. Comparison 39 LTG vs TPM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.	 •	. 267
Analysis 39.5. Comparison 39 LTG vs TPM, Outcome 5 Skeletal / Limb Malformations	 	. 268
Analysis 40.1. Comparison 40 PHT vs GBP, Outcome 1 All Major Malformations.	 	. 268
Analysis 40.2. Comparison 40 PHT vs GBP, Outcome 2 Neural Tube Malformations.	 	. 269
Analysis 40.3. Comparison 40 PHT vs GBP, Outcome 3 Cardiac Malformations.		
Analysis 40.4. Comparison 40 PHT vs GBP, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.		
Analysis 40.5. Comparison 40 PHT vs GBP, Outcome 5 Skeletal / Limb Malformations.		
Analysis 41.1. Comparison 41 PHT vs OXC, Outcome 1 All Major Malformations.		
Analysis 41.2. Comparison 41 PHT vs OXC, Outcome 2 Neural Tube Malformations.		
Analysis 41.3. Comparison 41 PHT vs OXC, Outcome 3 Cardiac Malformations.		
Analysis 41.4. Comparison 41 PHT vs OXC, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.		
Analysis 41.5. Comparison 41 PHT vs OXC, Outcome 5 Skeletal / Limb Malformations.		
Analysis 42.1. Comparison 42 PHT vs PB, Outcome 1 All Major Malformations.		
Analysis 42.2. Comparison 42 PHT vs PB, Outcome 2 Neural Tube Malformations.		
Analysis 42.3. Comparison 42 PHT vs PB, Outcome 3 Cardiac Malformations.		
Analysis 42.4. Comparison 42 PHT vs PB, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.		
Analysis 42.5. Comparison 42 PHT vs PB, Outcome 5 Skeletal / Limb Malformations		
Analysis 43.1. Comparison 43 PHT vs TPM, Outcome 1 All Major Malformations.		
Analysis 43.2. Comparison 43 PHT vs TPM, Outcome 2 Neural Tube Malformations.		
Analysis 43.3. Comparison 43 PHT vs TPM, Outcome 3 Cardiac Malformations.		
Analysis 43.4. Comparison 43 PHT vs TPM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.		
Analysis 43.5. Comparison 43 PHT vs TPM, Outcome 5 Skeletal / Limb Malformations		
Analysis 44.1. Comparison 44 PB vs OXC, Outcome 1 All Major Malformations.		
Analysis 44.2. Comparison 44 PB vs OXC, Outcome 2 Neural Tube Malformations.		
Analysis 44.3. Comparison 44 PB vs OXC, Outcome 3 Cardiac Malformations.		
Analysis 44.4. Comparison 44 PB vs OXC, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.		
Analysis 44.5. Comparison 44 PB vs OXC, Outcome 5 Skeletal / Limb Malformations.	•	
Analysis 45.1. Comparison 45 PB vs TPM, Outcome 1 All Major Malformations.	•	. 286
Analysis 45.2. Comparison 45 PB vs TPM, Outcome 2 Neural Tube Malformations.	•	. 287
Analysis 45.3. Comparison 45 PB vs TPM, Outcome 3 Cardiac Malformations.	 •	. 288
Analysis 45.4. Comparison 45 PB vs TPM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.	 •	. 288
Analysis 45.5. Comparison 45 PB vs TPM, Outcome 5 Skeletal / Limb Malformations	 •	. 289
Analysis 46.1. Comparison 46 VPA vs GBP, Outcome 1 All Major Malformations.	 •	. 289
Analysis 46.2. Comparison 46 VPA vs GBP, Outcome 2 Neural Tube Malformations	 •	. 290
Analysis 46.3. Comparison 46 VPA vs GBP, Outcome 3 Cardiac Malformations	 	. 291
Analysis 46.4. Comparison 46 VPA vs GBP, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.		
Analysis 46.5. Comparison 46 VPA vs GBP, Outcome 5 Skeletal / Limb Malformations.		
Analysis 47.1. Comparison 47 VPA vs LEV, Outcome 1 All Major Malformations.		
Analysis 47.2. Comparison 47 VPA vs LEV, Outcome 2 Neural Tube Malformations.		
Analysis 47.3. Comparison 47 VPA vs LEV, Outcome 3 Cardiac Malformations.		
Analysis 47.4. Comparison 47 VPA vs LEV, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.		
Analysis 47.5. Comparison 47 VPA vs LEV, Outcome 5 Skeletal / Limb Malformations.		
Analysis 48.1. Comparison 48 VPA vs LTG, Outcome 1 All Major Malformations.		
Analysis 48.2. Comparison 48 VPA vs LTG, Outcome 2 Neural Tube Malformations.		
	 -	

Analysis 48.3. Comparison 48 VPA vs LTG, Outcome 3 Cardiac Malformations				298
Analysis 48.4. Comparison 48 VPA vs LTG, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.				299
Analysis 48.5. Comparison 48 VPA vs LTG, Outcome 5 Skeletal / Limb Malformations.				300
Analysis 49.1. Comparison 49 VPA vs TPM, Outcome 1 All Major Malformations.				301
Analysis 49.2. Comparison 49 VPA vs TPM, Outcome 2 Neural Tube Malformations.				301
Analysis 49.3. Comparison 49 VPA vs TPM, Outcome 3 Cardiac Malformations.				302
Analysis 49.4. Comparison 49 VPA vs TPM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.				303
Analysis 49.5. Comparison 49 VPA vs TPM, Outcome 5 Skeletal / Limb Malformation.				303
Analysis 50.1. Comparison 50 VPA vs OXC, Outcome 1 All Major Malformations.				303
Analysis 50.2. Comparison 50 VPA vs OXC, Outcome 2 Neural Tube Malformations.				305
Analysis 50.2. Comparison 50 VPA vs OXC, Outcome 2 Techai Tube Manomations.				305
Analysis 50.4. Comparison 50 VPA vs OXC, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.				307
Analysis 50.4. Comparison 50 VPA vs OXC, Outcome 5 Skeletal / Limb Malformations.				308
Analysis 50.5. Comparison 50 VIA vs OAC, Outcome 5 Steletar / Emb Manomations				309
				310
Analysis 51.2. Comparison 51 VPA vs PB, Outcome 2 Neural Tube Malformations.				
Analysis 51.3. Comparison 51 VPA vs PB, Outcome 3 Cardiac Malformations.				311
Analysis 51.4. Comparison 51 VPA vs PB, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.				312
Analysis 51.5. Comparison 51 VPA vs PB, Outcome 5 Skeletal / Limb Malformations				313
Analysis 52.1. Comparison 52 VPA vs PHT, Outcome 1 All Major Malformations.				314
Analysis 52.2. Comparison 52 VPA vs PHT, Outcome 2 Neural Tube Malformations.				315
Analysis 52.3. Comparison 52 VPA vs PHT, Outcome 3 Cardiac Malformations.				316
Analysis 52.4. Comparison 52 VPA vs PHT, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.				317
Analysis 52.5. Comparison 52 VPA vs PHT, Outcome 5 Skeletal / Limb Malformations.				318
Analysis 54.1. Comparison 54 PHT vs PRM, Outcome 1 All Major Malformations.				319
Analysis 54.2. Comparison 54 PHT vs PRM, Outcome 2 Neural Tube Malformations.				320
Analysis 54.3. Comparison 54 PHT vs PRM, Outcome 3 Cardiac Malformations.				320
Analysis 54.4. Comparison 54 PHT vs PRM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.				321
Analysis 54.5. Comparison 54 PHT vs PRM, Outcome 5 Skeletal / Limb Malformations				321
Analysis 55.1. Comparison 55 PB vs PRM, Outcome 1 All Major Malformations.		•	•	322
Analysis 55.2. Comparison 55 PB vs PRM, Outcome 2 Neural Tube Malformations.			•	323
Analysis 55.3. Comparison 55 PB vs PRM, Outcome 3 Cardiac Malformations.			•	323
Analysis 55.4. Comparison 55 PB vs PRM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.				324
Analysis 55.5. Comparison 55 PB vs PRM, Outcome 5 Skeletal / Limb Malformations.				324
Analysis 56.1. Comparison 56 LTG vs ZNS, Outcome 1 All Major Malformations				325
Analysis 57.1. Comparison 57 OXC vs PRM, Outcome 1 All Major Malformations.				325
Analysis 58.1. Comparison 58 OXC vs TPM, Outcome 1 All Major Malformations.				326
Analysis 58.2. Comparison 58 OXC vs TPM, Outcome 2 Neural Tube Malformations.				326
Analysis 58.3. Comparison 58 OXC vs TPM, Outcome 3 Cardiac Malformations.				327
Analysis 58.4. Comparison 58 OXC vs TPM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.				327
Analysis 58.5. Comparison 58 OXC vs TPM, Outcome 5 Skeletal / Limb Malformations.				328
Analysis 59.1. Comparison 59 OXC vs ZNS, Outcome 1 All Major Malformations.				328
Analysis 60.1. Comparison 60 PB vs ZNS, Outcome 1 All Major Malformations.				329
Analysis 61.1. Comparison 61 PHT vs ZNS, Outcome 1 All Major Malformations.				329
Analysis 63.1. Comparison 63 PRM vs VPA, Outcome 1 All Major Malformations.				330
Analysis 63.2. Comparison 63 PRM vs VPA, Outcome 2 Neural Tube Malformations.				331
Analysis 63.3. Comparison 63 PRM vs VPA, Outcome 3 Cardiac Malformations.				331
Analysis 63.4. Comparison 63 PRM vs VPA, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.				332
Analysis 63.5. Comparison 63 PRM vs VPA, Outcome 5 Skeletal / Limb Malformations.				332
Analysis 65.7. Comparison 65 TPM vs ZNS, Outcome 1 All Major Malformations				
Analysis 65.1. Comparison 65 TPM vs ZNS, Outcome 1 All Major Malformations.				333
ADDITIONAL TABLES				333
APPENDICES				333
CONTRIBUTIONS OF AUTHORS				339 346
	•••	•	•	540

v

DECLARATIONS OF INTEREST	346
SOURCES OF SUPPORT	346
DIFFERENCES BETWEEN PROTOCOL AND REVIEW	347
INDEX TERMS	347

[Intervention Review]

Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Jennifer Weston¹, Rebecca Bromley², Cerian F Jackson¹, Naghme Adab³, Jill Clayton-Smith², Janette Greenhalgh⁴, Juliet Hounsome ⁴, Andrew J McKay⁵, Catrin Tudur Smith⁶, Anthony G Marson¹

¹Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK. ²Institute of Human Development, University of Manchester, Manchester, UK. ³Department of Neurology, A5 Corridor, Walsgrave Hospital, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK. ⁴Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK. ⁵Clinical Trials Unit, Institute of Child Health, Alder Hey Hospital, Liverpool, UK. ⁶Department of Biostatistics, University of Liverpool, Liverpool, UK

Contact address: Rebecca Bromley, Institute of Human Development, University of Manchester, 6th Floor, Genetic Medicine, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK. rebecca.bromley@manchester.ac.uk, rebeccalbromley@googlemail.com.

Editorial group: Cochrane Epilepsy Group. **Publication status and date:** New, published in Issue 11, 2016. **Review content assessed as up-to-date:** 14 September 2015.

Citation: Weston J, Bromley R, Jackson CF, Adab N, Clayton-Smith J, Greenhalgh J, Hounsome J, McKay AJ, Tudur Smith C, Marson AG. Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child. *Cochrane Database of Systematic Reviews* 2016, Issue 11. Art. No.: CD010224. DOI: 10.1002/14651858.CD010224.pub2.

Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ABSTRACT

Background

There is evidence that certain antiepileptic drugs (AEDs) are teratogenic and are associated with an increased risk of congenital malformation. The majority of women with epilepsy continue taking AEDs throughout pregnancy; therefore it is important that comprehensive information on the potential risks associated with AED treatment is available.

Objectives

To assess the effects of prenatal exposure to AEDs on the prevalence of congenital malformations in the child.

Search methods

We searched the Cochrane Epilepsy Group Specialized Register (September 2015), Cochrane Central Register of Controlled Trials (CENTRAL) (2015, Issue 11), MEDLINE (via Ovid) (1946 to September 2015), EMBASE (1974 to September 2015), Pharmline (1978 to September 2015), Reprotox (1983 to September 2015) and conference abstracts (2010-2015) without language restriction.

Selection criteria

We included prospective cohort controlled studies, cohort studies set within pregnancy registries and randomised controlled trials. Participants were women with epilepsy taking AEDs; the two control groups were women without epilepsy and women with epilepsy who were not taking AEDs during pregnancy.

Data collection and analysis

Three authors independently selected studies for inclusion. Five authors completed data extraction and risk of bias assessments. The primary outcome was the presence of a major congenital malformation. Secondary outcomes included specific types of major congenital malformations. Where meta-analysis was not possible, we reviewed included studies narratively.

Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child (Review) Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Main results

We included 50 studies, with 31 contributing to meta-analysis. Study quality varied, and given the observational design, all were at high risk of certain biases. However, biases were balanced across the AEDs investigated and we believe that the results are not explained by these biases.

Children exposed to carbamazepine (CBZ) were at a higher risk of malformation than children born to women without epilepsy (N = 1367 vs 2146, risk ratio (RR) 2.01, 95% confidence interval (CI) 1.20 to 3.36) and women with untreated epilepsy (N = 3058 vs 1287, RR 1.50, 95% CI 1.03 to 2.19). Children exposed to phenobarbital (PB) were at a higher risk of malformation than children born to women without epilepsy (N = 345 vs 1591, RR 2.84, 95% CI 1.57 to 5.13). Children exposed to phenytoin (PHT) were at an increased risk of malformation compared with children born to women without epilepsy (N = 477 vs 987, RR 2.38, 95% CI 1.12 to 5.03) and to women with untreated epilepsy (N = 640 vs 1256, RR 2.40, 95% CI 1.42 to 4.08). Children exposed to topiramate (TPM) were at an increased risk of malformation compared with children born to women without epilepsy (N = 359 vs 442, RR 3.69, 95% CI 1.36 to 10.07). The children exposed to valproate (VPA) were at a higher risk of malformation compared with children born to women with untreated epilepsy (N = 1923 vs 1259, RR 3.13, 95% CI 2.16 to 4.54). There was no increased risk for malformation for lamotrigine (LTG). Gabapentin (GBP), levetiracetam (LEV), oxcarbazepine (OXC), primidone (PRM) or zonisamide (ZNS) were not associated with an increased risk, however, there were substantially fewer data for these medications.

For AED comparisons, children exposed to VPA had the greatest risk of malformation (10.93%, 95% CI 8.91 to 13.13). Children exposed to VPA were at an increased risk of malformation compared with children exposed to CBZ (N = 2529 vs 4549, RR 2.44, 95% CI 2.00 to 2.94), GBP (N = 1814 vs 190, RR 6.21, 95% CI 1.91 to 20.23), LEV (N = 1814 vs 817, RR 5.82, 95% CI 3.13 to 10.81), LTG (N = 2021 vs 4164, RR 3.56, 95% CI 2.77 to 4.58), TPM (N = 1814 vs 473, RR 2.35, 95% CI 1.40 to 3.95), OXC (N = 676 vs 238, RR 3.71, 95% CI 1.65 to 8.33), PB (N = 1137 vs 626, RR 1.59, 95% CI 1.11 to 2.29, PHT (N = 2319 vs 1137, RR 2.00, 95% CI 1.48 to 2.71) or ZNS (N = 323 vs 90, RR 17.13, 95% CI 1.06 to 277.48). Children exposed to CBZ were at a higher risk of malformation than those exposed to LEV (N = 3051 vs 817, RR 1.84, 95% CI 1.03 to 3.29) and children exposed to LTG (N = 3385 vs 4164, RR 1.34, 95% CI 1.01 to 1.76). Children exposed to PB were at a higher risk of malformation compared with children exposed to GBP (N = 204 vs 159, RR 8.33, 95% CI 1.04 to 50.00), LEV (N = 204 vs 513, RR 2.33, 95% CI 1.04 to 5.00) or LTG (N = 282 vs 1959, RR 3.13, 95% CI 1.64 to 5.88). Children exposed to PHT had a higher risk of malformation than children exposed to LTG (N = 624 vs 4082, RR 1.89, 95% CI 1.19 to 2.94) or to LEV (N = 566 vs 817, RR 2.04, 95% CI 1.09 to 3.85); however, the comparison to LEV was not significant in the random-effects model. Children exposed to TPM were at a higher risk of malformation than children exposed to LEV (N = 473 vs 817, RR 2.00, 95% CI 1.03 to 3.85) or LTG (N = 473 vs 3975, RR 1.79, 95% CI 1.06 to 2.94). There were no other significant differences, or comparisons were limited to a single study.

We found significantly higher rates of specific malformations associating PB exposure with cardiac malformations and VPA exposure with neural tube, cardiac, oro-facial/craniofacial, and skeletal and limb malformations in comparison to other AEDs. Dose of exposure mediated the risk of malformation following VPA exposure; a potential dose-response association for the other AEDs remained less clear.

Authors' conclusions

Exposure in the womb to certain AEDs carried an increased risk of malformation in the foetus and may be associated with specific patterns of malformation. Based on current evidence, LEV and LTG exposure carried the lowest risk of overall malformation; however, data pertaining to specific malformations are lacking. Physicians should discuss both the risks and treatment efficacy with the patient prior to commencing treatment.

PLAIN LANGUAGE SUMMARY

Treatment for epilepsy in pregnant women and the physical health of the child

Background

For most women who have epilepsy, continuing their medication during pregnancy is important for their health. Over the last 25 years, research has shown that children exposed to these medications in the womb can be at a higher risk of having a malformation or birth defect.

Research question

This review aimed to understand whether exposure to antiepileptic drugs (AEDs) during pregnancy is linked to an increased risk of having a child with a malformation.

Characteristics of the studies

The review included 50 published studies. We compared the children of women with epilepsy who were taking a single AED to the children of women without epilepsy or women who had epilepsy but who were not treating it with AEDs. We also made comparisons between children exposed to different AEDs in the womb. The evidence presented in this review was up to date in September 2015.

Results

The amount of data available from the studies reviewed varied greatly by the AED under investigation, and this could account for some of the findings.

- Children exposed to valproate compared to other AEDs had the highest level of risk of a malformation at 10.93%. The children exposed to valproate had a higher level of risk than both groups of control children and than children exposed to carbamazepine, gabapentin, levetiracetam, lamotrigine, oxcarbazepine, phenobarbital, phenytoin, topiramate and zonisamide. The level of risk of having a malformation was linked to the amount or dose of valproate the child was exposed to in the womb.

- Children exposed to carbamazepine were at a higher risk of malformations than both groups of control children and children exposed to levetiracetam and lamotrigine.

- Children exposed to phenobarbital were at a higher risk of malformations than children born to women without epilepsy but not those born to women with untreated epilepsy. They were also at a higher risk of malformation than children exposed to gabapentin, levetiracetam or lamotrigine.

- Children exposed to phenytoin were at an increased risk of malformation compared with both groups of control children and children exposed to levetiracetam and lamotrigine.; although the result of the comparison to levetriacetam is less clear.

- Children exposed to topiramate were at a higher risk of malformation than children born to women without epilepsy but not those born to women with untreated epilepsy. They were at a higher risk of malformation in comparison to the children exposed to levetiracetam or lamotrigine.

- There were no other significant differences between AEDs, or comparisons were limited to a single study.

- We also found higher rates of specific types of malformations, particularly associating phenobarbital exposure with heart malformations and valproate exposure with a range of specific types of malformation affecting a number of different areas of the body.

Quality of the studies

The quality of how studies were designed varied, but we do not consider that this accounts for the results of the review.

Conclusions

This review found that children exposed to valproate in the womb were at an increased risk of having a malformation at birth and that the level of risk is determined by the dose of valproate the child is exposed to. Based on current evidence, levetiracetam and lamotrigine appear to be the AEDs associated with the lowest level of risk, but more data are needed, particularly concerning individual types of malformation.

Description of the condition

Epilepsy is a common disorder affecting up to 1% of the population (Hauser 1990). Approximately one third of people receiving

BACKGROUND

antiepileptic drugs (AEDs) are of reproductive age (Yerby 1994), and between 0.5% to 0.6% of all pregnancies are reportedly exposed to an AED (Man 2012). There is a large body of research that demonstrates an association between children born to women with epilepsy treated with AEDs and an increased risk of congenital malformations, including cardiac, neural tube and craniofacial defects (Jentink 2010; Meador 2008; Tomson 2011).

Description of the intervention

AEDs are the most common treatment for epilepsy, and most women with epilepsy require treatment continuation during pregnancy. AEDs readily cross the placenta from the mother into the foetus (Bossi 1982).

How the intervention might work

Prospective observational studies (e.g. Canger 1999), registrybased studies (e.g. Tomson 2011), large case control studies (Jentink 2010), and meta-analysis studies (Meador 2008) provide evidence of an association between treatment with particular AEDs and an increased prevalence of malformations. There have been reports of differential outcomes for the AEDs with sodium valproate (VPA), which are associated with the largest increase in prevalence (Canger 1999; EURAP; Meador 2006; North American Register; UK Register).

The mechanisms through which prenatal exposure to AEDs is associated with an increased prevalence of major and minor congenital malformations remain unknown, and they may differ by treatment type. Therefore, this review investigates the outcomes for each monotherapy separately so as to provide the most reliable evidence available.

Why it is important to do this review

The decision to continue AED treatment during pregnancy requires taking a risk-benefit decision. On the one hand, there is the potential risk exposure in utero that AEDs pose to the physical and neurodevelopment of the child, with lifelong implications when the medication in question is a teratogen (Bromley 2014). On the other hand lies the health and well-being of the mother, who requires treatment for epilepsy throughout her pregnancy to minimise the risk of seizures, with varying efficacy against seizure activity depending on treatment type (EURAP STUDY GROUP 2006).

While a number of studies indicate a teratogenic risk from AEDs, there are conflicting results regarding the degree of risk and the type of malformations associated with specific AEDs, and the strength of the evidence is often limited by cohort size. This makes it difficult to counsel women about treatment choices before or during pregnancy. There is, therefore, a clear need for a systematic review and meta-analysis of existing data to inform these decisions. Although randomised controlled trials (RCTs) would provide the most reliable evidence about the effects of AEDs taken in pregnancy, they have been considered unethical in this area, and even if undertaken would pose considerable difficulties in terms of design, recruitment and interpretation.

In view of this, we have decided to proceed with a systematic review of all available evidence including registry-based, prospective cohort studies and RCTs. At the protocol stage we decided not to include malformation case-control studies (e.g. Jentink 2010; Jentink 2010b) and studies using electronic health care resources (e.g. Wide 2004) due to the lack of understanding of how these methods compare to prospective observational cohort studies. This decision is discussed further in Overall completeness and applicability of evidence.

Evidence from this review along with the related review by the same Cochrane team will aid the decisions clinicians and women with epilepsy have to make about the treatment of epilepsy during the potential childbearing years (Bromley 2014). This review and its linked review, Bromley 2014 replace the previously published review entitled 'Common antiepileptic drugs in pregnancy in women with epilepsy' (Adab 2004).

OBJECTIVES

To assess the effects of prenatal exposure to commonly prescribed AEDs on the prevalence of congenital malformations in the child.

This review examines the association between AED exposure and the prevalence of congenital malformations compared to the general population or unexposed pregnancies in women with epilepsy. It also compares the prevalence of congenital malformations in children exposed to different monotherapy AEDs.

METHODS

Criteria for considering studies for this review

Types of studies

We considered the following types of studies.

1. Randomised controlled trials (RCTs). These are studies that included women with epilepsy requiring treatment and randomised them to a particular AED prior to conception. The intervention group(s) comprised women with epilepsy taking an AED of interest as monotherapy.

2. Prospective observational cohort studies. These included consecutive participants from single or multicentre participating

sites, where investigators collected information regarding the pregnancy and history prior to the birth of the child. The intervention group(s) comprised women with epilepsy taking an AED of interest as monotherapy.

3. Registry studies. Registry studies involve the collection of data from a wide region, country or number of countries, and recruitment is often based on self referral or clinician referral leading to non-sequential case ascertainment. We considered both independent and industry-sponsored registry datasets to be eligible. These included recruited pregnant women ascertained prospectively prior the birth of the child. The intervention group(s) comprised women with epilepsy taking an AED of interest as monotherapy.

Types of participants

Pregnant women with epilepsy taking a single AED of interest were eligible for the intervention group.

Participants eligible for the comparator groups were:

- pregnant women with epilepsy taking an AED;
- pregnant women with epilepsy taking no AED; or
- pregnant women who do not have epilepsy.

We excluded studies reporting AED use solely in pregnant women with other conditions (e.g. mood disorders, pain, etc). We included studies involving women taking AEDs for epilepsy and other conditions, but we only included their results in meta-analysis if the rate of other conditions was lower than 10% of the total treatment group.

Types of interventions

Intervention group

Women with epilepsy who received any of the following AEDs in monotherapy: phenobarbitone, phenytoin, carbamazepine, oxcarbazepine, sodium valproate, lamotrigine, topiramate, gabapentin, vigabatrin, tiagabine, zonisamide, levetiracetam, ethosuximide, clobazam, clonazepam, zonisamide, pregabalin, lacosamide, retigabine, rufinamide or sulthiame.

Comparator groups

We used two separate types of comparator groups in this review, as currently there is no clear evidence regarding the reliability of combining data from these two different groups. The two comparator groups are:

• controls: women with a diagnosis of epilepsy who were not taking AEDs and women without epilepsy.

• comparator treatment: women with epilepsy taking monotherapy treatment, evaluated in subgroup analyses to enable treatment comparisons.

Types of outcome measures

Primary outcomes

Major congenital malformations

The proportion of children who present with any type of major congenital malformation (as defined by original study authors). Major congenital malformations are structural abnormalities of the body or organs present from birth that impair viability and require significant intervention (EUROCAT).

Secondary outcomes

Specific major congenital malformations

The proportion of children who present with the following specific major congenital malformations by area of the body.

- Neural tube malformations.
- Cardiac malformations.
- Orofacial cleft/craniofacial malformation.
- Skeletal or limb malformations.

We chose the above disorders because they are important major malformations associated with exposure to AEDs in utero and because of the availability of data within the included studies (Brent 2004). When extracting data from included studies, we compiled a list of all the specified malformations. JCS, a clinical geneticist, then reviewed the list and classified the items into one of the four specific malformation categories.

Minor congenital malformations

Minor congenital malformations are a structural anomaly or dysmorphic feature present from birth which does not impair viability or require intervention or treatment (EUROCAT).

The proportion of children who present with the following minor congenital malformations.

- 1. All minor congenital malformations.
- 2. Eyes (e.g. epicanthal folds, hypertelorism).
- 3. Ears (e.g. low set ears).

4. Nose (e.g. flat and or broad nasal bridge, long/short/shallow philtrum, anteverted nostrils).

5. Mouth (e.g. microstomia, prominent lower lip, thin upper lip).

6. Digits (e.g. distal phalangeal, finger or nail hypoplasia, arachnodactyly, toe or toenail hypoplasia).

7. Limb (not inducing significant life impacting difficulty, e.g. mild talipes correctable by physiotherapy, and not requiring surgical correction, e.g. limb reduction, congenital dislocation of hip, joint laxity).

8. Other (e.g. hernia, sacral dimples).

Search methods for identification of studies

Electronic searches

We searched the following databases.

1. Cochrane Epilepsy Review Group Specialized Register, using the search strategy set out in Appendix 1 (14 September 2015).

2. The Cochrane Central Register of Controlled trials (CENTRAL, *The Cochrane Library*, 2015 Issue 9), using the search strategy set out in Appendix 2.

3. MEDLINE (Ovid) using the search strategy set out in Appendix 3 (1946 to September 2015).

4. EMBASE (1974 to September 2015).

5. Pharmline (1978 to September 2015).

6. Reprotox (1983 to September 2015).

7. ClinicalTrials.gov, using the search terms: "congenital malformation" AND epilepsy (14 September 2015).

8. WHO International Clinical Trials Registry Platform

(ICTRP) using the search terms: congenital malformation AND epilepsy (15 September 2015).

We adapted the MEDLINE search strategy to meet requirements of the EMBASE, Pharmline and Reprotox databases.

We did not impose any language restrictions in the search, and when necessary we obtained translations of articles written in languages other than English.

Searching other resources

We reviewed conference abstracts from neurology meetings published from 2010 to 2015, including abstracts from the International League Against Epilepsy meetings (American Epilepsy Society, International Epilepsy Congress, European Congress on Epileptology, Asian and Oceanian Epilepsy Congress and Latin American Congress on Epilepsy) and Teratology meetings (The Teratology Society and European Teratology Society). Where possible, we linked abstracts to published datasets or categorised them as awaiting classification.

We handsearched the Epilepsia Journal supplements from 2010 to 2015 for conference proceedings.

We cross matched reference lists of original research and review articles to the studies generated from the electronic searches. We handsearched reference lists of recent review articles and contacted lead and corresponding authors in the area for any relevant unpublished material.

Data collection and analysis

Selection of studies

Three authors (RB, JW, JG) reviewed the titles and abstracts of articles highlighted by the searches and removed studies that obviously did not meet the inclusion criteria. Two authors (RB, JW) used full-text reports to determine study eligibility. We discussed disagreements and sought the opinion of a third author (JG) when necessary. Multiple reports from single studies are common in this field, so if it was unclear if study populations overlapped, we linked them together by date of recruitment and tried to contact authors to determine whether different reports referred to single study populations..

Data extraction and management

Five authors (RB, JW, NA, JG, AM) undertook data extraction on the included studies by splitting the number of studies into equal parts. We used pre-standardised electronic data extraction forms that members of the review team piloted and then amended where necessary. We then cross-checked data extraction.

Assessment of risk of bias in included studies

Due to the observational design of some of the studies, we decided to utilise a draft version of the extended Cochrane tool for assessing risk of bias, which the Cochrane Non-Randomised Studies Methods Group was developing. This has now been superseded by the ROBINS-I tool that will be used in future updates of this review. The extended version of the Cochrane tool for assessing risk of bias examines selection bias (sequence generation, allocation concealment), performance bias (blinding), attrition bias (incomplete outcome data, blinding), detection bias (blinding, other potential threats to validity), reporting bias (selective outcome reporting) and the influence of confounding variables. We used a five-point scale to rate the domains of blinding, incomplete outcome data, selective outcome reporting, confounding variables and other bias according to the risk of bias on the outcome. See Appendix 4 and Appendix 5 for extended risk of bias tools. The review authors determined the parameters of this scale; see Table 1 for scale parameters.

For RCTs, we assessed all domains of the current Cochrane tool for assessing risk of bias (Higgins 2011).

We intended, where applicable, to create 'Summary of findings' tables for outcomes and to grade each outcome accordingly using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach (Guyatt 2008). However, we did not create 'Summary of findings' tables due to the complexity and vast amount of comparisons this review investigates (see Differences between protocol and review).

Measures of treatment effect

Both the primary and secondary outcomes are presented as risk ratios (RRs). We also computed risk differences (RDs) using Review Manager (RevMan) to take into account studies with no reported events. We calculated these effect estimates in accordance with the *Cochrane Handbook for Systematic Reviews of Interventions* and reported them in the results section (Higgins 2011).

In some cases the reporting of the analyses were required to be presented the opposite way around to the meta-analyses (i.e. Table 2). These were calculated as follows: A risk ratio for A vs. B is presented as RR [Lower Limit (LL), Upper Limit (UL)]. A risk ratio for B vs. A can be calculated as the reciprocal by (1/RR) [1/UL, 1/LL]. A risk difference for A vs. B is presented as RD [LL, UL]. A risk difference for B vs. A can be calculated by RD*(-1) [UL*(-1), LL*(-1)].

Unit of analysis issues

Data published in studies are often duplicated with updated data over time, particularly in the case of the prospective pregnancy registries, which update their publications as the numbers of enrolled pregnancies increases. In such cases, we considered the latest time point as the main study. In some cohorts, this meant that investigators used different publications for different AEDs. Further, there are studies that report on data from a number of registers (e.g. EURAP; Samren 1997); we could not confirm the independence of this data and therefore only reviewed these studies narratively. We carefully examined data to ensure that we did not include them more than once in the analysis and that we did not omit any non-duplicated data. Where appropriate, we intended to use subgroup analysis to account for the likelihood of omitting nonduplicated data. We expected studies to use different definitions of major and minor congenital malformations, and we examined these variations thoroughly in order to inform the combination of data for analysis.

Dealing with missing data

We contacted study authors to obtain missing statistics from studies. We also investigated reasons for missing data to determine if they were missing at random or not.

Assessment of heterogeneity

We assessed clinical heterogeneity by examining the differences in study characteristics in order to inform decisions regarding the combination of study data in meta-analysis. A priori hypotheses of sources of clinical heterogeneity included: type of population (regional, national or international, single or multicentre), loss to follow-up, maternal factors including age, duration of AED treatment, family history of congenital malformation, lifestyle factors, monotherapy, socioeconomic status, type of epilepsy, use of other

medications and years of education. Child factors included: age of assessment, gestational age at birth, sex, seizure exposure, time of follow-up and outcome measurement. Where applicable, we also assessed statistical heterogeneity by examining the I² statistic and a Chi² test, using the guidelines outlined in Higgins 2011 for interpreting the results. According to these guidelines, an I ² statistic of 0% to 40% may not be important, 30% to 60% may indicate moderate heterogeneity, 50% to 90% may indicate substantial heterogeneity and 75% to 100% indicated considerable heterogeneity. Therefore for this review, we considered an I ² statistic of more than 50% to indicate significant heterogeneity. The I² statistic was not applicable in comparisons where there was only a single study or when only one study contributed data to the analysis. When interpreting the Chi² test, a P value of less than 0.01 was considered to indicate significant heterogeneity. When we found statistical heterogeneity, we presented both fixed-effect and random-effects analyses to enable exploration of differences.

Assessment of reporting biases

We investigated included studies using the ORBIT classification system if we suspected selective outcome reporting bias. We requested all protocols from included study authors to enable comparison of outcomes of interest; however, we received very little response from them, complicating our performance of this comparison.

Our comprehensive search of multiple sources, together with our requests for unpublished data from authors, minimised the risk of publication bias. We looked for small-study effects to establish the likelihood of publication bias and examined funnel plots when we could combine an appropriate number of studies. Cochrane recommends combining a minimum of 10 studies when examining funnel plots (Higgins 2011). We found no evidence of reporting bias in the funnel plot inspection.

Data synthesis

We employed both fixed-effect and random-effects meta-analyses to synthesise the data. We presented the primary outcome (major congenital malformations) and the secondary outcome of specific malformations as a risk ratio (RR). We intended to present the secondary outcome (minor congenital malformations) as an RR; however, meta-analysis was not possible due to extremely limited data.

Due to the small number of events within certain comparisons, we have also presented the risk differences (RD) for both the primary outcome and the secondary outcome of specific malformation type. In the event that we deemed meta-analysing appropriate (e.g. presence of clinical heterogeneity), we applied a narrative form to the review, discussing all comparisons according to the findings presented within the studies.

Comparisons carried out included:

1. specific intervention monotherapy group versus controls on major congenital malformations;

2. specific intervention monotherapy group versus controls on specific major congential malformation types;

3. specific intervention monotherapy group versus specific intervention monotherapy group on major congential malformations;

4. specific intervention monotherapy group versus specific intervention monotherapy group on specific major congential malformations.

We stratified each comparison by control group and comparator group to ensure appropriate combination of study data.

Subgroup analysis and investigation of heterogeneity

Subgroup analysis was stratified by AED and type of control or comparator group. When heterogeneity was present across outcomes, we carried out a random-effects analysis. We examined differences between analyses and reported the appropriate analysis.

Sensitivity analysis

We intended to carry out sensitivity analysis if we found peculiarities in study quality, but this step was not required.

RESULTS

Description of studies

Results of the search

The search identified 11,695 records from the databases outlined in Electronic searches, and we found 48 records through handsearching. Following the removal of duplicates, 11,348 records remained; these were screened for inclusion in the review. We excluded 11,215 records due to irrelevance, leaving 133 full texts (80 unique studies) to be assessed for eligibility. We excluded 21 and categorised 9 as 'awaiting classification' (Babic 2014; Idriz-Oglu 2014; Jones 1992; Kaabi 2013; Kutlu 2013; Lazzaroni Fossati 1986; Midi 2014; Shvartzman 1986; Vlasov 2014). See Characteristics of excluded studies and Characteristics of studies awaiting classification for available details of these studies and Figure 1 for the study flow diagram. We ultimately included 50 studies in the review, from 103 reports; we included 31 of these in the meta-analyses, with the remainder contributing to the review narratively.

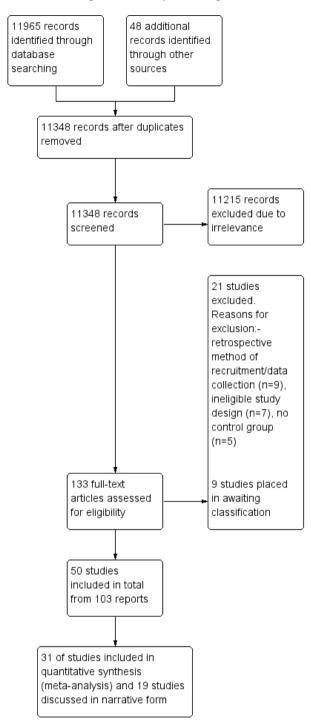


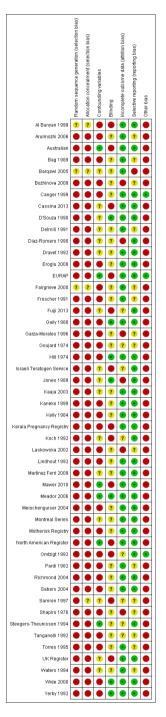
Figure I. Study flow diagram.

Included studies

A total of 103 included full texts reported on 50 independent studies included in this review, of which all but one were nonrandomised studies. There were 53 linked papers pertaining to 23 studies. These full texts were related to an included study, as they presented information on the same cohort of children but either at a different time point or on a related, but not included, outcome (i.e. obstetric or neurodevelopmental outcome).

Excluded studies

We excluded 21 studies from the review (Annegers 1974; Artama 2013; Arteaga-Vazques 2012; Baermig 1973; Canun-Serrano 1986; Castilla-Puentes 2014; Dobos 1985; Elshove 1971; Holmes 1994; Jacobsen 2014; Knight 1975; Lamotrigine Pregnancy Register; Miskov 2009; Monson 1973; Montouris 2003; Mostacci 2014; Nakane 1980; Pearse 1992; Robert 1983; Starveld-Zimmerman 1975; Veiby 2014). Several of these papers were not written in the English language and therefore were sent for translation and data extraction in order to determine the study design and methodology used. Sixteen of the excluded studies employed a retrospective design or they were classed as a record linkage study or case series, and were therefore not eligible for inclusion within this review.


Risk of bias in included studies

We rated all domains of bias except sequence generation and allocation concealment on a scale of 1 (low risk of bias) to 5 (high risk of bias). We describe the scale parameters for each domain in Table 1. We rated sequence generation and allocation concealment as having low, high or unclear risk of bias.

Allocation

For the domains of sequence generation and allocation concealment, we rated all included studies as being at high risk of bias. Whether carried out prospectively or as a registry study, the included studies did not employ rigorous methods (that is, randomisation to treatment), as the research questions were not conducive to the features of these types of study design. However, the nonrandomised risk of bias tool used in this review required the assessment of these two domains. See Figure 2 for a summary of risk of bias judgements. There was one RCT; however, it provided no information regarding randomisation to the treatment group (controls were not randomised), and therefore we still considered this study to be at high risk of bias (Barqawi 2005).

Figure 2. Risk of bias summary: review authors' judgements about each risk of bias item for each included study.

Blinding

We did not rate any studies as '1', which would have meant that assessors and participants were blinded to drug regimen. Eight studies employed full assessor blinding (D'Souza 1990; Gaily 1988; Hill 1974; Jones 1989; Mawer 2010; Meador 2006; Wide 2000; Yerby 1992). Motherisk Registry employed partial blinding with a possible impact on outcome, whilst Kerala Pregnancy Registry employed partial blinding with a likely effect on outcome. Ten studies did not employ any blinding of assessors, and usually their judgements regarding the presence or absence of a malformation were made in routine healthcare situations (Al Bunyan 1999; Australian; Cassina 2013; EURAP; Israeli Teratogen Service; Koch 1992; North American Register; Omtzigt 1992; Samren 1997; UK Register). Unfortunately, 30 studies failed to provide information as to whether the outcome assessors were blinded or not, and therefore we had to rate them as being at an unclear risk (Arulmozhi 2006; Bag 1989; Bargawi 2005; Bozhinova 2009; Canger 1999; Delmiš 1991; Diaz-Romero 1990; Dravet 1992; Eroglu 2008; Fairgrieve 2000; Froscher 1991; Fujji 2013; Garza-Morales 1996; Goujard 1974; Kaaja 2003; Kaneko 1999; Kelly 1984; Laskowska 2002; Lindhout 1992; Martinez Ferri 2009; Meischenguiser 2004; Montreal Series; Pardi 1982; Richmond 2004; Sabers 2004; Shapiro 1976; Steegers-Theunissen 1994; Tanganelli 1992; Torres 1995; Waters 1994) leaving open the possibility that the outcomes were affected by knowledge of the AED treatment.

Incomplete outcome data

We assigned a rating of '1' to only five studies, as there were no missing data (Al Bunyan 1999; Barqawi 2005; D'Souza 1990; Delmiš 1991; Richmond 2004). We gave the majority of studies a '2', as there was only a small amount of missing data from the reports (< 25%), and study authors gave appropriate reasons (i.e. foetal loss or loss to follow-up) (Arulmozhi 2006; Australian; Bag 1989; Canger 1999; Cassina 2013; Dravet 1992; Eroglu 2008; EURAP; Fairgrieve 2000; Froscher 1991; Gaily 1988; Hill 1974; Kaaja 2003; Kaneko 1999; Kelly 1984; Kerala Pregnancy Registry; Lindhout 1992; Martinez Ferri 2009; Mawer 2010; Meador 2006; Meischenguiser 2004; Montreal Series; Motherisk Registry; North American Register; Omtzigt 1992; Pardi 1982; Sabers 2004; Torres 1995; UK Register; Waters 1994; Wide 2000; Yerby 1992). We assigned a rating of '3' to Israeli Teratogen Service, as there was a possible impact from missing data on the assessment of outcomes due to a larger amount of missing data, and to six other studies where the number of participants recruited or analysed was unclear, introducing a possible impact of missing data on study outcomes (Fujji 2013; Goujard 1974; Koch 1992; Samren 1997; Steegers-Theunissen 1994; Tanganelli 1992). We rated Jones 1989 as '4', as there was a large amount of missing data that was imbalanced across the groups, suggesting a likely effect on the outcomes. Finally, we rated five studies a '5', suggesting a high risk of bias, due to the lack of information pertaining to missing data (Bozhinova 2009; Diaz-Romero 1990; Garza-Morales 1996; Laskowska 2002; Shapiro 1976).

Selective reporting

We rated selective outcome reporting on a scale of 1 to 5, where '1' denotes a low risk of bias and '5' a high risk of bias. We requested study protocols from authors with contact details available on the Internet. We received only 14 responses and eight protocols (Australian; Cassina 2013; Fujji 2013; Israeli Teratogen Service; Mawer 2010; Meador 2006; UK Register; Wide 2000). For the eight studies with an available protocol, we assigned a rating of '1' for low risk of bias, as there was no evidence of selective outcome reporting following protocol review.

We assigned a '2' to the majority of studies, as there was no evidence of selective outcome reporting within the publications (Al Bunyan 1999; Canger 1999; D'Souza 1990; Diaz-Romero 1990; Dravet 1992; Eroglu 2008; EURAP; Gaily 1988; Hill 1974; Jones 1989; Kaaja 2003; Kaneko 1999; Kelly 1984; Kerala Pregnancy Registry; Koch 1992; Lindhout 1992; Martinez Ferri 2009; Meischenguiser 2004; Montreal Series; Motherisk Registry; North American Register; Omtzigt 1992; Richmond 2004; Sabers 2004; Samren 1997; Steegers-Theunissen 1994; Yerby 1992); however, we could not test the studies against their protocols, as they were not available. We rated 15 studies as '3', as the risk of bias was unclear due to limited information regarding a priori outcomes in the text (Arulmozhi 2006; Bag 1989; Barqawi 2005; Bozhinova 2009; Delmiš 1991; Fairgrieve 2000; Froscher 1991; Garza-Morales 1996; Goujard 1974; Laskowska 2002; Pardi 1982; Shapiro 1976; Tanganelli 1992; Torres 1995; Waters 1994). We didn't give any studies a rating of '4' or '5'.

Other potential sources of bias

We examined any other potential sources of bias and rated the risk on a scale of 1 to 5. The main other sources of bias that we identified included grouped analysis of AEDs, or analysis of monotherapy and polytherapy data for a specific drug together, recruitment of pregnancies at any time in gestation (or a failure to report upper limit of pregnancy enrolment) and failure to exclude malformations that occurred with genetic conditions. We rated only three studies as '1', indicating that they were at low risk for other sources of bias (Canger 1999; EURAP; Omtzigt 1992). We assigned a '5' to all other studies, indicating that they were at high

risk of one or more of the other biases listed above. See the 'Risk of bias' tables for the individual studies in the Characteristics of included studies.

Confounding variables

We compiled a pre-specified list of confounding variables prior to carrying out the review as described in Assessment of risk of bias in included studies. We did not rate any studies as a '1', as no studies had considered and adjusted for all possible confounders. We rated six studies as '2' to indicate that they had considered and adjusted for all important confounders (Australian; EURAP; Mawer 2010; Meador 2006; North American Register; Steegers-Theunissen 1994). Fourteen studies considered and adjusted for some important confounders, so we assigned a rating of '3' (Cassina 2013; D'Souza 1990; Delmiš 1991; Diaz-Romero 1990; Dravet 1992; Israeli Teratogen Service; Jones 1989; Kaaja 2003; Koch 1992; Martinez Ferri 2009; Montreal Series; Samren 1997; UK Register; Waters 1994). Fourteen studies had considered but not adjusted for confounders, so we gave them a '4' (Al Bunyan 1999; Arulmozhi 2006; Bag 1989; Canger 1999; Gaily 1988; Hill 1974; Kerala Pregnancy Registry; Lindhout 1992; Meischenguiser 2004; Motherisk Registry; Omtzigt 1992; Richmond 2004; Wide 2000; Yerby 1992). Finally, a further 14 studies failed to undertake any consideration or adjustment for confounders, so we rated them as '5' (Bozhinova 2009; Eroglu 2008; Fairgrieve 2000; Froscher 1991; Garza-Morales 1996; Goujard 1974; Kaneko 1999; Kelly 1984; Laskowska 2002; Pardi 1982; Sabers 2004; Shapiro 1976; Tanganelli 1992; Torres 1995).

Effects of interventions

We computed pooled prevalences of malformations within AED groups (using fixed-effect models, unless otherwise stated) and report them at the beginning of each drug section. Table 3 displays a matrix of comparisons and their results for quick reference.

The reported results are from fixed-effect meta-analyses unless otherwise stated. Outcomes are reported as both RR and RDs. The RR is a measure of relative effect expressed as the ratio of the risk of an event in the two groups. If the 95% confidence interval includes the value of 1.00, this implies there is no difference between the groups (i.e. a non-significant result). If the value of 1.00 lies outside the 95% confidence interval, this implies there is a difference between the groups (i.e. a significant result). The RD is a measure of absolute effect expressed as the difference of the risk of an event in the two groups. If the 95% confidence interval contains the value of 0.00, this implies there is no difference between the groups (i.e. both groups have the same risk). If the value of 0.00 lies outside the 95% confidence interval, this implies there is a difference between the groups (i.e. a significant result). We explicitly state whether all of the results shown in the Results section are significant or not. The significance of the RR and RD may be different, as the RD takes into account comparisons where there

were no events in either arm, whilst the other does not. Where the lower or upper CIs were on the line of no effect for both RR and RD calculations, we added an asterisk to draw readers' attention to a remote possibility of no effect.

Although the RR estimates are large in many comparisons, the corresponding risk difference estimates are fairly small (see Table 2), but even a small increase in risk for a specific major malformation is clinically meaningful. In these cases it would be up to the patient/clinician to interpret these risk estimates in the context of the adverse outcome and in relation to the potential benefits of treatment (e.g. treatment efficacy).

Finally, we did not carry out any formal analysis of a dose-response relationship. We have taken any dose-response results reported directly from the study papers.

We provide the results of the meta-analyses and narrative report below by AED type, with comparisons to the controls presented first and comparisons between different AEDs following.

Carbamazepine

The prevalence of major malformations (any type) for children exposed to carbamazepine (CBZ) (N = 4666), based on data from 30 studies, was 3.71% (95% CI 3.19 to 4.27; $I^2 = 45.5\%$, P value = 0.004). Due to significant variance, we undertook random-effects modelling, giving a prevalence of 4.93% (95% CI 3.84 to 6.16; I $^2 = 45.5\%$, P value = 0.004).

I CBZ versus controls

1.1 All major malformations

1.1.1 CBZ versus no medication (in women without epilepsy)

Pooled results from eight studies reported a significant outcome (RR 2.01, 95% CI 1.20 to 3.36; $I^2 = 0\%$), with children exposed to CBZ (N = 1367) experiencing more major malformations than control children (N = 2146) (Arulmozhi 2006; Cassina 2013; Israeli Teratogen Service; Koch 1992; Mawer 2010; North American Register; Steegers-Theunissen 1994; Tanganelli 1992; see Analysis 1.1). This gave a significant RD (RD 0.02, 95% CI 0.00* to 0.03; $I^2 = 0\%$).

We did not combine data from Motherisk Registry, which included women treated with CBZ for epilepsy and other conditions, within the meta-analysis. This study reported prevalence of major congenital malformations to be 2/35 (5.7%) for those exposed to CBZ and 2/36 (5.6%) for the control children. The multicentre study Samren 1997 reported 22 (8%) cases of major malformation from 280 infants exposed to CBZ. However, the numbers from centres with a control group were smaller, with four cases of malformation out of just 14 exposed infants. This gave a

significantly higher risk estimate than the control children born to women without epilepsy (RR 4.9, 95% CI 1.3 to 18.0).

1.1.2 CBZ versus no medication (in women with epilepsy)

Pooled findings from 17 studies showed a significant outcome (RR 1.50, 95% CI 1.03 to 2.19; $I^2 = 0\%$), with children exposed to CBZ (N = 3058) experiencing more major malformations than control children (N = 1287) (Al Bunyan 1999; Australian; Barqawi 2005; Canger 1999; Delmiš 1991; D'Souza 1990; Fairgrieve 2000; Garza-Morales 1996; Kaaja 2003; Kaneko 1999; Kerala Pregnancy Registry; Koch 1992; Lindhout 1992; Mawer 2010; Montreal Series; UK Register; Waters 1994; see Analysis 1.1). This gave a significant RD (RD 0.01, 95% CI 0.00* to 0.03; $I^2 = 4\%$).

1.2 Neural tube malformations

1.2.1 CBZ versus no medication (in women without epilepsy)

Pooled results from three studies showed a non-significant outcome (RR 1.40, 95% CI 0.06 to 34.14; $I^2 = 0\%$), with no difference in the number of neural tube malformations in children exposed to CBZ (N = 191) and compared to control children (N = 641) (Israeli Teratogen Service; Mawer 2010; Koch 1992; see Analysis 1.2). This gave a non-significant RD (RD -0.00, 95% CI -0.01 to 0.01, $I^2 = 0\%$).

1.2.2 CBZ versus no medication (in women with epilepsy)

Pooled results from seven studies showed a non-significant outcome (RR 0.91, 95% CI 0.15 to 5.61; $I^2 = 0\%$), with no difference in the number of neural tube malformations in children exposed to CBZ (N = 713) and in control children (N = 313) (Al Bunyan 1999; Australian; Barqawi 2005; Canger 1999; Fairgrieve 2000; Koch 1992; Mawer 2010; see Analysis 1.2). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.02; $I^2 = 0\%$).

1.3 Cardiac malformations

1.3.1 CBZ versus no medication (in women without epilepsy)

Pooled results from three studies showed a non-significant outcome (RR 1.41, 95% CI 0.28 to 7.02; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to CBZ (N = 191) and in control children (N = 641) (Israeli Teratogen Service; Koch 1992; Mawer 2010; see Analysis 1.3). This gave a non-significant RD (RD -0.00, 95% CI -0.02 to 0.01; $I^2 = 0\%$).

1.3.2 CBZ versus no medication (in women with epilepsy)

Pooled results from seven studies showed a non-significant outcome (RR 1.84, 95% CI 0.32 to 10.71; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to CBZ (N = 713) Cardiac malformation sand control children (N = 313) (Al Bunyan 1999; Australian; Barqawi 2005; Canger 1999; Fairgrieve 2000; Koch 1992; Mawer 2010; see Analysis 1.3). This gave a non-significant RD (RD 0.01, 95% CI -0.01 to 0.02; I^2 = 0%).

1.4 Oro-facial cleft/craniofacial malformations

1.4.1 CBZ versus no medication (in women without epilepsy)

Pooled results from three studies showed a significant outcome (RR 6.13, 95% CI 1.19 to 31.49; $I^2 = 0\%$), with children exposed to CBZ (N = 191) experiencing more oro-facial cleft/craniofacial malformations than control children (N = 641) (Israeli Teratogen Service; Koch 1992; Mawer 2010; see Analysis 1.4). This gave a non-significant RD (RD 0.01, 95% CI -0.01 to 0.04; $I^2 = 0\%$).

1.4.2 CBZ versus no medication (in women with epilepsy)

Pooled results from seven studies showed a non-significant outcome (RR 1.16, 95% CI 0.27 to 5.00; $I^2 = 11\%$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to CBZ (N = 713) and control children (N = 313) (Al Bunyan 1999; Australian; Barqawi 2005; Canger 1999; Fairgrieve 2000; Koch 1992; Mawer 2010; see Analysis 1.4). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.02; I^2 = 0%).

1.5 Skeletal/limb malformations

1.5.1 CBZ versus no medication (in women with epilepsy)

Pooled results from three studies showed a non-significant outcome (RR 3.90, 95% CI 0.17 to 89.64, $I^2 = NA$), with no difference in skeletal/limb malformations in children exposed to CBZ (N = 191) and control children (N = 641) (Israeli Teratogen Service; Koch 1992; Mawer 2010; see Analysis 1.5). This gave a non-significant RD (RD -0.00, 95% CI -0.01 to 0.01, $I^2 =$ 0%).

1.5.2 CBZ versus no medication (in women with epilepsy)

Pooled results from seven studies showed a non-significant outcome (RR 0.73, 95% CI 0.18 to 3.01; $I^2 = 0\%$), with no difference in the number of skeletal and limb malformations in children exposed to CBZ (N = 713) and control children (N = 313) (Al Bunyan 1999; Australian; Barqawi 2005; Canger 1999; Fairgrieve 2000; Koch 1992; Mawer 2010; see Analysis 1.5). This gave a non-significant RD (RD -0.00, 95% CI -0.02 to $0.02; I^2 = 0\%$).

Carbamazepine dose

Most included studies did not investigate the effect of CBZ dose on malformation prevalence, and the majority of data comes from the pregnancy registries. The EURAP collaboration reported higher malformation rates with higher doses of CBZ (N = 1402). When compared to children exposed to < 300 mg/d of LTG, CBZ < 400 mg/d was not significantly different (OR 1.6 95% CI 0.56 to 4.53, P = 0.380), whilst there was a significantly higher risk with higher doses of CBZ: 400 to 1000 mg/d: OR 2.5 (95% CI 1.45 to 4.48, P = 0.0012) and > 1000 mg/d: OR 4.6 (95% CI 2.28 to 9.31, P < 0.0001). UK Register (N = 1657) found a nonsignificant association in malformation outcome between doses of CBZ < 500 mg/d and doses of CBZ 500 to 1000 mg/d (P = 0.33) but a significant increase in risk from CBZ doses of < 500 mg/d, at 1.9%, in comparison to doses of > 1000 mg/d, at 5.3% (OR 2.82 95% CI 1.20 to 6.64, P = 0.01) was reported. In contrast, the North American Register (N = 1033) failed to document an association (P value not reported). A number of smaller studies did not identify a dose effect (Canger 1999; Kaaja 2003; Kaneko 1999; Motherisk Registry; Samren 1997).

Gabapentin

The prevalence of major malformations (any type) for children exposed to gabapentin (GBP) (N = 190) based on data from three studies was 1.47% (95% CI 0.26 to 3.64; $I^2 = 0\%$, P value = 0.50).

2 GBP versus controls

2.1 All major malformations

2.1.1 GBP versus no medication (in women without epilepsy)

The results from North American Register showed a non-significant outcome (RR 0.61, 95% CI 0.07 to 5.18; $I^2 = NA$), with children exposed to GBP (N = 145) experiencing comparable rates of major malformations to control children (N = 442) (Analysis 2.1). This gave a non-significant RD (RD -0.00, 95% CI -0.02 to 0.01; $I^2 = NA$).

Fujji 2013 reported seven major malformations out of 223 (4.1%) GBP-exposed infants (only 71 were in cases where the indication

for maternal treatment was epilepsy). Caution is required, however, as the levels of concomitant medications were high in this study.

2.1.2 GBP versus no medication (in women with epilepsy)

Pooled results from two studies showed a non-significant outcome (RR 1.16, 95% CI 0.23 to 5.93; $I^2 = 0\%$), with children exposed to GBP (N = 45) experiencing comparable rates of major malformations to control children (N = 688) (Australian; UK Register; see Analysis 2.1). This gave a non-significant RD (RD -0.00, 95% CI -0.06 to 0.05; $I^2 = 0\%$).

2.2 Neural tube malformations

2.2.1 GBP versus no medication (in women without epilepsy) No included studies reported data on this outcome.

2.2.2 GBP versus no medication (in women with epilepsy)

No included studies reported data on this outcome.

2.3 Cardiac malformations

2.3.1 GBP versus no medication (in women without epilepsy) No included studies reported data on this outcome.

2.3.2 GBP versus no medication (in women with epilepsy) No included studies reported data on this outcome.

2.4 Oro-facial cleft/craniofacial malformations

2.4.1 GBP versus no medication (in women without epilepsy) No included studies reported data on this outcome.

2.4.2 GBP versus no medication (in women with epilepsy) No included studies reported data on this outcome.

2.5 Skeletal/limb malformations

2.5.1 GBP versus no medication (in women without epilepsy) No included studies reported data on this outcome.

2.5.2 GBP versus no medication (in women with epilepsy)

No included studies reported data on this outcome.

Gabapentin dose

The investigation of GBP dose and its potential association with an increased rate of malformations is limited due to the numbers of pregnancies where data is currently available. The largest cohort of GBP-exposed pregnancies (N = 145) failed to find an association with increasing dose and increased malformation risk (P value not reported) (North American Register). Included numbers in Australian and UK Register were too small to investigate dose (N = 14 and 31, respectively) and Fujji 2013 did not investigate dose.

Levetiracetam

The prevalence of major malformations (any type) for children exposed to levetiracetam (LEV) (N = 817) based on data from three studies was 1.77% (95% CI 0.98%-2.79; $I^2 = 45.5\%$, P value = 0.16).

3 LEV versus controls

3.1 All major malformations

3.1.1 LEV versus no medication (in women without epilepsy) North American Register reported a non-significant outcome (RR 2.16, 95% CI 0.76 to 6.17; $I^2 = NA$), with children exposed to LEV (N = 450) experiencing comparable rates of major malformations to control children (N = 442) (Analysis 3.1). This gave a non-significant RD (RD 0.01, 95% CI -0.00 to 0.03; $I^2 = NA$).

3.1.2 LEV versus no medication (in women with epilepsy)

Pooled results from two studies showed a non-significant outcome (RR 0.32, 95% CI 0.10 to 1.07; $I^2 = NA$), with children exposed to LEV (N = 367) experiencing comparable rates of major malformations to control children (N = 688) (Australian; UK Register; see Analysis 3.1). This gave a significant RD (RD -0.02, 95% CI -0.03 to -0.00; $I^2 = NA$).

3.2 Neural tube malformations

3.2.1 LEV versus no medication (in women without epilepsy) No included studies reported data on this outcome.

3.2.2 LEV versus no medication (in women with epilepsy)

No included studies reported data on this outcome.

3.3 Cardiac malformations

3.3.1 LEV versus no medication (in women without epilepsy) No included studies reported data on this outcome.

3.3.2 LEV versus no medication (in women with epilepsy)

No included studies reported data on this outcome.

3.4 Oro-facial cleft/craniofacial malformations

3.4.1 LEV versus no medication (in women without epilepsy) No included studies reported data on this outcome.

3.4.2 LEV versus no medication (in women with epilepsy)

No included studies reported data on this outcome.

3.5 Skeletal/limb malformations

3.5.1 *LEV versus no medication (in women without epilepsy)* No included studies reported data on this outcome.

3.5.2 LEV versus no medication (in women with epilepsy) No included studies reported data on this outcome.

Levetiracetam dose

In 450 LEV-exposed cases, no dose-response association was apparent (P value not reported) (North American Register). Consistently, the UK Register also failed to find an association between increasing dose of LEV (N = 304) and malformation risk (P = 0.09). Australian did not investigate dose of LEV.

Lamotrigine

The prevalence of major malformations (any type) for children exposed to lamotrigine (LTG) (N = 4195) based on data from seven studies was 2.31% (95% CI 1.87 to 2.78; $I^2 = 29.2\%$, P value = 0.21).

4 LTG versus controls

4.1 All major malformations

4.1.1 LTG versus no medication (in women without epilepsy)

Pooled results from three studies showed a non-significant outcome (RR 1.68, 95% CI 0.78 to 3.65; $I^2 = 0\%$), with children exposed to LTG (N = 1628) experiencing comparable rates of major malformations to control children (N = 1560) (Cassina 2013; Mawer 2010; North American Register; see Analysis 4.1). This gave a non-significant RD (RD 0.01, 95% CI -0.00 to 0.02; I^2 = 23%).

4.1.2 LTG versus no medication (in women with epilepsy)

Pooled results from three studies showed a non-significant outcome (RR 1.07, 95% CI 0.64 to 1.77; $I^2 = 0\%$), with children exposed to LTG (N = 2453) experiencing comparable rates of major malformations to control children (N = 728) (Australian; Mawer 2010; UK Register; see Analysis 4.1). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.02; $I^2 = 0\%$).

4.2 Neural tube malformations

4.2.1 LTG versus no medication (in women without epilepsy)

Mawer 2010 reported a non-significant outcome (RR 2.57, 95% CI 0.11 to 62.03; $I^2 = NA$), with no difference in the number of neural tube malformations in children exposed to LTG (N = 40) and control children (N = 315) (Analysis 4.2). This gave a non-significant RD (RD -0.00, 95% CI -0.04 to 0.03; $I^2 = NA$).

4.2.2 LTG versus no medication (in women with epilepsy)

We could not estimate pooled results from two studies on LTG, as there were no reported neural tube malformations in children exposed to LTG (N = 355) or control children (N = 187) (Australian; Mawer 2010; see Analysis 4.2). The RD was calculable, and it gave a non-significant result (RD 0.00, 95% CI -0.01 to 0.01; I $^{2} = 0\%$).

4.3 Cardiac malformations

4.3.1 LTG versus no medication (in women without epilepsy)

Mawer 2010 reported a non-significant outcome (RR 2.57, 95% CI 0.11 to 62.03; $I^2 = NA$), with no difference in the number of cardiac malformations in children exposed to LTG (N = 40) and control children (N = 315) (Analysis 4.3). This gave a non-significant RD (RD -0.00, 95% CI -0.04 to 0.03; $I^2 = NA$).

4.3.2 LTG versus no medication (in women with epilepsy)

Pooled results from two studies showed a non-significant outcome (RR 1.40, 95% CI 0.15 to 13.35; $I^2 = NA$), with no difference in the number of cardiac malformations in children exposed to LTG (N = 355) and control children (N = 187) (Australian; Mawer 2010; see Analysis 4.3). This gave a non-significant RD (RD 0.00, 95% CI –0.01 to 0.02; $I^2 = NA$).

4.4 Oro-facial cleft/craniofacial malformations

4.4.1 LTG versus no medication (in women without epilepsy)

We were unable to estimate RR in Mawer 2010 due to there being no reported oro-facial cleft/craniofacial malformations in children exposed to LTG (N = 40) or control children (N = 315) (Analysis 4.4). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.03 to 0.03; I² = NA).

4.4.2 LTG versus no medication (in women with epilepsy)

Pooled results from two studies reported a non-significant outcome (RR 5.15, 95% CI 0.29 to 92.56; $I^2 = NA$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to LTG (N = 355) and control children (N = 187) (Australian; Mawer 2010; see Analysis 4.4). This gave a nonsignificant RD (RD 0.01, 95% CI -0.00 to 0.03; $I^2 = NA$).

4.5 Skeletal/limb malformations

4.5.1 LTG versus no medication (in women without epilepsy)

Mawer 2010 reported a non-significant outcome (RR 23.12, 95% CI 0.96 to 558.25; $I^2 = NA$), with no difference in the number of skeletal/limb malformations in children exposed to LTG (N = 40) and control children (N = 315) (Analysis 4.5). This gave a non-significant RD (RD 0.03, 95% CI -0.03 to 0.08; $I^2 = NA$).

4.5.2 LTG versus no medication (in women with epilepsy)

Pooled results from two studies reported a non-significant outcome (RR 0.72, 95% CI 0.12 to 4.12; $I^2 = 40\%$), with no difference in the number of skeletal/limb malformations in children exposed to LTG (N = 355) and control children (N = 187) (Australian; Mawer 2010; see Analysis 4.5). This gave a non-significant RD (RD -0.00, 95% CI -0.02 to 0.02; $I^2 = 0\%$).

Lamotrigine dose

North American Register did not find any association between dose of LTG and malformation prevalence (N = 1562; P value not reported). The UK Register (N = 2198) found no significant risk with increasing dose (0 to 200 mg/d vs 200 to 400 mg/d, P = 0.67; 0 to 200 mg/d vs > 400 mg/d, P = 0.22). Australian also failed to find a significant dose association (N = 315; P value not reported). The frequency of malformations was too low in Cassina 2013 and Mawer 2010 to allow investigation of dose. In EURAP, exposure to higher doses of LTG (based on 1420 cases) was associated with a significantly increased rate of malformation (< 300 mg/d 2.0% vs > 300 mg/d 4.5%, OR 2.2 95% CI 1.12 to 4.35, P = 0.0221).

Oxcarbazepine

The prevalence of major malformations (any type) for children exposed to oxcarbazepine (OXC) (N = 238), based on data from four studies, was 2.39% (95% CI 0.85% to 4.68%; $I^2 = 0.2\%$, P value = 0.39).

5 OXC versus controls

5.1 All major malformations

OXC (N = 182) experiencing comparable rates of major malformations to control children (N = 442) (Analysis 5.1). This gave a non-significant RD (RD 0.01, 95% CI -0.01 to 0.03; I² = NA).

5.1.2 OXC versus no medication (in women with epilepsy)

Pooled results from two studies showed a non-significant outcome (RR 2.75, 95% CI 0.53 to 14.43; $I^2 = 55\%$), with children exposed to OXC (N = 21) experiencing comparable rates of major malformations to control children (N = 386) (Australian; Kaaja 2003; see Analysis 5.1). This gave a non-significant RD (RD 0.03, 95% CI -0.09 to 0.14; $I^2 = 41\%$).

5.2 Neural tube malformations

5.2.1 OXC versus no medication (in women without epilepsy) No included studies reported data on this outcome.

5.2.2 OXC versus no medication (in women with epilepsy)

No included studies reported data on this outcome.

5.3 Cardiac malformations

5.3.1 OXC versus no medication (in women without epilepsy) No included studies reported data on this outcome.

5.3.2 OXC versus no medication (in women with epilepsy) No included studies reported data on this outcome.

5.4 Oro-facial cleft/craniofacial malformations

5.4.1 OXC versus no medication (in women without epilepsy) No included studies reported data on this outcome.

5.1.1 OXC versus no medication (in women without epilepsy) North American Register reported a non-significant outcome (RR 1.94, 95% CI 0.53 to 7.15; $I^2 = NA$), with children exposed to

5.4.2 OXC versus no medication (in women with epilepsy) No included studies reported data on this outcome.

5.5 Skeletal/limb malformations

5.5.1 OXC versus no medication (in women without epilepsy)

No included studies reported data on this outcome.

5.5.2 OXC versus no medication (in women with epilepsy)

No included studies reported data on this outcome.

Oxcarbazpine dose

No included studies reported on the relationship between OXC dose and malformation rates.

Phenobarbital

The prevalence of major malformations (any type) for children exposed to phenobarbital (PB) (N = 709), based on data from 23 studies, was 7.10% (95% CI 5.36 to 9.08; $I^2 = 0\%$, P value = 0.74).

6 PB versus controls

6.1 All major malformations

6.1.1 PB versus no medication (in women without epilepsy)

Pooled results from five studies showed a significant outcome (RR 2.84, 95% CI 1.57 to 5.13; $I^2 = 0\%$), with children exposed to PB (N = 345) experiencing more major malformations than control children (N = 1591) (Cassina 2013; Koch 1992; North American Register; Steegers-Theunissen 1994; Tanganelli 1992; see Analysis 6.1). This gave a significant RD (RD 0.04, 95% CI 0.01 to 0.06; $I^2 = 0\%$).

Samren 1997 reported five cases of major malformation out of 48 exposed infants (10%). Numbers were more limited in the comparison to control children (as not all centres in the study included control children), with just one malformation case out of six PB-exposed children; analysis produced a non-significant difference between the groups (RR 2.4, 95% CI 0.3 to 23.0).

6.1.2 PB versus no medication (in women with epilepsy)

Pooled results from 13 studies showed a non-significant outcome (RR 1.95, 95% CI 0.97 to 3.93; $I^2 = 0\%$), with no difference in the number of major malformations in children exposed to PB (N = 385) and control children (N = 645) (Al Bunyan 1999; Australian; Canger 1999; Delmiš 1991; D'Souza 1990; Kaaja 2003; Kaneko 1999; Kelly 1984; Kerala Pregnancy Registry; Koch 1992; Lindhout 1992; Montreal Series; Waters 1994; see Analysis 6.1). This gave a non-significant RD (RD 0.03, 95% CI -0.01 to 0.07; $I^2 = 0\%$).

6.2 Neural tube malformations

6.2.1 PB versus no medication (in women without epilepsy)

We could not estimate data from Koch 1992 due to there being no reported neural tube malformations in children exposed to PB (N = 4) or control children (N = 116) (Analysis 6.2). RD was calculable and this gave a non-significant result (RD 0.00, 95% CI -0.26 to 0.26; I² = NA).

6.2.2 PB versus no medication (in women with epilepsy)

Pooled results from two studies showed a non-significant outcome (RR 1.73, 95% CI 0.08 to 36.75, $I^2 = 0\%$), with no difference in the number of neural tube malformations in children exposed to PB (N = 5) and control children (N = 147) (Australian; Koch 1992; see Analysis 6.2). This gave a non-significant RD (RD -0.02, 95% CI -0.23 to 0.19; $I^2 = 0\%$).

6.3 Cardiac malformations

6.3.1 PB versus no medication (in women without epilepsy)

Koch 1992 reported a non-significant outcome (RR 7.80, 95% CI 0.36 to 168.52; $I^2 = NA$), with children exposed to PB (N = 4) no more likely to experience cardiac malformations than control children (N = 116) (Analysis 6.3). This gave a non-significant RD (RD -0.01, 95% CI -0.27 to 0.26; $I^2 = NA$).

6.3.2 PB versus no medication (in women with epilepsy) Pooled results from two studies reported a non-significant outcome (RR 8.22, 95% CI 0.37 to 181.57, $I^2 = NA$), with no difference in the number of cardiac malformations in children exposed to PB (N = 9) and control children (N = 172) (Australian; Koch 1992; see Analysis 6.3). This gave a non-significant RD (RD -0.00, 95% CI -0.21 to 0.20; $I^2 = NA$).

6.4.1 PB versus no medication (in women without epilepsy)

Koch 1992 reported a non-significant outcome (RR 3.34, 95% CI 0.20 to 56.35; $I^2 = NA$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to PB (N = 4) and control children (N = 116) (Analysis 6.4). This gave a non-significant RD (RD -0.03, 95% CI -0.29 to 0.24; I² = NA).

6.4.2 PB versus no medication (in women with epilepsy)

We could not estimate the pooled results from two studies due to there being no reported oro-facial cleft/craniofacial malformations in children exposed to PB (N = 9) or control children (N = 172) (Australian; Koch 1992; see Analysis 6.4). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.21 to 0.21, $I^2 = 0\%$).

6.5 Skeletal/limb malformations

6.5.1 PB versus no medication (in women without epilepsy)

Koch 1992 reported a non-significant outcome (RR 7.80, 95% CI 0.36 to 168.52; $I^2 = NA$), with no difference in number of skeletal/limb malformations in children exposed to PB (N = 4) and control children (N = 116) (Analysis 6.5). This gave a non-significant RD (RD -0.01, 95% CI -0.27 to 0.26; $I^2 = NA$).

6.5.2 PB versus no medication (in women with epilepsy)

Pooled results from two studies showed a non-significant outcome (RR 8.22, 95% CI 0.37 to 181.57; $I^2 = NA$), with no difference in number of skeletal/limb malformations in children exposed to PB (N = 9) and control children (N = 172) (Australian; Koch 1992; see Analysis 6.5). This gave a non-significant RD (RD -0.00, 95% CI -0.21 to 0.20; $I^2 = 0\%$).

Phenobarbital dose

Most studies did not investigate dose or report the results of analyses of PB dose with regards to malformation risk (Al Bunyan 1999; Australian; Canger 1999; Cassina 2013; D'Souza 1990; Kaaja 2003; Kerala Pregnancy Registry; Koch 1992; Lindhout 1992; Montreal Series; Steegers-Theunissen 1994; Tanganelli 1992; Waters 1994), and many were too limited in terms of numbers of included pregnancies to be able to do this. North American Register included 199 PB-exposed pregnancies and did not find an association with dose (P value not reported). Samren 1997 found a non-significant trend for an association with dose (N = 48, P value not reported). Kaneko 1999 did find a an association between PB exposure (N = 79) or increased malformation rate; however, the study did not report the statistical analysis. Finally, EURAP reported a significant increase in malformation rate with increasing doses of PB (N = 217), with the prevalence of malformation increasing from 5.4% for doses < 150 mg/d to 13.7% for doses > 150 mg/d (OR 3.2 95% CI 1.11 to 9.45, P = 0.0316).

Phenytoin

The prevalence of major malformations (any type) for children exposed to phenytoin (PHT) (N = 1279), based on data from 25 studies, was 5.38% (95% CI 4.22 to 6.67; $I^2 = 41.1\%$, P value = 0.02). Due to significant variance, we undertook random-effects modelling, generating a prevalence of 6.26% (95% CI 4.37 to 8.47; $I^2 = 41.1\%$, P value = 0.02).

7 PHT versus controls

7.1 All major malformations

7.1.1 PHT versus no medication (in women without epilepsy)

Pooled results from five studies showed a significant outcome (RR 2.38, 95% CI 1.12 to 5.03; $I^2 = 0\%$), with children exposed to PHT (N = 477) experiencing more major malformations than control children (N = 987) (D'Souza 1990; Koch 1992; Mawer 2010; North American Register; Steegers-Theunissen 1994; see Analysis 7.1). However, this gave a non-significant RD (RD 0.02, 95% CI -0.00 to 0.04; $I^2 = 0\%$).

In our meta-analysis, we did not include data from the Motherisk Registry, which included women treated with PHT for epilepsy and other conditions. Investigators reported the prevalence of MCM to be 3/34 (8.8%) for those exposed to PHT and 2/34 (6%) for control children. Samren 1997 reported nine cases of major malformation in 141 (6%) PHT-exposed children. Outcomes at centres with a control group in this study were limited to five cases from 33 exposed children, which gave a non-significant difference (RR 2.2, 95% CI 0.7 to 6.7).

7.1.2 PHT versus no medication (in women with epilepsy)

Pooled results from 15 studies showed a significant outcome (RR 2.40, 95% CI 1.42 to 4.08; $I^2 = 0\%$), with children exposed to PHT (N = 640) experiencing more major malformations than control children (N = 1256) (Al Bunyan 1999; Arulmozhi

2006; Australian; Canger 1999; Garza-Morales 1996; Kaaja 2003; Kaneko 1999; Kelly 1984; Kerala Pregnancy Registry; Koch 1992; Lindhout 1992; Mawer 2010; Montreal Series; UK Register; Waters 1994; see Analysis 7.1). This gave a significant RD (RD 0.03, 95% CI 0.01 to 0.06; $I^2 = 0\%$).

7.2 Neural tube malformations

7.2.1 PHT versus no medication (in women without epilepsy)

Pooled results from two studies showed a non-significant outcome (RR 13.17, 95% CI 0.58 to 299.00, $I^2 = NA$), with children exposed to PHT (N = 31) experiencing no more neural tube malformations than control children (N = 431) (Koch 1992; Mawer 2010; see Analysis 7.2). This gave a non-significant RD (RD -0.00, 95% CI -0.07 to 0.06, $I^2 = 0\%$).

7.2.2 PHT versus no medication (in women with epilepsy) Pooled results from five studies showed a non-significant outcome (RR 1.65, 95% CI 0.32 to 8.51; $I^2 = 54\%$), with no difference in the number of neural tube malformations in children exposed to PHT (N = 133) and control children (N = 255) (Australian; Canger 1999; Garza-Morales 1996; Koch 1992; Mawer 2010; see Analysis 7.2). This gave a non-significant RD (RD 0.00, 95% CI -0.03 to 0.04; $I^2 = 0\%$).

7.3 Cardiac malformations

7.3.1 PHT versus no medication (in women without epilepsy)

Pooled results from two studies reported a non-significant outcome (RR 6.31, 95% CI 0.75 to 52.91, $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to PHT (N = 31) and control children (N = 431) (Koch 1992; Mawer 2010; see Analysis 7.3). This gave a non-significant RD (RD 0.02, 95% CI -0.05 to 0.10; $I^2 = 0\%$).

7.3.2 PHT versus no medication (in women with epilepsy)

Pooled results from five studies showed a non-significant outcome (RR 3.23, 95% CI 0.40 to 26.25; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to PHT (N = 133) and control children (N = 255) (Australian; Canger 1999; Garza-Morales 1996; Koch 1992; Mawer 2010; see Analysis 7.3). This gave a non-significant RD (RD 0.01, 95% CI -0.02 to 0.05; $I^2 = 0\%$).

7.4 Oro-facial cleft/craniofacial malformations

7.4.1 PHT versus no medication (in women without epilepsy)

Pooled results from two studies showed a non-significant outcome (RR 0.67, 95% CI 0.04 to 12.54, $I^2 = NA$), with no difference in the number of oro-facial cleft/craniofacial malformations between children exposed to PHT (N = 31) and control children (N = 431) (Koch 1992; Mawer 2010; see Analysis 7.4). This gave a non-significant RD (RD -0.02, 95% CI -0.09 to 0.05; $I^2 = 0\%$).

7.4.2 PHT versus no medication (in women with epilepsy)

We could not estimate the pooled results from five studies due to the lack of reported oro-facial cleft/craniofacial malformations in children exposed to PHT (N = 133) and control children (N = 530) (Australian; Canger 1999; Garza-Morales 1996; Koch 1992; Mawer 2010; see Analysis 7.4). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.03 to 0.03; I² = 0%).

7.5 Skeletal/limb malformations

7.5.1 PHT versus no medication (in women without epilepsy)

Pooled results from two studies showed a non-significant outcome (RR 1.56, 95% CI 0.07 to 37.19; $I^2 = NA$), with no difference in the number of skeletal and limb malformations in children exposed to PHT (N = 31) and control children (N = 431) (Koch 1992; Mawer 2010; see Analysis 7.4). This gave a non-significant RD (RD -0.01, 95% CI -0.07 to 0.06; $I^2 = 0\%$).

7.5.2 PHT versus no medication (in women with epilepsy)

Pooled results from five studies showed a non-significant outcome (RR 1.69, 95% CI 0.19 to 15.30; $I^2 = 0\%$), with no difference in the number of skeletal/limb malformations in children exposed to PHT (N = 133) and control children (N = 255) (Australian; Canger 1999; Garza-Morales 1996; Koch 1992; Mawer 2010; see Analysis 7.5). This gave a non-significant RD (RD 0.00, 95% CI -0.03 to 0.04; $I^2 = 0\%$).

Phenytoin dose

The majority of included studies did not investigate or formally report on the relationship between dose of PHT and malformation outcome (Al Bunyan 1999; Arulmozhi 2006, Australian, Koch 1992, Canger 1999, Garza-Morales 1996, Steegers-Theunissen

1994, Mawer 2010,D'Souza 1990, Kelly 1984, UK Register, Waters 1994), with many being limited by included numbers of PHT-exposed pregnancies. Kaaja 2003 reported no association with dose of PHT and increased malformation rate based on 124 monotherapy exposed children (P value not reported). Similarly, Motherisk Registry also failed to find an association (N = 36; P value not reported) as did North American Register, based on 416 exposed children (P value not reported). In contrast, Kaneko 1999 reported a significant association between PHT dose and malformation prevalence (P = 0.015), based on 132 children exposed to monotherapy PHT (no further details given). Samren 1997 also found an increase in malformation risk from 2.0% to 4.1% for doses < 200 mg/d and doses > 300 to 500 mg/d (N = 33; P value not reported).

Primidone

The prevalence of major malformations (any type) for children exposed to PRM (N = 110) based on data from six studies was 8.49% (95% CI 4.13 to 14.22; $I^2 = 23.1\%$, P value = 0.26).

8 PRM versus controls

8.1 All major malformations

8.1.1 PRM versus no medication (in women without epilepsy)

Koch 1992 reported a non-significant outcome (RR 0.48, 95% CI 0.03 to 8.43; I^2 = NA) for major malformations in children exposed to PRM (N = 21) in comparison to control children (N = 116) (Analysis 8.1). This gave a significant RD (RD -0.04, 95% CI -0.12 to 0.03; I^2 = NA).

Samren 1997 reported four cases of major malformations out of 43 PRM-exposed children (9%). When limited to centres with control children, there were three cases out of 39 exposed children, which was not significantly different from control children (RR 1.0, 95% CI 0.3 to 3.8).

8.1.2 PRM versus no medication (in women with epilepsy)

Pooled results from four studies showed a significant outcome (RR 2.81, 95% CI 1.13 to 7.02; $I^2 = 52\%$), with children exposed to PRM (N = 106) experiencing more major malformations than control children (N = 397) (Canger 1999; Kaaja 2003; Kaneko 1999; Koch 1992; see Analysis 8.1). Due to high heterogeneity, we undertook a random-effects (RE) analysis, which changed the result to non-significant (RR (RE) 3.92, 95% CI 0.76 to 20.14; $I^2 = 52\%$). This gave a non-significant RD (RD 0.07, 95% CI -0.00 to 0.14; $I^2 = 38\%$).

8.2 Neural tube malformations

8.2.1 PRM versus no medication (in women without epilepsy) No included studies reported data on this outcome.

8.2.2 PRM versus no medication (in women with epilepsy)

No included studies reported data on this outcome.

8.3 Cardiac malformations

8.3.1 PRM versus no medication (in women without epilepsy) No included studies reported data on this outcome.

8.3.2 PRM versus no medication (in women with epilepsy)

No included studies reported data on this outcome.

8.4 Oro-facial cleft/craniofacial malformations

8.4.1 PRM versus no medication (in women without epilepsy) No included studies reported data on this outcome.

8.4.2 PRM versus no medication (in women with epilepsy)

No included studies reported data on this outcome.

8.5 Skeletal/limb malformations

8.5.1 PRM versus no medication (in women without epilepsy) No included studies reported data on this outcome.

8.5.2 *PRM versus no medication (in women with epilepsy)* No included studies reported data on this outcome.

Primidone dose

No included studies investigated dose of PRM and malformation risk.

Topiramate

The prevalence of major malformations (any type) for children exposed to TPM (N = 473) based on data from three studies was 4.28% (95% CI 2.65 to 6.29; $I^2 = 0\%$, P value = 0.91).

9 TPM versus controls

9.1 All major malformations

9.1.1 TPM versus no medication (in women without epilepsy)

North American Register reported a significant outcome (RR 3.69, 95% CI 1.36 to 10.07; $I^2 = NA$), with children exposed to TPM (N = 359) experiencing more major malformations than control children (N = 442) (Analysis 9.1). This gave a significant RD (RD 0.03, 95% CI 0.01 to 0.05; $I^2 = NA$).

In 41 cases described by Israeli Teratogen Service, there were two non-genetic linked malformations, which gave a prevalence of 4.9%, which was not significantly higher than control children (3.4%, P value not reported).

9.1.2 TPM versus no medication (in women with epilepsy)

Pooled results from two studies showed a non-significant outcome (RR 1.99, 95% CI 0.65 to 6.08; $I^2 = 0\%$), with no difference in the number of major malformations in children exposed to TPM (N = 114) and control children (N = 688) (Australian; UK Register; see Analysis 9.1). This gave a non-significant RD (RD 0.02, 95% CI -0.02 to 0.05; $I^2 = 0\%$).

9.2 Neural tube malformations

9.2.2 TPM versus no medication (in women with epilepsy)

We could not estimate data from one study due to the lack of reported neural tube malformations in children exposed to TPM (N = 44) and control children (N = 147) (Australian; see Analysis 9.2). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.03 to 0.03; $I^2 = NA$).

9.3 Cardiac malformations

9.3.1 TPM versus no medication (in women without epilepsy)

No included studies reported data on this outcome.

9.3.2 TPM versus no medication (in women with epilepsy)

Data from Australian showed a non-significant outcome (RR 1.10, 95% CI 0.05 to 26.45; $I^2 = NA$), with no difference in the number of cardiac malformations in children exposed to TPM (N = 44) and control children (N = 147) (Analysis 9.3). This gave a non-significant RD (RD -0.01, 95% CI -0.04 to 0.03; $I^2 = NA$).

9.4 Oro-facial cleft/craniofacial malformations

9.4.1 TPM versus no medication (in women without epilepsy)

No included studies reported data on this outcome.

9.4.2 TPM versus no medication (in women with epilepsy)

We could not estimate data from one study due to the lack of reported oro-facial cleft/craniofacial malformations in children exposed to TPM (N = 44) and control children (N = 147) (Australian; see Analysis 9.4). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.03 to 0.03; I² = NA).

9.5 Skeletal/limb malformations

9.2.1 TPM versus no medication (in women without epilepsy)

No included studies reported data on this outcome.

9.5.1 TPM versus no medication (in women without epilepsy) No included studies reported data on this outcome.

9.5.2 TPM versus no medication (in women with epilepsy)

Australian reported a non-significant outcome (RR 1.10, 95% CI 0.05 to 26.45; $I^2 = NA$), with no difference in the number of skeletal/limb malformations in children exposed to TPM (N = 44) and control children (N = 147) (Analysis 9.5). This gave a non-significant RD (RD -0.01, 95% CI -0.04 to 0.03; $I^2 = NA$).

Topiramate dose

North American Register found no significant difference in median doses between TPM-exposed children (N = 359) who had malformations versus those who did not (P value not reported). Consistently, but with smaller numbers, Australian (N = 44; P value not reported) and UK Register cohorts (N = 70; P value not reported) also failed to find an association between dose of TPM and risk of overall malformations.

Valproate

The prevalence of major malformations (any type) for children exposed to valproate (VPA) (N = 2565), based on data from 26 studies, was 9.09% (95% CI 8.02 to 10.23; $I^2 = 37.8\%$, P value = 0.03). Due to significant variance, we undertook random-effects modelling, giving a prevalence of 10.93% (95% CI 8.91 to 13.13; $I^2 = 37.8\%$, P value = 0.03).

10 VPA versus controls

10.1. All major malformations

10.1.1 VPA versus no medication (in women without epilepsy)

Pooled results from seven studies showed a significant outcome (RR 5.69, 95% CI 3.33 to 9.73; $I^2 = 0\%$), with children exposed to VPA (N = 467) experiencing more major malformations than control children (N = 1936) (Arulmozhi 2006; Cassina 2013; Koch 1992; Mawer 2010; North American Register; Steegers-Theunissen 1994; Tanganelli 1992; see Analysis 10.1). This gave a significant RD (RD 0.08, 95% CI 0.05 to 0.11; $I^2 = 0\%$).

Data from the Israeli Teratogen Service study, including women treated with VPA for epilepsy and other indications (restricted to monotherapy), reported major congenital malformations (MCM) in 3/89 (3.4%) VPA-treated cases compared with 31/1236 (2.5%) of control children. Samren 1997 reported 16 cases of major malformations out of 184 (9%) VPA-exposed children. When limited to the two sites with control children, investigators reported six cases with malformation out of 21 children exposed to VPA, which was significantly higher than control children (RR 4.9, 95% CI 1.6 to 15.0).

10.1.2 VPA versus no medication (in women with epilepsy)

Pooled results from 14 studies showed a significant outcome (RR 3.13, 95% CI 2.16 to 4.54; $I^2 = 0\%$), with children exposed to VPA (N = 1923) experiencing more major malformations than control children (N = 1259) (Al Bunyan 1999; Australian; Canger 1999; Fairgrieve 2000; Garza-Morales 1996; Kaaja 2003; Kaneko 1999; Kelly 1984; Kerala Pregnancy Registry; Koch 1992; Lindhout 1992; Mawer 2010; Montreal Series; UK Register; see Analysis 10.1). This gave a significant RD (RD 0.06, 95% CI 0.04 to 0.08; $I^2 = 33\%$). Due to high heterogeneity, we undertook a random-effects analysis (RD (RE) 0.07, 95% CI 0.03 to 0.10; $I^2 = 33\%$), but this did not change the significance of the result.

10.2 Neural tube malformations

10.2.1 VPA versus no medication (in women without epilepsy)

Pooled results from two studies showed a non-significant outcome (RR 6.05, 95% CI 0.94 to 38.81; $I^2 = 20\%$), with no difference in the number of neural tube malformations in children exposed to VPA (N = 71, 1.4%) and control children (N = 431, 0.2%) (Koch 1992; Mawer 2010; see Analysis 10.2). This gave a non-significant RD (RD 0.01, 95% CI -0.03 to 0.05; $I^2 = 51\%$).

10.2.2 VPA versus no medication (in women with epilepsy)

Pooled results from six studies showed a significant outcome (RR 5.30, 95% CI 1.05 to 26.70; $I^2 = 0\%$), with more children exposed to VPA (N = 465) experiencing neural tube malformations than control children (N = 303) (Australian; Canger 1999; Fairgrieve 2000;Garza-Morales 1996; Koch 1992; Mawer 2010; see Analysis 10.2). This gave a significant RD (RD 0.03, 95% CI 0.01 to 0.05; $I^2 = 21\%$).

10.3 Cardiac malformations

10.3.1 VPA versus no medication (in women without epilepsy)

Pooled results from two studies showed a significant outcome (RR 16.40, 95% CI 3.05 to 88.19; $I^2 = 0\%$), with children exposed to VPA (N = 71) experiencing more cardiac malformations than control children (N = 431) (Koch 1992; Mawer 2010; see Analysis 10.3). This gave a significant RD (RD 0.07, 95% CI 0.01 to 0.13; $I^2 = 0\%$).

10.3.2 VPA versus no medication (in women with epilepsy)

Pooled results from six studies showed a significant outcome (RR 4.85, 95% CI 1.28 to 18.47; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to VPA (N = 465) and control children (N = 303) (Australian; Canger 1999; Fairgrieve 2000; Garza-Morales 1996; Koch 1992; Mawer 2010; see Analysis 10.3). This gave a significant RD (RD 0.03, 95% CI 0.01 to 0.05; $I^2 = 0\%$).

10.4 Oro-facial cleft/craniofacial malformations

10.4.1 VPA versus no medication (in women without epilepsy)

Pooled results from two studies showed a non-significant outcome (RR 2.76, 95% CI 0.31 to 24.78; $I^2 = NA$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to VPA (N = 71) and control children (N = 431) (Koch 1992; Mawer 2010; see Analysis 10.3). This gave a non-significant RD (RD 0.01, 95% CI -0.03 to 0.04; $I^2 = 0\%$).

10.4.2 VPA versus no medication (in women with epilepsy)

Pooled results from six studies showed a significant outcome (RR 5.16, 95% CI 1.13 to 23.69; $I^2 = 24\%$), with more children exposed to VPA (N = 465) experiencing oro-facial cleft/craniofacial malformations than control children (N = 303) (Australian; Canger 1999; Fairgrieve 2000; Garza-Morales 1996; Koch 1992; Mawer 2010; see Analysis 10.4). This gave a significant RD (RD 0.03, 95% CI 0.01 to 0.05; $I^2 = 20\%$).

10.5 Skeletal/limb malformations

10.5.1 VPA versus no medication (in women without epilepsy)

Pooled results from two studies showed a significant outcome (RR 16.48, 95% CI 2.46 to 110.49; $I^2 = 0\%$), with children exposed to VPA (N = 71) experiencing more skeletal/limb malformations than control children (N = 431) (Koch 1992; Mawer 2010; see Analysis 10.5). This gave a non-significant RD (RD 0.04, 95% CI -0.01 to 0.09; $I^2 = 56\%$).

10.5.2 VPA versus no medication (in women with epilepsy)

Pooled results from six studies showed a non-significant outcome (RR 2.57, 95% CI 0.82 to 8.04; $I^2 = 0$), with no difference in the number of skeletal/limb malformations in children exposed to VPA (N = 465) and control children (N = 303) (Australian;

Canger 1999; Fairgrieve 2000; Garza-Morales 1996; Koch 1992; Mawer 2010; see Analysis 10.5). This gave a non-significant RD (RD 0.02, 95% CI -0.00 to 0.04; I² = 0%).

Valproate dose

In contrast to the results on dosage for the other AEDs, for VPA there appears to be a consistently documented association between increased dose and the risk for malformation in the exposed child. In the largest group of children exposed to VPA included (N = 1220), UK Register documented an increase in malformation from 5.0% at doses < 600 mg/d to 10.4% for doses > 1000 mg/d (OR 2.20 95% CI 1.26 to 3.82, P = 0.0045). Consistently, the large cohort followed by the EURAP collaboration (N = 1010) notes a significantly lower malformation rate (6.7%) at doses < 600 mg/ d compared with doses of > 700 mg/d to 1500 mg/d (10.4%, OR 3.8, 95% CI 3.27 to 10.13, P < 0.0001) and doses of > 1500 mg/ d (24.2%, OR 16.1, 95% CI 8.22 to 31.54, P < 0.0001). The Australian cohort also demonstrated an association with VPA (N = 271) (P value not reported) as did the North American Register (N = 323; P value not reported), where investigators reported the median daily dose in VPA-exposed children with a malformation to be 1000 mg/d compared with children exposed to VPA without a malformation (750 mg/d). Studies with smaller numbers of VPA-exposed children also reported data showing an association between VPA dose or serum levels and increased malformation rate (Canger 1999; Israeli Teratogen Service; Kaneko 1999; Lindhout 1992; Mawer 2010; Meador 2006; Samren 1997).

A number of studies did not investigate the dose of VPA and malformation outcome (Al Bunyan 1999; Arulmozhi 2006; Cassina 2013; Fairgrieve 2000; Garza-Morales 1996; Koch 1992; Montreal Series; Steegers-Theunissen 1994; Tanganelli 1992). Kaaja 2003 was the only study that investigated a dose-response association without finding a positive correlation (N = 61 VPA exposed pregnancies).

Zonisamide

The prevalence of major malformations (any type) for children exposed to zonisamide (ZNS) (N = 90), based on data from one study, was 0.28% (95% CI 0.25 to 2.39; I^2 = NA, P value = NA).

II ZNS versus controls

11.1. All major malformations

11.1.1 ZNS versus no medication (in women without epilepsy) North American Register reported a non-significant outcome (RR 0.44, 95% CI 0.02 to 7.93; $I^2 = NA$), with no difference in the

number of major malformations in children exposed to ZNS (N = 90) and control children (N = 442) (Analysis 11.1). This gave a non-significant RD (RD -0.01, 95% CI -0.03 to 0.01; I² = NA).

11.1.2 ZNS versus no medication (in women with epilepsy)

No included studies reported data on this outcome.

11.2. Neural tube malformations

11.2.1 ZNS versus no medication (in women without epilepsy) No included studies reported data on this outcome.

11.2.2 ZNS versus no medication (in women with epilepsy) No included studies reported data on this outcome.

11.3 Cardiac malformations

11.3.1 ZNS versus no medication (in women without epilepsy) No included studies reported data on this outcome.

11.3.2 ZNS versus no medication (in women with epilepsy) No included studies reported data on this outcome.

11.4 Oro-facial cleft/craniofacial malformations

11.4.1 ZNS versus no medication (in women without epilepsy)

No included studies reported data on this outcome. 11.4.2 ZNS versus no medication (in women with epilepsy) No included studies reported data on this outcome.

11.5 Skeletal/limb malformations

11.5.2 ZNS versus no medication (in women with epilepsy)

No included studies reported data on this outcome.

Zonisamide dose

No included study investigated a potential association between ZNS and malformation risk.

AED versus **AED** comparisons

12 CBZ versus GBP

12.1. All major malformations

Pooled results from three studies showed a non-significant outcome (RR 2.28, 95% CI 0.67 to 7.79; $I^2 = 0\%$), with no difference in the number of major malformations in children exposed to CBZ (N = 3051) and children exposed to GBP (N = 190) (Australian; North American Register; UK Register; see Analysis 12.1). This gave a significant RD (RD 0.02, 95% CI 0.00* to 0.04; $I^2 = 0\%$).

12.2 Neural tube malformations

Data from Australian showed a non-significant outcome (RR 0.12, 95% CI 0.01 to 2.93; $I^2 = NA$), with no difference in the number of neural tube malformations in children exposed to CBZ (N = 361) and children exposed to GBP (N = 14) (Analysis 12.2). This gave a non-significant RD (RD 0.00, 95% CI -0.09 to 0.09; $I^2 = NA$).

12.3 Cardiac malformations

Data from Australian showed a non-significant outcome (RR 0.29, 95% CI 0.02 to 5.37; $I^2 = NA$), with no difference in the number of cardiac malformations in children exposed to CBZ (N = 361) and children exposed to GBP (N = 14) (Analysis 12.3). This gave a non-significant RD (RD 0.01, 95% CI -0.08 to 0.10; $I^2 = NA$).

12.4 Oro-facial cleft/craniofacial malformations

Data from Australian showed a non-significant outcome (RR 0.37, 95% CI 0.02 to 6.62; $I^2 = NA$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to CBZ (N = 361) and children exposed to GBP (N = 14) (Analysis 12.4). This gave a non-significant RD (RD 0.01, 95% CI -0.08 to 0.10; $I^2 = NA$).

11.5.1 ZNS versus no medication (in women without epilepsy)

No included studies reported data on this outcome.

12.5 Skeletal/limb malformations

Data from Australian showed a non-significant outcome (RR 0.21, 95% CI 0.01 to 4.13; $I^2 = NA$), with no difference in the number of skeletal/limb malformations in children exposed to CBZ (N = 361) and children exposed to GBP (N = 14) (Analysis 12.5). This gave a non-significant RD (RD 0.01, 95% CI -0.09 to 0.10; $I^2 = NA$).

13 CBZ versus LEV

13.1. All major malformations

Pooled results from three studies showed a significant outcome (RR 1.84, 95% CI 1.03 to 3.29; $I^2 = 27\%$), with more children exposed to CBZ (N = 3051) experiencing major malformations than children exposed to LEV (N = 817) (Australian; North American Register; UK Register; see Analysis 13.1). This gave a significant RD (RD 0.01, 95% CI 0.00* to 0.02; $I^2 = 28\%$).

13.2 Neural tube malformations

Pooled results from three studies showed a non-significant outcome (RR 1.19, 95% CI 0.25 to 5.55; $I^2 = 0\%$), with no difference in the number of neural tube malformations in children exposed to CBZ (N = 3051) and children exposed to LEV (N = 817) (Australian; North American Register; UK Register; see Analysis 13.2). This gave a non-significant RD (RD 0.00, 95% CI -0.00 to 0.01; $I^2 = 0\%$).

13.3 Cardiac malformations

Pooled results from three studies showed a non-significant outcome (RR 1.83, 95% CI 0.48 to 6.97; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to CBZ (N = 3051) and children exposed to LEV (N = 817) (Australian; North American Register; UK Register; see Analysis 13.3). This gave a non-significant RD (RD 0.00, 95% CI -0.00 to 0.01; $I^2 = 48\%$).

13.4 Oro-facial cleft/craniofacial malformations

Pooled results from three studies showed a non-significant outcome (RR 1.83, 95% CI 0.44 to 7.61; $I^2 = 0\%$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to CBZ (N = 3051) and children exposed to LEV (N = 817) (Australian; North American Register; UK Register; see Analysis 13.4). This gave a non-significant RD (RD 0.00, 95% CI -0.00 to 0.01; $I^2 = 0\%$).

13.5 Skeletal/limb malformations

Pooled results from three studies showed a non-significant outcome (RR 2.30, 95% CI 0.44 to 11.86; $I^2 = 0\%$), with no difference in the number of skeletal/limb malformations in children exposed to CBZ (N = 3051) and children exposed to LEV (N = 817) (Australian; North American Register; UK Register; see Analysis 13.5). This gave a non-significant RD (RD 0.00, 95% CI -0.00 to 0.01; $I^2 = 0\%$).

14 CBZ versus LTG

14.1. All major malformations

Pooled results from seven studies showed a significant outcome (RR 1.34, 95% CI 1.01 to 1.76; $I^2 = 0\%$), with children exposed to CBZ (N = 3385) experiencing more major malformations than children exposed to LTG (N = 4164) (Australian; Cassina 2013; Martinez Ferri 2009; Mawer 2010; Meador 2006; North American Register; UK Register; see Analysis 14.1). This gave a significant RD (RD 0.01, 95% CI 0.00* to 0.02; I² = 10%). In the EURAP data, rates of malformation in children exposed to CBZ were: 5/148 (3.4%) for exposures < 400 mg/d, 56/1047 (5.3%) for exposures > 400 to 1000 mg/d and 18/207 (8.7%) for exposures > 1000 mg/d. In comparison, the rates of MCM for children exposed to LTG were: 17/836 (2.0%) for exposures < 300 mg/d and 20/444 (4.5%) for exposures > 300 mg/d. We did not find a significant difference between children exposed to CBZ < 400 mg/d compared with children exposed to LTG < 300 mg/d. However, children exposed to > 400 to 1000 mg/d of CBZ were significantly more likely to have a MCM than children exposed to < 300 mg of LTG (P = 0.0012), as were children exposed to > 1000 mg/d of CBZ (< 0.0001). We did not compare higher levels of CBZ versus higher levels of LTG.

14.2. Neural tube malformations

Pooled results from six studies showed a non-significant outcome (RR 2.32, 95% CI 0.79 to 6.82; $I^2 = 0\%$), with no difference in the number of neural tube malformations in children exposed to CBZ (N = 3354) and children exposed to LTG (N = 4155) (Australian; Cassina 2013; Martinez Ferri 2009; Meador 2006; North American Register; UK Register; see Analysis 14.2). This gave a non-significant RD (RD 0.00, 95% CI -0.00 to 0.00; $I^2 = 0\%$).

In the EURAP data, the prevalence of neural tube malformations in those exposed to CBZ and LTG was: CBZ < 400 mg/d, 0/148 (0%); CBZ \geq 400 to 1000 mg/d, 1/1047 (0%); CBZ \geq 1000 mg/d, 4/207 (2%); LTG < 300 mg/d, 0/836 (0%); LTG \geq 300 mg/d, 0/444 (0%).

14.3 Cardiac malformations

Pooled results from six studies showed a non-significant outcome (RR 1.57, 95% CI 0.85 to 2.89; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to CBZ (N = 3354) and children exposed to LTG (N = 4155) (Australian; Cassina 2013; Martinez Ferri 2009; Meador 2006; North American Register; UK Register; see Analysis 14.3). This gave a non-significant RD (RD 0.00, 95% CI -0.00 to 0.01; $I^2 = 0\%$).

In the EURAP data, the prevalence of cardiac malformations in those exposed to CBZ and LTG was: CBZ < 400 mg/d, 2/148 (1%); CBZ \geq 400 to 1000 mg/d, 16/1047 (2%); CBZ \geq 1000 mg/d, 4/207 (2%); LTG < 300, 3/836 (0%); LTG \geq 300 mg/d, 5/444 (1%).

14.4 Oro-facial cleft/craniofacial malformations

Pooled results from six studies showed a non-significant outcome (RR 1.12, 95% CI 0.53 to 2.37; $I^2 = 0\%$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to CBZ (N = 3354) and children exposed to LTG (N = 4155) (Australian; Cassina 2013; Martinez Ferri 2009; Meador 2006; North American Register; UK Register; see Analysis 14.4). This gave a non-significant RD (RD 0.00, 95% CI –0.00 to 0.00; $I^2 = 0\%$).

In the EURAP data, the prevalence of oro-facial cleft malformations in those exposed to CBZ and LTG was: CBZ < 400 mg/d, 0/148 (0%); CBZ \geq 400 to 1000 mg/d, 2/1047 (0%); CBZ \geq 1000 mg/d, 0/207 (0%); LTG < 300, 0/836 (0%); LTG \geq 300 mg/d, 2/444 (1%).

14.5 Skeletal/limb malformations

Pooled results from six studies showed a non-significant outcome (RR 2.56, 95% CI 0.97 to 6.73; $I^2 = 0\%$), with no difference in the number of skeletal/limb malformations in children exposed to CBZ (N = 3354) and children exposed to LTG (N = 4155) (Australian; Cassina 2013; Martinez Ferri 2009; Meador 2006; North American Register; UK Register; see Analysis 14.5). This gave a non-significant RD (RD 0.00, 95% CI -0.00 to 0.00; $I^2 = 0\%$).

15 CBZ versus OXC

15.1. All major malformations

Pooled results from four studies showed a non-significant outcome (RR 1.44, 95% CI 0.66 to 3.16; $I^2 = 38\%$), with no difference in the number of major malformations in children exposed to CBZ (N = 1773) and children exposed to OXC (N = 238) (Australian; Kaaja 2003; Meischenguiser 2004; North American Register; see

Analysis 15.1). This gave a non-significant RD (RD 0.01, 95% CI -0.01 to 0.04; I² = 3%).

15.2 Neural tube malformations

Pooled results from four studies showed a non-significant outcome (RR 0.48, 95% CI 0.09 to 2.54; $I^2 = 0\%$), with no difference in the number of neural tube malformations in children exposed to CBZ (N = 1773) and children exposed to OXC (N = 238) (Australian; Kaaja 2003; Meischenguiser 2004; North American Register; see Analysis 15.2). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.02; $I^2 = 0\%$).

15.3 Cardiac malformations

Pooled results from four studies showed a non-significant outcome (RR 0.51, 95% CI 0.10 to 2.69; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to CBZ (N = 1773) and children exposed to OXC (N = 238) (Australian; Kaaja 2003; Meischenguiser 2004; North American Register; see Analysis 15.3). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.02; $I^2 = 0\%$)

15.4 Oro-facial cleft/craniofacial malformations

Pooled results from four studies showed a non-significant outcome (RR 0.53, 95% CI 0.12 to 2.33; $I^2 = 0\%$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to CBZ (N = 1773) and children exposed to OXC (N = 238) (Australian; Kaaja 2003; Meischenguiser 2004; North American Register; see Analysis 15.4). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.02; $I^2 = 0\%$).

15.5 Skeletal/limb malformations

Pooled results from four studies showed a non-significant outcome (RR 0.48, 95% CI 0.11 to 2.11; $I^2 = 0\%$), with no difference in the number of skeletal/limb malformations in children exposed to CBZ (N = 1773) and children exposed to OXC (N = 238) (Australian; Kaaja 2003; Meischenguiser 2004; North American Register; see Analysis 15.5). This gave a non-significant RD (RD -0.00, 95% CI -0.01 to 0.01; $I^2 = 0\%$).

16 CBZ versus PB

16.1 All major malformations

toutcome Pooled results from 22 studies showed a non-significant outcome (RR 0.84, 95% CI 0.60 to 1.16; $I^2 = 0\%$), with no difference in the number of major malformations in children exposed to CBZ (N = 2665) and children exposed to PB (N = 703) (Al gister; see Bunyan 1999; Australian; Canger 1999; Cassina 2013; Delmiš

1991; D'Souza 1990; Eroglu 2008; Martinez Ferri 2009; Froscher 1991; Kaaja 2003; Kaneko 1999; Kerala Pregnancy Registry; Koch 1992; Lindhout 1992; Meischenguiser 2004; Montreal Series; North American Register; Omtzigt 1992; Pardi 1982; Steegers-Theunissen 1994; Tanganelli 1992; Waters 1994; see Analysis 16.1). This gave a non-significant RD (RD -0.01, 95% CI -0.03to 0.02; $I^2 = 0\%$).

In the EURAP, data the prevalence of MCM between these two groups for children exposed to CBZ was: 5/148 (3.4%) for exposures < 400 mg/d, 56/1047 (5.3%) for exposures 400 to 1000 mg/d and 18/207 (8.7%) for exposures \geq 1000 mg/d. In comparison, the rates of MCM for children exposed to PB were: 9/166(5.4%) for exposures < 150 mg/d and 7/51 (13.7%) for exposures \geq 150 mg/d. Samren 1997 reported 22 major malformation cases in 280 (8%) CBZ-exposed children and five cases from 48 (10%) PB exposed children.

16.2 Neural tube malformations

Pooled results from 12 studies showed a non-significant outcome (RR 1.02, 95% CI 0.19 to 5.39; $I^2 = 49\%$), with no difference in the number of neural tube malformations in children exposed to CBZ (N = 1830) and children exposed to PB (N = 416) (Australian; Canger 1999; Cassina 2013; D'Souza 1990; Eroglu 2008; Froscher 1991; Kerala Pregnancy Registry; Koch 1992; Meischenguiser 2004; North American Register; Omtzigt 1992; Pardi 1982; see Analysis 16.2). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.02; $I^2 = 0\%$).

In the EURAP data, the prevalence of neural tube malformations in those exposed to CBZ and PB was: CBZ < 400 mg/d, 0/148 (0%); CBZ 400 to 1000 mg/d, 1/1047 (0%); CBZ \geq 1000 mg/d, 4/207 (2%); PB < 150 mg/d, 1/166 (1%); PB \geq 150 mg/d, 0/ 51 (0%).

16.3 Cardiac malformations

Pooled results from 12 studies showed a significant outcome (RR 0.34, 95% CI 0.18 to 0.62; $I^2 = 19\%$), with children exposed to CBZ (N = 1935) experiencing fewer cardiac malformations than children exposed to PB (N = 450) (Australian; Canger 1999; Cassina 2013; D'Souza 1990; Eroglu 2008; Froscher 1991; Kerala Pregnancy Registry; Koch 1992; Meischenguiser 2004; North American Register; Omtzigt 1992; Pardi 1982; see Analysis 16.5). This gave a significant RD (RD -0.02, 95% CI -0.05 to -0.00; $I^2 = 0\%$).

In the EURAP data, the prevalence of cardiac malformations in those exposed to CBZ and PB was: CBZ < 400 mg/d, 2/148 (1%); CBZ 400 to 1000 mg/d, 16/1047 (2%); CBZ \geq 1000 mg/d, 4/207 (2%); PB < 150 mg/d, 2/166 (1%); PB \geq 150 mg/d, 4/51 (8%).

16.4 Oro-facial cleft/craniofacial malformations

Pooled results from 12 studies showed a significant outcome (RR 0.18, 95% CI 0.07 to 0.48; $I^2 = 0\%$), with children exposed to CBZ (N = 1830) experiencing fewer oro-facial cleft/craniofacial malformations than children exposed to PB (N = 416) (Australian; Canger 1999; Cassina 2013; D'Souza 1990; Eroglu 2008; Froscher 1991; Kerala Pregnancy Registry; Koch 1992; Meischenguiser 2004; North American Register; Omtzigt 1992; Pardi 1982; see Analysis 16.4). However, this gave a non-significant RD (RD -0.01, 95% CI -0.03 to 0.00; $I^2 = 0\%$).

In the EURAP data, the prevalence of oro-facial cleft malformations in those exposed to CBZ and PB was: CBZ < 400 mg/d, 0/148 (0%); CBZ 400 to 1000 mg/d, 2/1047 (0%); CBZ \geq 1000 mg/d, 0/207 (0%); PB < 150 mg/d, 0/166 (0%); PB \geq 150 mg/d, 1/51 (2%).

16.5 Skeletal/limb malformations

Pooled results from 12 studies showed a non-significant outcome (RR 1.20, 95% CI 0.45 to 3.21; $I^2 = 5\%$), with no difference in the number of skeletal/limb malformations in children exposed to CBZ (N = 1830) and children exposed to PB (N = 416) (Australian; Canger 1999; Cassina 2013; D'Souza 1990; Eroglu 2008; Froscher 1991; Kerala Pregnancy Registry; Koch 1992; Meischenguiser 2004; North American Register; Omtzigt 1992; Pardi 1982; see Analysis 16.5). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.02; $I^2 = 0\%$).

17 CBZ versus PHT

17.1 All major malformations

Pooled results from 23 studies showed a non-significant outcome (RR 0.82, 95% CI 0.61 to 1.11; $I^2 = 0\%$), with no difference in the number of major malformations in children exposed to CBZ (N = 4262) and children exposed to PHT (N = 1183) (Al Bunyan 1999; Arulmozhi 2006; Australian; Bag 1989; Canger 1999; D'Souza 1990; Eroglu 2008; Froscher 1991; Garza-Morales 1996; Kaaja 2003; Kaneko 1999; Kerala Pregnancy Registry; Koch 1992; Lindhout 1992; Mawer 2010; Meador 2006; Montreal Series; North American Register; Omtzigt 1992; Pardi 1982; Steegers-Theunissen 1994; UK Register; Waters 1994; see Analysis 17.1). This gave a non-significant RD (RD -0.01, 95% CI -0.02 to 0.01; $I^2 = 0\%$).

Data from the Motherisk Registry, including women treated with CBZ for epilepsy and other conditions, showed a prevalence of MCM to be 3/34 (8.8%) for children exposed to PHT and 2/35 (5.7%) for those exposed to CBZ. Samren 1997 reported 22 cases of major malformation out of 280 (8%) CBZ-exposed children and 9 cases from 141 PHT exposed children (9%).

Pooled results from 14 studies showed a non-significant outcome (RR 1.03, 95% CI 0.31 to 3.37; $I^2 = 0\%$), with no difference in the number of neural tube malformations in children exposed to CBZ (N = 3860) and children exposed to PHT (N = 874) (Australian; Bag 1989; Canger 1999; D'Souza 1990; Eroglu 2008; Froscher 1991; Kaaja 2003; Kerala Pregnancy Registry; Koch 1992; Meador 2006; North American Register; Omtzigt 1992; Pardi 1982; UK Register; see Analysis 17.2). This gave a non-significant RD (RD 0.00, 95% CI –0.01 to 0.01; $I^2 = 0\%$).

17.3 Cardiac malformations

Pooled results from 14 studies showed a non-significant outcome (RR 0.92, 95% CI 0.47 to 1.78; $I^2 = 8\%$), with no difference in the number of cardiac malformations in children exposed to CBZ (N = 3965) and children exposed to PHT (N = 969) (Australian; Bag 1989; Canger 1999; D'Souza 1990; Eroglu 2008; Froscher 1991; Kaaja 2003; Kerala Pregnancy Registry; Koch 1992; Meador 2006; North American Register; Omtzigt 1992; Pardi 1982; UK Register; see Analysis 17.3). This gave a non-significant RD (RD -0.00, 95% CI -0.01 to $0.01; I^2 = 0\%$).

17.4 Oro-facial cleft/craniofacial malformations

Pooled results from 14 studies showed a non-significant outcome (RR 0.80, 95% CI 0.31 to 2.05; $I^2 = 0\%$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to CBZ (N = 3860) and children exposed to PHT (N = 874) (Australian; Bag 1989; Canger 1999; D'Souza 1990; Eroglu 2008; Froscher 1991; Kaaja 2003; Kerala Pregnancy Registry; Koch 1992; Meador 2006; North American Register; Omtzigt 1992; Pardi 1982; UK Register; see Analysis 17.4). This gave a non-significant RD (RD -0.00, 95% CI -0.01 to 0.01; I $^2 = 0\%$).

17.5 Skeletal/limb malformations

Pooled results from 14 studies showed a non-significant outcome (RR 0.78, 95% CI 0.35 to 1.75; $I^2 = 0\%$), with no difference in the number of skeletal/limb malformations in children exposed to CBZ (N = 3860) and children exposed to PHT (N = 874) (Australian; Bag 1989; Canger 1999; D'Souza 1990; Eroglu 2008; Froscher 1991; Kaaja 2003; Kerala Pregnancy Registry; Koch 1992; Meador 2006; North American Register; Omtzigt 1992; Pardi 1982; UK Register; see Analysis 17.5). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.01; $I^2 = 0\%$).

18 CBZ versus PRM

18.1 All major malformations

Pooled results from six studies showed a non-significant outcome (RR 0.80, 95% CI 0.41 to 1.57; $I^2 = 54\%$), with no difference in the number of major malformations in children exposed to CBZ (N = 667) and children with PRM (N = 110) (Canger 1999; Delmiš 1991; Kaaja 2003; Kaneko 1999; Koch 1992; Pardi 1982; see Analysis 18.1). Due to high heterogeneity, we undertook a random-effects analysis (RR (RE) 0.64, 95% CI 0.21 to 2.01; $I^2 = 54\%$), but this did not change the significance of the result. The RD was also non-significant (RD -0.02, 95% CI -0.09 to 0.05; $I^2 = 22\%$).

Samren 1997 reported 22 cases of major malformation out of 280 (8%) CBZ-exposed children and 4 cases out of 43 (9%) PRM-exposed children.

18.2 Neural tube malformations

Pooled results from two studies showed a non-significant outcome (RR 0.95, 95% CI 0.04 to 22.75; $I^2 = NA$), with no difference in the number of neural tube malformations in children exposed to CBZ (N = 119) and children exposed to PRM (N = 39) (Canger 1999; Pardi 1982; see Analysis 18.2). This gave a non-significant RD (RD 0.01, 95% CI -0.04 to 0.06; $I^2 = 0\%$).

18.3 Cardiac malformations

Pooled results from two studies showed a non-significant outcome (RR 0.11, 95% CI 0.00* to 2.53; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to CBZ (N = 119) and children exposed to PRM (N = 39) (Canger 1999; Pardi 1982; see Analysis 18.3). This gave a non-significant RD (RD -0.03, 95% CI -0.10 to 0.04; $I^2 = 0\%$).

18.4 Oro-facial cleft/craniofacial malformations

We were unable to estimate pooled results from two studies due to there being no reported oro-facial cleft/craniofacial malformations in children exposed to CBZ (N = 119) and children exposed to PRM (N = 39) (Canger 1999; Pardi 1982; see Analysis 18.4). RD was calculable, and this gave a non-significant RD (RD 0.00, 95% CI -0.05 to 0.05; I² = 0%).

18.5 Skeletal/limb malformations

Pooled results from two studies showed a non-significant outcome (RR 2.84, 95% CI 0.16 to 51.53; $I^2 = NA$), with no difference in the number of skeletal/limb malformations in children exposed to CBZ (N = 119) and children exposed to PRM (N = 39) (Canger 1999; Pardi 1982; see Analysis 18.5). This gave a non-significant RD (RD 0.03, 95% CI -0.03 to 0.09; $I^2 = 0\%$).

19 CBZ versus TPM

19.1 All major malformations

Pooled results from three studies showed a non-significant result (RR 0.78, 95% CI 0.47 to 1.31; $I^2 = 0\%$), with no difference in the number of major malformations in children exposed to CBZ (N = 3051) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 19.1). This gave a non-significant RD (RD -0.01, 95% CI -0.03 to 0.01; I $^2 = 9\%$).

19.2 Neural tube malformations

Pooled results from three studies showed a non-significant result (RR 0.97, 95% CI 0.19 to 5.06; $I^2 = 0\%$), with no difference in the number of neural tube malformations in children exposed to CBZ (N = 3051) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 19.2). This gave a non-significant RD (RD 0.00, 95% CI -0.00 to 0.01; $I^2 = 0\%$).

19.3 Cardiac malformations

Pooled results from three studies showed a non-significant result (RR 1.05, 95% CI 0.23 to 4.78; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to CBZ (N = 3051) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 19.3). This gave a non-significant RD (RD 0.00, 95% CI -0.00 to 0.01; $I^2 = 0\%$).

19.4 Oro-facial cleft/craniofacial malformations

Pooled results from three studies showed a significant result (RR 0.32, 95% CI 0.13 to 0.81; $I^2 = 36\%$), with children exposed to CBZ (N = 3051) experiencing fewer oro-facial cleft/cranio-facial malformations than children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 19.4). This gave a non-significant RD (RD -0.01, 95% CI -0.02 to 0.00; $I^2 = 12\%$)

19.5 Skeletal/limb malformations

Pooled results from three studies showed a non-significant result (RR 0.38, 95% CI 0.13 to 1.09; $I^2 = 0\%$), with no difference in the number of skeletal/limb malformations in children exposed to CBZ (N = 3051) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 19.5). This gave a non-significant RD (RD –0.01, 95% CI –0.02 to 0.00; $I^2 = 0\%$).

20 CBZ versus VPA

20.1. All major malformations

Pooled results from 25 studies showed a significant outcome (RR 0.41, 95% CI 0.34 to 0.50; $I^2 = 0\%$), with children exposed to CBZ (N = 4549) experiencing fewer major malformations than children exposed to VPA (N = 2529) (Al Bunyan 1999; Arulmozhi 2006; Australian; Canger 1999; Cassina 2013; Eroglu 2008; Fairgrieve 2000; Martinez Ferri 2009; Froscher 1991; Garza-Morales 1996; Kaaja 2003; Kaneko 1999; Kerala Pregnancy Registry; Koch 1992; Lindhout 1992; Mawer 2010; Meador 2006; Meischenguiser 2004; Montreal Series; North American Register; Omtzigt 1992; Pardi 1982; Steegers-Theunissen 1994; Tanganelli 1992; UK Register; see Analysis 20.1). This gave a significant RD (RD -0.05, 95% CI -0.07 to -0.04; $I^2 = 0\%$).

In the EURAP data, the prevalence of MCM between these two groups for children exposed to CBZ were: 5/148 (3.4%) for exposures < 400 mg/d, 56/1047 (5.3%) for exposures of 400 to 1000 mg/d and 18/207 (8.7%) for exposures \geq 1000 mg/d. In comparison, the rates of MCM for children exposed to VPA were: 24/431 (5.6%) for exposures < 700 mg/d, 50/480 (10.4%) for exposures \geq 700 and < 1500 mg/d, and 24/99 (24.2%) for exposures \geq 1500 mg/d. Samren 1997 reported 22 cases of major malformation out of 280 (8%) CBZ-exposed children and six cases out of 184 (9%) VPA-exposed children.

20.2 Neural tube malformations

Pooled results from 16 studies showed a significant outcome (RR 0.17, 95% CI 0.09 to 0.31; $I^2 = 0\%$), with children exposed to CBZ (N = 4171) experiencing fewer neural tube malformations than children exposed to VPA (N = 2305) (Australian; Canger 1999; Cassina 2013; Eroglu 2008; Fairgrieve 2000; Martinez Ferri 2009; Froscher 1991; Kaaja 2003; Kerala Pregnancy Registry; Koch 1992; Meador 2006; Meischenguiser 2004; North American Register; Omtzigt 1992; Pardi 1982; UK Register; Analysis 20.2). This gave a significant RD (RD -0.02, 95% CI -0.02 to -0.01; $I^2 = 35\%$).

In the EURAP data, the prevalence of neural tube malformations in those exposed to CBZ and VPA was: CBZ < 400 mg/d, 0/148 (0%); CBZ 400 to 1000 mg/d, 1/1047 (0%); CBZ ≥ 1000 mg/d, 4/207 (2%); VPA < 700 mg/d, 2/431 (1%); VPA 700 to < 1500 mg/d, 7/480 (2%) and VPA > 1500 mg/d, 2/99 (2%).

20.3 Cardiac malformations

Pooled results from 16 studies showed a significant outcome (RR 0.45, 95% CI 0.31 to 0.68; $I^2 = 12\%$), with children exposed to CBZ (N = 4276) experiencing fewer cardiac malformations than children exposed to VPA (N = 2370) (Australian; Canger 1999; Cassina 2013; Eroglu 2008; Fairgrieve 2000; Martinez Ferri

2009; Froscher 1991; Kaaja 2003; Kerala Pregnancy Registry; Koch 1992; Meador 2006; Meischenguiser 2004; North American Register; Omtzigt 1992; Pardi 1982; UK Register; see Analysis 20.3). This gave a significant RD (RD -0.01, 95% CI -0.02 to -0.01; I² = 7%).

In the EURAP data, the prevalence of cardiac malformations in those exposed to CBZ and VPA was: CBZ < 400 mg/d, 2/148 (1%); CBZ \geq 400 to 1000 mg/d, 16/1047 (2%); CBZ \geq 1000 mg/d, 4/207 (2%); VPA < 700 mg/d, 5/431 (1%); VPA 700 to < 1500 mg/d, 10/480 (2%) and VPA > 1500 mg/d, 7/99 (7%).

20.4 Oro-facial cleft/craniofacial malformations

Pooled results from 16 studies (Australian; Canger 1999; Cassina 2013; Eroglu 2008; Fairgrieve 2000; Martinez Ferri 2009; Froscher 1991; Kaaja 2003; Kerala Pregnancy Registry; Koch 1992; Meador 2006; Meischenguiser 2004; North American Register; Omtzigt 1992; Pardi 1982; UK Register) reported a significant outcome (RR 0.28, 95% CI 0.16 to 0.49; $I^2 = 0\%$), with children exposed to CBZ (N = 4171) experiencing fewer oro-facial cleft/craniofacial malformations than children exposed to VPA (N = 2305) (Analysis 20.4). This gave a significant RD (RD –0.01, 95% CI –0.02 to –0.01; $I^2 = 0\%$).

In the EURAP data the prevalence of oro-facial cleft malformations in those exposed to CBZ and VPA were: CBZ < 400 mg/d 0/148, 0%; CBZ \geq 400 to 1000 mg/d 2/1047, 0%; CBZ \geq 1000 mg/d 0/207, 0%; VPA < 700 mg/d 3/431, 1%; VPA \geq 700 to < 1500 mg/d 1/480, 0% and VPA > 1500 mg/d 0/99, 0%.

20.5 Skeletal/limb malformations

Pooled results from 16 studies showed a significant outcome (RR 0.33, 95% CI 0.19 to 0.57; $I^2 = 0\%$), with children exposed to CBZ (N = 4171) experiencing fewer skeletal/limb malformations than children exposed to VPA (N = 2305) (Australian; Canger 1999; Cassina 2013; Eroglu 2008; Fairgrieve 2000; Martinez Ferri 2009; Froscher 1991; Kaaja 2003; Kerala Pregnancy Registry; Koch 1992; Meador 2006; Meischenguiser 2004; North American Register; Omtzigt 1992; Pardi 1982; UK Register; see Analysis 20.5). This gave a significant RD (RD -0.01, 95% CI -0.02 to -0.00; $I^2 = 0\%$).

21 CBZ versus ZNS

21.1 All major malformations

North American Register reported a non-significant outcome (RR 5.54, 95% CI 0.34 to 89.86; $I^2 = NA$), with no difference in the number of major malformations in children exposed to CBZ (N = 1033) and children exposed to ZNS (N = 90) (Analysis 21.1). This gave a non-significant RD (RD 0.03, 95% CI 0.01 to 0.05; $I^2 = NA$).

21.2 Neural tube malformations

No included studies reported data on this outcome.

21.3 Cardiac malformations

No included studies reported data on this outcome.

21.4 Oro-facial cleft/craniofacial malformations

No included studies reported data on this outcome.

21.5 Skeletal/limb malformations

No included studies reported data on this outcome.

22 GBP versus LTG

22.1 All major malformations

Pooled results from three studies showed a non-significant outcome (RR 0.60, 95% CI 0.17 to 2.07; $I^2 = 0\%$), with no difference in the number of major malformations in children exposed to GBP (N = 190) and children exposed to LTG (N = 3975) (Australian; North American Register; UK Register; see Analysis 22.1). This gave a non-significant RD (RD -0.01, 95% CI -0.03 to 0.01; I ² = 0%).

22.2 Neural tube malformations

We could not estimate data from Australiandue to there being no neural tube malformations in children exposed to GBP (N = 14) or children exposed to LTG (N = 315) (see Analysis 22.2). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.09 to 0.09; I² = NA).

22.3 Cardiac malformations

Data from Australianshowed a non-significant outcome (RR 3.01, 95% CI 0.16 to 55.67; $I^2 = NA$), with no difference in the number of cardiac malformations in children exposed to GBP (N = 14) and children exposed to LTG (N = 315) (Analysis 22.3). This gave a non-significant RD (RD -0.01, 95% CI -0.10 to 0.08; $I^2 = NA$).

22.4 Oro-facial cleft/craniofacial malformations

Data from Australianshowed a non-significant outcome (RR 1.92, 95% CI 0.11 to 33.05; $I^2 = NA$), with no difference in the number of oro-facial/craniofacial malformations in children exposed to GBP (N = 14) and children exposed to LTG (N = 315) (Analysis 22.4). This gave a non-significant RD (RD -0.02, 95% CI -0.11 to 0.08; $I^2 = NA$).

22.5 Skeletal/limb malformations

We could not estimate data from one study due to there being no skeletal/limb malformations in children exposed to GBP (N = 14) or children exposed to LTG (N = 315) (Australian; see Analysis 22.5). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.09 to 0.09; I² = NA).

23 GBP versus OXC

23.1 All major malformations

Pooled results from two studies showed a non-significant outcome (RR 0.31, 95% CI 0.04 to 2.78; $I^2 = NA$), with no difference in the number of major malformations in children exposed to GBP (N = 159) and children exposed to OXC (N = 194) (Australian; North American Register; see Analysis 23.1). This gave a non-significant RD (RD -0.01, 95% CI -0.04 to 0.01; $I^2 = 0\%$).

23.2 Neural tube malformations

We could not estimate data from one study due to there being no neural tube malformations in children exposed to GBP (N = 14) or children exposed to OXC (N = 12) (Australian; se Analysis 23.2). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.14 to 0.14; I² = NA).

23.3 Cardiac malformations

We could not estimate data from one study due to there being no cardiac malformations in children exposed to GBP (N = 14) or children exposed to OXC (N = 12) (Australian; see Analysis 23.3). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.14 to 0.14; I² = NA).

23.4 Oro-facial cleft/craniofacial malformations

We could not estimate data from one study due to there being no oro-facial cleft/craniofacial malformations in children exposed to GBP (N = 14) or children exposed to OXC (N = 12) (Australian; see Analysis 23.4). RD was calculable, and this gave a non-significant RD (RD 0.00, 95% CI -0.14 to 0.14; I² = NA).

23.5 Skeletal/limb malformations

We could not estimate data from one study due to there being no skeletal/limb malformations in children exposed to GBP (N = 14) or children exposed to OXC (N = 12) (Australian; see Analysis 23.5). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.14 to 0.14; I² = NA).

24 GBP versus PB

24.1 All major malformations

Pooled results from two studies showed a significant outcome (RR 0.12, 95% CI 0.02 to 0.96; $I^2 = 0\%$), with children exposed to GBP (N = 159) experiencing fewer major malformations than children exposed to PB (N = 204) (Australian; North American Register; see Analysis 24.1). This gave a significant RD (RD -0.05, 95% CI -0.08 to -0.01; $I^2 = 0\%$).

24.2 Neural tube malformations

We could not estimate data from one study due to there being no neural tube malformations in children exposed to GBP (N = 14) or children exposed to PB (N = 5) (Australian; see Analysis 24.2). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.24 to 0.24; I² = NA).

24.3 Cardiac malformations

We could not estimate data from one study due to there being no cardiac malformations in children exposed to GBP (N = 14) or children exposed to PB (N = 5) (Australian; see Analysis 24.3). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.24 to 0.24; I² = NA).

24.4 Oro-facial cleft/craniofacial malformations

We could not estimate data from one study due to there being no oro-facial cleft/craniofacial malformations in children exposed to GBP (N = 14) or children exposed to PB (N = 5) (Australian; see Analysis 24.4). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.24 to 0.24; I² = NA).

24.5 Skeletal/limb malformations

We were unable to estimate data from one study due to there being no skeletal/limb malformations in children exposed to GBP (N = 14) or children exposed to PB (N = 5) (Australian; see Analysis 24.5). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.24 to 0.24; I² = NA).

25 GBP versus PRM

25.1 All major malformations

No included studies reported data on this outcome.

No included studies reported data on this outcome.

25.3 Cardiac malformations

No included studies reported data on this outcome.

25.4 Oro-facial cleft/craniofacial malformations

No included studies reported data on this outcome.

25.5 Skeletal/limb malformations

No included studies reported data on this outcome.

26 GBP versus TPM

26.1 All major malformations

Pooled results from three studies showed a non-significant outcome (RR 0.32, 95% CI 0.09 to 1.17; $I^2 = 0\%$), with no difference in the number of major malformations in children exposed to GBP (N = 190) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 26.1). However, this gave a significant RD (RD -0.03, 95% CI -0.05 to -0.01; $I^2 = 0\%$).

26.2 Neural tube malformations

We were unable to estimate data from one study due to there being no neural tube malformations in children exposed to GBP (N = 14) or children exposed to TPM (N = 44) (Australian; see Analysis 26.2). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.10 to 0.10; I² = NA).

26.3 Cardiac malformations

We were unable to estimate data from one study due to there being no cardiac malformations in children exposed to GBP (N = 14) or children exposed to TPM (N = 44) (Australian; see Analysis 26.3). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.10 to 0.10; I² = NA).

26.4 Oro-facial cleft/craniofacial malformations

We were unable to estimate data from one study due to there being no oro-facial cleft/craniofacial malformations in children exposed to GBP (N = 14) or children exposed to TPM (N = 44) (Australian; see Analysis 26.4). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.10 to 0.10; I² = NA).

26.5 Skeletal/limb malformations

We were unable to estimate data from one study due to there being no skeletal/limb malformations in children exposed to GBP (N = 14) or children exposed to TPM (N = 44) (Australian; see Analysis 26.5). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.10 to 0.10; I² = NA).

27 GBP versus ZNS

27.1 All major malformations

Data from one study showed a non-significant outcome (RR 1.87, 95% CI 0.08 to 45.41; $I^2 = NA$), with no difference in the number of major malformations in children exposed to GBP (N = 145) and children exposed to ZNS (N = 90) (North American Register; see Analysis 27.1). This gave a non-significant RD (RD 0.01, 95% CI -0.02 to 0.03; $I^2 = NA$).

27.2 Neural tube malformations

No included studies reported data on this outcome.

27.3 Cardiac malformations

No included studies reported data on this outcome.

27.4 Oro-facial cleft/craniofacial malformations

No included studies reported data on this outcome.

27.5 Skeletal/limb malformations

No included studies reported data on this outcome.

28 LEV versus GBP

28.1 All major malformations

Pooled results from three studies showed a non-significant outcome (RR 1.52, 95% CI 0.43 to 5.42; $I^2 = 45\%$), with no difference in the number of major malformations in children exposed to LEV (N = 817) and children exposed to GBP (N = 190) (Australian; North American Register; UK Register; see Analysis 28.1). This gave a non-significant RD (RD 0.01, 95% CI -0.01 to 0.03; $I^2 = 0\%$).

We were unable to estimate data from one study due to there being no reported neural tube malformations in children exposed to LEV (N = 63) or children exposed to GBP (N = 14) (Australian; see Analysis 28.2). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.09 to 0.09; I² = NA).

28.3 Cardiac malformations

Data from one study showed a non-significant outcome (RR 0.70, 95% CI 0.03 to 16.42; $I^2 = NA$), with no difference in the number of cardiac malformations in children exposed to LEV (N = 63) and children exposed to GBP (N = 14) (Australian; see Analysis 28.3). This gave a non-significant RD (RD 0.02, 95% CI -0.08 to 0.11; $I^2 = NA$).

28.4 Oro-facial cleft/craniofacial malformations

Data from one study showed a non-significant outcome (RR 0.70, 95% CI 0.03 to 16.42; $I^2 = NA$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to LEV (N = 63) and children exposed to GBP (N = 14) (Australian; see Analysis 28.4). This gave a non-significant RD (RD 0.02, 95% CI -0.08 to 0.11; $I^2 = NA$).

28.5 Skeletal/limb malformations

We were unable to estimate data from one study due to there being no reported skeletal/limb malformations in children exposed to LEV (N = 63) and children exposed to GBP (N = 14) (Australian; see Analysis 28.3). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.09 to 0.09; I² = NA).

29 LEV versus LTG

29.1. All major malformations

Pooled results from three studies showed a non-significant outcome (RR 0.73, 95% CI 0.41 to 1.29; $I^2 = 55\%$), with no difference in the number of major malformations in children exposed to LEV (N = 817) and children exposed to LTG (N = 3975) (Australian; North American Register; UK Register; see Analysis 29.1). Due to high heterogeneity, we undertook a random-effects analysis was undertaken, which upheld the non-significant result (RR (RE) 0.62, 95% CI 0.20 to 1.88; $I^2 = 55\%$). The RD was also non-significant (RD -0.01, 95% CI -0.02 to 0.00; $I^2 = 68\%$).

29.2 Neural tube malformations

Pooled results from three studies showed a non-significant outcome (RR 1.59, 95% CI 0.24 to 10.38; $I^2 = 0\%$), with no difference in the number of neural tube malformations in children exposed to LEV (N = 817) and children exposed to LTG (N = 3975) (Australian; North American Register; UK Register; see Analysis 29.2). This gave a non-significant RD (RD 0.00, 95% CI -0.00 to 0.00; $I^2 = 0\%$).

29.3 Cardiac malformations

Pooled results from three studies showed a non-significant outcome (RR 0.86, 95% CI 0.22 to 3.36; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to LEV (N = 817) and children exposed to LTG (N = 3975) (Australian; North American Register; UK Register; see Analysis 29.3). This gave a non-significant RD (RD -0.00, 95% CI -0.01 to 0.00; $I^2 = 0\%$).

29.4 Oro-facial cleft/craniofacial malformations

Pooled results from three studies showed a non-significant outcome (RR 0.59, 95% CI 0.14 to 2.48; $I^2 = 0\%$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to LEV (N = 817) and children exposed to LTG (N = 3975) (Australian; North American Register; UK Register; see Analysis 29.4). This gave a non-significant RD (RD -0.00, 95% CI -0.01 to 0.00; $I^2 = 0\%$).

29.5 Skeletal/limb malformations

Pooled results from three studies showed a non-significant outcome (RR 0.82, 95% CI 0.10 to 6.80; $I^2 = 0\%$), with no difference in the number of skeletal/limb malformations in children exposed to LEV (N = 817) and children exposed to LTG (N = 3975) (Australian; North American Register; UK Register; see Analysis 29.5). This gave a non-significant RD (RD -0.00, 95% CI -0.00 to 0.00; $I^2 = 0\%$).

30 LEV versus OXC

30.1 All major malformations

Pooled results from two studies showed a non-significant outcome (RR 1.05, 95% CI 0.36 to 3.03; $I^2 = 0\%$), with no difference in the number of major malformations in children exposed to LEV (N = 513) and children exposed to OXC (N = 194) (Australian; North American Register; see Analysis 30.1). This gave a non-significant RD (RD 0.00, 95% CI -0.02 to 0.03; $I^2 = 0\%$).

Pooled results from two studies showed a non-significant outcome (RR 1.22, 95% CI 0.05 to 29.74; $I^2 = NA$), with no difference in the number of neural tube malformations in children exposed to LEV (N = 513) and children exposed to OXC (N = 194) (Australian; North American Register; see Analysis 30.2). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.01; $I^2 = 0\%$).

30.3 Cardiac malformations

Pooled results from two studies showed a non-significant outcome (RR 0.89, 95% CI 0.10 to 8.21; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to LEV (N = 513) and children exposed to OXC (N = 194) (Australian; North American Register; see). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.02; $I^2 = 0\%$).

30.4 Oro-facial cleft/craniofacial malformations

Pooled results from two studies showed a non-significant outcome (RR 0.27, 95% CI 0.03 to 2.20; $I^2 = 0\%$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to LEV (N = 513) and children exposed to OXC (N = 194) (Australian; North American Register; see Analysis 30.4). This gave a non-significant RD (RD -0.00, 95% CI -0.02 to 0.01; $I^2 = 0\%$).

30.5 Skeletal/limb malformations

Pooled results from two studies showed a non-significant outcome (RR 0.14, 95% CI 0.01 to 3.30; $I^2 = 0\%$), with no difference in the number of skeletal/limb malformations in children exposed to LEV (N = 513) children exposed to OXC (N = 194) (Australian; North American Register; see Analysis 30.5). This gave a non-significant RD (RD -0.01, 95% CI -0.02 to 0.01; $I^2 = 0\%$).

31 LEV versus PB

31.1 All major malformations

Results from two studies showed a significant outcome (RR 0.43, 95% CI 0.20 to 0.96; $I^2 = 0\%$), with children exposed to LEV (N = 513) experiencing fewer major malformations than children exposed to PB (N = 204) (Australian; North American Register; see Analysis 31.1). This gave a non-significant RD (RD -0.03, 95% CI -0.06 to 0.01; $I^2 = 0\%$).

31.2 Neural tube malformations

Results from two studies showed a non-significant outcome (RR 1.33, 95% CI 0.05 to 32.52; $I^2 = NA$), with no difference in the number of neural tube malformations in children exposed to LEV (N = 513) and children exposed to PB (N = 204) (Australian; North American Register; see Analysis 31.2). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.01; $I^2 = 0\%$).

31.3 Cardiac malformations

Results from two studies showed a significant outcome (RR 0.11, 95% CI 0.02 to 0.66; $I^2 = 0\%$), with children exposed to LEV (N = 513) experiencing fewer cardiac malformations than children exposed to PB (N = 204) (Australian; North American Register; see Analysis 31.3). However, this gave a non-significant RD (RD -0.02, 95% CI -0.04 to 0.00; $I^2 = 0\%$).

31.4 Oro-facial cleft/craniofacial malformations

Results from two studies showed a significant outcome (RR 0.08, 95% CI 0.01 to 0.67; $I^2 = 0\%$), with children exposed to LEV (N = 513) experiencing fewer oro-facial cleft/craniofacial malformations than children exposed to PB (N = 204) (Australian; North American Register; see Analysis 31.4). However, this gave a non-significant RD (RD -0.02, 95% CI -0.04 to 0.00; $I^2 = 0\%$).

31.5 Skeletal/limb malformations

Results from two studies showed a non-significant outcome (RR 0.15, 95% CI 0.01 to 3.61; $I^2 = NA$), with no difference in the number of skeletal/limb malformations in children exposed to LEV (N = 513) and children exposed to PB (N = 204) (Australian; North American Register; see Analysis 31.5). This gave a non-significant RD (RD -0.00, 95% CI -0.02 to 0.01; $I^2 = 0\%$).

32 LEV versus PHT

32.1 All major malformations

Pooled results from three studies showed a non-significant outcome (RR 0.49, 95% CI 0.26 to 0.92; $I^2 = 66\%$), with no difference in the number of major malformations in children exposed to LEV (N = 817) and children exposed to PHT (N = 566) (Australian; North American Register; UK Register; see Analysis 32.1). Due to high heterogeneity, we undertook a random-effects analysis, which changed the significance of the result (RR (RE) 0.34, 95% CI 0.08 to 1.50; $I^2 = 66\%$). The RD however was significant (RD -0.02, 95% CI -0.04 to -0.00; $I^2 = 57\%$). Due to high heterogeneity, we undertook a random-effects analysis, which upheld the non-significant result (RD (RE) -0.03, 95% CI -0.06 to 0.01; $I^2 = 57\%$).

Pooled results from three studies showed a non-significant outcome (RR 0.81, 95% CI 0.12 to 5.34; $I^2 = 13\%$), with no difference in the number of neural tube malformations in children exposed to LEV (N = 817) and children exposed to PHT (N = 542) (Australian; North American Register; UK Register; see Analysis 32.2). This gave a non-significant RD (RD –0.00, 95% CI –0.01 to 0.01; $I^2 = 0\%$).

32.3 Cardiac malformations

Pooled results from three studies showed a non-significant outcome (RR 0.26, 95% CI 0.06 to 1.09; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to LEV (N = 817) and children exposed to PHT (N = 542) (Australian; North American Register; UK Register; see Analysis 32.3). This gave a non-significant RD (RD –0.01, 95% CI –0.02 to 0.00; $I^2 = 0\%$).

32.4 Oro-facial cleft/craniofacial malformations

Pooled results from three studies showed a non-significant outcome (RR 0.35, 95% CI 0.08 to 1.56; $I^2 = 4\%$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to LEV (N = 817) and children exposed to PHT (N = 542) (Australian; North American Register; UK Register; see Analysis 32.4). This gave a non-significant RD (RD -0.00, 95% CI -0.01 to 0.00; $I^2 = 0\%$).

32.5 Skeletal/limb malformations

Pooled results from three studies showed a non-significant outcome (RR 0.10, 95% CI 0.01 to 1.90; $I^2 = NA$), with no difference in the number of skeletal/limb malformations in children exposed to LEV (N = 817) and children exposed to PHT (N = 542) (Australian; North American Register; UK Register; see Analysis 32.5). This gave a non-significant RD (RD –0.01, 95% CI –0.02 to 0.00; $I^2 = 0\%$).

33 LEV versus PRM

33.1 All major malformations

No included studies reported data on this outcome.

33.2 Neural tube malformations

No included studies reported data on this outcome.

33.3 Cardiac malformations

No included studies reported data on this outcome.

33.4 Oro-facial cleft/craniofacial malformations

No included studies reported data on this outcome.

33.5 Skeletal/limb malformations

No included studies reported data on this outcome.

34 LEV versus TPM

34.1 All major malformations

Pooled results from three studies showed a significant outcome (RR 0.50, 95% CI 0.26 to 0.97; $I^2 = 0\%$), with children exposed to LEV (N = 817) experiencing fewer major malformations than children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 34.1). However, this gave a non-significant RD (RD -0.02, 95% CI -0.04 to 0.00; $I^2 = 0\%$).

34.2 Neural tube malformations

Pooled results from three studies showed a non-significant outcome (RR 2.39, 95% CI 0.10 to 58.61; $I^2 = NA$), with no difference in the number of neural tube malformations in children exposed to LEV (N = 817) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 34.2). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.01; $I^2 = 0\%$).

34.3 Cardiac malformations

Pooled results from three studies showed a non-significant outcome (RR 1.25, 95% CI 0.16 to 9.54; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to LEV (N = 817) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 34.2). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.01; $I^2 = 0\%$).

34.4 Oro-facial cleft/craniofacial malformations

Pooled results from three studies showed a significant outcome (RR 0.17, 95% CI 0.04 to 0.68; $I^2 = 42\%$), with children exposed to LEV (N = 817) experiencing fewer oro-facial/craniofacial malformations than children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 34.4). This gave a significant RD (RD -0.01, 95% CI -0.03 to -0.00; $I^2 = 0\%$).

34.5 Skeletal/limb malformations

Pooled results from three studies showed a non-significant outcome (RR 0.07, 95% CI 0.00* to 1.31; $I^2 = NA$), with no difference in the number of skeletal/limb malformations in children exposed to LEV (N = 817) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 34.5). This gave a non-significant RD (RD –0.01, 95% CI –0.02 to 0.00; $I^2 = 0\%$).

35 LEV versus ZNS

35.1 All major malformations

One study reported a non-significant outcome (RR 4.64, 95% CI 0.28 to 78.05; $I^2 = NA$), with no difference in the number of major malformations in children exposed to LEV (N = 450) and children exposed to ZNS (N = 90) (North American Register; see Analysis 35.1). However, this gave a significant RD (RD 0.02, 95% CI 0.00* to 0.05; $I^2 = NA$).

35.2 Neural tube malformations

No included studies reported data on this outcome.

35.3 Cardiac malformations

No included studies reported data on this outcome.

35.4 Oro-facial cleft/craniofacial malformations

No included studies reported data on this outcome.

35.5 Skeletal/limb malformations

No included studies reported data on this outcome.

36 LTG versus OXC

36.1 All major malformations

Pooled results from two studies showed a non-significant outcome (RR 0.93, 95% CI 0.35 to 2.43; $I^2 = 0\%$), with no difference in the number of major malformations in children exposed to LTG (N = 1877) and children exposed to OXC (N = 194) (Australian; North American Register; see Analysis 36.1). This gave a non-significant RD (RD 0.00, 95% CI -0.02 to 0.02; $I^2 = 0\%$).

36.2 Neural tube malformations

Pooled results from two studies showed a non-significant outcome (RR 0.59, 95% CI 0.03 to 12.15; $I^2 = NA$), with no difference in the number of neural tube malformations in children exposed to LTG (N = 1877) and children exposed to OXC (N = 194) (Australian; North American Register; see Analysis 36.2). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.01; $I^2 = 0\%$).

36.3 Cardiac malformations

Pooled results from two studies showed a non-significant outcome (RR 0.54, 95% CI 0.07 to 4.30; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to LTG (N = 1877) and children exposed to OXC (N = 194) (Australian; North American Register; see Analysis 36.3). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.01; $I^2 = 0\%$).

36.4 Oro-facial cleft/craniofacial malformations

Pooled results from two studies showed a non-significant outcome (RR 0.69, 95% CI 0.13 to 3.71; $I^2 = 0\%$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to LTG (N = 1877) and children exposed to OXC (N = 194) (Australian; North American Register; see Analysis 36.4). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.01; $I^2 = 0\%$).

36.5 Skeletal/limb malformations

Pooled results from two studies showed a non-significant outcome (RR 0.23, 95% CI 0.02 to 2.56; $I^2 = NA$), with no difference in the number of skeletal/limb malformations in children exposed to LTG (N = 1877) and children exposed to OXC (N = 194) (Australian; North American Register; see Analysis 36.5). This gave a non-significant RD (RD -0.00, 95% CI -0.02 to 0.01; I $^2 = 0\%$).

37 LTG versus PB

37.1 All major malformations

Pooled results from four studies showed a significant outcome (RR 0.32, 95% CI 0.17 to 0.61; $I^2 = 0\%$), with children exposed to LTG (N = 1959) experiencing fewer major malformations than children exposed to PB (N = 282) (Australian; Cassina 2013; Martinez Ferri 2009; North American Register; see Analysis 37.1). This gave a significant RD (RD -0.04, 95% CI -0.07 to -0.01; $I^2 = 0\%$). In the EURAP data, rates of MCM for children exposed to LTG were: 17/836 (2.0%) for exposures < 300 mg/d and 20/444 (4.5%) for exposures > 300 mg/d. In comparison, the rates of MCM

for children exposed to PB were: 9/166 (5.4%) for exposures < 150 mg/d and 7/51 (13.7%) for exposures \geq 150 mg/d. Children exposed to < 150 mg/d of PB were not at an increased risk for MCM (P = 0.0275); however, we did find a significant increase in risk for PB exposures \geq 150 mg/d (P < 0.0001). There was no comparison to higher doses of LTG.

37.2 Neural tube malformations

Pooled results from three studies showed a non-significant outcome (RR 0.64, 95% CI 0.03 to 13.28; $I^2 = NA$), with no difference in the number of neural tube malformations in children exposed to LTG (N = 1903) and children exposed to PB (N = 271) (Australian; Cassina 2013; North American Register; see Analysis 37.2). This gave a non-significant RD (RD 0.00, 95% CI –0.01 to 0.01; $I^2 = 0\%$).

In the EURAP data, there was no direct statistical comparison between the prevalence of neural tube malformations in those exposed to LTG and PB; however, the rates were: LTG < 300 mg/d, 0/836 (0%); LTG \geq 300 mg/d, 0/444 (0%) and PB < 150 mg/d, 1/166 (0.6%); PB > 150 mg/d, 0/51 (0%).

37.3 Cardiac malformations

Pooled results from three studies showed a significant outcome (RR 0.14, 95% CI 0.04 to 0.42; $I^2 = 0\%$), with children exposed to LTG (N = 1903) experiencing fewer cardiac malformations than children exposed to PB (N = 271) (Australian; Cassina 2013; North American Register; see Analysis 37.3). This gave a significant RD (RD -0.02, 95% CI -0.04 to -0.00; $I^2 = 0\%$).

In the EURAP data the prevalence of cardiac malformations in those exposed to LTG and PB was: LTG < 300, 3/836 (0%); LTG \geq 300 mg/d, 5/444 (1%) and PB < 150 mg/d, 2/166 (1.2%); PB > 150 mg/d, 4/51 (7.8%).

37.4 Oro-facial cleft/craniofacial malformations

Pooled results from three studies showed a significant outcome (RR 0.22, 95% CI 0.07 to 0.68; $I^2 = 0\%$), with children exposed to LTG (N = 1903) experiencing fewer oro-facial cleft/craniofacial malformations than children exposed to PB (N = 271) (Australian; Cassina 2013; North American Register; see Analysis 37.4). However, this gave a non-significant RD (RD -0.01, 95% CI -0.03 to 0.01; $I^2 = 0\%$).

In the EURAP data, the prevalence of oro-facial cleft malformations in those exposed to VPA and PB was: LTG < 300 mg/d, 0/ 836 (0%); LTG \geq 300 mg/d, 2/444 (1%) and PB < 150 mg/d, 0/ 166 (0%); PB > 150 mg/d, 1/51 (2%).

37.5 Skeletal/limb malformations

Pooled results from three studies showed a non-significant outcome (RR 0.25, 95% CI 0.02 to 2.80; $I^2 = 0\%$), with no difference in the number of skeletal/limb malformations in children exposed to LTG (N = 1903) and children exposed to PB (N = 271) (Australian; Cassina 2013; North American Register; see Analysis 37.5). This gave a non-significant RD (RD -0.00, 95% CI -0.02 to 0.01; $I^2 = 0\%$).

38 LTG versus PHT

38.1 All major malformations

Pooled results from five studies showed a significant outcome (RR 0.53, 95% CI 0.34 to 0.84; $I^2 = 17\%$), with children exposed to LTG (N = 4082) experiencing fewer major malformations than children exposed to PHT (N = 624) (Australian; Mawer 2010; Meador 2006; North American Register; UK Register; see Analysis 38.1). This gave a significant RD (RD -0.02, 95% CI -0.04 to -0.00; $I^2 = 0\%$).

38.2 Neural tube malformations

Pooled results from four studies showed a non-significant outcome (RR 0.31, 95% CI 0.07 to 1.34; $I^2 = 13\%$), with no difference in the number of neural tube malformations in children exposed to LTG (N = 4073) and children exposed to PHT (N = 598) (Australian; Meador 2006; North American Register; UK Register; see Analysis 38.2). This gave a non-significant RD (RD -0.00, 95% CI -0.01 to 0.01; $I^2 = 0\%$).

38.3 Cardiac malformations

Pooled results from four studies showed a significant outcome (RR 0.35, 95% CI 0.14 to 0.92; $I^2 = 0\%$), with children exposed to LTG (N = 4073) experiencing fewer cardiac malformations than children exposed to PHT (N = 598) (Australian; Meador 2006; North American Register; UK Register; see Analysis 38.3). This gave a non-significant RD (RD -0.01, 95% CI -0.02 to 0.00; I $^2 = 0\%$).

38.4 Oro-facial cleft/craniofacial malformations

Pooled results from four studies showed a non-significant outcome (RR 0.75, 95% CI 0.24 to 2.34; $I^2 = 47\%$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to LTG (N = 4073) and children exposed to PHT (N = 598) (Australian; Meador 2006; North American Register; UK Register; see Analysis 38.4). This gave a non-significant RD (RD -0.00, 95% CI -0.01 to 0.01; $I^2 = 0\%$).

38.5 Skeletal/limb malformations

Pooled results from four studies showed a significant outcome (RR 0.15, 95% CI 0.03 to 0.66; $I^2 = 0\%$), with children exposed to LTG (N = 4073) experiencing fewer skeletal/limb malformations than children exposed to PHT (N = 598) (Australian; Meador 2006; North American Register; UK Register; see Analysis 38.5). This gave a non-significant RD (RD -0.01, 95% CI -0.01 to 0.00; $I^2 = 0\%$).

39 LTG versus TPM

39.1 All major malformations

Pooled results from three studies showed a significant outcome (RR 0.56, 95% CI 0.34 to 0.94; $I^2 = 0\%$), with children exposed to LTG (N = 3975) experiencing fewer major malformations than children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 39.1). However, this gave a non-significant RD (RD -0.02, 95% CI -0.04 to 0.00; $I^2 = 10\%$).

39.2 Neural tube malformations

Pooled results from three studies showed a non-significant outcome (RR 0.62, 95% CI 0.08 to 4.94; $I^2 = 0\%$), with no difference in the number of neural tube malformations in children exposed to LTG (N = 3975) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 39.2). This gave a non-significant RD (RD 0.00, 95% CI -0.00 to 0.01; $I^2 = 0\%$).

39.3 Cardiac malformations

Pooled results from three studies showed a non-significant outcome (RR 0.75, 95% CI 0.17 to 3.42; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to LTG (N = 3975) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 39.3). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.01; $I^2 = 0\%$).

39.4 Oro-facial cleft/craniofacial malformations

Pooled results from three studies showed a significant outcome (RR 0.32, 95% CI 0.13 to 0.76; $I^2 = 69\%$), with children exposed to LTG (N = 3975) experiencing fewer of oro-facial cleft/cranio-facial malformations than children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 39.4). Due to high heterogeneity, we undertook a random-effects analysis, which changed the result to non-significant (RR (RE) 0.22, 95% CI 0.03 to 1.56; $I^2 = 69\%$). The RD was also non-significant (RD -0.01, 95% CI -0.02 to 0.00; $I^2 = 34\%$).

39.5 Skeletal/limb malformations

Pooled results from three studies showed a significant outcome (RR 0.11, 95% CI 0.03 to 0.45; $I^2 = 0\%$), with children exposed to LTG (N = 3975) experiencing fewer skeletal/limb malformations than children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 39.5). This gave a non-significant RD (RD -0.01, 95% CI -0.02 to 0.00; $I^2 = 0\%$).

40 PHT versus GBP

40.1 All major malformations

Pooled results from three studies showed a non-significant outcome (RR 2.81, 95% CI 0.77 to 10.23; $I^2 = 0\%$), with no difference in the number of major malformations in children exposed to PHT (N = 566) and children exposed to GBP (N = 190) (Australian; North American Register; UK Register; see Analysis 40.1). This gave a significant RD (RD 0.03, 95% CI 0.00* to 0.05; $I^2 = 0\%$).

40.2 Neural tube malformations

Data from one study showed a non-significant outcome (RR 1.00, 95% CI 0.04 to 23.26; $I^2 = NA$), with no difference in the number of neural tube malformations in children exposed to PHT (N = 44) and children exposed to GBP (N = 14) (Australian; see Analysis 40.2). This gave a non-significant RD (RD 0.02, 95% CI -0.08 to 0.13; $I^2 = NA$).

40.3 Cardiac malformations

Data from one study showed a non-significant outcome (RR 1.00, 95% CI 0.04 to 23.26), with no difference in the number of cardiac malformations in children exposed to PHT (N = 44) and children exposed to GBP (N = 14) (Australian; see Analysis 40.3). This gave a non-significant RD (RD 0.02, 95% CI -0.08 to 0.13; $I^2 = NA$).

40.4 Oro-facial cleft/craniofacial malformations

We could not estimate data from one study due to there being no reported oro-facial cleft/craniofacial malformations in children exposed to PHT (N = 44) or children exposed to GBP (N = 14) (Analysis 40.4). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.10 to 0.10; I² = NA).

40.5 Skeletal/limb malformations

We could not estimate data from one study due to there being no reported skeletal/limb malformations in children exposed to PHT (N = 44) or children exposed to GBP (N = 14) (Australian; see

Analysis 40.5). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.10 to 0.10; I² = NA).

41 PHT versus OXC

41.1 All major malformations

Pooled results from three studies showed a non-significant outcome (RR 1.08, 95% CI 0.43 to 2.71; $I^2 = 12\%$), with no difference in the number of major malformations in children exposed to PHT (N = 584) and children exposed to OXC (N = 203) (Australian; Kaaja 2003; North American Register; see Analysis 41.1). This gave a non-significant RD (RD 0.00, 95% CI -0.02 to 0.03; $I^2 = 0\%$).

41.2 Neural tube malformations

Pooled results from three studies showed a non-significant outcome (RR 0.87, 95% CI 0.04 to 20.03; $I^2 = NA$), with no difference in the number of neural tube malformations in children exposed to PHT (N = 584) and children exposed to OXC (N = 203) (Australian; Kaaja 2003; North American Register; see Analysis 41.2). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.02; $I^2 = 0\%$).

41.3 Cardiac malformations

Pooled results from three studies showed a non-significant outcome (RR 2.32, 95% CI 0.30 to 18.27; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to PHT (N = 584) and children exposed to OXC (N = 203) (Australian; Kaaja 2003; North American Register; see Analysis 41.3). This gave a non-significant RD (RD 0.01, 95% CI -0.01 to 0.03; $I^2 = 0\%$).

41.4 Oro-facial cleft/craniofacial malformations

Pooled results from three studies showed a non-significant outcome (RR 0.62, 95% CI 0.10 to 4.05; $I^2 = 0\%$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to PHT (N = 584) and children exposed to OXC (N = 203) (Australian; Kaaja 2003; North American Register; see Analysis 41.4). This gave a non-significant RD (RD -0.00, 95% CI -0.02 to 0.02; $I^2 = 0\%$).

41.5 Skeletal/limb malformations

Pooled results from three studies showed a non-significant outcome (RR 1.75, 95% CI 0.20 to 15.55; $I^2 = NA$), with no difference in the number of skeletal/limb malformations in children exposed to PHT (N = 584) and children exposed to OXC (N = 203) (Australian; Kaaja 2003; North American Register; see Analysis 41.5). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.02; $I^2 = 0\%$).

42 PHT versus PB

42.1 All major malformations

Pooled results from 19 studies showed a non-significant outcome (RR 0.80, 95% CI 0.53 to 1.21; $I^2 = 0\%$), with no difference in the number of major malformations in children exposed to PHT (N = 978) and children exposed to PB (N = 505) (Al Bunyan 1999; Australian; Canger 1999; D'Souza 1990; Eroglu 2008; Fairgrieve 2000; Froscher 1991; Kaaja 2003; Kaneko 1999; Kelly 1984; Kerala Pregnancy Registry; Koch 1992; Lindhout 1992; Montreal Series; North American Register; Omtzigt 1992; Pardi 1982; Steegers-Theunissen 1994; Waters 1994; see Analysis 42.1). This gave a non-significant RD (RD -0.01, 95% CI -0.04 to 0.02; $I^2 = 0\%$).

Samren 1997 reported nine case of major malformation in 141 (6%) PHT cases and five cases in 48 (10%) PB-exposed children.

42.2 Neural tube malformations

Pooled results from 10 studies showed a non-significant outcome (RR 0.40, 95% CI 0.02 to 8.75; $I^2 = NA$), with no difference in the number of neural tube malformations in children exposed to PHT (N = 592) and children exposed to PB (N = 344) (Australian; Canger 1999; D'Souza 1990; Eroglu 2008; Froscher 1991; Kerala Pregnancy Registry; Koch 1992; North American Register; Omtzigt 1992; Pardi 1982; see Analysis 42.2). This gave a non-significant RD (RD 0.00, 95% CI -0.02 to 0.02; $I^2 = 0\%$).

42.3 Cardiac malformations

Pooled results from 10 studies showed a significant outcome (RR 0.33, 95% CI 0.16 to 0.71; $I^2 = 0\%$), with children exposed to PHT (N = 687) experiencing fewer cardiac malformations than children exposed to PB (N = 378) (Australian; Canger 1999; D'Souza 1990; Eroglu 2008; Froscher 1991; Kerala Pregnancy Registry; Koch 1992; North American Register; Omtzigt 1992; Pardi 1982; see Analysis 42.3). This gave a significant RD (RD -0.03, 95% CI -0.05 to -0.00; $I^2 = 0\%$).

42.4 Oro-facial cleft/craniofacial malformations

Pooled results from 10 studies showed a significant outcome (RR 0.25, 95% CI 0.07 to 0.82; $I^2 = 0\%$), with children exposed to PHT (N = 592) experiencing fewer oro-facial cleft/cranio-facial malformations than children exposed to PB (N = 344) (Australian; Canger 1999; D'Souza 1990; Eroglu 2008; Froscher 1991; Kerala Pregnancy Registry; Koch 1992; North American Register; Omtzigt 1992; Pardi 1982; see Analysis 42.4). This gave

a non-significant RD (RD -0.02, 95% CI -0.04 to 0.01; I² = 0%).

42.5 Skeletal/limb malformations

Pooled results from 10 studies showed a non-significant outcome (RR 1.45, 95% CI 0.40 to 5.22; $I^2 = 0\%$), with no difference in the number of skeletal/limb malformations in children exposed to PHT (N = 592) and children exposed to PB (N = 344) (Australian; Canger 1999; D'Souza 1990; Eroglu 2008; Froscher 1991; Kerala Pregnancy Registry; Koch 1992; North American Register; Omtzigt 1992; Pardi 1982; see Analysis 42.5). This gave a non-significant RD (RD 0.01, 95% CI -0.01 to 0.03; $I^2 = 0\%$).

43 PHT versus TPM

43.1 All major malformations

Pooled results from three studies showed a non-significant outcome (RR 0.90, 95% CI 0.49 to 1.67; $I^2 = 0\%$), with no difference in the number of major malformations in children exposed to PHT (N = 566) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 43.1). This gave a non-significant RD (RD -0.00, 95% CI -0.03 to 0.02; I ² = 0%).

43.2 Neural tube malformations

Pooled results from three studies showed a non-significant outcome (RR 3.00, 95% CI 0.13 to 71.70; $I^2 = NA$), with no difference in the number of neural tube malformations in children exposed to PHT (N = 542) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 43.2). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.01; $I^2 = 0\%$).

43.3 Cardiac malformations

Pooled results from three studies showed a non-significant outcome (RR 3.12, 95% CI 0.65 to 14.93; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to PHT (N = 542) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 43.3). This gave a non-significant RD (RD 0.01, 95% CI -0.00 to 0.02; $I^2 = 0\%$).

43.4 Oro-facial cleft/craniofacial malformations

Pooled results from three studies showed a non-significant outcome (RR 0.37, 95% CI 0.10 to 1.42; $I^2 = 0\%$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to PHT (N = 542) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 43.4). This gave a non-significant RD (RD -0.01, 95% CI -0.02 to 0.00; I² = 0%).

43.5 Skeletal/limb malformations

Pooled results from three studies showed a non-significant outcome (RR 0.69, 95% CI 0.19 to 2.55; $I^2 = NA$), with no difference in the number of skeletal/limb malformations in children exposed to PHT (N = 542) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 43.5). This gave a non-significant RD (RD -0.00, 95% CI -0.02 to 0.01; $I^2 = 0\%$).

44 PB versus OXC

44.1 All major malformations

Pooled results from four studies showed a non-significant outcome (RR 2.52, 95% CI 0.98 to 6.43; $I^2 = 21\%$), with no difference in the number of major malformations in children exposed to PB (N = 214) and children exposed to OXC (N = 238) (Australian; Kaaja 2003; Meischenguiser 2004; North American Register; see Analysis 44.1). This gave a non-significant RD (RD 0.03, 95% CI -0.01 to 0.08; $I^2 = 0\%$).

44.2 Neural tube malformations

We we unable to estimate pooled results from three studies due to there being no reported neural tube malformations in children exposed to PB (N = 209) or children exposed to OXC (N = 229) (Australian; Meischenguiser 2004; North American Register; see Analysis 44.2). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.02 to 0.02; I² = 0%).

44.3 Cardiac malformations

Pooled results from three studies showed a significant outcome (RR 11.77, 95% CI 1.24 to 111.80; $I^2 = 0\%$), with children exposed to PB (N = 209) experiencing more cardiac malformations than children exposed to OXC (N = 229) (Australian; Meischenguiser 2004; North American Register; see Analysis 44.3). This gave a significant RD (RD 0.03, 95% CI 0.00* to 0.06; $I^2 = 0\%$).

44.4 Oro-facial cleft/craniofacial malformations

Pooled results from three studies showed a non-significant outcome (RR 3.66, 95% CI 0.41 to 32.43; $I^2 = NA$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to PB (N = 209) and children exposed to OXC (N = 229) (Australian; Meischenguiser 2004; North American

Register; see Analysis 44.4). This gave a non-significant RD (RD 0.01, 95% CI -0.01 to 0.04; $I^2 = 0\%$).

44.5 Skeletal/limb malformations

Pooled results from three studies showed a non-significant outcome (RR 0.91, 95% CI 0.06 to 14.52; $I^2 = NA$), with no difference in the number of skeletal/limb malformations in children exposed to PB (N = 209) and children exposed to OXC (N = 229) (Australian; Meischenguiser 2004; North American Register; see Analysis 44.5). This gave a non-significant RD (RD -0.00, 95% CI -0.02 to 0.02; $I^2 = 0\%$).

45 PB versus TPM

45.1 All major malformations

Pooled results from two studies showed a non-significant outcome (RR 1.36, 95% CI 0.65 to 2.84; $I^2 = 0\%$), with no difference in the number of major malformations in children exposed to PB (N = 204) and children exposed to TPM (N = 403) (Australian; North American Register; see Analysis 45.1). This gave a non-significant RD (RD 0.01, 95% CI -0.03 to 0.05; $I^2 = 0\%$).

45.2 Neural tube malformations

We could not estimate pooled results from two studies due to there being no reported neural tube malformations in children exposed to PB (N = 204) and children exposed to TPM (N = 403) (Australian; North American Register; see Analysis 45.2). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.01; I² = 0%).

45.3 Cardiac malformations

Pooled results from two studies showed a significant outcome (RR 9.02, 95% CI 1.06 to 76.67; $I^2 = NA$), with children exposed to PB (N = 204) experiencing more cardiac malformations than children exposed to TPM (N = 403) (Australian; North American Register; see Analysis 45.3). This gave a non-significant RD (RD 0.02, 95% CI -0.00 to 0.05; $I^2 = 0\%$).

45.4 Oro-facial cleft/craniofacial malformations

Pooled results from two studies showed a non-significant outcome (RR 1.44, 95% CI 0.39 to 5.31; $I^2 = NA$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to PB (N = 204) and children exposed to TPM (N = 403) (Australian; North American Register; see Analysis 45.4). This gave a non-significant RD (RD 0.01, 95% CI -0.02 to 0.03; $I^2 = 0\%$).

45.5 Skeletal/limb malformations

Pooled results from two studies showed a non-significant outcome (RR 0.36, 95% CI 0.04 to 3.07; $I^2 = NA$), with no difference in the number of skeletal/limb malformations in children exposed to PB (N = 204) and children exposed to TPM (N = 403) (Australian; North American Register; see Analysis 45.5). This gave a non-significant RD (RD -0.01, 95% CI -0.03 to 0.01; $I^2 = 0\%$).

46 VPA versus GBP

46.1 All major malformations

Pooled results from three studies showed a significant outcome (RR 6.21, 95% CI 1.91 to 20.23; $I^2 = 0\%$), with children exposed to VPA (N = 1814) experiencing more major malformations than children exposed to GBP (N = 190) (Australian; North American Register; UK Register; see Analysis 46.1). This gave a significant RD (RD 0.08, 95% CI 0.05 to 0.11; $I^2 = 39\%$).

46.2 Neural tube malformations

Data from one study showed a non-significant outcome (RR 0.83, 95% CI 0.05 to 13.81; $I^2 = NA$), with no difference in the number of neural tube malformations in children exposed to VPA (N = 271) and children exposed to GBP (N = 14) (Australian; see Analysis 46.2). This gave a non-significant RD (RD 0.03, 95% CI -0.07 to 0.12; $I^2 = NA$).

46.3 Cardiac malformations

Results from one study showed a non-significant outcome (RR 1.16, 95% CI 0.07 to 18.84; $I^2 = NA$), with no difference in the number of cardiac malformations in children exposed to VPA (N = 271) and children exposed to GBP (N = 14) (Australian; see Analysis 46.3). This gave a non-significant RD (RD 0.04, 95% CI -0.06 to 0.13; $I^2 = NA$).

46.4 Oro-facial cleft/craniofacial malformations

Data from one study showed a non-significant outcome (RR 1.38, 95% CI 0.09 to 22.19; $I^2 = NA$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to VPA (N = 271) and children exposed to GBP (N = 14) (Australian; see Analysis 46.4). This gave a non-significant RD (RD 0.04, 95% CI -0.05 to 0.14; $I^2 = NA$).

46.5 Skeletal/limb malformations

One study reported a non-significant outcome (RR 0.72, 95% CI 0.04 to 12.14; $I^2 = NA$), with no difference in the number of skeletal/limb malformations in children exposed to VPA (N

= 271) and children exposed to GBP (N = 14) (Australian; see Analysis 46.5). This gave a non-significant RD (RD 0.02, 95% CI -0.07 to 0.11; I² = NA).

47 VPA versus LEV

47.1 All major malformations

Pooled results from three studies showed a significant outcome (RR 5.82, 95% CI 3.13 to 10.81; $I^2 = 13\%$), with children exposed to VPA (N = 1814) experiencing more major malformations than children exposed to LEV (N = 817) (Australian; North American Register; UK Register; see Analysis 47.1). This gave a significant RD (RD 0.07, 95% CI 0.05 to 0.09; $I^2 = 60\%$). Due to high heterogeneity, we undertook a random-effects analysis, which upheld the significant result (RD (RE) 0.08, 95% CI 0.05 to 0.10; $I^2 = 60\%$).

47.2 Neural tube malformations

Pooled results from three studies showed a significant outcome (RR 5.28, 95% CI 1.17 to 23.83; $I^2 = 0\%$), with children exposed to VPA (N = 1814) experiencing more neural tube malformations than children exposed to LEV (N = 817) (Australian; North American Register; UK Register; see Analysis 47.2). This gave a significant RD (RD 0.01, 95% CI 0.01 to 0.02; $I^2 = 0\%$).

47.3 Cardiac malformations

Pooled results from three studies showed a significant outcome (RR 5.79, 95% CI 1.67 to 20.16; $I^2 = 0\%$), with children exposed to VPA (N = 1814) experiencing more cardiac malformations than children exposed to LEV (N = 817) (Australian; North American Register; UK Register; see Analysis 47.3). This gave a significant RD (RD 0.02, 95% CI 0.01 to 0.03; $I^2 = 15\%$).

47.4 Oro-facial cleft/craniofacial malformations

Pooled results from three studies showed a significant outcome (RR 5.34, 95% CI 1.33 to 21.39; $I^2 = 0\%$), with children exposed to VPA (N = 1814) experiencing more oro-facial cleft/craniofacial malformations than children exposed to LEV (N = 817) (Australian; North American Register; UK Register; see Analysis 47.4). This gave a significant RD (RD 0.01, 95% CI 0.01 to 0.02; $I^2 = 0\%$).

47.5 Skeletal/limb malformations

Pooled results from three studies showed a significant outcome (RR 6.45, 95% CI 1.33 to 31.16; $I^2 = 0\%$), with children exposed to VPA (N = 1814) experiencing more skeletal/limb malformations than children exposed to LEV (N = 817) (Australian; North

American Register; UK Register; see Analysis 47.5). This gave a significant RD (RD 0.01, 95% CI 0.01 to 0.02; $I^2 = 6\%$).

48 VPA versus LTG

48.1 All major malformations

Pooled results from seven studies showed a significant outcome (RR 3.56, 95% CI 2.77 to 4.58; $I^2 = 0\%$), with children exposed to VPA (N = 2021) experiencing more major malformations than children exposed to LTG (N = 4164) (Australian; Cassina 2013; Martinez Ferri 2009; Mawer 2010; Meador 2006; North American Register; UK Register; see Analysis 48.1). This gave a significant RD (RD 0.06, 95% CI 0.05 to 0.07; $I^2 = 57\%$). Due to high heterogeneity, we undertook a random-effects analysis, which upheld the significant result (RD (RE) 0.08, 95% CI 0.05 to 0.11; $I^2 = 57\%$).

In the EURAP data, rates of MCM for children exposed to VPA were: 24/431 (5.6%) for exposures < 700 mg/d, 50/480 (10.4%) for exposures of 700 to < 1500 mg/d and 24/99 (24.2%) for exposures \geq 1500 mg/d. In comparison, the rates of MCM for children exposed to LTG were: 17/836 (2.0%) for exposures < 300 mg/d and 20/444 (4.5%) for exposures \geq 300 mg/d. Children exposed to < 700 mg/d (P = 0.0019), 700 to < 1500 mg/d (P < 0.0001) and those at doses \geq 1500 mg/d all were at an increased risk of having a MCM compared with children exposed to < 300 mg of LTG (P = 0.0012). There was no comparison to higher doses of LTG.

48.2 Neural tube malformations

Pooled results from six studies showed a significant outcome (RR 9.09, 95% CI 3.56 to 23.22; $I^2 = 0\%$), with children exposed to VPA (N = 1996) experiencing more neural tube malformations than children exposed to LTG (N = 4155) (Australian; Cassina 2013; Martinez Ferri 2009; Meador 2006; North American Register; UK Register; see Analysis 48.2). This gave a significant RD (RD 0.01, 95% CI 0.01 to 0.02; $I^2 = 0\%$).

In the EURAP data, the prevalence of neural tube malformations in those exposed to VPA and LTG was: VPA < 700 mg/d, 2/431 (1%); VPA 700 to < 1500 mg/d, 7/480 (2%) and VPA \geq 1500 mg/d, 2/99 (2%); LTG < 300, 0/836 (0%); LTG \geq 300 mg/d, 0/444 (0%).

48.3 Cardiac malformations

Pooled results from six studies showed a significant outcome (RR 4.07, 95% CI 2.33 to 7.09; $I^2 = 0\%$), with children exposed to VPA (N = 1996) experiencing more cardiac malformations than children exposed to LTG (N = 4155) (Australian; Cassina 2013; Martinez Ferri 2009; Meador 2006; North American Register; UK

Register; see Analysis 48.3). This gave a significant RD (RD 0.02, 95% CI 0.01 to 0.02; $I^2 = 46\%$).

In the EURAP data, the prevalence of cardiac malformations in those exposed to VPA and LTG was: VPA < 700 mg/d, 5/431 (1%); VPA 700 to < 1500 mg/d, 10/480 (2%) and VPA \geq 1500 mg/d, 7/99 (7%); LTG < 300, 3/836 (0%); LTG \geq 300 mg/d, 5/444 (1%).

48.4 Oro-facial cleft/craniofacial malformations

Pooled results from six studies showed a significant outcome (RR 4.13, 95% CI 2.16 to 7.91; $I^2 = 0\%$), with children exposed to VPA (N = 1996) experiencing more oro-facial cleft/craniofacial malformations than children exposed to LTG (N = 4155) (Australian; Cassina 2013; Martinez Ferri 2009; Meador 2006; North American Register; UK Register; see Analysis 48.4). This gave a significant RD (RD 0.01, 95% CI 0.01 to 0.02; $I^2 = 0\%$). In the EURAP data, the prevalence of oro-facial cleft malformations in those exposed to VPA and LTG was: VPA < 700 mg/d, 3/431 (1%); VPA 700 to < 1500 mg/d, 1/480 (0%) and VPA \geq 1500 mg/d, 0/99 (0%); LTG < 300, 0/836 (0%); LTG \geq 300 mg/d, 2/444 (1%).

48.5 Skeletal/limb malformations

Pooled results from six studies showed a significant outcome (RR 7.17, 95% CI 2.99 to 17.18; $I^2 = 0\%$), with children exposed to VPA (N = 1996) experiencing more skeletal/limb malformations than children exposed to LTG (N = 4155) (Australian; Cassina 2013; Martinez Ferri 2009; Meador 2006; North American Register; UK Register; see Analysis 48.5). This gave a significant RD (RD 0.01, 95% CI 0.01 to 0.02; $I^2 = 0\%$).

49 VPA versus TPM

49.1 All major malformations

Pooled results from three studies showed a significant outcome (RR 2.35, 95% CI 1.40 to 3.95; $I^2 = 0\%$), with children exposed to VPA (N = 1814) experiencing more major malformations than children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 49.1). This gave a significant RD (RD 0.05, 95% CI 0.03 to 0.08; $I^2 = 62\%$). Due to high heterogeneity, we undertook a random-effects analysis, which upheld the significant result (RD (RE) 0.06, 95% CI 0.01 to 0.10; $I^2 = 62\%$).

49.2 Neural tube malformations

Pooled results from three studies showed a non-significant outcome (RR 3.67, 95% CI 0.79 to 17.08; $I^2 = 0\%$), with no difference in the number of neural tube malformations in children exposed to VPA (N = 1814) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 49.2). However, this gave a significant RD (RD 0.01, 95% CI 0.00* to 0.02; $I^2 = 0\%$).

49.3 Cardiac malformations

Pooled results from three studies showed a significant outcome (RR 4.73, 95% CI 1.21 to 18.49; $I^2 = 0\%$), with children exposed to VPA (N = 1814) experiencing more cardiac malformations than children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 49.3). This gave a significant RD (RD 0.02, 95% CI 0.01 to 0.03; $I^2 = 0\%$).

49.4 Oro-facial cleft/craniofacial malformations

Pooled results from three studies showed a non-significant outcome (RR 0.98, 95% CI 0.40 to 2.40; $I^2 = 26\%$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to VPA (N = 1814) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 49.4). This gave a non-significant RD (RD 0.00, 95% CI -0.01 to 0.02; $I^2 = 64\%$). Due to high heterogeneity, we undertook a random-effects analysis, which upheld the non-significant result (RD (RE) 0.01, 95% CI -0.02 to 0.04)

49.5 Skeletal/limb malformations

Pooled results from three studies showed a non-significant outcome (RR 1.26, 95% CI 0.44 to 3.61; $I^2 = 0\%$), with no difference in the number of skeletal/limb malformations in children exposed to VPA (N = 1814) and children exposed to TPM (N = 473) (Australian; North American Register; UK Register; see Analysis 49.5). This gave a non-significant RD (RD 0.01, 95% CI -0.01 to 0.02; $I^2 = 0\%$).

50 VPA versus OXC

50.1 All major malformations

Pooled results from four studies showed a significant outcome (RR 3.71, 95% CI 1.65 to 8.33; $I^2 = 18\%$), with children exposed to VPA (N = 676) experiencing more major malformations than children exposed to OXC (N = 238) (Australian; Kaaja 2003; Meischenguiser 2004; North American Register; see Analysis 50.1). This gave a significant RD (RD 0.08, 95% CI 0.04 to 0.11; $I^2 = 3\%$).

Pooled results from four studies showed a non-significant outcome (RR 1.89, 95% CI 0.39 to 9.07; $I^2 = 0\%$), with no difference in the number of neural tube malformations in children exposed to VPA (N = 676) and children exposed to OXC (N = 238) (Australian; Kaaja 2003; Meischenguiser 2004; North American Register; see Analysis 50.2). This gave a non-significant RD (RD 0.01, 95% CI -0.00 to 0.03; $I^2 = 0\%$).

50.3 Cardiac malformations

Pooled results from four studies showed a non-significant outcome (RR 3.41, 95% CI 0.87 to 13.37; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to VPA (N = 676) and children exposed to OXC (N = 238) (Australian; Kaaja 2003; Meischenguiser 2004; North American Register; see Analysis 50.3). However, this gave a significant RD (RD 0.03, 95% CI 0.01 to 0.05; $I^2 = 0\%$).

50.4 Oro-facial cleft/craniofacial malformations

Pooled results from four studies showed a non-significant outcome (RR 2.17, 95% CI 0.63 to 7.47; $I^2 = 0\%$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to VPA (N = 676) and children exposed to OXC (N = 238) (Australian; Kaaja 2003; Meischenguiser 2004; North American Register; see Analysis 50.4). This gave a non-significant RD (RD 0.02, 95% CI -0.00 to 0.04; $I^2 = 8\%$).

50.5 Skeletal/limb malformations

Pooled results from four studies showed a non-significant outcome (RR 1.49, 95% CI 0.36 to 6.22; $I^2 = 0\%$), with no difference in the number of skeletal/limb malformations in children exposed to VPA (N = 676) and children exposed to OXC (N = 238) (Australian; Kaaja 2003; Meischenguiser 2004; North American Register; see Analysis 50.5). This gave a non-significant RD (RD 0.01, 95% CI -0.01 to 0.03; $I^2 = 0\%$).

51 VPA versus PB

51.1 All major malformations

Pooled results from 20 studies showed a significant outcome (RR 1.59, 95% CI 1.11 to 2.29; $I^2 = 0\%$), with children exposed to VPA (N = 1137) experiencing more major malformations than children exposed to PB (N = 626) (Al Bunyan 1999; Australian; Canger 1999; Cassina 2013; Eroglu 2008; Froscher 1991; Kaaja 2003; Kaneko 1999; Kelly 1984; Kerala Pregnancy Registry; Koch 1992; Lindhout 1992; Martinez Ferri 2009; Meischenguiser 2004; Montreal Series; North American Register; Omtzigt 1992; Pardi

1982; Steegers-Theunissen 1994; Tanganelli 1992; see Analysis 51.1). This gave a significant RD (RD 0.04, 95% CI 0.01 to 0.08; $I^2 = 0\%$).

In the EURAP data, the prevalence of major malformation between these two groups for children exposed to VPA were: 24/431(5.6%) for exposures < 700 mg/d, 50/480 (10.4%) for exposures of 700 to <1500 mg/d and 24/99 (24.2%) for exposures \geq 1500 mg/d. In comparison, the rates for children exposed to PB were: 9/166 (5.4%) for exposures < 150 mg/d and 7/51 (13.7%) for exposures \geq 150 mg/d. Samren 1997 reported six cases of major malformation out of 184 (9%) VPA-exposed children and five cases from 48 (10%) PB exposed children.

51.2 Neural tube malformations

Pooled results from 11 studies showed a significant outcome (RR 4.56, 95% CI 1.69 to 12.33; $I^2 = 0\%$), with children exposed to VPA (N = 813) experiencing more neural tube malformations than children exposed to PB (N = 412) (Australian; Canger 1999; Cassina 2013; Eroglu 2008; Froscher 1991; Kerala Pregnancy Registry; Koch 1992; Meischenguiser 2004; North American Register; Omtzigt 1992; Pardi 1982; see Analysis 51.2). This gave a significant RD (RD 0.04, 95% CI 0.01 to 0.06; $I^2 = 47\%$).

In the EURAP data, the prevalence of neural tube malformations in those exposed to VPA and PB were: VPA < 700 mg/d, 2/431 (1%); VPA 700 to < 1500 mg/d, 7/480 (2%) and VPA \geq 1500 mg/d, 2/99 (2%); PB < 150 mg/d, 1/166 (1%); PB \geq 150 mg/d, 0/51 (0%).

51.3 Cardiac malformations

Pooled results from 11 studies showed a non-significant outcome (RR 0.76, 95% CI 0.42 to 1.38; $I^2 = 0\%$), with no difference in the number of cardiac malformations in children exposed to VPA (N = 878) and children exposed to PB (N = 446) (Australian; Canger 1999; Cassina 2013; Eroglu 2008; Froscher 1991; Kerala Pregnancy Registry; Koch 1992; Meischenguiser 2004; North American Register; Omtzigt 1992; Pardi 1982; see Analysis 51.3). This gave a non-significant RD (RD -0.01, 95% CI -0.03 to 0.02; $I^2 = 0\%$).

In the EURAP data, the prevalence of cardiac malformations in those exposed to VPA and PB were: VPA <700 mg/d, 5/431 (1%); VPA 700 to < 1500 mg/d, 10/480 (2%) and VPA \geq 1500 mg/d, 7/99 (7%); PB < 150 mg/d, 2/166 (1%); PB \geq 150 mg/d, 4/51 (8%).

51.4 Oro-facial cleft/craniofacial malformations

Pooled results from 11 studies showed a non-significant outcome (RR 0.54, 95% CI 0.22 to 1.33; $I^2 = 0\%$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to VPA (N = 813) and children exposed to PB (N = 412)

(Australian; Canger 1999; Cassina 2013; Eroglu 2008; Froscher 1991; Kerala Pregnancy Registry; Koch 1992; Meischenguiser 2004; North American Register; Omtzigt 1992; Pardi 1982; see Analysis 51.4). This gave a non-significant RD (RD -0.03, 95% CI -0.03 to 0.02; $I^2 = 0\%$).

In the EURAP data, the prevalence of oro-facial cleft malformations in those exposed to VPA and PB was: VPA < 700 mg/d, 3/ 431 (1%); VPA 700 to <1500 mg/d, 1/480 (0%) and VPA \geq 1500 mg/d, 0/99 (0%); PB < 150 mg/d, 0/166 (0%); PB \geq 150 mg/d, 1/51 (2%).

51.5 Skeletal/limb malformations

Pooled results from 11 studies showed a non-significant outcome (RR 1.98, 95% CI 0.79 to 4.98; $I^2 = 0\%$), with no difference in the number of skeletal/limb malformations in children exposed to VPA (N = 813) and children exposed to PB (N = 412) (Australian; Canger 1999; Cassina 2013; Eroglu 2008; Froscher 1991; Kerala Pregnancy Registry; Koch 1992; Meischenguiser 2004; North American Register; Omtzigt 1992; Pardi 1982; see Analysis 51.5). This gave a non-significant RD (RD 0.02, 95% CI -0.00 to 0.04; $I^2 = 0\%$).

52 VPA versus PHT

52.1 All major malformations

Pooled results from 21 studies showed a significant outcome (RR 2.00, 95% CI 1.48 to 2.71; $I^2 = 0\%$), with children exposed to VPA (N = 2319) experiencing more major malformations than children exposed to PHT (N = 1137) (Al Bunyan 1999; Arulmozhi 2006; Australian; Canger 1999; Eroglu 2008; Fairgrieve 2000; Froscher 1991; Garza-Morales 1996; Kaaja 2003; Kaneko 1999; Kelly 1984; Kerala Pregnancy Registry; Koch 1992; Lindhout 1992; Mawer 2010; Meador 2006; Montreal Series; North American Register; Omtzigt 1992; Pardi 1982; Steegers-Theunissen 1994; UK Register; see Analysis 52.1). This gave a significant RD (RD 0.05, 95% CI 0.03 to 0.08; $I^2 = 0\%$).

Samren 1997 reported six cases of major malformation in 184 (9%) children exposed to VPA and nine in 141 (6%) PHT-exposed children.

52.2 Neural tube malformations

Pooled results from 13 studies showed a significant outcome (RR 4.47, 95% CI 1.79 to 11.17; $I^2 = 0\%$), with children exposed to VPA (N = 2102) experiencing more neural tube malformations than children exposed to PHT (N = 859) (Australian; Canger 1999; Eroglu 2008; Froscher 1991; Garza-Morales 1996; Kaaja 2003; Kerala Pregnancy Registry; Koch 1992; Meador 2006; North American Register; Omtzigt 1992; Pardi 1982; UK

Register; see Analysis 52.2). This gave a significant RD (RD 0.02, 95% CI 0.01 to 0.04; $I^2 = 24\%$).

52.3 Cardiac malformations

Pooled results from 13 studies showed a significant outcome (RR 2.93, 95% CI 1.50 to 5.72; $I^2 = 0\%$), with children exposed to VPA (N = 2167) experiencing more cardiac malformations than children exposed to PHT (N = 954) (Australian; Canger 1999; Eroglu 2008; Froscher 1991; Garza-Morales 1996; Kaaja 2003; Kerala Pregnancy Registry; Koch 1992; Meador 2006; North American Register; Omtzigt 1992; Pardi 1982; UK Register; see Analysis 52.3). This gave a significant RD (RD 0.02, 95% CI 0.01 to 0.04; $I^2 = 1\%$).

52.4 Oro-facial cleft/craniofacial malformations

Pooled results from 13 studies showed a non-significant outcome (RR 2.37, 95% CI 0.95 to 5.96; $I^2 = 0\%$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to VPA (N = 2102) and children exposed to PHT (N = 859) (Australian; Canger 1999; Eroglu 2008; Froscher 1991; Garza-Morales 1996; Kaaja 2003; Kerala Pregnancy Registry; Koch 1992; Meador 2006; North American Register; Omtzigt 1992; Pardi 1982; UK Register; see Analysis 52.4). This gave a non-significant RD (RD 0.01, 95% CI -0.00 to 0.02; $I^2 = 0\%$).

52.5 Skeletal/limb malformations

Pooled results from 13 studies showed a non-significant outcome (RR 1.98, 95% CI 0.93 to 4.21; $I^2 = 0\%$), with no difference in the number of skeletal/limb malformations in children exposed to VPA (N = 2102) and children exposed to PHT (N = 859) (Australian; Canger 1999; Eroglu 2008; Froscher 1991; Garza-Morales 1996; Kaaja 2003; Kerala Pregnancy Registry; Koch 1992; Meador 2006; North American Register; Omtzigt 1992; Pardi 1982; UK Register; see Analysis 52.5). This gave a significant RD (RD 0.01, 95% CI 0.00* to 0.03; $I^2 = 0\%$).

53 LTG versus PRM

53.1 All major malformations

No included studies reported data on this outcome.

53.2 Neural tube malformations

No included studies reported data on this outcome.

53.3 Cardiac malformations

No included studies reported data on this outcome.

53.4 Oro-facial cleft/craniofacial malformations

No included studies reported data on this outcome.

53.5 Skeletal/limb malformations

No included studies reported data on this outcome.

54 PHT versus PRM

54.1 All major malformations

Pooled results from five studies showed a non-significant outcome (RR 0.82, 95% CI 0.40 to 1.68; $I^2 = 29\%$), with no difference in the number of major malformations in children exposed to PHT (N = 316) and children exposed to PRM (N = 101) (Canger 1999; Kaaja 2003; Kaneko 1999; Koch 1992; Pardi 1982; see Analysis 54.1). This gave a non-significant RD (RD –0.02, 95% CI –0.09 to 0.06; $I^2 = 0\%$).

Samren 1997 showed nine cases of major malformation in 141 PHT (6%) exposed children and four cases in 43 (9%) PRM-exposed children.

54.2 Neural tube malformations

We could not estimate pooled results from two studies due to there being no reported neural tube malformations in children exposed to PHT (N = 36) or children exposed to PRM (N = 39) (Canger 1999; Pardi 1982; see Analysis 54.2). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.07 to 0.07; I $^2 = 0\%$).

54.3 Cardiac malformations

Pooled results from two studies showed a non-significant outcome (RR 0.38, 95% CI 0.02 to 8.88; $I^2 = NA$), with no difference in the number of cardiac malformations in children exposed to PHT (N = 36) and children exposed to PRM (N = 39) (Canger 1999; Pardi 1982; see Analysis 54.3). This gave a non-significant RD (RD -0.03, 95% CI -0.11 to 0.06; $I^2 = 0\%$).

54.4 Oro-facial cleft/craniofacial malformations

We could not estimate pooled results from two studies due to there being no reported oro-facial cleft/craniofacial malformations in children exposed to PHT (N = 36) or children exposed to PRM (N = 39) (Canger 1999; Pardi 1982; see Analysis 54.4). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.07 to 0.07; I² = 0%).

54.5 Skeletal/limb malformations

Pooled results from two studies showed a non-significant outcome (RR 3.38, 95% CI 0.14 to 79.95; $I^2 = NA$), with no difference in the number of skeletal/limb malformations in children exposed to PHT (N = 36) and children exposed to PRM (N = 39) (Canger 1999; Pardi 1982; see Analysis 54.5). This gave a non-significant RD (RD 0.03, 95% CI -0.06 to 0.12; $I^2 = 0\%$).

55 PB versus PRM

55.1 All major malformations

Pooled results from six studies showed a non-significant outcome (RR 0.50, 95% CI 0.21 to 1.16; $I^2 = 0\%$), with no difference in the number of major malformations in children exposed to PB (N = 241) and children exposed to PRM (N = 110) (Canger 1999; Delmiš 1991; Kaaja 2003; Kaneko 1999; Koch 1992; Pardi 1982; see Analysis 55.1). This gave a non-significant RD (RD -0.05, 95% CI -0.12 to 0.02; $I^2 = 0\%$).

55.2 Neural tube malformations

We could not estimate pooled results from two studies due to there being no reported neural tube malformations in children exposed to PB (N = 95) or children exposed to PRM (N = 39) (Canger 1999; Pardi 1982; see Analysis 55.2). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.05 to 0.05; I² = 0%).

55.3 Cardiac malformations

Pooled results from two studies showed a non-significant outcome (RR 0.42, 95% CI 0.03 to 6.55; $I^2 = NA$), with no difference in the number of cardiac malformations in children exposed to PB (N = 95) and children exposed to PRM (N = 39) (Canger 1999; Pardi 1982; see Analysis 55.3). This gave a non-significant RD (RD -0.01, 95% CI -0.08 to 0.05; $I^2 = 0\%$).

55.4 Oro-facial cleft/craniofacial malformations

We could not estimate pooled results from two studies due to there being no reported oro-facial cleft/craniofacial malformations in children exposed to PB (N = 95) or children exposed to PRM (N = 39) (Canger 1999; Pardi 1982; see Analysis 55.4). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.05 to 0.05; I² = 0%).

55.5 Skeletal/limb malformations

Pooled results from two studies showed a non-significant outcome (RR 1.29, 95% CI 0.05 to 30.82; $I^2 = NA$), with no difference in the number of cardiac malformations in children exposed to PB (N = 95) and children exposed to PRM (N = 39) (Canger 1999; Pardi 1982; see Analysis 55.5). This gave a non-significant RD (RD 0.01, 95% CI -0.05 to 0.07; $I^2 = 0\%$).

56 LTG versus ZNS

56.1 All major malformations

Data from one study showed a non-significant outcome (RR 3.67, 95% CI 0.23 to 59.46; $I^2 = NA$), with no difference in the number of major malformations in children exposed to LTG (N = 1562) and children exposed to ZNS (N = 90) (North American Register; see Analysis 56.1). This gave a significant RD (RD 0.02, 95% CI 0.00* to 0.04; $I^2 = NA$).

56.2 Neural tube malformations

No included studies reported data on this outcome.

56.3 Cardiac malformations

No included studies reported data on this outcome.

56.4 Oro-facial cleft/craniofacial malformations

No included studies reported data on this outcome.

56.5 Skeletal/limb malformations

No included studies reported data on this outcome.

57 OXC versus PRM

57.1 All major malformations

One study reported a non-significant outcome (RR 0.67, 95% CI 0.05 to 8.73; $I^2 = NA$), with no difference in the number of major malformations in children exposed to OXC (N = 9) and children exposed to PRM (N = 6) (Kaaja 2003; see Analysis 57.1). This gave a non-significant RD (RD -0.06, 95% CI -0.42 to 0.31; I $^2 = NA$).

57.2 Neural tube malformations

No included studies reported data on this outcome.

57.3 Cardiac malformations

No included studies reported data on this outcome.

57.4 Oro-facial cleft/craniofacial malformations

No included studies reported data on this outcome.

57.5 Skeletal/limb malformations

No included studies reported data on this outcome.

58 OXC versus TPM

58.1 All major malformations

Pooled results from two studies showed a non-significant outcome (RR 0.57, 95% CI 0.20 to 1.57; $I^2 = 0\%$), with no difference in the number of major malformations in children exposed to OXC (N = 194) and children exposed to TPM (N = 403) (Australian; North American Register; see Analysis 58.1). This gave a non-significant RD (RD -0.02, 95% CI -0.05 to 0.01; $I^2 = 0\%$).

58.2 Neural tube malformations

We could not estimate pooled results from two studies due to there being no reported neural tube malformations in children exposed to OXC (N = 194) or children exposed to TPM (N = 403) (Australian; North American Register; see Analysis 58.2). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.01 to 0.01; I² = 0%).

58.3 Cardiac malformations

Pooled results from two studies showed a non-significant outcome (RR 0.66, 95% CI 0.03 to 16.02; $I^2 = NA$), with no difference in the number of cardiac malformations in children exposed to OXC (N = 194) and children exposed to TPM (N = 403) (Australian; North American Register; see Analysis 58.3). This gave a non-significant RD (RD -0.00, 95% CI -0.02 to 0.01; $I^2 = 0\%$).

58.4 Oro-facial cleft/craniofacial malformations

Pooled results from two studies showed a non-significant outcome (RR 0.39, 95% CI 0.05 to 3.35, $I^2 = NA$), with no difference in the number of oro-facial cleft/craniofacial malformations in children exposed to OXC (N = 194) and children exposed to TPM (N = 403) (Australian; North American Register; see Analysis 58.4). This gave a non-significant RD (RD -0.01, 95% CI -0.03 to 0.01; $I^2 = 0$ %).

58.5 Skeletal/limb malformations

Pooled results from two studies (Australian; North American Register) showed a non-significant outcome (RR 0.39, 95% CI 0.05 to 3.35; $I^2 = NA$), with no difference in the number of skele-tal/limb malformations in children exposed to OXC (N = 194) and children exposed to TPM (N = 403) (Australian; North American Register; see Analysis 58.5). This gave a non-significant RD (RD -0.01, 95% CI -0.03 to 0.01; $I^2 = 0\%$).

59 OXC versus ZNS

59.1 All major malformations

Data from one study showed a non-significant outcome (RR 4.48, 95% CI 0.24 to 82.23; $I^2 = NA$), with no difference in the number of major malformations in children exposed to OXC (N = 182) and children exposed to ZNS (N = 90) (North American Register; see Analysis 59.1). This gave a non-significant RD (RD 0.02, 95% CI -0.01 to 0.05; $I^2 = NA$).

59.2 Neural tube malformations

No included studies reported data on this outcome.

59.3 Cardiac malformations

No included studies reported data on this outcome.

59.4 Oro-facial cleft/craniofacial malformations

No included studies reported data on this outcome.

59.5 Skeletal/limb malformations

No included studies reported data on this outcome.

60 PB versus ZNS

60.1 All major malformations

Data from one study showed a non-significant outcome (RR 10.46, 95% CI 0.62 to 175.67; $I^2 = NA$), with no difference in the number of major malformations in children exposed to PB (N = 199) and children exposed to ZNS (N = 90) (North American Register; see Analysis 60.1). This gave a significant RD (RD 0.06, 95% CI 0.02 to 0.09; $I^2 = NA$).

60.2 Neural tube malformations

No included studies reported data on this outcome.

60.3 Cardiac malformations

No included studies reported data on this outcome.

60.4 Oro-facial cleft/craniofacial malformations

No included studies reported data on this outcome.

60.5 Skeletal/limb malformations

No included studies reported data on this outcome.

61 PHT versus ZNS

61.1 All major malformations

Data from one study showed a non-significant outcome (RR 5.46, 95% CI 0.33 to 91.31; $I^2 = NA$), with no difference in the number of major malformations in children exposed to PHT (N = 416) and children exposed to ZNS (N = 90) (North American Register; see Analysis 61.1). However, this gave a significant RD (RD 0.03, 95% CI 0.01 to 0.05; $I^2 = NA$).

61.2 Neural tube malformations

No included studies reported data on this outcome.

61.3 Cardiac malformations

No included studies reported data on this outcome.

61.4 Oro-facial cleft/craniofacial malformations

No included studies reported data on this outcome.

61.5 Skeletal/limb malformations

No included studies reported data on this outcome.

62 PRM versus TPM

62.1 All major malformations

No included studies reported data on this outcome.

62.2 Neural tube malformations

No included studies reported data on this outcome.

62.3 Cardiac malformations

No included studies reported data on this outcome.

62.4 Oro-facial cleft/craniofacial malformations

No included studies reported data on this outcome.

62.5 Skeletal/limb malformations

No included studies reported data on this outcome.

63 PRM versus VPA

63.1 All major malformations

Pooled results from five studies showed a non-significant outcome (RR 0.72, 95% CI 0.37 to 1.40; $I^2 = 40\%$), with no difference in the number of major malformations in children exposed to PRM (N = 101) and children exposed to VPA (N = 201) (Canger 1999; Kaaja 2003; Kaneko 1999; Koch 1992; Pardi 1982; see Analysis 63.1). This gave a non-significant RD (RD –0.04, 95% CI –0.13 to 0.05; $I^2 = 17\%$).

63.2 Neural tube malformations

Pooled results from two studies showed a non-significant outcome (RR 0.11, 95% CI 0.01 to 1.99; $I^2 = NA$), with no difference in the number of neural tube malformations in children exposed to PRM (N = 39) and children exposed to VPA (N = 45) (Canger 1999; Pardi 1982; see Analysis 63.2). This gave a non-significant RD (RD -0.11, 95% CI -0.22 to 0.00; $I^2 = 0\%$).

63.3 Cardiac malformations

Pooled results from two studies showed a non-significant outcome (RR 3.75, 95% CI 0.16 to 89.32; $I^2 = NA$), with no difference in the number of cardiac malformations in children exposed to PRM (N = 39) and children exposed to VPA (N = 45) (Canger 1999; Pardi 1982; see Analysis 63.3). This gave a non-significant RD (RD 0.03, 95% CI -0.06 to 0.11; $I^2 = 0\%$).

63.4 Oro-facial cleft/craniofacial malformations

We could not estimate pooled results from two studies due to there being no reported oro-facial cleft/craniofacial malformations in children exposed to PRM (N = 39) or children exposed to VPA (N = 45) (Canger 1999; Pardi 1982; see Analysis 63.4). RD was calculable, and this gave a non-significant result (RD 0.00, 95% CI -0.07 to 0.07; I² = 0%).

63.5 Skeletal/limb malformations

Pooled results from two studies showed a non-significant outcome (RR 0.42, 95% CI 0.02 to 9.92; $I^2 = NA$), with no difference in the number of skeletal/limb malformations in children exposed to PRM (N = 39) and children exposed to VPA (N = 45) (Canger 1999; Pardi 1982; see Analysis 63.5). This gave a non-significant RD (RD -0.02, 95% CI -0.10 to 0.06; $I^2 = 0\%$).

64 PRM versus ZNS

64.1 All major malformations

No included studies reported data on this outcome.

64.2 Neural tube malformations

No included studies reported data on this outcome.

64.3 Cardiac malformations

No included studies reported data on this outcome.

64.4 Oro-facial cleft/craniofacial malformations

No included studies reported data on this outcome.

64.5 Skeletal/limb malformations

No included studies reported data on this outcome.

65 TPM versus ZNS

65.1 All major malformations

Data from one study showed a non-significant outcome (RR 7.84, 95% CI 0.47 to 129.74; $I^2 = NA$), with no difference in the number of major malformations in children exposed to TPM (N = 359) and children exposed to ZNS (N = 90) (North American Register; see Analysis 65.1). However, this gave a non-significant RD (RD 0.04, 95% CI 0.02 to 0.07; $I^2 = NA$).

65.2 Neural tube malformations

No included studies reported data on this outcome.

65.3 Cardiac malformations

No included studies reported data on this outcome.

65.4 Oro-facial cleft/craniofacial malformations

No included studies reported data on this outcome.

65.5 Skeletal/limb malformations

No included studies reported data on this outcome.

66 VPA versus ZNS

66.1 All major malformations

Data from one study showed a significant outcome (RR 17.13, 95% CI 1.06 to 277.48; $I^2 = NA$), with children exposed to VPA (N = 323) experiencing more major malformations than children exposed to ZNS (N = 90) (North American Register; see Analysis 66.1). This gave a significant RD (RD 0.09, 95% CI 0.06 to 0.13; $I^2 = NA$).

66.2 Neural tube malformations

No included studies reported data on this outcome.

66.3 Cardiac malformationsCardiac malformations

No included studies reported data on this outcome.

66.4 Oro-facial cleft/craniofacial malformations

No included studies reported data on this outcome.

66.5 Skeletal/limb malformations

No included studies reported data on this outcome.

Random effects meta-analysis

In the protocol we planned to undertake a random-effects metaanalysis when there was evidence of heterogeneity. However, many of the studies had zero events in one or both arms or had low event rates, and they were often substantially imbalanced. In such cases, it is best to avoid the DerSimonian and Laird random-effects meta-analysis (Higgins 2011). Nevertheless, there were only three comparisons where there was evidence of heterogeneity in the meta-analysis of risk ratios for which a corresponding randomeffects meta-analysis suggested a change in conclusion to a more conservative estimate of effect. These were:

• PRM versus no medication (in women with epilepsy), all major malformations: fixed-effect (FE): 2.81 (95% CI 1.13 to 7.02, P = 0.03); random-effects (RE): 3.92 (95% CI 0.76 to 20.14, P = 0.10);

• LEV versus PHT, all major malformations: FE: 0.49 (95% CI 0.26 to 0.92, P = 0.03; RE: 0.34 (95% CI 0.08 to 1.50, P = 0.16);

• LTG versus TPM, facial cleft/craniofacial malformations: FE: 0.32 (95% CI 0.13 to 0.76, P = 0.010); RE: 0.22 (95% CI 0.03 to 1.56, P = 0.13).

There were only two comparisons where there was evidence of heterogeneity in the meta-analysis of risk differences for which a corresponding random-effects meta-analysis suggested a change in conclusion, with a more conservative estimate of effect under a random effects model. These were:

• LEV versus PHT, all major malformations: FE: -0.02 (95% CI -0.04 to -0.00, P = 0.05); RE: -0.03 (95% CI -0.06 to 0.01, P = 0.18) - also for risk ratio shown above;

● VPA versus PB, neural tube malformations: FE: 0.04 (95% CI 0.01 to 0.06, P = 0.001); RE: 0.05 (95% CI −0.00 to 0.10), P = 0.07).

Studies not included in the meta-analysis and not narratively reported

The publications of the Bozhinova 2009, Diaz-Romero 1990, Dravet 1992, Gaily 1988, Goujard 1974; Hill 1974, Jones 1989, Laskowska 2002, Richmond 2004, Shapiro 1976, Sabers 2004, Torres 1995 and Wide 2000 did not report either the total number of exposed cases separating out monotherapy or polytherapy use for a particular AED, they did not provide a malformation rate for monotherapy treatments in isolation, or the number of children with malformations by AED monotherapy group was unclear. Therefore we could not include these studies in meta-analysis, and they could not be reliably reported in a narrative format either. Israeli Teratogen Service showed variability in its reporting. Its paper on CBZ could be included in the meta-analysis as the number of monotherapy cases in women with epilepsy were reported, whilst in this group's reports on valproate and topiramate, authors did not give details as to the number of monotherapy exposures to women with epilepsy and therefore required narrative reporting.

Minor congenital malformations

Thirteen studies collected data on minor anomalies (Hill 1974, Jones 1989, Steegers-Theunissen 1994, Koch 1992, Garza-Morales 1996, Froscher 1991, D'Souza 1990, Delmiš 1991, Yerby 1992, Gaily 1988, Diaz-Romero 1990, Wide 2000, Barqawi 2005). However, in the publications of Hill 1974, Jones 1989, Steegers-Theunissen 1994, Garza-Morales 1996, D'Souza 1990, Delmiš 1991,Yerby 1992, Gaily 1988, Diaz-Romero 1990, authors either did not report the monotherapy and polytherapy results separately, or the prevalence of minor malformations in isolation was unclear.

We report the limited available information pertaining to minor malformations below.

CBZ versus controls

Wide 2000 reported minor anomalies in 15/39 (38%) CBZexposed infants, with the rate within the general population of control infants being 5/32 (16%), giving a significant OR of 11.0 (95% CI 1.42 to 85.2, P value not reported). Frequent minor anomalies within the CBZ-exposed group included oro-facial anomalies, digital anomalies, genital anomalies and skin anomalies. Barqawi 2005 reported a 25% prevalence of minor anomalies in their cohort exposed to CBZ (N = 16) compared with 0% in the control group (N = 18), with common anomalies including distal digital hypoplasia and ear flap abnormalities. Koch 1992 reported a mean rate of minor anomalies in the CBZ group (N = 9) to be 3.0 compared with 2.0 for the control group (N = 116).

PHT versus controls

Wide 2000 reported minor anomalies in 5/21 (24%) PHT exposed infants compared with 6/13 (46%) in controls, giving a non-significant OR of 0.80 (95% CI 0.22 to 2.98, P value not reported). Koch 1992 reported a mean of 3.6 minor anomalies for the PHT exposed infants (N = 24) compared with control children (mean 1.91, N = 116).

VPA versus controls

Koch 1992 reported a higher mean number of minor anomalies (8.0) in the VPA exposed children (N = 14) compared with the control children (N = 116), whose mean was 2. Koch 1992 noted a pattern of minor anomalies in the VPA group, which included minor craniofacial, skeletal and genital anomalies.

CBZ versus PHT

Although not directly compared, the rates of minor anomalies in the study by Wide 2000 were 15/39 (38%) for children exposed to CBZ and 5/21 (24%) in PHT-exposed children. Froscher 1991 reported a 12% prevalence rate of minor anomalies for children exposed to CBZ (N = 31) compared with 0% in five children exposed to PHT. Similar means for minor anomalies were reported by Koch 1992 for the children exposed to CBZ (N = 9) and those exposed to PHT (N = 24): 3.0 and 3.6, respectively.

CBZ versus VPA

Froscher 1991 reported a 12% prevalence of minor anomalies in children exposed to CBZ (N = 31) compared with 25% of children exposed to VPA (N = 12). Although investigators did not report the statistical significance, Koch 1992 reported a higher mean rate of minor malformations (8%) for the children exposed to VPA

(N=14) compared with those exposed to CBZ (N = 9), where the rate was 3%.

DISCUSSION

Summary of main results

Table 2 provides a summary of the meta-analysis for all comparisons for risk of major congenital malformation.

Carbamazepine

CBZ was the most frequently investigated AED both in terms of the number of publications and the number of included pregnancies. The pooled major malformation prevalence was 4.93%, once variation between the studies had been taken into consideration. In comparison to both children born to women without epilepsy and children born to women with untreated epilepsy, children exposed to CBZ in utero had an increased risk of having a major malformation, with the difference in risk ranging from 1% to 2%. The level of increased risk compared with control children is consistent with the findings of a case-control study that reported a similar increase in risk of major malformation following exposure to CBZ in utero (Jentink 2010b), but it is inconsistent with the result of another linking electronic healthcare datasets (Artama 2005). however, there were only 805 carbamazepine monotherapy-exposed participants in the Artama study, and this could account for the difference in findings.

Data were limited in terms of the specific malformation risk in comparison to control children, mainly due to the absence of control data from some of the large registry studies (e.g. North American Register; UK Register). This limitation likely contributed to the non-significant outcomes across the specific malformation types of neural tube, cardiac and skeletal/limb. There was a significant association between CBZ and oro-facial malformations when compared to children born to women without epilepsy, but this finding did not hold when we calculated the RD. Reports have associated CBZ with an increased risk of neural tube malformations (Jentink 2010b), but analysis here is too limited to support or refute this compared with control children.

In comparison to the other AEDs, CBZ led to a 1% higher rate of major malformation in exposed children than LEV or LTG. No significant levels of difference were found in terms of the risk estimates compared with OXC, PB, GBP, PRM, TPM, PHT or ZNS for overall malformation risk. Finally, children exposed to CBZ had a significantly lower risk of overall malformation than the children exposed to VPA, with the risk being 5% lower if exposed to CBZ rather than VPA.

In terms of specific malformation risk, we did not find any difference between the children exposed to CBZ and those exposed

to LEV or LTG, despite the increased overall major malformation rate. This may be due to the limited amount of data available currently pertaining to specific malformation types. Children exposed to CBZ had a 2% lower risk for cardiac malformations than the children exposed to PB, but there was no difference in risk for other types of malformation. Children exposed to CBZ had a lower risk of oro-facial cleft and craniofacial malformation compared with the children exposed to TPM, but this finding did not hold when we analysed data as an RD, which takes into account data with no reported events. In comparison to children exposed to VPA, the children exposed to CBZ were at a lower risk of neural tube malformations. Interestingly, both of these medications have been associated with an increased prevalence of neural tube malformations (Jentink 2010; Jentink 2010b); however, data here highlight that the risk with VPA is 2% higher than it is with CBZ. Children exposed to CBZ also had a 1% a lower risk of cardiac malformations, oro-facial cleft and craniofacial and skeletal or limb malformations in comparison to VPA-exposed children. Finally, we found no difference in terms of specific malformation rate between children exposed to GBP, PRM, OXC, PHT or ZNS, but caution is warranted due to the small numbers in these comparisons.

A large number of included studies did not investigate dose of CBZ and its relationship with malformation prevalence, despite dose being a key feature of a teratogen (Brent 2004). Data from EURAP and the UK Register reported an association between CBZ and malformation risk with the prevalence increasing from 1.9% up to 8.7% at doses greater than 1000 mg daily. Other studies failed to find an association with dose (e.g. Australian, North American Register as well as a number of smaller studies); however, it is worth noting that EURAP and the UK Register both scored relatively well on the 'Risk of bias' assessment and included larger numbers of CBZ-exposed pregnancies than other studies.

Gabapentin

Experience with GBP exposure in pregnancy was limited to fewer than 200 reported pregnancies. The pooled prevalence of major malformation was 1.47%. We found no difference between the children exposed to GBP compared with either type of control group, but caution is warranted to due to limited numbers. There were no data available in terms of specific malformation risk compared with either control group.

We found no difference in overall malformation rate or in the specific malformations investigated for the children exposed to GBP compared to CBZ, LTG, LEV, OXC, PHT, TPM and ZNS, but there were very limited data. In comparison to the older medications such as PB, data were limited to a single study; it found that children exposed to GBP had a lower risk of overall malformation compared with the children exposed to PB. Data were too limited to investigate specific malformation type between these two medications. In comparison to the children exposed to VPA, children exposed to GBP in utero had a significant, six-fold lower risk of having a malformation than children exposed to VPA, with the risk difference of 8%. No differences were found between these two medications in terms of specific malformation type; however, only one study contributed data.

Only North American Register investigated a possible association between dose of GBP and malformation rate, and the study failed to find an association. Numbers were small, however, so it is unclear whether increasing doses of GBP are associated with an increased rate of malformations.

Lamotrigine

Use of LTG has increased over the last decade in women of childbearing age (Ackers 2009; Man 2012; Meador 2009; Wen 2015). The majority of evidence indicated no difference in the overall malformation rate between the children exposed to LTG and either type of control group, with the majority of evidence coming from pregnancy registries. A finding of no association is consistent with other studies using population-based electronic health records (Mølgaard-Nielsen 2011). Further, we found no increase in any of the specific malformation types investigated in the LTGexposed groups; however, data were limited within the specific malformation analyses. North American Register had reported an association between LTG and oro-facial clefts, but updated data from that register and pooled data here do not support this association in comparison to control children.

In comparison to LEV, which has also seen a significant increase in use in women of childbearing age (Meador 2009; Wen 2015), there were no significant differences for either overall malformation rate or the specific malformation types investigated. Children exposed to LTG also did not differ either in terms of overall malformation rate or in terms of specific malformations compared with children exposed to OXC, GBP and ZNS, although data were limited for all of these AEDs.

The children exposed to LTG were at a significantly lower risk of overall malformation compared with children exposed to CBZ, with a significant risk difference of 1%. Analyses at the specific malformation level, however, revealed no significant differences between the children exposed to LTG and CBZ for each of the specific malformations investigated. This is possibly due to reduced sensitivity to detect such rare outcomes, as numbers of included children were relatively small. In comparison to TPM, the children exposed to LTG were at a lower risk of overall malformation and specifically skeletal and limb malformations; however, the risk difference was not significant and further data is needed to confirm this possible association. Data were limited compared with children exposed to PB, but the children exposed to LTG were at a significantly lower risk for overall malformation risk; with the risk being 4% lower. Children exposed to LTG had a 2% lower risk of cardiac malformations compared with the children exposed to PB. Children exposed to LTG were also at a significantly lower risk

of oro-facial cleft or craniofacial malformations compared with children exposed to PB, but the risk differences were not significant. The prevalence of malformations of any type was lower for the children exposed to LTG compared with children exposed to PHT, with the risk being 2% lower. Cardiac malformations and skeletal or limb malformations were also significantly less likely in the children exposed to LTG compared with those exposed to PHT; however, the risk differences were not significant for these comparisons. Finally, children exposed to LTG had a three-fold lower risk of overall malformation when compared to the children exposed to VPA, with a risk difference showing that the significant reduction in risk was 6% for children exposed to LTG. Neural tube, cardiac, oro-facial cleft and craniofacial and skeletal and limb malformations were all significantly lower for the LTG-exposed children, with the reduction in risk ranging from 1% to 2%.

The large, well-designed EURAP study has demonstrated a dose relationship between LTG treatment and malformation risk, with exposures to LTG under 300 mg/d associated with a malformation prevalence of 2.0%, whilst daily doses above this level were associated with a prevalence of 4.5%. Other studies did not find a dose relationship, however (Australian; North American Register; UK Register), and therefore further work is required before drawing conclusions regarding an association with dose.

Levetriacetam

Despite the now widespread use of LEV in women of childbearing age (Meador 2009; Wen 2015), the frequency of data and the number of included pregnancies exposed to LEV were limited. This delay is likely due in part to the time it takes for adequate numbers of women taking newer AEDs to accumulate, and it is of note that all the data on LEV comes from the national and international registries; indicating that collection on a national or international scale may speed up the availability of information on newer AEDs. The limited experience with this drug in pregnancies is also seen in the large population-based electronic health record studies (Mølgaard-Nielsen 2011).

The pooled prevalence for malformations following LEV exposure was 1.77%. There was no significant difference between the children exposed to LEV and control children in the meta-analysis for overall malformation rate, which is consistent with the findings of others (Mølgaard-Nielsen 2011). Data pertaining to specific malformation types in comparison to control children were extremely limited, and it is not possible to draw conclusions until more data is available.

In comparison to other AED treatments, children exposed to LEV were not significantly different from children exposed to LTG in terms of overall malformation prevalence or the specific malformation types investigated. In addition, we found no significant difference between children exposed to LEV compared with those exposed to GBP, OXC, PHT or ZNS, although data within these comparisons were limited. Children exposed to LEV had a lower overall malformation rate than the children exposed to CBZ, but there was no difference in terms of the specific malformation types investigated. There was also a significantly lower malformation risk in comparison to children exposed to TPM; however, the risk difference for this overall comparison was not significant. Children exposed to LEV had around a 1% lower risk, however, of having an oro-facial cleft or craniofacial malformation in comparison to the TPM-exposed children. Children exposed to LEV had a significant, four-fold lower risk of overall malformation than the children exposed to PB, but the risk difference was not significant. Finally, children exposed to LEV had a 7% lower risk of overall malformations compared with the children exposed to VPA. Investigation between dose of LEV and malformation outcome was limited by numbers included within the individual studies (i.e. North American Register; UK Register); to date no study has

reported evidence of a dose effect for LEV, but further data is required before drawing conclusions.

Oxcarbazepine

Data for pregnancy outcomes following exposure to OXC were limited to just over 200 pregnancies; we calculated the prevalence of major malformation to be 2.39%. There was no significant difference in malformation risk compared with control children; however, outcome data were limited, and no information was available about the risk of specific malformations. Mølgaard-Nielsen 2011 also failed to find a significant association between OXC exposure (N = 393) and increased malformation rate in comparison to controls using a population-based electronic health record study design.

In limited comparisons to other AEDs, there was no significant difference or no available data between the overall malformation rate or the specific malformations investigated compared with children exposed to CBZ, LEV, LTG, PHT, PRM, TPM, and ZNS. Children exposed to OXC were at a significantly lower risk of having a major congenital malformation of any type compared with children exposed to VPA, with the risk difference being 8%.

There were very limited data pertaining to specific malformation types, and caution is required. Children exposed to OXC had a significantly lower rate of cardiac malformation compared with the children exposed to PB, with the risk difference indicating that risk was 3% lower for the children exposed to OXC. Limited data pertaining to specific malformation types did not show a significant difference, however, between the children exposed to OXC and those exposed to VPA.

None of the included studies investigated dose of OXC and malformation rate; therefore it remains unknown whether higher doses of OXC are associated with an increased rate of malformation.

Phenobarbital

Despite years of PB use, data from prospective studies investigating PB as monotherapy were surprisingly limited. Data pooled from

included studies generated a major malformation prevalence of 7.10%. We found a significantly increased risk of overall malformation compared with children born to women without epilepsy, with a risk difference of 4%. We found no significant difference compared with children born to women without epilepsy. Data pertaining to specific malformations were extremely limited or missing and likely contributed to the non-significant differences found. This is certainly the case for cardiac malformations where, as noted below, rates compared with other AEDs indicate a specific increased risk of cardiac malformations in PB-exposed children across comparisons, which was not documented within the limited data compared with control children.

In comparison to other AEDs, children exposed to PB were not at a significantly increased rate of overall malformation compared with children exposed to CBZ, PHT, OXC, TPM, PRM and ZNS. There was a significant increase in the prevalence of malformations between the children exposed to PB and the children exposed to LEV and GBP; however, the risk differences were not significant, and further investigation is required. Finally, a significantly increased risk of malformations was found for the PB-exposed children compared with the children exposed to LTG, with the level of risk being increased by 4%. In contrast, the rate of malformations was significantly lower for the children exposed to PB compared with the children exposed to VPA, with the risk being 4% lower. PB was associated with an increased risk of cardiac malformations compared to CBZ, LTG, PHT and OXC, with the increase in risk falling between 2% and 3%. There was also an increased risk in comparison to children exposed to LEV or TPM, but the RDs were not significant, and further data are required. PB was also significantly associated with an increased risk of oro-facial clefts and craniofacial malformations when compared to LEV or PHT, but again, the RD analyses were not significant and further data are required to draw conclusions. Finally, children exposed to PB were at a significantly lower risk of neural tube malformations compared with children exposed to VPA, with the risk being reduced by 4%. There was no difference in terms of cardiac malformations in comparison to VPA, a drug also associated with an increased risk of cardiac malformations.

The majority of studies did not investigate or report on a potential relationship between dose to PB and malformation risk. However, EURAP found an increased rate of overall malformations in children exposed to PB (5.4% for exposures < 150 mg/d versus 13.7% for exposures \geq 150 mg/d). A dose-mediated risk was also apparent for cardiac malformations, with the prevalence increasing from 1% to 8% for doses < 150 mg/d and those \geq 150 mg/d, respectively. Kaneko 1999 also found a dose effect for PB; however, North American Register and Samren 1997 did not. Dose is a key principle of teratogenic risk (Brent 2004), and although a dose effect is unclear, it should be considered a possible factor to PB-associated malformations.

Phenytoin

The pooled prevalence of major malformation in the PHT-exposed children was 6.26% once variation between the studies had been taken into consideration, which is consistent with that reported by other studies (Wide 2004). The children exposed to PHT were at a significantly increased risk in comparison with both types of control group, with the difference in risk ranging from 2% to 4% depending on the nature of the control group. However, we found no association between PHT and specific malformation types, although data were limited in these comparisons due to the limited control data.

In comparison to other AEDs, children exposed to PHT were not at an increased risk of overall malformation or the specific malformation types investigated compared with children exposed to CBZ, GBP, OXC, TPM, PRM, PB or ZNS; however, data comparing PHT with the 'newer' AEDs were limited. Children exposed to PHT were at an increased risk of overall malformation compared with children exposed to LTG, with the risk difference indicating a 2% increase in malformation. The children exposed to PHT were at a greater risk of malformation in comparison to children exposed to LEV; however, there were high levels of heterogeneity between the included studies, and the random-effects modelling failed to uphold the significance of this result. In contrast, the children exposed to PHT were half as likely to have a malformation than the children exposed to VPA, with the difference in risk being 5%.

In terms of specific malformations, children exposed to PHT were less likely than those exposed to PB to be born with a cardiac malformation, with risk differences indicating that the risk was 3% lower. We found a significant RR favouring PHT when comparing PHT and PB in terms of oro-facial malformations; however, the RD was not significant and more data are required. There was no difference between these two medications in terms of skeletal or limb malformations or neural tube malformations. There was a noted increase in cardiac and skeletal and limb malformations for the PHT exposed children compared with those exposed to LTG when measured as an RR; however, the RD was not significant. Rates of neural tube and cardiac malformations were significantly lower for the children exposed to PHT in comparison the to VPAexposed children, with the risk found to be 2% lower for the PHT exposed children.

The majority of studies did not report on whether the risk of being born with a major malformation was associated with dose of PHT; however, those that did investigate such an association do not show a consistent pattern. Kaaja 2003, Motherisk Registry and North American Register all failed to find an association between dose and outcome; however, Kaneko 1999 and Samren 1997 did, therefore the conclusion around dose effects is uncertain.

Primidone

Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child (Review) Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Evidence pertaining to PRM was extremely limited to under 200 pregnancies and caution is warranted when interpreting results. Pooled data from included studies gave a malformation prevalence of 8.49%. There was no difference in the malformation rate compared with either control group once the significant levels of heterogeneity had been taken into account.

There were no data comparing malformation outcomes in children exposed to PRM compared with GBP, LEV, LTG, TPM, OXC and ZNS. In comparison to the children exposed to CBZ, PHT, PB or VPA, there was no difference in overall malformation rate or in terms of specific malformations, but data were limited.

Only the study of Kaneko 1999 investigated dose of PRM and outcome, and it only included 19 PRM cases. Therefore it remains unknown as to whether there is an association between PRM dose and increased malformation risk.

Topiramate

Experience with TPM was limited to fewer than 500 pregnancies, therefore caution is required when considering our results. The prevalence of malformation within included studies was 4.28%. In comparison to children born to women without epilepsy, children exposed to TPM had a three-fold higher rate of being born with a malformation with the risk difference being 3%. We found no significant difference compared with the no medication control group, but this comparison had even fewer TPM cases (N = 115). The Mølgaard-Nielsen 2011 database study failed to find a significant difference in the malformation rate of 108 TPM exposed infants in comparison to control children. Data were too limited here to allow for the investigation of specific malformation outcomes in comparison to control children, mainly due to a lack of data pertaining to controls from two of the main pregnancy registers (North American Register; UK Register).

We found no significant level of difference in rate of malformation compared with children exposed to CBZ, GBP, PHT, PB, PRM, OXC and ZNS. We found a significant increase in the rate of malformation for the children exposed to TPM compared with the children exposed to LTG or LEV; however, the risk differences failed to reach significance, so caution is required. The children exposed to TPM were less likely to have a malformation of any type compared with the children exposed to VPA, with the difference in risk being 5%.

In terms of specific malformation types, children exposed to TPM were at a significantly increased risk for an oro-facial cleft or craniofacial malformation compared with children exposed to CBZ or LEV; however, only the comparison to LEV yielded a significant risk difference of 1%, and data were limited. There is evidence of an association between topiramate and oral clefts from insurance database studies (Mines 2014), in a case-control study (Margulis 2012), and in a previous meta-analysis (Alsaad 2015), so the failure to obtain a consistent finding here may be due to the limited data currently available from prospective observational studies in isolation. In comparison to children exposed to LTG, those exposed to TPM were at an increased risk of skeletal and limb malformations, although the risk difference was not significant, and further data are required. In contrast, children exposed to TPM had a significantly lower risk of cardiac malformations than the children exposed to PB, although again the risk difference was not significant. Consistently, the risk of cardiac malformations was also significantly lower in the TPM-exposed children compared with the children exposed to VPA, with a difference in risk of 2%. No evidence of a dose association was found; however, date were limited and further experience with TPM exposure in utero is required.

Valproate

In utero exposure to VPA and its possible association with an increased teratological risk has been discussed in the literature since the 1980s, when the first case reports emerged documenting children with a specific constellation of malformations following exposure to VPA (Ardinger 1988; DiLiberti 1983). Larger cohorts such as EURAP and data from population-based electronic healthcare records (e.g. Artama 2005; Wide 2004) as well as the pregnancy registries and observational studies included here, have all provided evidence to confirm that VPA is a human teratogen.

In the meta-analyses reported here a consistent pattern emerged: children exposed to VPA were at an increased risk of both a higher overall malformation risk and risk of a specific malformations including neural tube, cardiac, oro-facial cleft and craniofacial and skeletal and limb malformations. The prevalence of major malformation following exposure to VPA in the womb was 10.93%, once variation between the studies had been taken into consideration. Children exposed to VPA were at an increased risk of being born with a malformation compared with both the children of women without epilepsy and the children of women with untreated epilepsy, with the risk difference being 8% and 6% compared with the respective control groups. Analysis of the risks associated with VPA treatment at the specific malformation level was limited by a lack of control data; however, children exposed to VPA remained at a significantly increased risk for neural tube, cardiac and skeletal malformations compared with control children. In comparison to other AEDs in the meta-analyses reported here, children exposed to VPA were at an increased risk of malformations compared with children exposed to CBZ, GBP, LEV, LTG, TPM, OXC, PB and PHT, with risk estimates ranging from a two-fold to six-fold increase. The risk differences ranged from 4% to 8% depending on the comparator AED.

At the specific malformation level, children exposed to VPA were at an increased risk of neural tube malformation compared with the children exposed to CBZ, LEV, LTG, PB and PHT, with the increases in risk ranging from 1% to 4%. We did not note any increase compared to children exposed to GBP, OXC or TPM, but this could be due to limited data. Similarly, we found an increased

rate of cardiac malformation compared to CBZ, LEV, LTG, TPM, PHT, with the risk difference ranging from 1% to 2% depending on the comparator AED. We found no difference in the risk of cardiac malformations for VPA compared to PB; however, as noted above, this AED also appears to be associated with an increased risk of cardiac malformations. Oro-facial cleft and craniofacial malformations were also significantly more common in the children exposed to VPA compared with children exposed to CBZ, LEV and LTG, with risk differences being 1%. There was no difference in the rate of oro-facial cleft or craniofacial malformations compared with TPM, PB or PHT. Finally, skeletal or limb malformations in children exposed to VPA compared with children exposed to CBZ, LEV or LTG were significantly higher. All specific malformation comparisons the data compared with GBP, ZNS and OXC were too limited for conclusions to be made.

Data reported in the meta-analysis were consistent with the reports reviewed narratively and the findings of studies not eligible for inclusion in the review due to their design (Artama 2005; Jentink 2010; Wide 2004). We therefore conclude that prenatal exposure to VPA is associated with a significant increase in risk for a wide range of malformations. Further, when weighing up the risks and benefits of VPA treatment, the effects of VPA on the developing brain should also be considered, as VPA is now also recognised as a neurobehavioural teratogen, with implications for the future cognitive functioning of the exposed child (Bromley 2014).

More than any other AED, studies have reported dose associations with level of risk for VPA (Australian; Canger 1999; Fairgrieve 2000; Israeli Teratogen Service; Kaneko 1999; Lindhout 1992; Mawer 2010; North American Register; Samren 1997; UK Register). The largest data set with clear dose comparisons is the EURAP collaboration, which finds that the prevalence of major congenital malformations increases from 5.6% at doses < 700 mg daily to 24.2% for doses ≥ 1500 mg daily. Interestingly, Australian reports a decrease in the mean dose for new registrations and have noted that this is associated with a reduction in the number of observed cases of neural tube malformations.

Zonisamide

Experience with ZNS exposure was limited to 90 cases described in a single publication (North American Register), therefore it is not possible to draw conclusions at this time. Further efforts are needed to develop experience with this medication in pregnancy.

Other antiepileptic drugs

No data were found pertaining to AEDs such as ethosuximide, sulthiame, lacosamide or vigabatrin.

Overall completeness and applicability of evidence

Data were limited for the risk of specific types of malformations, due in a large part to the failure of included studies to publish specific malformation outcomes. Whilst this is undoubtedly due to publication space, providing such information is critical for understanding the risks associated with specific malformation types. As demonstrated in the case of PB, an AED may be associated with a constellation of specific malformations, so reporting only an overall malformation figure may mask important associations. The completeness of data was further challenged due to authors not reporting data for rarer malformation types, for less commonly used AEDs and by the larger registers not reporting specific malformation data for control children (North American Register; UK Register); these factors limited the analysis that we could undertake. Further, unclear reporting also meant that we could not investigate hypospadias, which has been linked to certain AED exposures (Wide 2004), as it was unclear if the included studies had limited their data specifically to males.

A few points of heterogeneity were found between included studies, which may limit the completeness of the evidence. Studies varied in how they dealt with the inclusion of foetal deaths (with and without malformations) and in whether they counted genetic causes of malformation in their overall prevalence. At the outset of this review, we decided to use the author-defined malformation rate, as the review authors would be unlikely to have all the data required to determine information about reported malformations. Considering this however, we cannot confirm that all the studies applied the same criteria for classifying a major congential malformation. Further, there were differences between studies in the time at which the outcome was reported. For example, the UK Register has a malformation reporting time before three months of age, whilst others included malformation presence at birth (e.g. Bozhinova 2009). Data from the EURAP collaboration demonstrates that the reviewing of malformation outcome at 12 months of age leads to an increased detection and therefore higher prevalence. Thus data reported from some studies may in fact be an underestimation of the prevalence of major malformations if the assessment of the child occurs prior to 12 months of age. A further challenge to the completeness of the evidence was that the use of data in meta-analysis was limited in a number of cases by reporting issues. One of the most common limitations came in the form of studies not reporting specific monotherapy outcomes or reporting monotherapy and polytherapy outcomes for a particular AED together (e.g. Sabers 2004). In certain cases, we were able to extrapolate prevalence of malformations for specific monotherapy treatments, but in others this was not possible.

The way in which some ongoing pregnancy registries update their results meant that we often had to take outcomes for different AEDs from a number of different papers, or that authors investigated malformation types separately over different papers. For example, Kerala Pregnancy Registry had published more recently on cardiac malformations in isolation and therefore substantially larger numbers were available for investigations into cardiac mal-

formations than for overall malformation rates or rates of other specific malformation types. Similarly, UK Register recently published outcomes pertaining to LTG, VPA, CBZ and in a separate publication LEV, without updating malformation prevalences for other AEDs such as PHT or TPM.

The completeness of data is also limited by the significant lack of data pertaining to the secondary outcome of minor malformations. Few included studies reported such outcomes, and the major pregnancy registries in particular limit their outcomes to major malformations only. Minor malformations are an important part of the diagnostic criteria for teratogens generally and foetal anticonvulsant syndromes in particular (Dean 2000). A constellation of minor anomalies associated with specific exposures provide clinicians with key diagnostic markers, and their presence may lead to a more detailed physical examination to check for more severe physical symptoms of exposure or neurodevelopmental impairment.

In addition to the limitations with the data, this review has a number of limitations itself. One important limitation is the exclusion of studies using large population-based electronic healthcare datasets (e.g. the Swedish Birth Register) and the exclusion of malformation registers (e.g.Artama 2005; Wide 2004). We decided to exclude these study designs from our review due to the potential difficulties in combining the data from these methods with those from the observational studies included. In particular, there are problems ascertaining timing of exposure and dose with these studies (Charlton 2014; Wide 2004), and there is a suggestion that they may be at risk of underreporting the malformation rate (Charlton 2008). We also excluded case-control malformation registers that record children with and without malformations . In these registers, children are enrolled once the outcome when the presence or absence of a malformation is known, and therefore we classified recruitment as retrospective (e.g. Jentink 2010; Jentink 2010b). Further, the nature of this data meant that it could not be directly combined into meta-analysis with the data from the prospective observational studies.

Strengths of this review include, the creation and advance publication of the review protocol, the clear inclusion criteria, extensive searches, the acquisition of unpublished data, the inclusion of articles not written in English, meta-analysis for all possible comparisons, the consideration of specific as well as overall malformation risk, the balance of both systematic reviewing and content expertise and the assessment of risk of bias and quality in the nonrandomised evidence. Under the Cochrane guidelines this review will be updated every two years, or following the publication of a significant amount of new data, to ensure it remains up to date which adds further strength.

Quality of the evidence

Randomised controlled trials are thought to be unethical in this area due to the permanence of potential adverse effects for the

foetus. Gold standard evidence for this area would therefore comprise of data coming from a prospective, blinded cohort studies using statistical methods to limit the influence of confounding variables. The methodological quality for each study is displayed in the Characteristics of included studies tables. Only one study was an RCT, which contained no information on the randomisation process. All other included studies were non-randomised observational studies, and hence were rated as high risk on the randomisation sequence and allocation concealment domains. The included studies varied in their approach to controlling confounding variables, a key issue in non- randomised studies. Blinding rarely occurred in the larger register based studies due to their reliance on family doctors to report the outcomes over large populations. Whilst the size of the populations which registers can recruit should be considered their strength the failure to blind should be considered a potential source of bias. Concerningly, a larger number of the included studies did not mention whether or not outcome assessors were blinded. The majority of studies scored low risk in terms of selective reporting but few were able to provide protocols to the review team to ensure this. Attrition was rated as low risk for the majority of studies. The majority of studies were found to have one or more aspects of additional bias. For example, many of the studies did not indicate the upper level of gestational age for recruitment or whether children with genetic syndromes had been excluded from the malformation prevalence; things which may have been deduced if protocols had been made available. A comprehensive understanding of how the majority of studies were designed and undertaken was not possible due to the limited number of protocols received. This undoubtedly impacted on the risk of bias judgements.

In conclusion, our risk of bias review indicates that across the included studies there are number of important biases assessed as high risk which should be taken into account when interpreting the results. The biases however, were balanced across the AEDs investigated and therefore it is not felt that the finding that VPA is associated with a higher risk of major congenital malformation in comparison to other AEDs is due to these biases.

Potential biases in the review process

Review authors RB and JCS were authors on two included studies (Mawer 2010; Meador 2006). This potential bias was reduced by delegating data extraction and risk of bias assessments to two other review authors.

Agreements and disagreements with other studies or reviews

Despite a large number of review articles in this area there are few systematic reviews where meta-analysis has been conducted and, where they have been completed, the inclusion criteria have var-

ied, particularly with respect to study methodology. The review by Meador 2008 for example, included both prospective and retrospective studies, studies using population-based electronic healthcare records as well as data from case-control studies. Whilst this lead to increased numbers of included pregnancies within the meta analysis, the comparability of data from these different methodological types is unclear and caution is warranted over including data from such diverse methodologies as Charlton 2008 found lower rates of malformation reporting from the UK Clinical Practice Research Database in comparison to the UK Epilepsy and Pregnancy Register. In total the Meador 2008 review included 59 studies involving 65,533 pregnancies to women with epilepsy. Despite differences in methodologies the findings of the review here are consistent with this previous review in that VPA was associated with the largest risk for major congenital malformation with the prevalence being 10.7% (95% CI 8.16 to 13.29). Consistent with data here, the prevalence for malformation following exposure to CBZ was lower (4.62%, 95% CI 3.48 to 5.76), as was that for PHT (7.36%, 95% CI 3.60 to 11.11), PB (4.91%, 95% CI 3.22 to 6.59) and finally for LTG (2.91%, 95% CI 2.00 to 3.82). Further consistent findings were reported by Jentink 2010b who found the prevalence of malformation following CBZ to be 3.3% based on 2680 CBZ children from eight studies. In contrast to the review here, Jentink 2010b found a significant associated between CBZ exposure and spina bifida, however this is not replicated here compared with control children or children exposed to other AEDs, with current available data. Similarly, Jentink 2010 found, based on eight studies and 1565 VPA exposed pregnancies, the prevalence to be 7.5% (95% CI 6.3 to 9.0) for pregnancies exposed to VPA and noted an increase in terms of specific malformations which is also found here.

The data reported here pertaining to LEV is consistent with a previous systematic review (Chaudhry 2014) who included the three prospective studies reported here (Australian; North American Register; UK Register) as well as studies utilising other methodologies and reported a prevalence rate of 2.2% (27/1213, 95% CI 1.53 to 3.22).

Analysis here did not however consistently replicate the reported association between TPM exposure and oral clefts. In a previously completed meta-analysis Alsaad 2015 had a wider inclusion criteria which included 3420 patients taking TPM (mixed etiologies) and 1,204,981 controls and reported a significant odds ratio (OR 6.26, 95% confidence interval: 3.13 to 12.51). As noted throughout this discussion, data were limited pertaining to the newer AEDs and by the reporting of specific malformations in included studies and therefore it is possible that limited data contributed to this meta-analysis not consistently upholding this association across all comparisons.

Finally, it is now also known that VPA exposure is associated with neurodevelopmental delays which may have lifelong implications for the exposed child; a topic covered in a linked Cochrane review (Bromley 2014). The findings of this review in partnership with the Bromley 2014 review highlight the wide range of risk associated with exposure to VPA in the womb.

AUTHORS' CONCLUSIONS

Implications for practice

There is consistent evidence that prenatal exposure to VPA increases the risk of having a child with a major congenital malformation with the increase in risk covering neural tube, cardiac, skeletal and limb and oro-facial cleft and craniofacial malformations.

Exposure to CBZ is associated with an increased risk of malformations but to a lesser extent than VPA. The risk with PB appears to be related specifically to cardiac malformations in comparison to other AEDs. Finally, no increase risk of malformation is found for LTG or LEV compared with controls and more favourable outcomes are found for the child compared with VPA and other AEDs. Whilst the RDs for comparisons not including VPA may appear relatively small at around1-2%, the importance of a cardiac or neural tube defect on the individual child and family should be considered. Also, at a societal level a 1% increase in malformation rate will result in significantly more affected children born each year which represents a significant cost to health and educational services.

Given the variance in outcome data pertaining to the malformation risk associated with a individual treatment the primary implication for practice is that counselling should be tailored to the individual treatment and its dose. Although traditional counselling has been that 90% of children born to women with epilepsy have healthy children, this simplifies a complex set of data. The dose of AED and considerations regarding specific malformation types should also be central to counselling. It is also important to highlight that whilst major malformations are likely to represent the more severe end of a continuum of effect, minor malformations can still result in health problems and impact on quality of life. Finally, the limited data about the newer AEDs should be discussed with women planning a pregnancy or who are in the childbearing years. Absence of risk data should not imply lack of risk.

Implications for research

The role of the clinician and women with epilepsy working together to improve the evidence base should be considered and the collection of data should be embedded in routine practice enabling pregnancy registers and other study designs.

Whilst research methodologies have become more refined over the years there are still a number of limitations in the data which could be addressed in future research. Firstly, the reporting of an

overall malformation figure is, as demonstrated above for PB, unlikely to be the most reliable measure of risk and where data is large enough to allow, prevalences pertaining to specific malformation types should be investigated and reported. To facilitate this, all studies however large or small should provide information on specific malformation types to aid future meta-analyses and generation of risk estimates. Secondly, registries and reporting clinicians should be encouraged to use the standardised phenotypic terms which are now used in recognised phenotype ontologies such as the Human Phenotype Ontology (HPO) (http:// human-phenotype-ontology.github.io/about.html). This will not only allow more accurate comparison across studies but analysis of the computational codes attached to HPO terms can also indicate similarities in underlying genomic pathways involved in aetiology and direct further investigation. Thirdly, treatment dose should also be considered a central aspect of reporting given its key feature of human teratogens (Brent 2004) and as highlighted by the dose mediated risk documented for VPA. The advice which may be given to an individual female on VPA would likely be very different depending on her dose. The studies which did investigate the relationship between dose and outcome used varying cut offs and therefore comparisons across studies was difficult. In the future research groups should look to standardise dose categories to enable uniform reporting. Fourthly, all data should be reported for the control groups, even if just in tabular format to aid future meta-analysis.

The fifth recommendation would be that observations have shown that some women who take AEDs, even at a very low dose, appear to be at higher risk of having a child with an AED-associated malformation. Further research focusing on identification of genomic variants which might modify how different women metabolise AEDs is crucial so that those who may be at higher risk of having a child with a malformation, even taking a lower dose of a specific AED, can be identified. Whilst this has proven difficult in the past, whole exome/genome sequencing, with careful selection of individuals for testing is likely to make this more achievable (Ku

2011).

Finally, there is a clear trend that data for newer drugs is coming from the large national registers. This is not surprising given the time it can take for cases in individual hospitals to accumulate. The continued existence of these registers are of central importance to the generation of information to inform preconceptual counselling and efforts to increase reporting to such registers should be undertaken at a clinician and regulatory level.

ACKNOWLEDGEMENTS

The authors would like to thank Rachael Kelly, Barbara Kreilkamp, Sarah Nolan, Silviya Balabanova, William Nevitt, Gabriela Czanner, Sandra Peternel, Esther van Zuuren, Krzysztof Lach, Mariangela Pannebianco, Asaf Achiron, Kiyomi Shinohara, Masi Perez, Antione Wolff and Dora Lozsadi for their help with the translation of articles. The authors would also like to thank Alexandra Rigby for author support and the authors who provided additional clarification or unpublished data.

Funding

•National Institute for Health Research, UK. This review was supported by the National Institute for Health Research, via Cochrane Infrastructure funding to the Epilepsy Group. The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the Systematic Reviews Programme, NIHR, NHS or the Department of Health.

• National Institute for Health Research, UK. This report is independent research supported by the National Institute for Health Research (Post Doctoral Fellowship, Dr Rebecca Bromley, PDF-2013–06–041). The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health.

REFERENCES

References to studies included in this review

Al Bunyan 1999 {published data only}

Al Bunyan M, Abo-Talib Z. Outcome of pregnancies in epileptic women: a study in Saudi Arabia. *Seizure* 1999;**8**: 26–29. [4393577]

Arulmozhi 2006 {published data only}

Arulmozhi T, Dhanaraj M, Rangaraj R, Vengatesan A. Physical growth and psychomotor development of infants exposed to antiepileptic drugs in utero. *Neurology India* 2006;**54**(1):42–46. [4393579]

Australian {published data only}

Vajda F, Lander C, O'Brien T, et al. Australian Pregnancy Registry of Women Taking Antiepileptic Drugs. *Epilepsia* 2004;45(11):1466. [4393581]
Vajda F, O'Brien T, Graham J, Lander C, Eadie M. Dose dependence of fetal malformations associated with valproate. *Neurology* 2013;81:999–1003. [4393582]
Vajda F, O'Brien T, Lander C, Graham J, Roten A, Eadie M. Teratogenesis in repeated pregnancies in antiepileptic drug-treated women. *Epilepsia* 2013c;54(1):181–186. [4393583]
Vajda FJ, O'Brien TJ, Hitchcock A, Graham J, Lander C.

The Australian registry of anti-epileptic drugs in pregnancy: experience after 30 months. *Journal of Clinical Neuroscience* 2003;**10**(5):543–549. [4393584]

Vajda FJ, O'Brien TJ, Hitchcock A, et al. Critical relationship between sodium valproate dose and human teratogenicity: results of the Australian register of antiepileptic drugs in pregnancy. *Journal of Clinical Neuroscience* 2004;**11**(8):854–858. [4393585]

Vajda FJE, Eadie MJ. Maternal valproate dosage and foetal malformations. *Acta Neurol Scand* 2005;**112**:137–143. [4393586]

* Vajda FJE, Graham J, Lander CM, O'Brien TJ, Eadie M. Teratogenicity of the newer antiepileptic drugs- the Australian experience. *Journal of Clinical Neuroscience* 2012; **19**:57–59. [4393587]

Vajda FJE, Graham JE, Hitchcock AA, O'Brien TJ, Lander CM, Eadie MJ. Is lamotrigine a significant human teratogen? Observations from the Australian Pregnancy Register. *Seizure* 2010;**19**:558–561. [4393588]

Vajda FJE, Hitchcock A, Graham J, O'Brien T, Lander C, Eadie M. The Australian Register of Antiepileptic Drugs in Pregnanacy: The first 1002 pregnancies. *Australian and New Zealand Journal of Obstetrics and Gynaecology* 2007;**47**: 468–474. [4393589]

Vajda FJE, Lander CM, Hitchcock A, et al. Changing Australian prescribing patterns for antiepileptic drugs in pregnancy and their possible consequences. *Journal of Clinical Neuroscience* 2007;**14**:611–617. [4393590] Vajda FJE, O'Brien TJ, Graham J, Lander CM, Eadie MJ. Prediction of the hazard of foetal malformation in pregnant women with epilepsy. *Epilepsy Research* 2014;**108** (6):1013–1017. [4393591]

Vajda FJE, O'Brien TJ, Lander CM, Eadie MJ. Associations between particular types of fetal malformation and antiepileptic drug exposure in utero. *Acta Neurol Scand* 2013b;**128**:228–234. [4393592]

Bag 1989 {published data only}

* Bag S, Behari M, Ahuja GK, Karmarkar MG. Pregnancy and epilepsy. *Journal of Neurology* 1989;**236**:311–313. [4393594]

Barqawi 2005 {published data only}

* Barqawi R. Evaluation of antiepileptic drugs in pregnancy in a Jordanian army hospital. *Eastern Mediterranean Health Journal* 2005;**11**(4):601–605. [4393596]

Bozhinova 2009 {published data only}

* Bozhinov P, Bozhinova S, Markova C. Fetal malformations in women with epilepsy. *Akusherstvo i Ginekologiia* 2009;**48** (1):16–21. [4393598]

Canger 1999 {published data only}

Battino D, Binelli S, Caccamo ML, et al. Malformations in offspring of 305 epileptic women: a prospective study. *Acta Neurol Scand* 1992;**85**:204–207. [4393600]

Battino D, Kaneco S, Andermann E, et al. Intrauterine growth in the offspring of epileptic women: a prospective multicentre study. *Epilepsy Research* 1999;**36**:53–60. [4393601]

* Canger R, Battino D, Canevini MP, et al. Malformations

in Offspring of Women with Epilepsy: A Prospective Study. *Epilepsia* 1999;**40**(9):1231–1236. [4393602]

Cassina 2013 {published data only}

* Cassina M, Dilaghi A, Gianantonio E, et al. Pregnancy outcome in women exposed to antiepileptic drugs: teratogenic role of maternal epilepsy and its pharmacologic treatment. *Reproductive Toxicology* 2013;**39**:50–57. [4393604]

D'Souza 1990 {published data only}

* D'Souza SW, Robertson IG, Donnai D, Mawer G. Fetal phenytoin exposure, hypoplastic nails, and jitteriness. *Archives of Disease in Childhood* 1990;**65**:320–324. [4393606]

Delmiš 1991 {published data only}

* Đelmiš J, Draž anč ić A, Tkalč ević T, Ivaniševi

6 M. Epilepsy in Pregnancy [Epilepsija I Trudnoć a]. Jugosl ginekol perinatal 1991;**31**(1-2):23-26. [4393608]

Diaz-Romero 1990 {published data only}

* Diaz-Romero RM, Garza-Morales S, Mayen-Molina DG, Ibarra-Puig J, Avila-Rosas H. Facial Anthropometric Measurements in Offspring of Epileptic Mothers. *Archives of Medical Research* 1999;**30**:186–189. [4393610]

Dravet 1992 {published data only}

* Dravet C, Julian C, Legras C, et al. Epilepsy, antiepileptic drugs, and malformations in children of women with epilepsy: A French prospective cohort study. *Neurology* 1992;**42** (suppl 5):75–82. [4393612]

Eroglu 2008 {published data only}

* Eroglu E, Gokcil Z, Bek S, Hidir Ulas U, Odabasi Z. Pregnancy and teratogenicity of antiepileptic drugs. *Acta Neurol. Belg.* 2008;**108**:53–57. [4393614]

EURAP {published data only}

* Tomson T, Battino D, Bonizzoni E, Craig J, Lindhout D, Sabers A, Perucca E, Vajda F, for the EURAP study group. Dose-dependent risk of malformations with antiepileptic drugs: an analysis of data from the EURAP epilepsy and pregnancy registry. *Lancet Neurology* 2011;**10**:609–17. [4393616]

Tomson T, Battino D, Bonizzoni E, Craig JJ, Lindhout D, Perucca E, et al. Antiepileptic drugs and intrauterine death. *Neurology* 2015;**85**(7):580–8. [4393617]

Fairgrieve 2000 {published data only}

* Fairgrieve SD, Jackson M, Jonas P, Walshaw D, White K, Montgomery M, Burn J, Lynch SA. Population based, prospective study of the care of women with epilepsy in pregnancy. *British Medical Journal* 2000;**321**:674–675. [4393619]

Froscher 1991 {published data only}

* Froescher W, Herrmann R, Neisen M, Buelau P, Penin H, Hildenbrand G. The course of pregnancy and teratogenicity of antiepileptic agents in 66 patients with epilepsy [Untersuchungen zum schwangerschaftsverlauf und zer teratogenitat der antiepileptika bei 66 epilepsie– patientinnen]. *Schweizer Archiv fur neurologie und psychiatrie* 1991;**142**(5):389–407. [4393621]

Fujji 2013 {published data only}

* Fujji H, Goel A, Bernard N, Pistelli A, Yates L, Stephens S, Han J, Matsui D, Etwell F, Einarson T, Koren G, Einarson A. Pregnancy outcomes following gabapentin use: results of a prospective comparative cohort study. *Neurology* 2013;**80** (1):565–1570. [4393623]

Gaily 1988 {published data only}

Gaily E. Distal Phalangeal Hypoplasia in Children With Prenatal Phenytoin Exposure: Results of a Controlled Anthropometric Study. American Journal of Medical Genetics 1990;35:574-578. [4393627] Gaily E, Granstrom M-L, Hiilesmaa V, Bardy A. Head circumference in children of epileptic mothers: contributions of drug exposure and genetic background. Epilepsy Research 1990;5:217-222. [4393625] * Gaily E, Granstrom M-L, Hiilesmaa V, Bardy A. Minor anomalies in offspring of epileptic mothers. Journal of Pediatrics 1988;112(4):520-529. [4393626] Hilemsmaa V, Bardy AH, Teramo K. Obstetric outcome in women with epilepsy. American Journal of Obstetrics and Gynecology 1985;152(5):499-504. [4393628] Hilemsmaa V, Teramo K, Granstrom ML, Bardy AH. Serun folate concentrations during pregnancy in women with epilepsy: relation to antiepileptic drug concentrations, number of seizures and fetal outcome. British Medical Journal 1988;287:577-578. [4393629]

Garza-Morales 1996 {published data only}

* Garza-Morales S, Ibarra-Puig JM, Poblano-Luna A, Mayen-Molina G, Cordova-Lopez S. Epilepsy and pregnancy: prospective study of 100 cases [Epilepsia y embarazo. Estudio prospectivo 100 casos]. *Ginecologia U Obstetricia de Mexico* 1996;**64**:449–454. [4393631]

Goujard 1974 {published data only}

* Goujard J, Huel G, Rumeau-Rouquette C. Antiepileptics and congenital malformations [Antiepileptiques et malformations congenitales]. *Journal of Gynecology Obstetrics and Biological Reproduction* 1974;**3**:831–842. [4393633]

Hill 1974 {published data only}

* Hill RM, Verniaud WM, Horning MG, McCulley LB, Morgan NF. Infants Exposed in Utero to Antiepileptic Drugs. *American Journal of Diseases of Children* 1974;**127**: 645–653. [4393635]

Israeli Teratogen Service {published data only}

Diav-Citrin O, Shechtman S, Arnon J, et al. Is carbamazepine teratogenic? A prospective controlled study of 210 pregnancies. *Neurology* 2001;**57**:321–324. [4393637]

* Diav-Citrin O, Shechtman S, Bar-Oz B, Cantrell D, Arnon J, Ornoy A. Pregnancy Outcome after in utero Exposure to Valproate. *CNS Drugs* 2008;**22**(4):325–334. [4393638]

Ornoy A, Cohen E. Outcome of children born to epileptic mothers treated with carbamazepine during pregnancy.

Archives of Disease in Childhood 1996;**75**:517–520. [4393639]

Ornoy A, Zvi N, Arnon J, Wajnberg R, Shechtman S, Diav-Citrin O. The outcome of pregnancy following topiramate treatment: A study on 52 pregnancies. *Reproductive Toxicology* 2008;**25**:388–389. [4393640]

Jones 1989 {published data only}

* Jones KL, Lacro RV, Johnson KA, Adams J. Pattern of malformations in the children of women treated with carbamazepine during pregnancy. *The New England Journal of Medicine* 1989;**320**(25):1661–1666. [4393642]

Kaaja 2003 {published data only}

* Kaaja E, Kaaja R, Hiilesmaa V. Major malformations in offspring of women with epilepsy. *Neurology* 2003;**60**: 575–579. [4393644]

Kaneko 1999 {published data only}

* Kaneko S, Battino D, Andermann E, et al. Congenital malformations due to antiepileptic drugs. *Epilepsy Research* 1999;**33**:141–158. [4393646]

Kaneko S, Otani K, Fukushima Y, et al. Teratogenicity of antiepileptic drugs: analysis of possible risk factors. *Epilepsia* 1988;**29**(4):459–467. [4393647]

Kaneko S, Otani K, Hirano T, Kondo T, Fukushima Y, Nakamura Y, Ogawa Y, Saito Y, Kan R, Kumashiro H, Takeda A, Nakane Y, Tsuiki H, Tsurusaki M, Teranishi T, Goto M. Teratogenicity of antiepileptic drugs: is prevention possible. *The Japanese Journal of Psychiatry and Neurology* 1991;**45**(2):478–481. [4393648]

Kaneko S, Otani K, Kondo T, Fukushima Y, Kan R, Takeada A, Nakane Y. Teratogenicity of antiepileptic drugs and drug specific malformations. *The Japanese Journal of Psychiatry and Neurology* 1993;**47**(2):306–309. [4393649] Kaneko S, Otani K, Kondo T, Fukushima Y, Ogawa Y, Kan R, Takeada A, Nakene Y, Teranishi T. Malformations in infants of mothers with epilepsy. *Neurology* 1992;**42**(supp 5):68–74. [4393650]

Kelly 1984 {published data only}

* Kelly T, Edwards P, Rein M, Miller JQ, Dreifuss FE. Teratogenicity of Anticonvulsant Drugs. II: A Prospective Study. *American Journal of Medical Genetics* 1984;19: 435–443. [4393652]

Kerala Pregnancy Registry {published data only}

Begum S, Sarma S, Thomas S. Malformation in index pregnancy in women with epilepsy is not followed by recurrence in subsequent pregnancy. *Epilepsia* 2013;**54**(12): 163–167. [4393654]

* Thomas SV, Ajaykumar B, Sindhu K, et al. Cardiac Malformations Are Increased in Infants of Mothers with Epilepsy. *Pediatr Cardiol* 2008;**29**:604–608. [4393655] Thomas SV, Indrani L, Devi GC, et al. Pregnancy in women with epilepsy: preliminary results of Kerala registry of epilepsy and pregnancy. *Neurology India* 2001;**49**(1): 60–66. [4393656]

Koch 1992 {published data only}

Jager-Roman E, Deichi A, Jakob S, et al. Fetal growth, major malformations, and minor anomalies in infants born

to women receiving valproic acid. *Pediatric Pharmacology* and Therapeutics 1986;**108**:997–1004. [4393658] Koch S, Gopfert-Geyer I, Jager-Roman E, et al. [Antiepileptika wahrend der Schwangerschaft]. *Dtsch. Med.*

Wochenschr 1983;108(7):250–257. [4393659]

* Koch S, Losche G, Jager-Roman E, et al. Major and minor birth malformations and antiepileptic drugs. *Neurology* 1992;**42**(5):83–88. [4393660]

Kuhnz W, Jager-Roman E, Rating D, et al. Carbamazepine and Carbamazepine-10,11-Epoxide During Pregnancy and Postnatal Period in Epileptic Mothers and Their Nursed Infants: Pharmacokinetics and Clinical Effects. *Pediatric Pharmacology* 1983;**3**:199–208. [4393661]

Kuhnz W, Koch S, Jakob S, Hartmann A, Helge H, Nau H. Ethosuximide in epileptic women during pregnancy and lactation period. Placental transfer, serum concentrations in nursed infants and clinical status. *British Journal of Clinical Pharmacology* 1984;**18**:671–677. [4393662]

Rating D, Jager-Roman E, Koch S, et al. Major malformations and minor anomalies in the offspring of epileptic parents: The role of antiepileptic drugs. *Pharmacokinetics in Teratogenesis* 1987;**1**:205–223. [4393663]

Rating D, Nau H, Jager-Roman E, Gopfert-Geyer I, Koch S, Beck-Mannagetta G, Schmidt D, Helge H. Teratogenic and pharmacokinetic studies of primidone during pregnancy and in the offspring of epileptic women. *Acta Paediatrica Scandinavia* 1982;71:301–311. [4393664]

Laskowska 2002 {published data only}

* Laskowska M, Leszczynska-Gorzelak B, Oleszczuk J. Evaluation of the antiepileptic therapy during pregnancy [Ocena terapii przeciwpadaczkowej w okresie ciazy]. *Gin Pol.* 2002;**73**(1):35–42. [4393666]

Lindhout 1992 {published data only}

Lindhout D, Hoppener RJEA, Meinardi H. Teratogenicity of Antiepileptci Drug Combinations with Special Emphasis on Epoxidation (of Carbamazepine). *Epilepsia* 1984;**25**(1): 77–83. [4393668]

* Lindhout D, Meinardi H, Meijer JWA, Nau H. Antiepileptic drugs and teratogenesis in two consecutive cohorts: Changes in prescription policy paralleled by changes in pattern of malformations. *Neurology* 1992;**42** (5):94–110. [4393669]

Martinez Ferri 2009 {published data only}

* Martinez Ferri M, Pena Mayor P, Perez Loppez-Fraile, Castro Vilanova C, Escartin Siquier E, Martin Moro M, Forcadas Berdusan F. [Malformaciones y muerte fetal en el registro espanol de farmacos antiepilepticos y embarazo: resultados a los 6 anos]. *Neurologia* 2009;**24**(6):360–365. [4393671]

Mawer 2010 {published data only}

* Mawer G, Briggs M, Baker GA, et al. Pregnancy with epilepsy: Obstetric and neonatal outcome of a controlled study. *Seizure* 2010;**19**:112–119. [4393673]

Meador 2006 {published data only}

* Meador KJ, Baker GA, Finnell RH, et al. In utero antiepileptic drug exposure: Fetal death and malformations. Neurology 2006;67:407-412. [4393675]

Meischenguiser 2004 {published data only}

* Meischenguiser R, D'Giano CH, Ferraro SM. Oxcarbazepine in pregnancy: clinical experience in Argentina. *Epilepsy & Behaviour* 2004;**5**:163–167. [4393677]

Montreal Series {published data only}

Dansky LV, Andermann E, Rosenblatt D, Sherwin AL, Andermann F. Anticonvulsants, Folate Levels, and Pregnancy Outcome: A Prospective Study. *Annals of Neurology* 1987;**21**:176–182. [4393679]

* Oguni M, Dansky L, Andermann E, Sherwin A, Andermann F. Improved Pregnancy Outcome in Epileptic Women in the Last Decade: Relationship to Maternal Anticonvulsant Therapy. *Brain & Development* 1992;14: 371–380. [4393680]

Motherisk Registry {published data only}

Gladstone DJ, Bologa M, Maguire C, Pastuszak A, Koren G. Course of pregnancy and fetal outcome following maternal exposure to carbamazepine and phenytoin: A prospective study. *Reproductive Toxicology* 1992;**6**:257–261. [4393682] * Nulman I, Scolnik D, Chitayat D, Farkas LD, Koren G. Findings in Children Exposed In Utero to Phenytoin and Carbamazepine Monotherapy: Independent Effects of Epilepsy and Medications. *American Journal of Medical Genetics* 1997;**68**:18–24. [4393683]

North American Register {published data only}

Bokhari A, Coull BA, Holmes LB. Effect of Prenatal Exposure to Anticonvulant Drugs on Dermal Ridge Patterns of Fingers. *Teratology* 2002;**66**:19–23. [4393685] Bromfield EB, Dworetzky BA, Wyszynski DF, Smith CR, Baldwin EJ, Holmes LB. Valproate teratogenicity and epilepsy syndrome. *Epilepsia* 2008;**49**(12):2122–2124. [4393686]

Hernandez-Diaz S, Mittendorf R, Smith C, Hauser W, Yerby M, Holmes L. Association between topiramate and zonisamide use during pregnancy and low birth weight. *Obstetrics & Gynecology* 2014;**123**(1):21–28. [4393687] * Hernandez-Diaz S, Smith CR, Shen A, et al. Comparative safety of antiepileptic drugs during pregnancy. *Neurology* 2012;**78**:1692–1699. [4393688]

Holmes LB, Baldwin EJ, Smith CR, et al. Increased frequency of isolated cleft palate in infants exposed to lamotrigine during pregnancy. *Neurology* 2008;**70**: 2152–2158. [4393689]

Holmes LB, Coull BA, Dorfman J, Rosenberger PB. The correlation of deficits in IQ with midface and digit hypoplasia in children exposed in utero to anticonvulsant drugs. *The Journal of Paediatrics* 2005;**146**:118–122. [4393690]

Holmes LB, Mittendorf R, Shen A, Smith CR, Hernandez-Diaz S. Fetal Effects of Anticonvulsant Polytherapies.
Archives of Neurology 2011;68(10):1275–1281. [4393691]
Holmes LB, Rosenberger PB, Harvey EA, Khoshbin S, Ryan L. Intelligence and Physical Features of Children of Women With Epilepsy. *Teratology* 2000;61:196–202. [4393692]
Holmes LB, Wyszynski DF. North American Antiepileptic

Drug Pregnancy Registry. *Epilepsia* 2004;**45**(11):1465. [4393693]

Wyszynski DF, Nambisan M, Surve T, et al. Increase rate of major malformations in offspring exposed to valproate during pregnancy. *Neurology* 2005;**64**:961–965. [4393694]

Omtzigt 1992 {published data only}

* Omtzigt JGC, Los FJ, Grobbee DE, Pijpers L, Jahoda MGJ, Brandonburg H, Stewart P, Gaillard HLJ, Sachs ES, Wladimiroff JW, Lindhout D. The risk of spina bifida aperta after first trimester exposure to valproate in a prenatal cohort. *Neurology* 1992;**42**(supp 5):119–125. [4393696] Omtzigt JGC, Los FJ, Hagenaars AM, Stewart PA, Sachs ES, Lindhout D. Prenatal diagnosis of spina bifida aperta after first-trimester valproate exposure. *Prenatal diagnosis* 1992;**12**:893–897. [4393697]

Pardi 1982 {published data only}

* Pardi G, Como ML, Giambattista MDE, Oldrini A, Pifarotti G. Epilepsy in pregnancy: obstetric aspects of a multidisciplinary study [Epilessia e gravidanza: aspetti ostrtrici di uno studio prospettico multidisciplinare]. *Ann Ost Gin Med Perin* 1982;**CIII**:254–263. [4393699]

Richmond 2004 {published data only}

* Richmond JR, Krishnamoorthy P, Andermann E, Benjamin A. Epilepsy and pregnancy: An obstetric perspective. *American Journal of Obstetrics and Gynecology* 2004;**190**:371–379. [4393701]

Sabers 2004 {published data only}

* Sabers A, Dam M, a-Rogvi-Hansen B, et al. Epilepsy and pregnancy: lamotrigine as main drug used. *Acta Neurologica Scandinavica* 2004;**109**:9–13. [4393703]

Samren 1997 {published data only}

* Samren EB, van Duijn CN, Koch S, Hiilesmaa VK, Klepel H, Vardy AH, Beck Mannagettta G, Deichl AW, Gaily E, Granstrom ML, Meinardi H, Grobbe DE, Hofman A, Janz D, Lindhout D. Maternal use of antiepileptic drugs and the risk of major congenital malformations: A joint European prospective study of human teratogenesis associated with maternal epilepsy. *Epilepsia* 1997;**38**(9): 981–990. [4393705]

Shapiro 1976 {published data only}

* Shapiro S, Hartz S, Siskind V, et al. Anticonvulsants and parental epilepsy in the development of birth defects. *The Lancet* 1976;1(7954):272–275. [4393707]

Steegers-Theunissen 1994 {published data only}

* Steergers-Theunissen RPM, Renier WO, Borm GF, et al. Factors influencing the risk of abnormal pregnancy outcome in epileptic women: A multi-centre prospective study. *Epilepsy Research* 1994;**18**:261–269. [4393709]

Tanganelli 1992 {published data only}

Regesta G, Tanganelli P. The risk of malformations and developmental disturbances in children exposed to antiepileptic drugs: a prospective controlled study. *Boll Lega It Epil* 1996;**95/96**:351–354. [4393711]

* Tanganelli P, Regesta G. Epilepsy, pregnancy, and major birth anomalies: An Italian prospective, controlled study. *Neurology* 1992;**42**(5):89–93. [4393712]

Torres 1995 {published data only}

* Torres LC, Felix R, Canun S, Mazon JJ. Epilepsy and pregnancy. Risks and benefits of anticonvulsant treatments [Epilepsia y embarazo. Riegos y beneficios del tratamiento anticonvulsivo]. *Ginecologia y obstetricia de mexico* 1995;**68**: 282–286. [4393714]

UK Register {published data only}

Campbell E, Devenney E, Morrow J, et al. Recurrence risk of congenital malformations in infants exposed to antiepileptic drugs in utero. *Epilepsia* 2013;**54**(1):165–171. [4393716]

* Campbell E, Kennedy F, Russell A, et al. Malformation risks of antiepileptic drug monotherapies in pregnancy: updated results from the UK and Ireland epilepsy and pregnancy registers. *J Neurol Neurosurg Psychiatry* 2014;**0**: 1–6. [4393717]

Hunt S, Craig J, Russell A, et al. Levetiracetam in pregnancy: Preliminary experience from the UK Epilepsy and Pregnancy Register. *Neurology* 2006;**67**:1876–1879. [4393718]

Hunt S, Russell A, Smithson WH, et al. Topiramate in pregnancy. *Neurology* 2008;**71**:272–276. [4393719] Mawhinney E, Campbell J, Craig J, et al. Valproate and the risk for congenital malformations: Is formulation and dosage regime important?. *Seizure* 2012;**21**:215–218. [4393720]

Mawhinney E, Craig J, Morrow J, et al. Levetiracetam in pregnancy: Results from the UK and Ireland epilepsy and pregnancy registers. *Neurology* 2013;**80**:400–405. [4393721]

Morrow J, Russell A, Guthrie E, et al. Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK Epilepsy and Pregnancy Register. *J Neurol Neurosurg Psychiatry* 2006;77:193–198. [4393722]

Waters 1994 {published data only}

* Waters CH, Belai Y, Gott PS, Shen P, DeGiorgio CM. Outcomes of Pregnancy Associated With Antiepileptic Drugs. *Arch Neurol* 1994;**51**:250–253. [4393724]

Wide 2000 {published data only}

* Wide K, Winbladh B, Tomson T, Sars-Zimmer K, Berggren E. Psychomotor development and minor anomalies in children exposed to antiepileptic drugs in utero: a prospective population-based study. *Developmental Medicine & Child Neurology* 2000;**42**:87–92. [4393726]

Yerby 1992 {published data only}

* Yerby MS, Leavitt A, Erickson DM, et al. Antiepileptics and the development of congenital anomalies. *Neurology* 1992;**42**(5):132–140. [4393728]

References to studies excluded from this review

Annegers 1974 {published data only}

* Annegers J, Elveback L, Hauser W, Kurland L. Do anticonvulsants have a teratogenic effect?. Archives of Neurology 1974;**31**:364–373. [4393730] Annegers J, Elveback L, Hauser W, Kurland L. Epilepsy anticonvulsants and malformations. Birth defects original article series 1975;**11**(5):157–160. [4393731]

Artama 2013 {published data only}

Artama M, Gissler M, Malm H, Ritvanen A, The Drug and Pregnancy Group. Effects of Maternal Epilepsy and Antiepileptic Drug Useduring Pregnancy on Perinatal Health in Offspring:Nationwide, Retrospective Cohort Study in Finland. *Drug Safety* 2013;**36**:359–369. [4393733]

Arteaga-Vazques 2012 {published data only}

Arteaga-Vazquez J, Luna-Munoz L, Mutchinick OM. Congenital malformations in the offspring of epileptic mothers with and without anticonvulsant treatment [Malformaciones congenitas en hijos de madres epilepticas con y sin tratmiento con anticonvulsivantes]. *Salud Publica Mexico* 2012;**54**:579–86. [4393735]

Baermig 1973 {published data only}

Baermig H. Epilepsy and pregnancy. *Geburtshilfe und Frauenheilkunde* 1973;**33**:203–204. [4393737]

Canun-Serrano 1986 {published data only}

Canun-Serrano S, Zafra-De La Rosa G, Landeros-Velazquez G, Givaudan-Moreno M. Anticonvulsants in pregnancy [Anticonvulsivos y embarazo]. *Bol Med Hol Infant Mex* 1986;**43**(4):219–227. [4393739]

Castilla-Puentes 2014 {published data only}

Castilla-Puentes R, Ford L, Manera L, Kwarta R, Ascher S, Li Q. Topiramate monotherapy use in women with and without epilepsy: Pregnancy and neonatal outcomes. *Epilepsy Research* 2014;**108**:717–724. [4393741]

Dobos 1985 {published data only}

Dobos M, Schuler D, Marosfi S, Bogathy B. Congenital malformations reported in children born to women with epilepsy [Veleszuletett fejlodesi rendellenessegek visagalata epilepszias anyak utodaiban]. *Orvosi Hetilap* 1985;**126**(37): 2267–72. [4393743]

Elshove 1971 {published data only}

Elshove J, van Eck, J. Congenital abnormalities, cleft lip and cleft palate in particular, in children of epileptic mothers [Aangeboren misvormingen, met name gespleten lip met of zonder gespleten verhemelte, bij kinderen van moeders met epilepsie]. *Nederlands Tijdschrift voor Geneeskunde* 1971; **115**(33):1371–5. [4393745]

Holmes 1994 {published data only}

Holmes L, Harvey E, Brown K, Hayes A, Khoshbin S. Anticonvulsant teratogenesis: 1. A study design for newborn infants. *Teratology* 1994;**49**:202–207. [4393747]

Jacobsen 2014 {published data only}

Jacobsen P, Henriksen T, Haubek D, Ostergaard J. Developmental Enamel Defects in Children Prenatally Exposed to Anti-Epileptic Drugs. *PLos One* 2013;**8**(3): e58213. [4393749]

Jacobsen P, Henriksen T, Haubek D, Ostergaard J. Prenatal Exposure to Antiepileptic Drugs and Dental Agenesis. *PLos ONE* 2014;**9**(1):e84420. [4393750]

Knight 1975 {published data only}

Knight A, Rhind E. Epilepsy and pregnancy: A study of 153 pregnancies in 59 patients. *Epilepsia* 1975;**16**:99–110. [4393752]

Lamotrigine Pregnancy Register {published data only}

Cunnington M. The International Lamotrigine Pregnancy Registry Update for the Epilepsy Foundation. *Epilepsia* 2004;**45**(11):1468. [4393755]

Cunnington M, Ferber S, Quartey G, International LamotriginePregnancy Registry Scientific Advisory Committee. Effect of Dose on the Frequency of Major Birth Defects Following Fetal Exposure to Lamotrigine Monotherapy in an International Observational Study. *Epilepsia* 2007;**48**(6):1207–1210. [4393754] Lamotrigine Pregnancy Registry. Final report. http://pregnancyregistry.gsk.com/documents/ lam'spring '2010' final' report.pdf 2010. [4393756] Tennis P, Eldridge R, International Lamotrigine Pregnancy Registry Scientific Advisory Committee. Preliminary Results on Pregnancy Outcomes in Women Using Lamotrigine. *Epilepsia* 2002;**43**(10):1161–1167. [4393757]

Miskov 2009 {published data only}

Miskov S, Gjergja-Juraski R, Cvitanovic-Sojat L, et al. Prospective surveillance of Croatian pregnant women on lamotrigine monotherapy - Aspects of pre-pregnancy counseling and drug monitoring. *Acta Clinica Croatica* 2009;**48**(3):271–281. [4393759]

Monson 1973 {published data only}

Monson R, Rosenberg L, Hartz S, et al. Diphenylhydantoin and selected congenital malformations. *The New England Journal of Medicine* 1973;**289**(20):1049–1052. [4393761]

Montouris 2003 {published data only}

Montouris G. Gabapentin exposure in human pregnancy: results from the Gabapentin pregnancy registry. *Epilepsy and Behavior* 2003;4:310–317. [4393763]

Mostacci 2014 {published data only}

Mostacci B, Piccinni C, Bisulli F, et al. Prevalence of antiepileptic drugs exposure in pregnant women in the emilia romagna region (Italy): Results from the espea (emilia romagna study on pregnancy and exposure to antiepileptic drugs). Epilepsia. 2014; Vol. 555:131–132. [4393765]

Nakane 1980 {published data only}

Murasaki O, Yoshitake K, Tachiki H, Nakane Y, Kaneko S. Reexamination of the teratological effect of antiepileptic drugs. *The Japanese Journal of Psychiatry and Neurology* 1988;**42**(3):592–593. [4393767]

* Nakane Y, Okuma T, Takahashi R, Sato Y, Wada T, Sato T, Fukushima Y, Kumashiro H, Ono T, Takahasi T, Aoki Y, Kazamatsuri H, Masaaki I, Komai S, Seino M, Miyakoshi, Tanimura T, Hazama H, Kawahara R, Otsuki S, Hosokawa K, Inanaga, Nakazawa, Yamamoto K. Multi-institutional study on the teratogenicity and fetal toxicity of antiepileptic drugs: a report of a collaborative study group in Japan. *Epilepsia* 1980;**21**:663–680. [4393768]

Nakane Y. Congenital malformation among infants of epileptic mothers treated during pregnancy: the report of a collaborative study group in Japan. *Folia Psychiatrica et Neurologica Japonica* 1979;**33**(3):363–369. [4393769]

Pearse 1992 {published data only}

Pearse SB, Garcia Rodriguez LA, Hartwell C, Russell G. A Pregnancy Register of Patients Receiving Carbamazepine in the UK. *Pharmacoepidemiology and Drug Safety* 1992;**1**: 321–325. [4393771]

Robert 1983 {published data only}

Robert E, Robert J, Lapras C. Is valproic acid teratogenic? [L'acide valproique est-il teratogene?]. *Revue Neurologique* 1983;**139**(6-7):445–447. [4393773]

Starveld-Zimmerman 1975 {published data only}

Starveld-Zimmerman A, van der Kolk W, Elshove J, Meinardi H. Teratogenicity of antiepileptic drugs. *Clinical Neurology and Neurosurgery* 1975;77(2):81–95. [4393775]

Veiby 2014 {published data only}

Veiby G, Daltveit A, Engelsen B, Gilhus N. Fetal growth restriction and birth defects with newer and older antiepileptic drugs during pregnancy. *Journal of Neurology* 2014;**261**:579–588. [4393777]

References to studies awaiting assessment

Babic 2014 {published data only}

Babic N, Jovic N. Postnatal concerns in children born to women with juvenile myoclonic epilepsy. Epilepsia. 2014; Vol. 55:128. [4393779]

Idriz-Oglu 2014 {published data only}

Idriz Oglu Gulcebi M, Kucukibrahimoglu E, Demirkapi M, Gulhan R, Karaalp A, Goren Z, Onat F. Evaluation of antiepileptic drug use in the pregnant patients with epilepsy in a university hospital in Istanbul. Epilepsia. 2014; Vol. 55:116–117. [4393781]

Jones 1992 {published data only}

Jones KL, Johnson KA, Chambers CC. Pregnancy outcome in women treated with phenobarbital monotherapy. *Tenatology* 1992;**45**:452–453. [4393783]

Kaabi 2013 {published data only}

Kaabi W, El Aidli S, Kastalli S, Lakhoua G, Zaiem A, Srairi S, Daghfous R. Pregnancy outcomes in women using antiepileptic drugs. Drug Safety. 2013; Vol. 36:9. [4393785]

Kutlu 2013 {published data only}

Kutlu G, Erdal A, Aydogan S, Gomceli Y, Inan L. Follow up and treatment of women with epilepsy during pregnancy. Epilepsia. 2013; Vol. 54:127–128. [4393787]

Lazzaroni Fossati 1986 {published data only}

Lazzaroni-Fossati F, De Toni T, Magnani M, Repetto E, Calvi A, Di Siena G. Intrauterine exposure to drugs. Analysis of a sample of newborn infants pretreated with anticonvulsants [ESPOSIZIONE IN UTERO A FARMACI]. *Minerva pediatrica* 1986;**38**(3-4):75–81. [4393789]

Midi 2014 {published data only}

* Midi I, Bulut B, Ozbek D, Ozden H, Agan K. Antiepileptic drug usage and the effects of them on the foetus in epileptic pregnant woman. Epilepsia. 2014; Vol. 55:132. [4393791]

Midi I, Cetinkaya D, Ozden H, Agan K. Pregnant women with epilepsy: 43 patients results in 1 year period. Epilepsia. 2013; Vol. 54:131. [4393792]

Shvartzman 1986 {published data only}

Shvartzman P, Oren B, Keinan A, Adar H. Congenital malformations and anticonvulsant therapy in pregnancy. *Harefuah* 1986;**110**(8):377–80. [4393794]

Vlasov 2014 {published data only}

Vlasov P, Petrukhin V, Karlov V, Krasnopolski V, Melnikov A, Tsivtsivadze E. Antiepileptic drug therapy during pregnancy and obstetric outcomes in Moscow region: Comparing of 1998 and 2013 years. Epilepsia. 2014; Vol. 55:130. [4393796]

Additional references

Ackers 2009

Ackers R, Besag FMC, Wade A, Murray ML, Wong ICK. Changing trends in antiepileptic drug prescribing in girls of child-bearing potential. *Archives of Disease in Childhood* 2009;**94**:443-447.

Adab 2004

Adab N, Tudur Smith C, Vinten J, Williamson PR, Winterbottom JB. Common antiepileptic drugs in pregnancy in women with epilepsy. *Cochrane Database* of *Systematic Reviews* 2004, Issue 4. [DOI: 10.1002/ 14651858.CD004848]

Alsaad 2015

Alsaada AMS, Chaudhry SA, Koren G. First trimester exposure to topiramate and the risk of oral clefts in the offspring: A systematic review and meta-analysis.. *Reproductive Toxicology* 2015;**53**:45–50.

Ardinger 1988

Ardinger HH, Atkin JF, Blackston RD, Elsas LJ, Clarren SK, Livingstone S, Flannery DB, Pellock JM, Harrod MJ, Lammer EJ, Majewska F, Schinzel A, Tonello HV, Hanson JW. Verification of the fetal valproate syndrome phenotype. *American Journal of Medical Genetics* 1988;**29**:171–185.

Artama 2005

Artama M, Auvinen A, Raudaskoski T, Isoja rvi I, Isoja

^a rvi J. Antiepileptic drug use of women with epilepsy and congenital malformations in offspring. *Neurology* 2005;**64**: 1874–1878.

Bossi 1982

Bossi L. Neonatal period including drug disposition in new borns: review of the literature. In: Janz D, Dam M, Richens A, Bossi L, Helge H, Schmidt D editor(s). *Epilepsy. Pregnancy and the Child*. New York: Ravens Press, 1982: 327–42.

Brent 2004

Brent RL. Environmental Causes of Human Congenital Malformations: The Pediatrician's Role in Dealing With These Complex Clinical Problems Caused by a Multiplicity of Environmental and Genetic Factors. *Pediatrics* 2004;**113** (4):957–968.

Bromley 2014

Bromley R, Weston J, Adab N, Greenhalgh J, Sanniti A, McKay AJ, Tudur Smith C, Marson AG. Treatment for epilepsy in pregnancy: neurodevelopmental outcomes in the child. *Cochrane Database of Systematic Reviews* 2014, Issue 10. [DOI: 10.1002/14651858.CD010236.pub2]

Charlton 2008

Charlton RA, Cunnington MC, de Vries CS, Weil JG. Data resources for investigating drug exposure during pregnancy and associated outcomes: the general practice research database (GPRD) as an alternative to pregnancy registries. *Drug Safety* 2008;**31**(1):39–51.

Charlton 2014

Charlton RA, Neville AJ, Jordan S, Pierini P, Damase-Michel C, Klungsøyr K, Nybo Andersen A-M, Vinkel Hansen A, Gini R, Bos JHJ, Puccini A, Hurault-Delarue C, Brooks CJ, de Jong-van den Berg LTW, de Vries CS. Healthcare databases in Europe for studying medicine use and safety during pregnancy. *Pharmacoepidemiology and drug safety* 2014;**23**(6):586–94.

Chaudhry 2014

Chaudhry SA, Jong Gt, Koren G. The fetal safety of Levetiracetam: a systematic review. *Reproductive Toxicology* 2014;**46**:40–45.

Dean 2000

Dean JCS, Moore SJ, Turnpenny PD. Developing diagnostic criteria for the fetal anticonvulsant syndromes. *Seizure* 2000;**9**:233-234.

DiLiberti 1983

DiLiberti JH. Fetal valproate syndrome: consistent facial changes in infants exposed to sodium valproate. *Clinical Research* 1983;**31**(1):127A.

EURAP STUDY GROUP 2006

The EURAP STUDY GROUP. Seizure control and treatment in pregnancy: Observations from the EURAP Epilepsy Pregnancy Registry. *Neurology* 2006;**66**:354–360.

EUROCAT

EUROCAT Working Group. EUROCAT Surveillance of Congenital Anomalies. EUROCAT guide 1.3 and reference documents instructions for the registration and surveillance of congenital anomalies. http://www.eurocat-network.eu/ content/EUROCAT-Guide-1.3.pdf Accessed August 2015.

Guyatt 2008

Guyatt GH, Oxman AD, Vist G, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. for the GRADE Working Group. Rating quality of evidence and strength of recommendations GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ* 2008; **336**:924–6.

Hauser 1990

Hauser W, Hesdorffer D. *Epilepsy: Frequency, causes and consequences.* New York: Demos Publications, 1990.

Higgins 2011

Higgins JPT, Green S (editors). *Cochrane Handbook for Systematic Reviews of Interventions* Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.cochrane-handbook.org.

Jentink 2010

Jentink J, Loane MA, Dolk H, Barisic I, Garne E, Morris JK, et al. Valproic acid monotherapy in pregnancy and major congenital malformations. *New England Journal of Medicine* 2010;**362**:2185–93.

Jentink 2010b

Jentink J, Dolk H, Loane MA, Morris JK, Wellesley D, Garne E, de Jong-van den Berg L, for the EUROCAT Antiepileptic Study Working Group. Intrauterine exposure to carbamazepine and specific congenital malformations: systematic review and case-control study. *British Medical Journal* 2010;**341**:c6581.

Ku 2011

Ku CS, Naidoo N, Wu M, Soong R. Studying the epigenome using next generation sequencing. *Journal of Medical Genetics* 2011;**48**(11):721–730.

Man 2012

Man S-L, Petersen I, Thompson M, Nazareth I. Antiepileptic Drugs during Pregnancy in Primary Care: A UK Population Based Study. *PLoS One* 2012;7:e52339.

Margulis 2012

Margulis AV, Mitchell AA, Gilboa SM, Werler MM, Mittleman MA, Glynn RJ, Hernandez-Diaz S and National Birth Defects Prevention Study. Use of topiramate in pregnancy and risk of oral clefts. *American Journal of Obstetrics and Gynecology* 2012;**207**(5):405.e1-405.e7.

Meador 2008

Meador K, Reynolds MW, Crean S, Fahrbach K, Probst C. Pregnancy outcomes in women with epilepsy: A systematic review and meta-analysis of published pregnancy registries and cohorts. *Epilepsy Research* 2008;**81**:1–13.

Meador 2009

Meador KJ, Penovich P, Baker GA, Pennell PB, Bromfield E, Pack A, Liporace JD, Sam M, Kalayjian LA, Thurman DJ, Moore E, Loring DW, for the NEAD Study Group. Antiepileptic drug use in women of childbearing age. *Epilepsy and Behaviour* 2009;**15**:339–43.

Mines 2014

D Mines, Tennis P, Curkendall SM, Li D, Peterson C, Andrews EB, Calingaert B, Chen H, Deshpande G, Esposito DB, Everage N, Holick CN, Meyer NM, Nkhoma ET, Quinn S, Rothman KJ, Chan KA. Topiramate use in pregnancy and the birth prevalence of oral clefts. *Pharmacoepidemiology and drug safety* 2014;**23**:1017-1025.

Mølgaard-Nielsen 2011

Mølgaard-Nielsen D, Hviid A. Newer-Generation Antiepileptic Drugsand the Risk of Major Birth Defects. *JAMA* 2011;**305**(19):1996–2002.

Tomson 2011

Tomson T, Battino D, Bonizzoni E, Craig J, Lindhout D, Sabers A, et al. Dose-dependent risk of malformation with antiepileptic drugs: An analysis of data from the EURAP

epilepsy and pregnancy registry. *Lancet Neurology* 2011;**10** (7):609–17.

Wen 2015

Wen X, Meador K, Hartzema A. Antiepileptic drug use by pregnant women enrolled in Florida Medicaid. *Antiepileptic drug use by pregnant women enrolled in Florida Medicaid* 2015;**84**:1–7.

Wide 2004

Wide K, Winbladh B, Kallen B. Major malformations in infants exposed to antiepileptic drugs in utero, with emphasis on carbamazepine and valproic acid: a nationwide, population-based register study. *Acta Paediatrica* 2004;**93**:174–176.

Yerby 1994

Yerby MS. Pregnancy, teratogenesis and epilepsy. *Neurological Clinics* 1994;**12**(4):749–71.

References to other published versions of this review

Pulman 2012

Pulman J, Bromley R, Adab N, Greenhalgh J, McKay AJ, Tudur Smith C, Dickson RC, Marson AG. Treatment for epilepsy in pregnancy: congenital malformation outcomes in the child. *Cochrane Database of Systematic Reviews* 2012, Issue 11. [DOI: 10.1002/14651858.CD010224]

* Indicates the major publication for the study

CHARACTERISTICS OF STUDIES

Characteristics of included studies [ordered by study ID]

Al Bunyan 1999

Methods	A single-centre prospective registry study (Saudi Arabia)
Participants	79 children enrolled, all were analysed.
Interventions	Intervention group (monotherapy): 1) CBZ (N = 31) 2) PHT (N = 9) 3) VPA (N = 5) 4) PB (N = 2) Control group: 1) Women with epilepsy not taking any AEDs (N = 10)
Outcomes	 Apgar score Birth weight Birth length Head circumference Congenital malformations Pregnancy outcome AEDs were analysed together.
Notes	Protocol requested - no response received

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	Unclear risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 4 as some confounders were consid- ered but not adjusted for
Blinding	High risk	Rated 5 as no methods of blinding em- ployed
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 1 as no missing data
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective report- ing, no protocol available

Al Bunyan 1999 (Continued)

Other bias	High risk	Rated 5 as dose not investigated, unclear gestational age at enrolment, unclear if chil- dren with genetic syndromes were excluded
Arulmozhi 2006		
Methods	A prospective study (India)	
Participants	63 children enrolled in the study. 60 children reviewed and analysed:1) Offspring of women taking AEDs- 30 children2) Offspring of women without epilepsy	
Interventions	Intervention group: 1) CBZ (N = 7) 2) PHT (N = 18) 3) VPA (N = 3) Control group: 1) no medication (in women without epilepsy) (N = 30)	
Outcomes	 Physical growth Psychomotor development Congenital malformations AEDs were analysed together. 	
Notes	Of the 3 children not analysed, 2 were lost to follow-up after delivery and 1 was aborted Protocol requested - no response received.	

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 4 as some confounders were considered but not adjusted for
Blinding	Unclear risk	No details of blinding in text
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data, unlikely to affect outcome
Selective reporting (reporting bias)	Unclear risk	Rated 3 as malformation data reported in narrative form, it was not stipulated in the methods section that the out- comes would be reported, only birthweight and head cir-

Arulmozhi 2006 (Continued)

		cumference etc	
Other bias	High risk	Rated 5 as AEDs not analysed separately, no consideration of dose of AED, unclear if children with genetic syndromes were excluded	
Australian			
Methods	A prospective study (Australi	a)	
Participants	 Women with epilepsy treat Women in whom AED w 	1317 pregnancies were examined including:-1) Women with epilepsy treated with AED2) Women in whom AED was prescribed for other non-epilepsy indications3) Women untreated at least in the first half of their pregnancy	
Interventions	Intervention groups (monotherapy): 1) CBZ (N = 361) 2) VPA (N = 271) 3) LTG (N = 315) 4) TPM (N = 44) 5) PHT (N = 44) 6) LEV (N = 63) 7) OXC (N = 12) 8) PB (N = 5) 9) GBP (N = 14) Control group: 1) Women with epilepsy not taking any AEDs (N = 147)		
Outcomes	1) Incidence of malformations- AEDs were analysed separately		
Notes	Protocol received. Personal communication received regarding number of specific mal- formation by monotherapy		
Risk of bias			
Bias	Authors' judgement	Support for judgement	

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Low risk	Rated 2 as most important confounders considers and adjusted for appropriately in analyses
Blinding	High risk	Rated 5 as outcome assessors unblinded as assessments completed by family physician

Australian (Continued)

Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data reported over 3 key papers
Selective reporting (reporting bias)	Low risk	Rated 1 as no evidence of selective reporting, protocol available
Other bias	High risk	Rated 5 as some cases enrolled following a scan (out- come maybe known) and no information reported as to whether they exclude children with genetic syn- dromes

Bag 1989

Methods	A prospective study (India)
Participants	30 pregnant epileptic patients were enrolled. All 30 were taking AED treatment, and all were analysed
Interventions	Intervention group (monotherapy): 1) PHT (N = 20) 2) CBZ (N = 4)
Outcomes	 Seizure frequency Serum drug and hormone (oestrogen and progesterone) levels Congenital abnormalities Pregnancy outcome AEDs were analysed separately.
Notes	There were 2 spontaneous abortions. Study authors' contact details could not be found

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 4 as some confounders were considered but not adjusted for
Blinding	Unclear risk	No details of blinding in text
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as only small amount of missing data, unlikely to affect outcome

Bag 1989 (Continued)

Unclear risk	Rated as 3 Limited information regarding a priori out- comes and protocol not available	
High risk	Rated 5 unclear of gestational age at enrolment, unclear if children with genetic syndromes were excluded	
A prospective study (Jordan)		
	re enrolled. All were receiving various drug therapies for fspring of all women were analysed	
Intervention group (monotherapy): 1) Carbamazepine (N = 16) Control group: 1) Women with epilepsy not taking any AEDs (N = 18)		
 Seizure frequency Pregnancy outcome Minor congenital abnormalities Major congenital abnormalities AEDs were analysed separately. 		
Control group were not randomised but intervention group were Protocol requested - no response received.		
Risk of bias		
Authors' judgement	Support for judgement	
Unclear risk	No details in text regarding randomisation method	
Unclear risk	No details in text regarding methods of allocation con- cealment	
	High risk A prospective study (Jordan) 50 women with epilepsy were epilepsy management. The offer offer states and the second states and the se	

Confounding variables	Unclear risk	Rated Unclear as intervention group were randomised but control group were not
Blinding	Unclear risk	Rated unclear no details in text
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 1 as no missing data
Selective reporting (reporting bias)	High risk	Rated 3 limited information regarding a priori outcomes. No protocol available

Barqawi 2005 (Continued)

Other bias	High risk	Rated 5 as dose not investigated, unclear gestational age at enrolment, unclear whether children with genetic con- ditions were excluded
Bozhinova 2009		
Methods	A prospective study (Bulgaria)	
Participants	Pregnancies and deliveries of 107 women with epilepsy were monitored between 1996 and 2007; 5 women reported malformations of the foetus and baby	
Interventions	Intervention group (monotherapy): 1) VPA (N = 2) 2) CBZ (N = 1) Control Group: 3) Women with epilepsy not taking AED	
Outcomes	1) Major malformations 2) Death	
Notes	Study authors' contact details details of outcome by individu	could not be found. Reported in narrative form only as 1al AED are not given

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 5 as no confounding variables considered or adjusted for
Blinding	Unclear risk	Rated unclear no details in text
Incomplete outcome data (attrition bias) All outcomes	High risk	Rated 5 as no information provided regarding missing data
Selective reporting (reporting bias)	Unclear risk	Rated 3 as limited information regarding a priori out- comes, no protocol available
Other bias	High risk	Rated 5 as AEDs not reported separately, no figures reported for individual drug groups, no investigation of dose, unclear gestational age at enrolment, unclear if children with genetic conditions were excluded

Canger 1999

Methods	A prospective study (Italy)
Participants	517 women were enrolled, totaling an overall 628 pregnancies. Only the first pregnancies of each of the 517 women were included in analysis
Interventions	Intervention group (monotherapy): 1) PB (N = 83) 2) CBZ (N = 113) 3) PRM (N = 35) 4) PHT (N = 31) 5) VPA (N = 44) Control group: 1) Women with epilepsy not taking any AEDs (N = 25)
Outcomes	 Pregnancy outcome Birth weight Head circumference Severe malformations Mild malformations Deformities Malformations specific to a) Cardiac, b) Gastrointestinal, c) Neural tube defects Perinatal deaths AEDs were analysed separately
Notes	58 pregnancies that had ended with early spontaneous (N = 38) or early voluntary (N = 20) abortions were excluded from the analysis Linked to Battino 1992 and Battino 1999 Study authors' contact details count not be found

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 4 as many important confounding variables were considered however none were adjusted for in analysis
Blinding	Unclear risk	Rated unclear no details in text
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data with reasons given, unlikely to affect outcome
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective reporting, no protocol available but clear outcomes outlined in methods

Canger 1999 (Continued)

Other bias	Low risk	Rated 1 as no other bias identified
Cassina 2013		
Methods	A prospective study (Italy)
Participants	 1562 pregnant women were recruited to the study:- 1) Pregnant women with epilepsy taking AEDs (N = 385) 2) Pregnant no medication (in women without epilepsy) taking AEDs therapy (310) 3) no medication (in women without epilepsy) (N = 867) 	
Interventions	Intervention group (monotherapy, with known malformation outcomes, limited to women with epilepsy): 1) VPA (N = 45) 2) CBZ (N = 88) 3) PB (N = 67) 4) LTG (N = 26) Control group: 1) no medication (in women without epilepsy) (N = 803)	
Outcomes	 Major congenital malformation Twin gestation Foetus born with chromosomal abnormalities Spontaneous abortion Elective termination of pregnancy Foetal death or still birth AEDs were analysed separately 	
Notes	Protocol requested - protocol received.	
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Unclear risk	Rated 3 as some confounders considered and adjusted for appropriately in analyses
Blinding	High risk	Rated 5 as outcome assessors unblinded as assessments

Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data with reasons given

completed by family physician

Cassina 2013 (Continued)

Bias	Authors' judgement	Support for judgement	
Risk of bias			
Notes	Protocol requested - autho given	Protocol requested - authors unable to provide protocol but description of study plan given	
Outcomes	 2) Incidence of hypoplastic 3) Neonatal conditions (space) 	 Congenital abnormalities Incidence of hypoplastic nails Neonatal conditions (specifically "jitteriness") AEDs were analysed separately. 	
Interventions	 1) PHT (N = 22) 2) CBZ (N = 3) 3) PB (N = 4) Control group: 1) Women with epilepsy no 	2) CBZ (N = 3) 3) PB (N = 4)	
Participants	controls (N = 62):- 1) Offspring of women wit 2) Offspring of women wit 3) Offspring of women wit	 61 infants born to mothers with epilepsy. Non-epileptic mothers were selected as matched controls (N = 62):- 1) Offspring of women with epilepsy exposed to AEDs throughout pregnancy (N = 49) 2) Offspring of women with epilepsy exposed to AEDs only in first trimester (N = 4) 3) Offspring of women with epilepsy not exposed to AEDs (N = 8) 4) Offspring of no medication (in women without epilepsy) (N = 62) 	
Methods	A prospective study (UK).		
D'Souza 1990			
Other bias	High risk	Rated 5 unclear gestational age at enrolment, unclear if children with genetic conditions were excluded	
Selective reporting (reporting bias)	Low risk	Rated 1 as no evidence of selective reporting, protocol avail- able	

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Unclear risk	Rated 3 as some confounders considered but several im- portant confounders not considered and adjusted for
Blinding	Low risk	Rated 2 as outcome assessor blinded

D'Souza 1990 (Continued)

Low risk	Rated 1 as no missing data
Low risk	Rated 2 as no evidence of selective reporting, no protocol available
High risk	Rated 5 did not investigate dose, unclear if child with ge- netic syndrome was excluded
A prospective study (Croat	ia)
134 infants born to women with epilepsy (N = 132). Although 7 women with epilepsy were excluded from this review as they were receiving polytherapy. Therefore 127 infants born to pregnant women with epilepsy 503 infants born to no medication (in women without epilepsy) (N = 499)	
Intervention group (monotherapy): 1) PB (N = 58) 2) CBZ (N = 18) 3) PRM (N = 9) Control group: 1) Women with epilepsy not taking any AEDs (N = 10)	
 Major congenital malformation Specific malformations (heart, skeletal, urogenital, cleft lip and palate and cleft spine) Neonatal complications Complication during pregnancy and delivery AEDs were analysed separately. 	
Study authors' contact details could not be found.	
Authors' judgement Support for judgement	
High risk	High in bias due to non-randomised design
High risk	High in bias due to non-randomised design
Unclear risk	Rated 3 as some confounders considered but no adjust- ment employed
	ment employed
	Low risk High risk A prospective study (Croat 134 infants born to womer were excluded from this rev born to pregnant women w 503 infants born to no mea Intervention group (monot 1) PB (N = 58) 2) CBZ (N = 18) 3) PRM (N = 9) Control group: 1) Women with epilepsy no 1) Major congenital malfor 2) Specific malformations (2) Neonatal complications 3) Complication during pr AEDs were analysed separa Study authors' contact deta High risk High risk

Delmiš 1991 (Continued)

Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 1 as no reported missing data
Selective reporting (reporting bias)	Unclear risk	Rated 3 as limited information regarding a priori out- comes, protocol not available
Other bias	High risk	Rated 5 as no investigation of dose, gestational age at enrolment is unclear, unclear if excluded genetic syn- dromes
Diaz-Romero 1990		
Methods	A prospective study (Mexic	o)
Participants		pileptic mothers were studied. These were compared with a of mothers without epilepsy
Interventions	Intervention group (monotherapy): 1) CBZ (N = 26) 2) PHT (N = 21) 3) VPA (N = 10) 4) PHT (N = 2) Control group: 1) Women with epilepsy not taking any AEDs (N = 8)	
Outcomes	1) Facial anthropometric measurements AEDs were analysed separately.	
Notes	All newborns in the intensive care unit, and those with congenital malformations with a different specific recognisable aetiology were excluded Study authors' contact details could not be found.	
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Unclear risk	Rated 3 as limited confounding variables adjusted for
Blinding	Unclear risk	Rated unclear as no details of blinding in text
Incomplete outcome data (attrition bias) All outcomes	High risk	Rated 5 as no details given regarding the number re- cruited

Diaz-Romero 1990 (Continued)

Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective reporting, no proto- col available	
Other bias	High risk	Rated 5 as dose not investigated, unclear gestational age at enrolment, unclear if children with genetic syndromes were excluded	
Dravet 1992			
Methods	A prospective study (France).	A prospective study (France).	
Participants	the study. Out of these, some	281 pregnant women with epilepsy treated or not treated with AEDs were included in the study. Out of these, some were lost to follow-up (N = 35), some miscarried (N = 12), and some terminated pregnancy (N = 7). 227 outcomes of pregnancy were evaluated overall (229 infants)	
Interventions	Intervention groups (monotherapy): 1) 1 AED (N = 128) Control group: 3) No AED (N = 14)		
Outcomes	2) Change in seizure frequent3) Relationship between type	 Malformations (broken down into specific malformations) Change in seizure frequency during first trimester (in 50 women) Relationship between type of epilepsy and malformations Relationship between treatment and malformations 	
Notes	Protocol requested - author unable to provide protocol. Not included in meta-analysis or narrative reporting as numbers of individual AEDs not available		

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Unclear risk	Rated 3 as several considered and adjusted for appropri- ately
Blinding	Unclear risk	Rated unclear as no details of blinding in text
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as only small amount of missing data, unlikely to affect outcome
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective reporting, no protocol available

Dravet 1992 (Continued)

Other bias	High risk	Rated 5 as drug data were separated but not clear on numbers, no examination of dose, unclear gestational age at enrolment, unclear whether children with genetic syndromes were excluded
Eroglu 2008		
Methods	A prospective study (Turk	ey)
Participants	84 pregnant women with were all analysed	epilepsy were enrolled; the 80 pregnancies that were full-term
Interventions	Intervention group (monotherapy): 1) CBZ (N = 46) 2) PHT (N = 14) 3) VPA (N = 15) 4) PB (N = 5)	
Outcomes	 Seizure frequency Congenital malformations AEDs were analysed separately. 	
Notes	Protocol requested - no re	sponse received
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 5 as no confounding variables adjusted for in anal- ysis
Blinding	Unclear risk	Rated unclear as no details of blinding in text
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as only small amount of missing data, unlikely to affect outcome
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective reporting, no protocol available
Other bias	High risk	Rated 5 as unclear gestational age at enrolment, unclear as to whether children with genetic syndromes were ex- cluded

EURAP

Methods	A prospective registry study (42 countries)
Participants	4540 pregnant women with epilepsy were included in this study
Interventions	The pregnant women with epilepsy were taking:- 1) CBZ (N = 1402) 2) LTG (N = 1280) 3) PB (N = 217) 4) VPA (N = 1010)
Outcomes	1) Congenital malformations
Notes	Protocol requested - no response received. Not included in meta-analysis due to overlap with other studies (e.g. UK Epilepsy and Pregnancy Register)

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Low risk	Rated 2 as most important confounders considered and adjusted for appropriately in analyses
Blinding	High risk	Rated 5 as outcome assessors unblinded as assessments completed by family physician
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data with reasons given
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective report- ing, no protocol available
Other bias	Low risk	Rated 1 as no further bias identified

Fairgrieve 2000

Methods	A prospective study (UK)
Participants	400 pregnant women with epilepsy were identified, 300 of which took part in the study
Interventions	Intervention group (monotherapy): 1) CBZ (N = 109) 2) VPA (N = 74)

Fairgrieve 2000 (Continued)

	Control group: 1) Women with epilepsy not taking any AEDs (N = 48)
Outcomes	 Major malformations Still births Miscarriages Medical terminations Terminations
Notes	Protocol requested - protocol unavailable.

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	Unclear risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 5 as no important confounders considered and no adjustment employed
Blinding	Unclear risk	Rated unclear as no details in text
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data
Selective reporting (reporting bias)	Unclear risk	Rated 3 as limited information regarding a priori outcomes, protocol not available
Other bias	High risk	Rated 5 as unclear gestational age at enrolment, unclear as to whether children with genetic syndromes were excluded

Froscher 1991

Methods	A prospective study (Gemany)
Participants	66 pregnant women with epilepsy were included in this study; there were 79 pregnancies in total
Interventions	Intervention group (monotherapy): 1) CBZ (N = 31) 2) VPA (N = 12) 3) PB (N = 5) 4) PHT (N = 3)

Froscher 1991 (Continued)

Outcomes	 Seizure frequency Miscarriage and perinatal mortality Major congenital malformations Minor congenital malformations
Notes	Protocol requested - author could not provide protocol but summarised the aims of the study

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 5 as no confounders considered or adjusted for
Blinding	Unclear risk	No details on text regarding methods of blinding
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data
Selective reporting (reporting bias)	Unclear risk	Rated 3 as limited information regarding outcomes in methods section, no protocol available
Other bias	High risk	Rated 5 as dose not investigated, unclear gestational age at enrolment, unclear whether children with genetic syndromes were excluded

Fujji 2013

Methods	A prospective study (several countries including Canada, France, England, Italy and Korea)
Participants	446 pregnant women with epilepsy were included in this study
Interventions	Intervention group (monotherapy) GBP (N = 223) Control group: Women with epilepsy not exposed to GBP (N = 223)
Outcomes	 Major malformations Live births Spontaneous abortions Therapeutic abortions

Fujji 2013 (Continued)

	 5) Still births 6) Preterm births 7) Neonatal intensive care unit (NICU)/ special care nursery (SCN) 8) Low birth weight 9) Intrauterine growth retardation 10) Mean birth weight 11) Mean gestational age at birth
Notes	Protocol requested - protocol received. Not included in meta-analysis due to inclusion of non-epilepsy cases >10%. This study was reviewed narratively

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Unclear risk	Rated 3 as some confounders considered and partial adjustments made
Blinding	High risk	Rated 5 as outcome assessors unblinded as assessments completed by family physician
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Rated unclear as only report numbers with complete data
Selective reporting (reporting bias)	Low risk	Rated 1 as no evidence of selective report- ing, protocol available
Other bias	High risk	Rated 5 unclear gestational age at enrol- ment, unclear as to whether children with genetic syndromes were excluded

Gaily 1988

Methods	A prospective cohort-controlled study. Duration: 4 years. Follow-up: 5.5 years
Participants	153 children of epileptic mothers were enrolled in the study, but 5 died in the perinatal period. 120 of the surviving 148 were seen at 5.5 ± 0.25 years, and 1 at 8 years
Interventions	Intervention group (monotherapy): 1) PHT (N = 46) Control group: 1) Children born to women with untreated epilepsy (N = 15)

Gaily 1988 (Continued)

	2) Children born to no medication (in women without epilepsy) (N = 105)
Outcomes	1) Minor physical anomalies
Notes	Protocol requested - no response received. Out of the AEDs, only phenytoin was analysed separately

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 4 as some confounders were consid- ered
Blinding	Low risk	Rated 2 as outcome assessor blinded
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data with reasons given
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective report- ing, no protocol available
Other bias	High risk	Rated 5 as control group recruited at a later time point, unclear whether children with genetic conditions were excluded, unclear gestational age at enrolment

Garza-Morales 1996

Methods	Prospective observational study (Spain)
Participants	61 pregnant women with epilepsy
Interventions	Intervention group (monotherapy): 1) PHT (N = 27) 2) CBZ (N = 24) 3) VPA (N = 5) Control group 1) Women with epilepsy not taking any AEDs (N = 18)
Outcomes	 Major malformations Minor malformations Complications during pregnancy

Garza-Morales 1996 (Continued)

Notes	Study authors' contact details could not be found.	
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 5 as consideration or adjustment for confounders
Blinding	Unclear risk	Rated unclear as no details in text
Incomplete outcome data (attrition bias) All outcomes	High risk	Rated 5 as no information given about attri- tion
Selective reporting (reporting bias)	Unclear risk	Rated 3 as limited information regarding a priori outcomes, protocol not available
Other bias	High risk	Rated 5 as unclear gestational age at en- rolment, no investigation of dose, unclear whether children with genetic syndromes were excluded

Goujard 1974

Methods	A prospective study (France).
Participants	42 pregnant women with epilepsy were included in this study.
Interventions	Intervention group (monotherapy): 1) AEDs (N = 39) Control group: 1) Women with epilepsy not taking any AEDs (N = 3)
Outcomes	1) Major malformations 2) Minor malformations
Notes	Study authors' contact details could not be found. Not included in meta-analysis due to unclear numbers of malformations for specific monotherapy groups

Risk of bias

Goujard 1974 (Continued)

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 5 as no consideration of adjustment undertaken
Blinding	Unclear risk	Rated unclear as no details in text
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Rated unclear as no details in text
Selective reporting (reporting bias)	Unclear risk	Rated 3 as limited information regarding a priori out- comes, protocol not available
Other bias	High risk	Rated 5 no investigation of dose, unclear whether chil- dren with genetic syndromes were excluded, no clear information given about monotherapy cases given
Hill 1974		
Methods	A prospective, cohort-controlled, multicentre study (USA). Duration: 4 years (plus 3 years follow-up)	
Participants	28 newly born infants were recruited between January 1969 and November 1972 and examined. All infants were the offspring of women who had required AED treatment during their pregnancy The control group was made up of 165 infants not exposed to AEDs	
Interventions	Intervention group (monotherapy): 1) PHT (N = 9) 2) PB (N = 1) Control group: 1) Women who were not taking any AEDs (N = 165)	
Outcomes	 Minor malformations Major malformations Apgar score Birth weight and length of it Gross motor index Fine motor index Adaptive index Language index Personal-social index 	infant

Hill 1974 (Continued)

Notes Study authors' contact details could not be found. Not included in meta-analysis due to unclear numbers of malformations for specific monotherapy groups

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 4 as many variables where data has been collected but not adjusted for
Blinding	Low risk	Rated 2 as outcome assessor was blinded
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as only small amount of missing data, unlikely to affect outcome
Selective reporting (reporting bias)	Low risk	Rated 2 as data presented in tables shows overall AED group versus controls however in the text many the cases of malformations are described and drug exposure is stated
Other bias	High risk	Rated 5 as AEDs not analysed separately, unclear gestational age at enrolment, un- clear as to whether children with genetic syndromes were excluded

Israeli Teratogen Service

Methods	A prospective study (Israel)
Participants	Data reported across four papers.
Interventions	Intervention group (monotherapy): 1) VPA (N = 89) 2) CBZ (N = 108) 3) TPM (N = 57) Control group: 1) Pregnant women not exposed to teratogenic substances (N = 1315)
Outcomes	 Rate of major congenital anomalies Pregnancy outcome Gestational age at delivery Rate of preterm deliveries

Israeli Teratogen Service (Continued)

	5) Birth weight
Notes	Protocol requested - protocol received. Data could not be included in the meta-analysis for VPA and TPM as number of women taking these AED for non-epilepsy conditions was >10%. In the paper on CBZ data were specifically reported for the women with epilepsy on CBZ and therefore this data could contribute to the meta-analysis

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Unclear risk	Rated 3 as some confounders considered and adjusted for
Blinding	High risk	Rated 5 as outcome assessors unblinded as assessments completed by family physician
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Rated 3 as larger amount of missing data with reasons given, possible implication on outcome
Selective reporting (reporting bias)	Low risk	Rated 1 as no evidence of selective reporting, protocol available
Other bias	High risk	Rated 5 as reported monotherapy and polytherapy cases together in some papers, unclear gestational age at enrol- ment, unclear whether children with genetic conditions were excluded

Jones 1989

Methods	A prospective and retrospective study (USA). Only participants who were prospectively recruited were included in this review
Participants	The offspring of 145 women were enrolled:- 1) Offspring of women, taking some combination of AEDs including carbamazepine (all but 1 woman were taking for seizure control) (N = 54) 2) Offspring of women not taking any AEDs, or any other drug known or suspected to be a teratogen (N = 70)
Interventions	Intervention group (monotherapy): 1) Carbamazepine alone (N = 50) Control group: 1) Women with epilepsy not taking any AEDs (N = 73)

Jones 1989 (Continued)

Outcomes	 Incidence of major malformations Incidence of minor malformations Birth weight Birth length Head circumference at birth
Notes	Protocol requested - no response received. Data was not included in meta-analysis as outcomes pertaining to specific monotherapy exposures were not reported

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Unclear risk	Rated 3 as some confounders considered and partially adjusted for but several impor- tant confounders not considered and ad- justed for
Blinding	Low risk	Rated 2 as outcome assessor blinded
Incomplete outcome data (attrition bias) All outcomes	High risk	Rated 4 as 33% missing data from original recruitment, unclear about the balance of dropouts
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective report- ing, no protocol available
Other bias	High risk	Rated 5 as monotherapy and polytherapy reported together, dose not investigated, unclear if children with genetic syndromes were excluded

Kaaja 2003

Methods	A prospective study (Finland)
Participants	 The 970 pregnancies of the 641 epileptic women enrolled, resulted in 979 offspring which were included in the study:- 1) Offspring of women with epilepsy, taking 1 or more AED during the first trimester (N = 733) 2) Offspring of women with epilepsy, not exposed to AEDs (N = 237)

Kaaja 2003 (Continued)

Interventions	Intervention group (monotherapy): 1) CBZ (N = 363) 2) PHT (N = 124) 3) VPA (N = 61) 4) PB (N = 5) 5) PRM (N = 6) 6) OXC (N = 9) Control group: 1) Women with epilepsy who were not taking any AEDs (N = 237)
Outcomes	 Major malformations Birth weight Apgar score Pregnancy outcome AEDs were analysed separately.
Notes	Study authors' contact details could not be found

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Unclear risk	Rated 3 as some confounders considered and adjusted for
Blinding	Unclear risk	Rated unclear as no details in text regarding methods of blinding
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data with reasons given
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective reporting, no proto- col available
Other bias	High risk	Rated 5 as no investigation of dose, unclear as to whether children with genetic syndromes were ex- cluded, unclear gestational age at enrolment

Kaneko 1999

Methods	A prospective study (Japan, Italy, Canada)		
Participants	145 infants born to AED-treated mothers between 1985-1989, and a previous group of 172 infants of AED-treated mothers and 20 infants of non-AED-treated mothers selected between 1978-1984, were included in the study group		
Interventions	Intervention group (monotherapy): 1) VPA (N = 81) 2) CBZ (N = 158) 3) PRM (N = 35) 4) PB (N = 79) 5) PHT (N = 132) Control group: 1) Women with epilepsy who were not taking any AEDs (N = 98)		
Outcomes	1) Incidence of congenital malformations AEDs were analysed separately.		
Notes	Study authors' contact details could not be	Study authors' contact details could not be found.	
Risk of bias			
Bias	Authors' judgement Support for judgement		
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design	
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design	
Confounding variables	High risk	Rated 5 as no confounders considered or adjusted for	
Blinding	Unclear risk	Rated unclear as not details in text regard- ing methods of blinding	
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data with reasons given	
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective report- ing, no protocol available	
Other bias	High risk	Rated 5 as no investigation of dose, un- clear gestational age at enrolment, unclear whether children with genetic conditions were excluded	

Kelly 1984

-			
Methods	A prospective study (USA).		
Participants	171 children were evaluated from 468 women with epilepsy enrolled		
Interventions	Intervention group (monotherapy): 1) PHT (N = 24) 2) PB (N = 6) 3) VPA (N = 4) Control group: 1) Women with untreated epilepsy (N = 23)		
Outcomes	 Major abnormality Microcephaly Distal digital hypoplasia Craniofacial abnormality Delayed development 		
Notes	Study authors' contact details could not be found.		
Risk of bias	Risk of bias		
Bias	Authors' judgement Support for judgement		
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design	
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design	
Confounding variables	High risk	Rated 5 as no confounding variables considered or ad- justed for in analysis	
Blinding	Unclear risk	Rated unclear as no details of blinding in text	

given

available

gestational age at enrolment

Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child (Review) Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Low risk

Low risk

High risk

Incomplete outcome data (attrition bias)

Selective reporting (reporting bias)

All outcomes

Other bias

Rated 2 as small amount of missing data with reasons

Rated 2 as no evidence of selective reporting, no protocol

Rated 5 as dose not investigated, unclear as to whether children with genetic conditions were excluded, unclear

Kerala Pregnancy F	legistry
--------------------	----------

Methods	A prospective registry study (Ind	A prospective registry study (India). Data reported across two papers	
Participants	nancy. Only these 32 are analyse 1) Women taking AED/s (N = 2	 85 women with epilepsy were enrolled, but only 32 had completed their current pregnancy. Only these 32 are analysed and included in the review:- 1) Women taking AED/s (N = 23) 2) Women not taking any AEDs (N = 9) 	
Interventions	Interevntion group (monotherap 1) PB (N = 9) 2) CBZ (N = 7) 3) VPA (N = 6) 4) PHT (N = 5) Control group: 1) Women with epilepsy not taki Study 2. Heart defects risk Interevntion group (monotherap 1) PB (N = 43) 2) CBZ (N = 112) 3) VPA (N = 71) 4) PHT (N = 100) Control group:	 2) CBZ (N = 7) 3) VPA (N = 6) 4) PHT (N = 5) Control group: 1) Women with epilepsy not taking any AEDs (N = 9). Study 2. Heart defects risk Interevntion group (monotherapy): 1) PB (N = 43) 2) CBZ (N = 112) 3) VPA (N = 71) 4) PHT (N = 100) 	
Outcomes	 Pregnancy outcome Seizure frequency Congenital malformations Infant head circumference Birth weight 	2) Seizure frequency3) Congenital malformations4) Infant head circumference	
Notes	cent paper reported outcomes per available for meta-analysis for he	Protocol requested - no response received. Data reported across two papers. The more re- cent paper reported outcomes pertaining to heart defects only and therefore the numbers available for meta-analysis for heart defects is substantially higher than that for overall malformation risk and other specific malformation types	
Risk of bias			
Bias	Authors' judgement	Support for judgement	

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 4 as many variables where data has been collected but not adjusted for in the analysis

Kerala Pregnancy Registry (Continued)

Blinding	High risk	Rated 4 as partial or no blinding involved in study.
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as smaller amount of missing data, unlikely to affect outcome
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective report- ing, no protocol available
Other bias	High risk	Rated 5 as no investigation of dose, unclear whether children with genetic conditions were excluded, recruitment into the third trimester

Koch 1992

Methods	A prospective study (Germany).
Participants	 Women with epilepsy treated with AEDs (N = 116) Women with epilepsy without AED treatment (N = 25) Each of these study groups had a corresponding matched control group with an identical number of mother-child pairs. Total number of control pairs (N = 163)
Interventions	Intervention group (monotherapy): 1) PB (N = 4) 2) PRM (N = 21) 3) PHT (N = 24) 4) CBZ (N = 9) 5) VPA (N = 14) Control group: 1) no medication (in women without epilepsy) (N = 116)
Outcomes	 Major malformations Minor anomalies
Notes	Study authors' contact details could not be found.
Risk of bias	

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design

Koch 1992 (Continued)

Confounding variables	Unclear risk	Rated 3 as some confounders considered and partial adjustment employed
Blinding	High risk	Rated 5 as no methods of blinding were employed
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Rated unclear as no details of numbers recruited ver- sus those analysed
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective reporting, no pro- tocol available
Other bias	High risk	Rated 5 as dose not investigated, unclear gestational age at enrolment, unclear whether children with ge- netic syndromes were excluded

Laskowska 2002

Methods	A prospective study (Poland)
Participants	53 pregnant women with epilepsy and 53 pregnant no medication (in women without epilepsy) were involved in this study
Interventions	Intervention group (monotherapy): 1) AED (N = 39) Control group: 1) Women with epilepsy not taking any AEDs (N = 5) 2) no medication (in women without epilepsy) (N = 53)
Outcomes	 Seizure frequency Complications during pregnancy Congenital malformations Birth weight/height
Notes	Protocol requested - no response received. Study was not included in meta-analysis as outcomes for specific monotherapy groups were not clear

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 5 as no confounders considered or adjusted for

Laskowska 2002 (Continued)

Blinding	Unclear risk	Rated unclear as no details in text
Incomplete outcome data (attrition bias) All outcomes	High risk	Rated 5 as no information given
Selective reporting (reporting bias)	Unclear risk	Rated 3 as limited information regarding a priori out- comes
Other bias	High risk	Rated 5 as did not analysis AEDs separately, unclear gestational age at enrolment, unclear if excluded children with genetic syndromes

Lindhout 1992

Methods	A prospective study (Germany)	
Participants	172 live infants born to women taking AEDs	
Interventions	Intervention group (monotherapy): 1) VPA (N = 66) 2) PB (N = 26) 3) CBZ (N = 50) 4) PHT (N = 17) Control group: 1) Women with epilepsy who were not taking any AEDs (N = 28)	
Outcomes	1) Congenital malformations	
Notes	Study authors' details could not be found.	

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 4 as some variables where data has been col- lected but not adjusted for in the analysis
Blinding	Unclear risk	Rated unclear as no details of blinding methods em- ployed
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data, unlikely to affect outcome

Lindhout 1992 (Continued)

Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective reporting, no pro- tocol available
Other bias	High risk	Rated 5 unclear gestational age at enrolment, individ- ual malformation data unclearly reported across num- ber of data tables

Methods	A prospective study (Spain)
Participants	269 women with epilepsy being treated with monotherapy were included in this study
Interventions	Intervention group (monotherapy): 1) CBZ (N = 105) 2) VPA (N = 68) 3) LTG (N = 56) 4) PB (N = 11)
Outcomes	1) Major malformations 2) Perinatal death
Notes	Protocol requested - no response received

Martinez Ferri 2009

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Unclear risk	Rated 3 as some confounders considered and full or partial adjustment employed
Blinding	Unclear risk	Rated unclear as details not given in text
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data, reasons given
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective reporting, protocol not available
Other bias	High risk	Rated 5 as dose not investigated, unclear if children with genetic syndromes were excluded

Mawer 2010

Methods	A prospective study (UK)
Participants	277 women with epilepsy were recruited but three were excluded and 315 no medication (in women without epilepsy) were recruited as control participants
Interventions	Intervention group (monotherapy): 1) CBZ (N = 74) 2) VPA (N = 57) 3) LTG (N = 40) 4) PHT (N = 7) Control group: 1) no medication (in women without epilepsy) (N = 315) 2) Women with untreated epilepsy (N = 40)
Outcomes	 Major congenital malformations Birth weight
Notes	Protocol requested - protocol received. Overlap in data with NEAD study. Data com- bined in meta-analysis along with NEAD data were non-NEAD data from this study

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Low risk	Rated 2 as the majority of important confounders consid- ered and appropriately adjusted for
Blinding	High risk	Rated 5 as no methods of blinding were employed
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as smaller amount of missing data with reasons given, balanced across groups
Selective reporting (reporting bias)	Low risk	Rated 1 as no evidence of selective reporting, protocol avail- able
Other bias	High risk	Rated 5 as recruitment continued into the third trimester. Dose not investigated

Meador 2006

Methods	A prospective study (USA and UK)	
Participants	354 mother/child pairs were enrolled. 323 mothers and 333 children were included in the analysis. All mothers were being treated for epilepsy with AED monotherapy	
Interventions	Intervention group (monotherapy): 1) CBZ (N = 110) 2) LTG (N = 98) 3) PHT (N = 56) 4) VPA (N = 69)	
Outcomes	 Major congenital malformations Fetal death 	
Notes	Protocol requested - protocol received	

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Low risk	Rated 2 as the majority of important confounders considered and appropriately adjusted for
Blinding	Low risk	Rated 2 as some methods of blinding were employed
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as smaller amount of missing data with reasons given, balanced across groups
Selective reporting (reporting bias)	Low risk	Rated 1 as no evidence of selective reporting, pro- tocol available
Other bias	High risk	Rated 5 as no investigation of dose of individual AED, unclear gestational age at recruitment

Meischenguiser 2004

Methods	A prospective registry study (Argentina).	
Participants	114 women being treated with AEDs for epilepsy, who were pregnant or intending to become pregnant	

Meischenguiser 2004 (Continued)

Interventions	Intervention group (monotherapy): 1) OXC (N = 35) 2) VPA (N = 21) 3) CBZ (N = 16) 4) PB (N = 5)
Outcomes	 Major malformations Minor malformations Pregnancy and delivery complications AEDs were analysed separately.
Notes	Protocol requested - no response received

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 4 as some confounders collected but no adjustment in the analysis
Blinding	Unclear risk	Rated unclear as no details of blinding in text
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data, unlikely to affect outcome
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective reporting, no protocol available
Other bias	High risk	Rated 5 as dose not investigated, unclear ges- tational age at enrolment, unclear whether children with genetic syndromes excluded

Montreal Series

Methods	A prospective study (Canada)	
Participants	 82173 births were analysed between 1978 and 2000 of:- 1) Women with epilepsy receiving AEDs (N = 335) 2) Women with epilepsy not receiving AEDs (N = 66) 3) no medication (in women without epilepsy) (N = 81759) 	

Montreal Series (Continued)

Interventions	Intervention group (monotherapy): 1) CBZ (N = 32) 2) PHT (N = 44) 3) VPA (N = 15) 4) PB (N = 10) Control group: 1) Women with epilepsy not taking any AEDs (N = 8)	
Outcomes	 Neonatal outcome (including Stillbirths, Apgar score, birth weight) Congenital malformations AEDs were analysed together 	
Notes	Protocol requested - no response received	
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Unclear risk	Rated 3 as some confounders considered and full or partial adjustment employed
Blinding	Unclear risk	Rated unclear as no details in text
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data, unlikely to affect outcome
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective reporting, no proto- col available
Other bias	High risk	Rated 5 as dose not investigated, unclear whether chil- dren with genetic syndromes, unclear gestational age at recruitment

Motherisk Registry

Methods	A prospective study (Canada)
Participants	118 women were enrolled between 1987 and 1992, and 70 mother-child pairs analysed. (+9 non-medicated)
Interventions	Intervention group (monotherapy): 1) PHT (N = 34)

Motherisk Registry (Continued)

	 2) CBZ (N = 36) Control group: 1) Women with epilepsy not taking any AEDs (N = 9) 2) no medication (in women without epilepsy) (N = 79)
Outcomes	1) Major malformations 2) Minor anomalies
Notes	Protocol requested - no response received. Data not included in meta-analysis as non- epilepsy cases >10%

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 4 as some confounders considered and no adjust- ment employed
Blinding	Unclear risk	Rated 3 as partial blinding involved in study as some outcomes were blindly assessed, others were not
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data pertaining to minor anomalies
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective reporting, no proto- col available
Other bias	High risk	Rated 5 as dose not investigated, unclear of gestational age at enrolment, unclear if children with genetic con- ditions were included

North American Register

Methods	A prospective, cohort-controlled study (USA). Duration: 14 years. Follow-up: Up to 12 weeks	
Participants	5265 women were enrolled and analysed in the study:-	
Interventions	Intervention group (monotherapy): 1) CBZ (N = 1033) 2) LTG (N = 1562) 3) PHT (N = 416) 4) LEV (N = 450)	

North American Register (Continued)

	 5) TPM (N = 359) 6) VPA (N = 323) 7) PB (N = 199) 8) OXC (N = 182) 9) GBP (N = 145) 10) ZNS (N = 90) Control group: 1) no medication (in women with 	hout epilepsy) (N = 442)
Outcomes	1) Major congenital malformations, most commonly: hypospadias, neural tube defects, cardiovascular anomalies and oral clefts	
Notes	Protocol requested - no response received. Data not available for specific malformations for GBP or ZNS	
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Low risk	Rated 2 as most important confounders considered and suitable method of adjust- ment employed
Blinding	High risk	Rated 5 as no methods of blinding were employed, reviewed by family physician
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data, unlikely to affect outcome
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective report- ing, no protocol available
Other bias	High risk	Rated 5 as women recruited at any stage of pregnancy

Omtzigt 1992

Methods	A prospective study (Netherlands)
Participants	261 women enrolled, 297 children of women with epilepsy examined

Omtzigt 1992 (Continued)

Interventions	Intervention group (monotherapy): 1) VPA (N = 60) 2) CBZ (114) 2) PUT (N = 20)		
	3) PHT (N = 28) 4) PB (N = 18)		
Outcomes	 Levels of maternal serum alpha for Foetus death Malformations 	etoprotein	
Notes	Study authors' contact details could not be found.		
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design	
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design	
Confounding variables	High risk	Rated 4 as some confounders considered and no	

adjustment employed

to affect outcome

protocol available

Rated 1 as no other bias identified

Rated 5 as no methods of blinding were employed

Rated 2 as small amount of missing data, unlikely

Rated 2 as no evidence of selective reporting, no

Pardi 1982

Other bias

Blinding

All outcomes

Incomplete outcome data (attrition bias)

Selective reporting (reporting bias)

Methods	A prospective study (Italy)
Participants	59 pregnant women with epilepsy were included in this study.
Interventions	Intervention group (monotherapy): 1) CBZ (N = 2) 2) PB (N = 12) 3) PHT (N = 5) 4) PRM (N = 4) 5) VPA (N = 1)

Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child (Review) Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

High risk

Low risk

Low risk

Unclear risk

Pardi 1982 (Continued)

Outcomes	 Seizure frequency Major malformations Minor malformations
Notes	Study authors' contact details could not be found.

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 5 as no confounding variables considered or adjusted for in analysis
Blinding	Unclear risk	Rated unclear as no details on methods of blinding
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data, unlikely to affect outcome
Selective reporting (reporting bias)	Unclear risk	Rated 3 as limited information regarding a priori outcomes and measures
Other bias	High risk	Rated 5 as AEDs not reported separately, unclear whether children with genetic syndromes were excluded, no inves- tigation of dose, unclear gestational age at enrolment

Richmond 2004

Methods	A prospective study (Canada)
Participants	82173 foetuses were evaluated in this study; 414 births were to 313 women with epilepsy. Therefore 414 foetuses were included in the intervention group and 81759 were included in the control group
Interventions	The women were taking:- 1) PB 2) VPA 3) CBZ 4) PHT The number of pregnant women with epilepsy taking each AED was unclear
Outcomes	1) Congenital malformations 2) Neonatal deaths

Richmond 2004 (Continued)

	 3) Still births 4) Mean Apgar at 1 minute 5) Mean Apgar at 2 minutes 6) Mean birth weight
Notes	The number of pregnant women with epilepsy taking each AED was unclear Protocol requested - no response received. Data not included in meta-analysis as outcomes by specific AED group were not reported

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 4 as some confounders considered and no adjust- ment employed
Blinding	Unclear risk	Rated unclear as no details on methods of blinding
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 1 as no missing data
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective reporting, no proto- col available
Other bias	High risk	Rated 5 as AEDs not analysed separately, no investiga- tion of dose, unclear whether children with genetic syn- dromes excluded, unclear gestational age at enrolment/ recording

Sabers 2004

Methods	A prospective study (Denmark)
Participants	151 women were enrolled in the study. Of these, 147 pregnancies were analysed (includ- ing 137 living newborns). All women involved had epilepsy. Monotherapy and Poly- therapy outcomes were not reported separately
Interventions	The women were taking either:- 1) LTG 2) OXC 3) VPA 4) CBZ 5) GBP

Sabers 2004 (Continued)

	 6) PRM 7) TPM 8) PB 9) PHT Monotherapy numbers were unclear. Control group: 1) Women with epilepsy who were not taking any AEDs (N = 9)
Outcomes	 Neonatal outcome Congenital malformations Birth weight
Notes	The number of pregnant women with epilepsy taking each AED in monotherapy was unclear Protocol requested - no response received. Data was not included in meta-analysis as outcomes pertaining to specific monotherapy groups was not reported

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 5 as no important confounders considered and no adjustment employed
Blinding	Unclear risk	Rated unclear as no details on methods of blinding
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data, unlikely to affect outcome
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective reporting, no pro- tocol available
Other bias	High risk	Rated 5 as monotherapy and polytherapy reported together, unclear whether children with genetic syn- dromes were excluded, unclear gestational age at en- rolment

Samren 1997

Methods	A prospective study (Finland, Germany, Netherlands)
Participants	1221 pregnant women with epilepsy and 158 no medication (in women without epilepsy) were included in this study
Interventions	Intervention group (monotherapy): 1) CBZ (N = 280) 2) PB (N = 48) 3) PHT (N = 141) 4) PRM (N = 43) 5) VPA (N = 184) Control group: 1) no medication (in women without epilepsy) (N = 158)'
Outcomes	1) Major malformations
Notes	Study authors' contact details could not be found. Not included in meta analysis due to overlap with other included studies; reviewed narratively

Risk of bias

Bias	Authors' judgement	Support for judgement	
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design	
Allocation concealment (selection bias)	Unclear risk	High in bias due to non-randomised design	
Confounding variables	Unclear risk	Rated 3 as some confounders considered and full or partial adjustment employed	
Blinding	High risk	Rated 5 as no blinding employed	
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Rated unclear as no information provided	
Selective reporting (reporting bias)	Unclear risk	Rated 2 as no evidence of selective report- ing, protocol not available	
Other bias	High risk	Rated 5 as unclear gestational age at recruit- ment, unclear is genetic syndromes were excluded	

Shapiro 1976

Methods	Two prospective registry studies (Finland and USA). Only the USA study meets inclusion criteria
Participants	305 women with epilepsy in USA study.
Interventions	Intervention group: 1) PHT (N = 102) Unclear if this is monotherapy in isolation.
Outcomes	1) Major and minor malformations
Notes	Protocol requested - Study author declined request. Limited data available on method- ology. Not included in meta-analysis due to it being unclear if cases were exposed to monotherapy PHT

Risk of bias

Bias	Authors' judgement	Support for judgement	
Random sequence generation (selection bias)	High risk High in bias due to non-randomised		
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design	
Confounding variables	High risk	Rated 5 as no important confounders con- sidered and no adjustment employed	
Blinding	Unclear risk	Rated as unclear as no details in text	
Incomplete outcome data (attrition bias) All outcomes	High risk	Rated 5 as no information provided regard- ing missing data	
Selective reporting (reporting bias)	Unclear risk	Rated 3 as limited information regarding a priori outcomes; protocol not available	
Other bias	High risk	Rated 5 as no investigation of dose, unclear gestational age at recruitment, inclusion of malformations linked to genetic syndrome	

Steegers-Theunissen 1994

Methods	A prospective study (Netherlands).
Participants	119 pregnant women with epilepsy and 106 pregnant women were included in this study
Interventions	Intervention group (monotherapy): 1) CBZ (N = 39)

Steegers-Theunissen 1994 (Continued)

	 2) VPA (N = 19) 3) PB (N = 12) 4) PHT (N = 8) Control group: 1) Women with epilepsy not taking any AEDs (N = 126) 2) no medication (in women without epilepsy) (N = 106)
Outcomes	 Major congenital malformations Minor congenital malformations Ectopic pregnancies Abortions Neonatal head circumference Birth weight Birth length AEDs analysed together.
Notes	Protocol requested - no response received

Risk of bias

Bias	Authors' judgement	Support for judgement	
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design	
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design	
Confounding variables	Low risk	Rated 2 as most important confounders consid- ered and suitable method of adjustment employed	
Blinding	Unclear risk	Rated unclear as no details on methods of blinding	
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Rated unclear as no details of numbers recruited versus those analysed	
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective reporting, no protocol available	
Other bias	High risk	Rated 5 as no investigation of dose, unclear whether children with genetic syndromes ex- cluded, unclear gestational age at enrolment	

Tanganelli 1992

Methods	A prospective study (Italy)
Participants	97 women with epilepsy (138 pregnancies) and 88 no medication (in women without epilepsy) (140 pregnancies) were included in this study. 278 pregnancies were analysed
Interventions	Intervention group (monotherapy): 1) PB (N = 63) 2) CBZ (N = 9) 3) VPA (N = 6) Control group 1) no medication (in women without epilepsy) (N = 124).
Outcomes	 Seizure frequency Pregnancy outcome Presence of major congenital malformations AEDs were analysed together.
Notes	Study authors' contact details could not be found

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 5 as no important confounders considered and no adjustment employed
Blinding	Unclear risk	Rated unclear as no details on methods of blinding
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Rated unclear as no details of numbers recruited versus those analysed
Selective reporting (reporting bias)	Unclear risk	Rated 3 as limited information regarding a priori outcomes and measures
Other bias	High risk	Rated 5 as no investigation of dose, unclear gestational age at enrolment, unclear if children with genetic syndromes excluded

Torres 1995

Methods	A prospective study (Spain)
Participants	61 pregnant women with epilepsy were included in this study.
Interventions	Intervention group (monotherapy): CBZ PHT VPA PRM CLO Number of participants in each monotherapy group are unclear
Outcomes	 Complications during pregnancy Congenital malformations
Notes	Study authors contact details could not be found. Not included in meta-analysis due to outcomes not being reported for specific monotherapy groups. Numbers in each monotherapy group are unclear

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 5 as no consideration or adjustment for con- founders
Blinding	Unclear risk	Rated unclear as no details in text
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data, reasons given
Selective reporting (reporting bias)	Unclear risk	Rated as 3 as limited information regarding a priori out- comes; protocol not available
Other bias	High risk	Rated 5 numbers of monotherapy unclear, no investiga- tion of dose, unclear gestational age at enrolment, unclear if children with genetic syndromes were excluded

U	K	R	egis	ter
~			-9	

Methods	A prospective registry study (UK).
Participants	4414 pregnancies of women with epilepsy were included in this study, 3607 were analysed
Interventions	Intervention group (monotherapy): 1) CBZ (N = 1657) 2) VPZ (N = 1220) 3) LTG (N = 2098) 4) PHT (N = 106) 5) GBP (N = 31) 6) TPM (N = 70) 7) LEV (N = 304) Control group: 1) Women with epilepsy who were not taking any AEDs (N = 541)
Outcomes	 Congenital malformations Pregnancy outcome
Notes	Personal communication from the authors provided up to date figures for PHT and controls Protocol requested - protocol received.

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Unclear risk	Rated 3 as some confounders considered and fully adjusted for
Blinding	High risk	Rated 5 as no methods of blinding were employed, reviewed by family physician
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 a small amount of missing data, unlikely to affect outcome
Selective reporting (reporting bias)	Low risk	Rated 1 as no evidence of selective reporting, pro- tocol provided
Other bias	High risk	Rated 5 as unclear gestational age at enrolment, unclear whether children with genetic syndromes were excluded

Waters 1994

Methods	A prospective study (USA)	
Participants	Of the 211 women with epilepsy enrolled, data from 174 pregnancies was available for analysis	
Interventions	Intervention group (monotherapy): 1) CBZ (N = 33) 2) PHT (N = 28) 3) PB (N = 21) Control group: 1) Women with epilepsy who were not taking any AEDS (N = 15)	
Outcomes	 Major malformations Fetal death 	
Notes	Protocol requested - author unable to provide protocol.	
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	Unclear risk	Rated 3 as some confounders considered but several im- portant confounders not considered and adjusted for
Blinding	Unclear risk	Rated unclear as no details on methods of blinding
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as only small amount of missing data, unlikely to affect outcome
Selective reporting (reporting bias)	Unclear risk	Rated 3 as limited information regarding a priori outcomes and measures
Other bias	High risk	Rated 5 as AEDs were reported together, no investigation of dose, unclear gestational age at enrolment, unclear if children with genetic syndromes were excluded

Wide 2000

Methods	A prospective, controlled study (Sweden). Duration: 10 years. Follow-up: 9 months
Participants	167 infants born to women with epilepsy and no medication (in women without epilepsy) between 1985 and 1995 were included in this study

Wide 2000 (Continued)

Interventions	Intervention group (monotherapy):
	1) CBZ (N = 39)
	2) PHT (N = 22)
	Control group:
	1) Women with epilepsy who were not taking any AEDs ($N = 8$).
	2) no medication (in women without epilepsy) (N = 83)
Outcomes	1) Griffiths test results (psychomotor development)
	2) Minor anomalies
	Some AEDs were analysed separately.
Notes	Protocol requested - protocol received.

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 4 as some confounders were consid- ered but not adjusted for
Blinding	Low risk	Rated 2 as assessors blinded to participants drug regimen
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data, unlikely to affect outcome
Selective reporting (reporting bias)	Low risk	Rated 1 as no evidence of selective report- ing, protocol available
Other bias	High risk	Rated 5 as unclear whether children with genetic syndromes were excluded, no inves- tigation of dose

Yerby 1992

Methods	A prospective study (USA)
Participants	145 women were enrolled in the study. 64 children born to women with epilepsy and 46 children born to no medication (in women without epilepsy) were included in this study

Yerby 1992 (Continued)

Interventions	Intervention group (monotherapy): 1) CBZ (N = 20) 2) PB (N = 8) 3) PHT (N = 12) 4) PRM (N = 1) 5) VPA (N = 3) Control group: 1) Women with epilepsy who were not taking AEDs 2) no medication (in women without epilepsy) (N = 46)
Outcomes	 Birth weight Birth length Gestational age Head circumference Apgar score Feeding difficulties Neonatal irritability Major malformations Congenital anomalies
Notes	Protocol requested - no response received

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	High risk	High in bias due to non-randomised design
Allocation concealment (selection bias)	High risk	High in bias due to non-randomised design
Confounding variables	High risk	Rated 4 as some confounders were considered but not adjusted for
Blinding	Low risk	Rated 2 as assessors blinded to participants drug regimen
Incomplete outcome data (attrition bias) All outcomes	Low risk	Rated 2 as small amount of missing data, unlikely to affect outcome
Selective reporting (reporting bias)	Low risk	Rated 2 as no evidence of selective reporting, no protocol available
Other bias	High risk	Rated 5 as women recruited up to 26 weeks therefore pres- ence malformations may already be known, unclear if chil- dren with genetic syndromes were excluded, no investiga- tion of dose

Characteristics of excluded studies [ordered by study ID]

Study	Reason for exclusion
Annegers 1974	Retrospective methodology
Artama 2013	Record linkage study
Arteaga-Vazques 2012	Case control study
Baermig 1973	Retrospective methodology
Canun-Serrano 1986	Retrospective methodology
Castilla-Puentes 2014	Pharmaceutical post-marketing report with no control group
Dobos 1985	Retrospective methodology
Elshove 1971	Mixed prospective and retrospective methodology
Holmes 1994	Retrospective methodology
Jacobsen 2014	Record linkage study
Knight 1975	No control group
Lamotrigine Pregnancy Register	No control group
Miskov 2009	No control group
Monson 1973	Record linkage study
Montouris 2003	Mixed prospective and retrospective methodology
Mostacci 2014	Record linkage study
Nakane 1980	Mixed prospective and retrospective methodology
Pearse 1992	No control group
Robert 1983	Case control study
Starveld-Zimmerman 1975	Retrospective methodology
Veiby 2014	Record linkage

Characteristics of studies awaiting assessment [ordered by study ID]

Babic 2014

Methods	Prospective, observational, single-centre study (Serbia)
Participants	21 women with juvenile myoclonic epilepsy (25 pregnancies, mean age 26.4, ranged 22-34 years)
Interventions	 Valproate (N = 6) Lamotrigine (N = 8) Topiramate (N = 2) Levetiracetam (N = 4) Polytherapy (N = 5)
Outcomes	 Congenital malformations Miscarriage Mode of delivery APGAR score
Notes	

Idriz-Oglu 2014

Methods	Prospective cohort study (Turkey)
Participants	35 pregnant women with epilepsy being treated with either monotherapy or polytherapy
Interventions	 1) Lamotrigine (N = 12) 2) Carbamazepine (N = 11) 3) Valproic Acid (N = 9) 4) Other (N = 3)
Outcomes	 Spontaneous abortion Medical termination Birthweight Respiratory distress Intensive care
Notes	

Jones 1992

Methods	
Participants	
Interventions	
Outcomes	

Jones 1992 (Continued)

Notes

Kaabi 2013	Kaabi 2013					
Methods	Retrospective cohort study (Tunisia)					
Participants	19 women exposed to AEDs during pregnancy were involved in the study					
Interventions	 Valproic acid (N = 7) Carbamazepine (N = 5) Phenobarbital (N = 2) Phenytoin (N = 1) 					
Outcomes	 Birthweight Malformations 					
Notes						

Kutlu 2013

Methods	Prospective cohort study (Canada). Duration: 10 years						
Participants	 87 pregnancies from 83 women with epilepsy: 1) focal onset with secondary generalised seizures (N = 52) 2) generalised seizures (N = 31) 						
Interventions	AEDs						
Outcomes	 Spontaneous abortions Major malformations 						
Notes							

Lazzaroni Fossati 1986

Methods	Cohort study (Italy)
Participants	36 women with epilepsy
Interventions	 Phenobarbital Benzodiazepines Diphenylhydantoin Sodium valproate Primidone Carbamazepine Sultiame

Lazzaroni Fossati 1986 (Continued)

Outcomes	1) Congenital malformations
Notes	

Midi 2014	Midi 2014				
Methods	Prospective cohort study (Canada). Duration: 1 year				
Participants	43 pregnant women with epilepsy				
Interventions	1) Lamotrigine 2) Carbamazepine				
Outcomes	1) Malformations 2) Spontaneous abortion				

Notes

Shvartzman 1986

Methods	Cohort study (Hebrew paper)
Participants	14 women with epilepsy
Interventions	 Hydantoin + Phenobarbitone Phenobarbitone Hydantoin Primidone Methosuximide Carbamazepine Diazepam No treatment
Outcomes	1) Congenital malformations 2) Development
Notes	

Vlasov 2014

Methods	Cohort study (Russia)
Participants	 162 pregnant women (49 in 1998 and 113 in 2013) with: 1) Focal epilepsy (N = 124; 38 in 1998 and 86 in 2013) 2) Ideopathic generalised epilepsy (N = 31; 6 in 1998 and 25 in 2013) 3) Undetermined epilepsy (N = 7; 5 in 1998 and 2 in 2013)

Interventions	 Carbamazepine (N = 48) Valproate (N = 26) Barbiturates (N = 8) Levetiracetam (N = 13) Other drugs (N = 34)
Outcomes	1) Mode of delivery
Notes	

Vlasov 2014 (Continued)

DATA AND ANALYSES

Comparison 1. CBZ vs Controls

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	23		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
1.1 CBZ vs Women Without Epilepsy	8	3513	Risk Ratio (M-H, Fixed, 95% CI)	2.01 [1.20, 3.36]
1.2 CBZ vs WWE - No Medication	17	4345	Risk Ratio (M-H, Fixed, 95% CI)	1.50 [1.03, 2.19]
2 Neural Tube Malformations	8		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
2.1 CBZ vs Women Without Epilepsy	3	832	Risk Ratio (M-H, Fixed, 95% CI)	1.40 [0.06, 34.14]
2.2 CBZ vs WWE - No Medication	7	1026	Risk Ratio (M-H, Fixed, 95% CI)	0.91 [0.15, 5.61]
3 Cardiac Malformations	8		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
3.1 CBZ vs Women Without Epilepsy	3	832	Risk Ratio (M-H, Fixed, 95% CI)	1.41 [0.28, 7.02]
3.2 CBZ vs WWE - No Medication	7	1026	Risk Ratio (M-H, Fixed, 95% CI)	1.84 [0.32, 10.71]
4 Oro-Facial Cleft / Craniofacial Malformations	8		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
4.1 CBZ vs Women Without Epilepsy	3	832	Risk Ratio (M-H, Fixed, 95% CI)	6.13 [1.19, 31.49]
4.2 CBZ vs WWE - No Medication	7	1026	Risk Ratio (M-H, Fixed, 95% CI)	1.16 [0.27, 5.00]
5 Skeletal / Limb Malformations	8		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
5.1 CBZ vs Woment Without Epilepsy	3	832	Risk Ratio (M-H, Fixed, 95% CI)	3.9 [0.17, 89.64]
5.2 CBZ vs WWE - No Medication	7	1026	Risk Ratio (M-H, Fixed, 95% CI)	0.73 [0.18, 3.01]

Comparison 2. GBP vs Controls

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
1.1 GBP vs Women Without Epilepsy	1	587	Risk Ratio (M-H, Fixed, 95% CI)	0.61 [0.07, 5.18]
1.2 GBP vs WWE - No Medication	2	733	Risk Ratio (M-H, Fixed, 95% CI)	1.16 [0.23, 5.93]
2 Neural Tube Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only

2.1 GBP vs Women Without	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
Epilepsy	0	0		
2.2 GBP vs WWE - No	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \; [0.0, 0.0]$
Medication				
3 Cardiac Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
3.1 GBP vs Women Without	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, 0.0]$
Epilepsy				
3.2 GBP vs WWE - No	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, \ 0.0]$
Medication				
4 Oro-Facial Cleft / Craniofacial	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
Malformations				
4.1 GBP vs Women Without	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, \ 0.0]$
Epilepsy				
4.2 GBP vs WWE - No	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
Medication				
5 Skeletal / Limb Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
5.1 GBP vs Women Without	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
Epilepsy			,	
5.2 GBP vs WWE - No	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
Medication				

Comparison 3. LEV vs Controls

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
1.1 LEV vs Women Without Epilepsy	1	892	Risk Ratio (M-H, Fixed, 95% CI)	2.16 [0.76, 6.17]
1.2 LEV vs WWE - No Medication	2	1055	Risk Ratio (M-H, Fixed, 95% CI)	0.32 [0.10, 1.07]
2 Neural Tube Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
2.1 LEV vs Women Without Epilepsy	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
2.2 LEV vs WWE - No Medication	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
3.1 LEV vs Women Without Epilepsy	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3.2 LEV vs WWE - No Medication	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4 Oro-Facial Cleft / Craniofacial Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
4.1 LEV vs Women Without Epilepsy	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4.2 LEV vs WWE - No Medication	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only

5.1 LEV vs Women Without	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
Epilepsy				
5.2 LEV vs WWE - No	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
Medication				

Comparison 4. LTG vs Controls

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	5		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
1.1 LTG vs Women Without Epilepsy	3	3188	Risk Ratio (M-H, Fixed, 95% CI)	1.68 [0.78, 3.65]
1.2 LTG vs WWE - No Medication	3	3181	Risk Ratio (M-H, Fixed, 95% CI)	1.07 [0.64, 1.77]
2 Neural Tube Malformations	2		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
2.1 LTG vs Women Without Epilepsy	1	355	Risk Ratio (M-H, Fixed, 95% CI)	2.57 [0.11, 62.03]
2.2 LTG vs WWE - No Medication	2	542	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	2		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
3.1 LTG vs Women Without Epilepsy	1	355	Risk Ratio (M-H, Fixed, 95% CI)	2.57 [0.11, 62.03]
3.2 LTG vs WWE - No Medication	2	542	Risk Ratio (M-H, Fixed, 95% CI)	1.4 [0.15, 13.35]
4 Oro-Facial Cleft / Crainofacial Malformations	2		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
4.1 LTG vs Women Without Epilepsy	1	355	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4.2 LTG vs WWE - No Medication	2	542	Risk Ratio (M-H, Fixed, 95% CI)	5.15 [0.29, 92.56]
5 Skeletal / Limb Malformations	2		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
5.1 LTG vs Women Without Epilepsy	1	355	Risk Ratio (M-H, Fixed, 95% CI)	23.12 [0.96, 558.25]
5.2 LTG vs WWE - No Medication	2	542	Risk Ratio (M-H, Fixed, 95% CI)	0.72 [0.12, 4.12]

Comparison 5. OXC vs Controls

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
1.1 OXC vs Women Without	1	624	Risk Ratio (M-H, Fixed, 95% CI)	1.94 [0.53, 7.15]
Epilepsy				

1.2 OXC vs WWE - No	2	407	Risk Ratio (M-H, Fixed, 95% CI)	2.75 [0.53, 14.43]
Medication				
2 Neural Tube Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
2.1 OXC vs Women Without	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
Epilepsy				
2.3 OXC vs WWE - No	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
Medication				
3 Cardiac Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
3.1 OXC vs Women Without	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
Epilepsy				
3.2 OXC vs WWE - No	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
Medication				
4 Oro-Facial Cleft / Craniofacial	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
Malformations				
4.1 OXC vs Women Without	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
Epilepsy				
4.2 OXC vs WWE - No	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
Medication				
5 Skeletal / Limb Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
5.1 OXC vs Women Without	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, 0.0]$
Epilepsy				
5.2 OXC vs WWE - No	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, \ 0.0]$
Medication				

Comparison 6. PB vs Controls

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	17		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
1.1 PB vs Women Without Epilepsy	5	1936	Risk Ratio (M-H, Fixed, 95% CI)	2.84 [1.57, 5.13]
1.2 PB vs WWE - No Medication	13	1030	Risk Ratio (M-H, Fixed, 95% CI)	1.95 [0.97, 3.93]
2 Neural Tube Malformations	2		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
2.1 PB vs Women Without	1	120	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \; [0.0, 0.0]$
Epilepsy				
2.2 PB vs WWE - No	2	181	Risk Ratio (M-H, Fixed, 95% CI)	1.73 [0.08, 36.75]
Medication				
3 Cardiac Malformations	2		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
3.1 PB vs Women Without Epilepsy	1	120	Risk Ratio (M-H, Fixed, 95% CI)	7.8 [0.36, 168.52]
3.2 PB vs WWE - No Medication	2	181	Risk Ratio (M-H, Fixed, 95% CI)	8.22 [0.37, 181.57]
4 Oro-Facial Cleft / Craniofacial Malformations	2		Risk Difference (M-H, Fixed, 95% CI)	Subtotals only
4.1 PB vs Women Without Epilepsy	1	120	Risk Difference (M-H, Fixed, 95% CI)	-0.03 [-0.29, 0.24]

4.2 PB vs WWE - No Medication	2	181	Risk Difference (M-H, Fixed, 95% CI)	0.0 [-0.21, 0.21]
5 Skeletal / Limb Malformations	2		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
5.1 PB vs Women Without	1	120	Risk Ratio (M-H, Fixed, 95% CI)	7.8 [0.36, 168.52]
Epilepsy				
5.2 PB vs WWE - No	2	181	Risk Ratio (M-H, Fixed, 95% CI)	8.22 [0.37, 181.57]
Medication				

Comparison 7. PHT vs Controls

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	18		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
1.1 PHT vs Women Without Epilepsy	5	1464	Risk Ratio (M-H, Fixed, 95% CI)	2.38 [1.12, 5.03]
1.2 PHT vs WWE - No Medication	15	1896	Risk Ratio (M-H, Fixed, 95% CI)	2.40 [1.42, 4.08]
2 Neural Tube Malformations	5		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
2.1 PHT vs Women Without Epilepsy	2	462	Risk Ratio (M-H, Fixed, 95% CI)	13.17 [0.58, 299.00]
2.2 PHT vs WWE - No Medication	5	388	Risk Ratio (M-H, Fixed, 95% CI)	1.65 [0.32, 8.51]
3 Cardiac Malformations	5		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
3.1 PHT vs Women Without Epilepsy	2	462	Risk Ratio (M-H, Fixed, 95% CI)	6.31 [0.75, 52.91]
3.2 PHT vs WWE - No Medication	5	388	Risk Ratio (M-H, Fixed, 95% CI)	3.23 [0.40, 26.25]
4 Oro-Facial Cleft / Craniofacial Malformations	5		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
4.1 PHT vs Women Without Epilepsy	2	462	Risk Ratio (M-H, Fixed, 95% CI)	0.67 [0.04, 12.54]
4.2 PHT vs WWE - No Medication	5	663	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	5		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
5.1 PHT vs Women Without Epilepsy	2	462	Risk Ratio (M-H, Fixed, 95% CI)	1.56 [0.07, 37.19]
5.2 PHT vs WWE - No Medication	5	388	Risk Ratio (M-H, Fixed, 95% CI)	1.69 [0.19, 15.30]

Comparison 8. PRM vs Controls

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	5		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
1.1 PRM vs Women Without Epilepsy	1	137	Risk Ratio (M-H, Random, 95% CI)	0.48 [0.03, 8.43]
1.2 PRM vs WWE - No Medication	5	503	Risk Ratio (M-H, Random, 95% CI)	3.92 [0.76, 20.14]
2 Neural Tube Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
2.1 PRM vs Women Without Epilepsy	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
2.2 PRM vs WWE - No Medication	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
3.1 PRM vs Women Without Epilepsy	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3.2 PRM vs WWE - No Medication	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4 Oro-Facial Cleft / Craniofacial Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
4.1 PRM vs Women Without Epilepsy	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4.2 PRM vs WWE - No Medication	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
5.1 PRM vs Women Without Epilepsy	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5.2 PRM vs WWE - No Medication	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]

Comparison 9. TPM vs Controls

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
1.1 TPM vs Women Without Epilepsy	1	801	Risk Ratio (M-H, Fixed, 95% CI)	3.69 [1.36, 10.07]
1.2 TPM vs WWE - No Medication	2	802	Risk Ratio (M-H, Fixed, 95% CI)	1.99 [0.65, 6.08]
2 Neural Tube Malformations	1		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
2.1 TPM vs Women Without Epilepsy	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
2.2 TPM vs WWE - No Medication	1	191	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	1		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only

3.1 TPM vs Women Without Epilepsy	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3.2 TPM vs WWE - No	1	191	Risk Ratio (M-H, Fixed, 95% CI)	1.10 [0.05, 26.45]
Medication 4 Oro-Facial Cleft / Craniofacial	1		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
Malformations 4.1 TPM vs Women Without	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
Epilepsy	1	101		
4.2 TPM vs WWE - No Medication	1	191	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, \ 0.0]$
5 Skeletal / Limb Malformations	1		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
5.1 TPM vs Women Without	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, \ 0.0]$
Epilepsy				
5.2 TPM vs WWE - No	1	191	Risk Ratio (M-H, Fixed, 95% CI)	1.10 [0.05, 26.45]
Medication				

Comparison 10. VPA vs Controls

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	19		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
1.1 VPA vs Women Without Epilepsy	7	2403	Risk Ratio (M-H, Fixed, 95% CI)	5.69 [3.33, 9.73]
1.2 VPA vs WWE - No Med Controls	14	3182	Risk Ratio (M-H, Fixed, 95% CI)	3.13 [2.16, 4.54]
2 Neural Tube Malformations	6		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
2.1 VPA vs Women Without Epilepsy	2	502	Risk Ratio (M-H, Fixed, 95% CI)	6.05 [0.94, 38.81]
2.2 VPA vs WWE - No Medication	6	768	Risk Ratio (M-H, Fixed, 95% CI)	5.30 [1.05, 26.70]
3 Cardiac Malformations	6		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
3.1 VPA vs Women without Medication	2	502	Risk Ratio (M-H, Fixed, 95% CI)	16.40 [3.05, 88.19]
3.2 VPA vs WWE - No Medication	6	768	Risk Ratio (M-H, Fixed, 95% CI)	4.85 [1.28, 18.47]
4 Oro-Facial Cleft / Craniofacial Malformations	6		Risk Difference (M-H, Fixed, 95% CI)	Subtotals only
4.1 VPA vs Women Without Epilepsy	2	502	Risk Difference (M-H, Fixed, 95% CI)	0.01 [-0.03, 0.04]
4.2 VPA vs WWE - No Medication	6	768	Risk Difference (M-H, Fixed, 95% CI)	0.03 [0.01, 0.05]
5 Skeletal / Limb Malformations	6		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
5.1 VPA vs Women Without Epilepsy	2	502	Risk Ratio (M-H, Fixed, 95% CI)	16.48 [2.46, 110.49]
5.2 VPA vs WWE - No Medication	6	768	Risk Ratio (M-H, Fixed, 95% CI)	2.57 [0.82, 8.04]

Comparison 11. ZNS vs Controls

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	1		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
1.1 ZNS vs Women Without Epilepsy	1	532	Risk Ratio (M-H, Fixed, 95% CI)	0.44 [0.02, 7.93]
1.2 ZNS vs WWE - No Medication	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
2 Neural Tube Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
2.1 ZNS vs Women Without Epilepsy	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
2.2 ZNS vs WWE - No Medication	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
3.1 ZNS vs Women Without Epilepsy	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3.2 ZNS vs WWE - No Medication	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4 Oro-Facial Cleft / Craniofacial Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
4.1 ZNS vs Women Without Epilepsy	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4.2 ZNS vs WWE - No Medication	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
5.1 ZNS vs Women without Epilepsy	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5.2 ZNS vs WWE - No Medication	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]

Comparison 12. CBZ vs GBP

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3	3241	Risk Ratio (M-H, Fixed, 95% CI)	2.28 [0.67, 7.79]
2 Neural Tube Malformations	1	375	Risk Ratio (M-H, Fixed, 95% CI)	0.12 [0.01, 2.93]
3 Cardiac Malformations	1	375	Risk Ratio (M-H, Fixed, 95% CI)	0.29 [0.02, 5.37]
4 Oro-Facial Cleft / Craniofacial Malformations	1	375	Risk Ratio (M-H, Fixed, 95% CI)	0.37 [0.02, 6.62]
5 Skeletal / Limb Malformations	1	375	Risk Ratio (M-H, Fixed, 95% CI)	0.21 [0.01, 4.13]

Comparison 13. CBZ vs LEV

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3	3868	Risk Ratio (M-H, Fixed, 95% CI)	1.84 [1.03, 3.29]
2 Neural Tube Malformations	3	3868	Risk Ratio (M-H, Fixed, 95% CI)	1.19 [0.25, 5.55]
3 Cardiac Malformations	3	3868	Risk Ratio (M-H, Fixed, 95% CI)	1.83 [0.48, 6.97]
4 Oro-Facial Cleft / Craniofacial Malformations	3	3868	Risk Ratio (M-H, Fixed, 95% CI)	1.83 [0.44, 7.61]
5 Skeletal / Limb Malformations	3	3868	Risk Ratio (M-H, Fixed, 95% CI)	2.30 [0.44, 11.86]

Comparison 14. CBZ vs LTG

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	7	7549	Risk Ratio (M-H, Fixed, 95% CI)	1.34 [1.01, 1.76]
2 Neural Tube Malformations	6	7509	Risk Ratio (M-H, Fixed, 95% CI)	2.32 [0.79, 6.82]
3 Cardiac Malformations	6	7509	Risk Ratio (M-H, Fixed, 95% CI)	1.57 [0.85, 2.89]
4 Oro-Facial Cleft / Crainofacial Malformations	6	7509	Risk Ratio (M-H, Fixed, 95% CI)	1.12 [0.53, 2.37]
5 Skeletal / Limb Malformations	6	7509	Risk Ratio (M-H, Fixed, 95% CI)	2.56 [0.97, 6.73]

Comparison 15. CBZ vs OXC

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	4	2011	Risk Ratio (M-H, Fixed, 95% CI)	1.44 [0.66, 3.16]
2 Neural Tube Malformations	4	2011	Risk Ratio (M-H, Fixed, 95% CI)	0.48 [0.09, 2.54]
3 Cardiac Malformations	4	2011	Risk Ratio (M-H, Fixed, 95% CI)	0.51 [0.10, 2.69]
4 Oro-Facial Cleft / Craniofacial Malformations	4	2011	Risk Ratio (M-H, Fixed, 95% CI)	0.53 [0.12, 2.33]
5 Skeletal / Limb Malformations	4	2011	Risk Ratio (M-H, Fixed, 95% CI)	0.48 [0.11, 2.11]

Comparison 16. CBZ vs PB

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	22	3368	Risk Ratio (M-H, Fixed, 95% CI)	0.84 [0.60, 1.16]
2 Neural Tube Malformations	12	2246	Risk Ratio (M-H, Fixed, 95% CI)	1.02 [0.19, 5.39]
3 Cardiac Malformations	12	2385	Risk Ratio (M-H, Fixed, 95% CI)	0.34 [0.18, 0.62]
4 Oro-Facial Cleft / Craniofacial Malformations	12	2246	Risk Ratio (M-H, Fixed, 95% CI)	0.18 [0.07, 0.48]
5 Skeletal / Limb Malformation	12	2246	Risk Ratio (M-H, Fixed, 95% CI)	1.20 [0.45, 3.21]

Comparison 17. CBZ vs PHT

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	23	5445	Risk Ratio (M-H, Fixed, 95% CI)	0.82 [0.61, 1.11]
2 Neural Tube Malformations	14	4734	Risk Ratio (M-H, Fixed, 95% CI)	1.03 [0.31, 3.37]
3 Cardiac Malformations	14	4934	Risk Ratio (M-H, Fixed, 95% CI)	0.92 [0.47, 1.78]
4 Oro-Facial Cleft / Craniofacial Malformations	14	4734	Risk Ratio (M-H, Fixed, 95% CI)	0.80 [0.31, 2.05]
5 Skeletal / Limb Malformation	14	4734	Risk Ratio (M-H, Fixed, 95% CI)	0.78 [0.35, 1.75]

Comparison 18. CBZ vs PRM

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	6	777	Risk Ratio (M-H, Random, 95% CI)	0.64 [0.21, 2.01]
2 Neural Tube Malformations	2	158	Risk Ratio (M-H, Fixed, 95% CI)	0.95 [0.04, 22.75]
3 Cardiac Malformations	2	158	Risk Ratio (M-H, Fixed, 95% CI)	0.11 [0.00, 2.53]
4 Oro-Facial Cleft / Craniofacial Malformations	2	158	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	2	158	Risk Ratio (M-H, Fixed, 95% CI)	2.84 [0.16, 51.53]

Comparison 19. CBZ vs TPM

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3	3524	Risk Ratio (M-H, Fixed, 95% CI)	0.78 [0.47, 1.31]
2 Neural Tube Malformations	3	3524	Risk Ratio (M-H, Fixed, 95% CI)	0.97 [0.19, 5.06]
3 Cardiac Malformations	3	3524	Risk Ratio (M-H, Fixed, 95% CI)	1.05 [0.23, 4.78]
4 Oro-Facial Cleft / Craniofacial Malformations	3	3524	Risk Ratio (M-H, Fixed, 95% CI)	0.32 [0.13, 0.81]
5 Skeletal / Limb Malformations	3	3524	Risk Ratio (M-H, Fixed, 95% CI)	0.38 [0.13, 1.09]

Comparison 20. CBZ vs VPA

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	25	7078	Risk Ratio (M-H, Fixed, 95% CI)	0.41 [0.34, 0.50]
2 Neural Tube Malformations	16	6476	Risk Ratio (M-H, Fixed, 95% CI)	0.17 [0.09, 0.31]
3 Cardiac Malformations	16	6646	Risk Ratio (M-H, Fixed, 95% CI)	0.45 [0.31, 0.68]
4 Oro-Facial Cleft / Craniofacial Malformations	16	6476	Risk Ratio (M-H, Fixed, 95% CI)	0.28 [0.16, 0.49]
5 Skeletal / Limb Malformations	16	6476	Risk Ratio (M-H, Fixed, 95% CI)	0.33 [0.19, 0.57]

Comparison 21. CBZ vs ZNS

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	1	1123	Risk Ratio (M-H, Fixed, 95% CI)	5.54 [0.34, 89.86]
2 Neural Tube Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4 Oro-Facial Cleft / Craniofacial Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \; [0.0, 0.0]$
5 Skeletal / Limb Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]

Comparison 22. GBP vs LTG

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3	4165	Risk Ratio (M-H, Fixed, 95% CI)	0.60 [0.17, 2.07]
2 Neural Tube Malformations	1	329	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \; [0.0, 0.0]$
3 Cardiac Malformations	1	329	Risk Ratio (M-H, Fixed, 95% CI)	3.01 [0.16, 55.67]
4 Oro-Facial Cleft / Craniofacial Malformations	1	329	Risk Ratio (M-H, Fixed, 95% CI)	1.92 [0.11, 33.05]
5 Skeletal / Limb Malformations	1	329	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \; [0.0, 0.0]$

Comparison 23. GBP vs OXC

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	2	353	Risk Ratio (M-H, Fixed, 95% CI)	0.31 [0.04, 2.78]
2 Neural Tube Malformations	1	26	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	1	26	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4 Oro-Facial Cleft / Craniofacial Malformations	1	26	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	1	26	Risk Ratio (M-H, Fixed, 95% CI)	$0.0\;[0.0,0.0]$

Comparison 24. GBP vs PB

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	2	363	Risk Ratio (M-H, Fixed, 95% CI)	0.12 [0.02, 0.96]
2 Neural Tube Malformations	1	19	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, 0.0]$
3 Cardiac Malformations	1	19	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4 Oro-Facial Cleft / Craniofacial Malformations	1	19	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	1	19	Risk Ratio (M-H, Fixed, 95% CI)	$0.0\;[0.0,0.0]$

Comparison 25. GBP vs PRM

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
2 Neural Tube Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, \ 0.0]$
3 Cardiac Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, \ 0.0]$
4 Oro-Facial Cleft / Craniofacial Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]

Comparison 26. GBP vs TPM

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3	663	Risk Ratio (M-H, Fixed, 95% CI)	0.32 [0.09, 1.17]
2 Neural Tube Malformations	1	58	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	1	58	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, \ 0.0]$
4 Oro-Facial Cleft / Craniofacial Malformations	1	58	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	1	58	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]

Comparison 27. GBP vs ZNS

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	1	235	Risk Ratio (M-H, Fixed, 95% CI)	1.87 [0.08, 45.41]
2 Neural Tube Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4 Oro-Facial Cleft / Craniofacial Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]

Comparison 28. LEV vs GBP

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3	1007	Risk Ratio (M-H, Fixed, 95% CI)	1.52 [0.43, 5.42]
2 Neural Tube Malformations	1	77	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \; [0.0, 0.0]$
3 Cardiac Malformations	1	77	Risk Ratio (M-H, Fixed, 95% CI)	0.70 [0.03, 16.42]
4 Oro-Facial Cleft / Craniofacial Malformations	1	77	Risk Ratio (M-H, Fixed, 95% CI)	0.70 [0.03, 16.42]
5 Skeletal / Limb Malformation	1	77	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]

Comparison 29. LEV vs LTG

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3	4792	Risk Ratio (M-H, Random, 95% CI)	0.62 [0.20, 1.88]
2 Neural Tude Malformations	3	4792	Risk Ratio (M-H, Fixed, 95% CI)	1.59 [0.24, 10.38]
3 Cardiac Malformations	3	4792	Risk Ratio (M-H, Fixed, 95% CI)	0.86 [0.22, 3.36]
4 Oro-Facial Cleft / Craniofacial Malformations	3	4792	Risk Ratio (M-H, Fixed, 95% CI)	0.59 [0.14, 2.48]
5 Skeletal / Limb Malformation	3	4792	Risk Ratio (M-H, Fixed, 95% CI)	0.82 [0.10, 6.80]

Comparison 30. LEV vs OXC

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	2	707	Risk Ratio (M-H, Fixed, 95% CI)	1.05 [0.36, 3.03]
2 Neural Tube Malformations	2	707	Risk Ratio (M-H, Fixed, 95% CI)	1.22 [0.05, 29.74]
3 Cardiac Malformations	2	707	Risk Ratio (M-H, Fixed, 95% CI)	0.89 [0.10, 8.21]
4 Oro-Facial Cleft / Craniofacial Malformations	2	707	Risk Ratio (M-H, Fixed, 95% CI)	0.27 [0.03, 2.20]
5 Skeletal / Limb Malformations	2	707	Risk Ratio (M-H, Fixed, 95% CI)	0.14 [0.01, 3.30]

Comparison 31. LEV vs PB

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	2	717	Risk Ratio (M-H, Fixed, 95% CI)	0.43 [0.20, 0.96]
2 Neural Tube Malformations	2	717	Risk Ratio (M-H, Fixed, 95% CI)	1.33 [0.05, 32.52]
3 Cardiac Malformations	2	717	Risk Ratio (M-H, Fixed, 95% CI)	0.11 [0.02, 0.66]
4 Oro-Facial Cleft / Craniofacial Malformations	2	717	Risk Ratio (M-H, Fixed, 95% CI)	0.08 [0.01, 0.67]
5 Skeletal / Limb Malformation	2	717	Risk Ratio (M-H, Fixed, 95% CI)	0.15 [0.01, 3.61]

Comparison 32. LEV vs PHT

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3	1383	Risk Ratio (M-H, Fixed, 95% CI)	0.49 [0.26, 0.92]
2 Neural Tube Malformations	3	1359	Risk Ratio (M-H, Fixed, 95% CI)	0.81 [0.12, 5.34]
3 Cardiac Malformations	3	1359	Risk Ratio (M-H, Fixed, 95% CI)	0.26 [0.06, 1.09]
4 Oro-Facial Cleft / Craniofacial Malformations	3	1359	Risk Ratio (M-H, Fixed, 95% CI)	0.35 [0.08, 1.56]
5 Skeletal / Limb Malformations	3	1359	Risk Ratio (M-H, Fixed, 95% CI)	0.10 [0.01, 1.90]

Comparison 33. LEV vs PRM

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
2 Neural Tube Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4 Oro-Facial Cleft / Craniofacial Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]

Comparison 34. LEV vs TPM

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3	1290	Risk Ratio (M-H, Fixed, 95% CI)	0.50 [0.26, 0.97]
2 Neural Tube Malformations	3	1290	Risk Ratio (M-H, Fixed, 95% CI)	2.39 [0.10, 58.61]
3 Cardiac Malformations	3	1290	Risk Ratio (M-H, Fixed, 95% CI)	1.25 [0.16, 9.54]
4 Oro-Facial Cleft / Craniofacial Malformations	3	1290	Risk Ratio (M-H, Fixed, 95% CI)	0.17 [0.04, 0.68]
5 Skeletal / Limb Malformations	3	1290	Risk Ratio (M-H, Fixed, 95% CI)	0.07 [0.00, 1.31]

Comparison 35. LEV vs ZNS

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	1	540	Risk Ratio (M-H, Fixed, 95% CI)	4.64 [0.28, 78.05]
2 Neural Tube Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4 Oro-Facial Cleft / Craniofacial Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]

Comparison 36. LTG vs OXC

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	2	2071	Risk Ratio (M-H, Fixed, 95% CI)	0.93 [0.35, 2.43]
2 Neural Tube Malformations	2	2071	Risk Ratio (M-H, Fixed, 95% CI)	0.59 [0.03, 12.15]
3 Cardiac Malformation	2	2071	Risk Ratio (M-H, Fixed, 95% CI)	0.54 [0.07, 4.30]
4 Oro-Facial Cleft / Craniofacial Malformations	2	2071	Risk Ratio (M-H, Fixed, 95% CI)	0.69 [0.13, 3.71]
5 Skeletal / Limb Malformation	2	2071	Risk Ratio (M-H, Fixed, 95% CI)	0.23 [0.02, 2.56]

Comparison 37. LTG vs PB

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	4	2241	Risk Ratio (M-H, Fixed, 95% CI)	0.32 [0.17, 0.61]
2 Neural Tube Malformations	3	2174	Risk Ratio (M-H, Fixed, 95% CI)	0.64 [0.03, 13.28]
3 Cardiac Malformations	3	2174	Risk Ratio (M-H, Fixed, 95% CI)	0.14 [0.04, 0.42]
4 Oro-Facial Cleft / Craniofacial Malformations	3	2174	Risk Ratio (M-H, Fixed, 95% CI)	0.22 [0.07, 0.68]
5 Skeletal / Limb Malformations	3	2174	Risk Ratio (M-H, Fixed, 95% CI)	0.25 [0.02, 2.80]

Comparison 38. LTG vs PHT

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	5	4706	Risk Ratio (M-H, Fixed, 95% CI)	0.53 [0.34, 0.84]
2 Neural Tube Malformations	4	4671	Risk Ratio (M-H, Fixed, 95% CI)	0.31 [0.07, 1.34]
3 Cardiac Malformations	4	4671	Risk Ratio (M-H, Fixed, 95% CI)	0.35 [0.14, 0.92]
4 Oro-Facial Cleft / Craniofacial Malformations	4	4671	Risk Ratio (M-H, Fixed, 95% CI)	0.75 [0.24, 2.34]
5 Skeletal / Limb Malformations	4	4671	Risk Ratio (M-H, Fixed, 95% CI)	0.15 [0.03, 0.66]

Comparison 39. LTG vs TPM

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3	4448	Risk Ratio (M-H, Fixed, 95% CI)	0.56 [0.34, 0.94]
2 Neural Tube Malformations	3	4448	Risk Ratio (M-H, Fixed, 95% CI)	0.62 [0.08, 4.94]
3 Cardiac Malformations	3	4448	Risk Ratio (M-H, Fixed, 95% CI)	0.75 [0.17, 3.42]
4 Oro-Facial Cleft / Craniofacial Malformations	3	4448	Risk Ratio (M-H, Random, 95% CI)	0.22 [0.03, 1.56]
5 Skeletal / Limb Malformations	3	4448	Risk Ratio (M-H, Fixed, 95% CI)	0.11 [0.03, 0.45]

Comparison 40. PHT vs GBP

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3	756	Risk Ratio (M-H, Fixed, 95% CI)	2.81 [0.77, 10.23]
2 Neural Tube Malformations	1	58	Risk Ratio (M-H, Fixed, 95% CI)	1.0 [0.04, 23.26]
3 Cardiac Malformations	1	58	Risk Ratio (M-H, Fixed, 95% CI)	1.0 [0.04, 23.26]
4 Oro-Facial Cleft / Craniofacial Malformations	1	58	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	1	58	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]

Comparison 41. PHT vs OXC

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3	787	Risk Ratio (M-H, Fixed, 95% CI)	1.08 [0.43, 2.71]
2 Neural Tube Malformations	3	787	Risk Ratio (M-H, Fixed, 95% CI)	0.87 [0.04, 20.03]
3 Cardiac Malformations	3	787	Risk Ratio (M-H, Fixed, 95% CI)	2.32 [0.30, 18.27]
4 Oro-Facial Cleft / Craniofacial Malformations	3	787	Risk Ratio (M-H, Fixed, 95% CI)	0.62 [0.10, 4.05]
5 Skeletal / Limb Malformations	3	787	Risk Ratio (M-H, Fixed, 95% CI)	1.75 [0.20, 15.55]

Comparison 42. PHT vs PB

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	18	1483	Risk Ratio (M-H, Fixed, 95% CI)	0.80 [0.53, 1.21]
2 Neural Tube Malformations	10	936	Risk Ratio (M-H, Fixed, 95% CI)	0.4 [0.02, 8.75]
3 Cardiac Malformations	10	1065	Risk Ratio (M-H, Fixed, 95% CI)	0.33 [0.16, 0.71]
4 Oro-Facial Cleft / Craniofacial Malformations	10	936	Risk Ratio (M-H, Fixed, 95% CI)	0.25 [0.07, 0.82]
5 Skeletal / Limb Malformations	10	936	Risk Ratio (M-H, Fixed, 95% CI)	1.45 [0.40, 5.22]

Comparison 43. PHT vs TPM

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3	1039	Risk Ratio (M-H, Fixed, 95% CI)	0.90 [0.49, 1.67]
2 Neural Tube Malformations	3	1015	Risk Ratio (M-H, Fixed, 95% CI)	3.0 [0.13, 71.70]
3 Cardiac Malformations	3	1015	Risk Ratio (M-H, Fixed, 95% CI)	3.12 [0.65, 14.93]
4 Oro-Facial Cleft / Craniofacial Malformations	3	1015	Risk Ratio (M-H, Fixed, 95% CI)	0.37 [0.10, 1.42]
5 Skeletal / Limb Malformations	3	1015	Risk Ratio (M-H, Fixed, 95% CI)	0.69 [0.19, 2.55]

Comparison 44. PB vs OXC

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	4	452	Risk Ratio (M-H, Fixed, 95% CI)	2.52 [0.98, 6.43]
2 Neural Tube Malformations	3	438	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	3	438	Risk Ratio (M-H, Fixed, 95% CI)	11.77 [1.24, 111.80]
4 Oro-Facial Cleft / Craniofacial Malformations	3	438	Risk Ratio (M-H, Fixed, 95% CI)	3.66 [0.41, 32.43]
5 Skeletal / Limb Malformations	3	438	Risk Ratio (M-H, Fixed, 95% CI)	0.91 [0.06, 14.52]

Comparison 45. PB vs TPM

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	2	607	Risk Ratio (M-H, Fixed, 95% CI)	1.36 [0.65, 2.84]
2 Neural Tube Malformations	2	607	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	2	607	Risk Ratio (M-H, Fixed, 95% CI)	9.02 [1.06, 76.67]
4 Oro-Facial Cleft / Craniofacial Malformations	2	607	Risk Ratio (M-H, Fixed, 95% CI)	1.44 [0.39, 5.31]
5 Skeletal / Limb Malformations	2	607	Risk Ratio (M-H, Fixed, 95% CI)	0.36 [0.04, 3.07]

Comparison 46. VPA vs GBP

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3	2004	Risk Ratio (M-H, Fixed, 95% CI)	6.21 [1.91, 20.23]
2 Neural Tube Malformations	1	285	Risk Ratio (M-H, Fixed, 95% CI)	0.83 [0.05, 13.81]
3 Cardiac Malformations	1	285	Risk Ratio (M-H, Fixed, 95% CI)	1.16 [0.07, 18.84]
4 Oro-Facial Cleft / Craniofacial Malformations	1	285	Risk Ratio (M-H, Fixed, 95% CI)	1.38 [0.09, 22.19]
5 Skeletal / Limb Malformations	1	285	Risk Ratio (M-H, Fixed, 95% CI)	0.72 [0.04, 12.14]

Comparison 47. VPA vs LEV

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3	2631	Risk Ratio (M-H, Fixed, 95% CI)	5.82 [3.13, 10.81]
2 Neural Tube Malformations	3	2631	Risk Ratio (M-H, Fixed, 95% CI)	5.28 [1.17, 23.83]
3 Cardiac Malformations	3	2631	Risk Ratio (M-H, Fixed, 95% CI)	5.79 [1.67, 20.16]
4 Oro-Facial Cleft / Craniofacial Malformations	3	2631	Risk Ratio (M-H, Fixed, 95% CI)	5.34 [1.33, 21.39]
5 Skeletal / Limb Malformations	3	2631	Risk Ratio (M-H, Fixed, 95% CI)	6.45 [1.33, 31.16]

Comparison 48. VPA vs LTG

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	7	6185	Risk Ratio (M-H, Fixed, 95% CI)	3.56 [2.77, 4.58]
2 Neural Tube Malformations	6	6151	Risk Ratio (M-H, Fixed, 95% CI)	9.09 [3.56, 23.22]
3 Cardiac Malformations	6	6151	Risk Ratio (M-H, Fixed, 95% CI)	4.07 [2.33, 7.09]
4 Oro-Facial Cleft / Craniofacial Malformations	6	6151	Risk Difference (M-H, Fixed, 95% CI)	0.01 [0.01, 0.02]
5 Skeletal / Limb Malformations	6	6151	Risk Ratio (M-H, Fixed, 95% CI)	7.17 [2.99, 17.18]

Comparison 49. VPA vs TPM

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	3	2287	Risk Ratio (M-H, Fixed, 95% CI)	2.35 [1.40, 3.95]
2 Neural Tube Malformations	3	2287	Risk Ratio (M-H, Fixed, 95% CI)	3.67 [0.79, 17.08]
3 Cardiac Malformations	3	2287	Risk Ratio (M-H, Fixed, 95% CI)	4.73 [1.21, 18.49]
4 Oro-Facial Cleft / Craniofacial Malformations	3	2287	Risk Ratio (M-H, Fixed, 95% CI)	0.98 [0.40, 2.40]
5 Skeletal / Limb Malformation	3	2287	Risk Ratio (M-H, Fixed, 95% CI)	1.26 [0.44, 3.61]

Comparison 50. VPA vs OXC

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	4	914	Risk Ratio (M-H, Fixed, 95% CI)	3.71 [1.65, 8.33]
2 Neural Tube Malformations	4	914	Risk Ratio (M-H, Fixed, 95% CI)	1.89 [0.39, 9.07]
3 Cardiac Malformations	4	914	Risk Ratio (M-H, Fixed, 95% CI)	3.41 [0.87, 13.37]
4 Oro-Facial Cleft / Craniofacial Malformations	4	914	Risk Ratio (M-H, Fixed, 95% CI)	2.17 [0.63, 7.47]
5 Skeletal / Limb Malformations	4	914	Risk Ratio (M-H, Fixed, 95% CI)	1.49 [0.36, 6.22]

Comparison 51. VPA vs PB

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	20	1763	Risk Ratio (M-H, Fixed, 95% CI)	1.59 [1.11, 2.29]
2 Neural Tube Malformations	11	1225	Risk Difference (M-H, Random, 95% CI)	0.05 [-0.00, 0.10]
3 Cardiac Malformations	11	1324	Risk Ratio (M-H, Fixed, 95% CI)	0.76 [0.42, 1.38]
4 Oro-Facial Cleft / Craniofacial Malformations	11	1225	Risk Ratio (M-H, Fixed, 95% CI)	0.54 [0.22, 1.33]
5 Skeletal / Limb Malformations	11	1225	Risk Ratio (M-H, Fixed, 95% CI)	1.98 [0.79, 4.98]

Comparison 52. VPA vs PHT

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	21	3456	Risk Ratio (M-H, Fixed, 95% CI)	2.00 [1.48, 2.71]
2 Neural Tube Malformations	13	2961	Risk Ratio (M-H, Fixed, 95% CI)	4.47 [1.79, 11.17]
3 Cardiac Malformations	13	3121	Risk Ratio (M-H, Fixed, 95% CI)	2.93 [1.50, 5.72]
4 Oro-Facial Cleft / Craniofacial Malformations	13	2961	Risk Ratio (M-H, Fixed, 95% CI)	2.37 [0.95, 5.96]
5 Skeletal / Limb Malformations	13	2961	Risk Ratio (M-H, Fixed, 95% CI)	1.98 [0.93, 4.21]

Comparison 53. LTG vs PRM

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \; [0.0, 0.0]$
2 Neural Tube Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4 Oro-Facial Cleft / Craniofacial Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \; [0.0, 0.0]$

Comparison 54. PHT vs PRM

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	5	417	Risk Ratio (M-H, Fixed, 95% CI)	0.82 [0.40, 1.68]
2 Neural Tube Malformations	2	75	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	2	75	Risk Ratio (M-H, Fixed, 95% CI)	0.38 [0.02, 8.88]
4 Oro-Facial Cleft / Craniofacial Malformations	2	75	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	2	75	Risk Ratio (M-H, Fixed, 95% CI)	3.38 [0.14, 79.95]

Comparison 55. PB vs PRM

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	6	351	Risk Ratio (M-H, Fixed, 95% CI)	0.50 [0.21, 1.16]
2 Neural Tube Malformations	2	134	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \; [0.0, 0.0]$
3 Cardiac Malformations	2	134	Risk Ratio (M-H, Fixed, 95% CI)	0.42 [0.03, 6.55]
4 Oro-Facial Cleft / Craniofacial Malformations	2	134	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	2	134	Risk Ratio (M-H, Fixed, 95% CI)	1.29 [0.05, 30.82]

Comparison 56. LTG vs ZNS

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	1	1652	Risk Ratio (M-H, Fixed, 95% CI)	3.67 [0.23, 59.46]
2 Neural Tube Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4 Oro-Facial Cleft / Craniofacial Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0\ [0.0,0.0]$

Comparison 57. OXC vs PRM

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	1	15	Risk Ratio (M-H, Fixed, 95% CI)	0.67 [0.05, 8.73]
2 Neural Tube Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4 Oro-Facial Cleft / Craniofacial Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]

Comparison 58. OXC vs TPM

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	2	597	Risk Ratio (M-H, Fixed, 95% CI)	0.57 [0.20, 1.57]
2 Neural Tube Malformations	2	597	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	2	597	Risk Ratio (M-H, Fixed, 95% CI)	0.66 [0.03, 16.02]
4 Oro-Facial Cleft / Craniofacial Malformations	2	597	Risk Ratio (M-H, Fixed, 95% CI)	0.39 [0.05, 3.35]
5 Skeletal / Limb Malformations	2	597	Risk Ratio (M-H, Fixed, 95% CI)	0.39 [0.05, 3.35]

Comparison 59. OXC vs ZNS

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	1	272	Risk Ratio (M-H, Fixed, 95% CI)	4.48 [0.24, 82.23]
2 Neural Tube Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, \ 0.0]$
4 Oro-Facial Cleft / Craniofacial Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0\ [0.0,0.0]$

Comparison 60. PB vs ZNS

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	1	289	Risk Ratio (M-H, Fixed, 95% CI)	10.47 [0.62, 175.67]
2 Neural Tube Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4 Oro-Facial Cleft / Craniofacial Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0\;[0.0,0.0]$

Comparison 61. PHT vs ZNS

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	1	506	Risk Ratio (M-H, Fixed, 95% CI)	5.46 [0.33, 91.31]
2 Neural Tube Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, \ 0.0]$
3 Cardiac Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, \ 0.0]$
4 Oro-Facial Cleft / Craniofacial Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \; [0.0, 0.0]$

Comparison 62. PRM vs TPM

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0\;[0.0,0.0]$
2 Neural Tube Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4 Oro-Facial Cleft / Craniofacial Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]

Comparison 63. PRM vs VPA

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	5	302	Risk Ratio (M-H, Fixed, 95% CI)	0.72 [0.37, 1.40]
2 Neural Tube Malformations	2	84	Risk Ratio (M-H, Fixed, 95% CI)	0.11 [0.01, 1.99]
3 Cardiac Malformations	2	84	Risk Ratio (M-H, Fixed, 95% CI)	3.75 [0.16, 89.32]
4 Oro-Facial Cleft / Craniofacial Malformations	2	84	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \; [0.0, 0.0]$
5 Skeletal / Limb Malformations	2	84	Risk Ratio (M-H, Fixed, 95% CI)	0.42 [0.02, 9.92]

Comparison 64. PRM vs ZNS

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0\ [0.0, 0.0]$
2 Neural Tube Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, \ 0.0]$
3 Cardiac Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, \ 0.0]$
4 Oro-Facial Cleft / Craniofacial Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]

Comparison 65. TPM vs ZNS

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	1	449	Risk Ratio (M-H, Fixed, 95% CI)	7.84 [0.47, 129.74]
2 Neural Tube Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
3 Cardiac Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4 Oro-Facial Cleft / Craniofacial Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0\ [0.0,\ 0.0]$

Comparison 66. VPA vs ZNS

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 All Major Malformations	1	413	Risk Ratio (M-H, Fixed, 95% CI)	17.13 [1.06, 277.48]
2 Neural Tube Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	$0.0 \ [0.0, \ 0.0]$
3 Cardiac Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
4 Oro-Facial Cleft / Craniofacial Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
5 Skeletal / Limb Malformations	0	0	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]

Analysis I.I. Comparison I CBZ vs Controls, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: I CBZ vs Controls

Outcome: I All Major Malformations

Risk Rat	Weight	Risk Ratio	Controls	CBZ	Study or subgroup
M-H,Fixed,95%		M-H,Fixed,95% Cl	n/N	n/N	
Not estimat			0/30	sy 0/7	I CBZ vs Women Without Epilep Arulmozhi 2006
	23.6 %		25/803		Cassina 2013
1.83 [0.72, 4.65				5/88	
1.94 [0.64, 5.89	19.5 %		6/210	6/108	Israeli Teratogen Service
1.06 [0.06, 17.88	4.1 %		5/116	0/9	Koch 1992
1.42 [0.29, 6.89	10.9 %		6/315	2/74	Mawer 2010
2.65 [1.04, 6.78	33.5 %		5/442	31/1033	North American Register
1.36 [0.13, 14.57	5.1 %		2/106	1/39	Steegers-Theunissen 1994
1.39 [0.08, 24.0	3.2 %		4/124	0/9	Tanganelli 1992
2.01 [1.20, 3.36	100.0 %	•	2146	1367	Subtotal (95% CI)
				,	Heterogeneity: $Chi^2 = 0.93$, $df = 6$ Test for overall effect: $Z = 2.67$ (P 2 CBZ vs WWE - No Medication
1.03 [0.05, 23.50	1.6 %		0/10	1/31	Al Bunyan 1999
1.47 [0.55, 3.88	15.3 %		5/147	18/361	Australian
Not estimat			0/18	0/16	Barqawi 2005
5.70 [0.35, 93.24	1.8 %		0/25	12/113	Canger 1999
2.67 [0.23, 30.40	1.2 %		1/8	1/3	D'Souza 1990
5.21 [0.31, 87.93	1.4 %		0/10	4/18	Delmis 1991
0.59 [0.14, 2.52	9.0 %		3/48	4/109	Fairgrieve 2000
Not estimat			0/18	0/24	Garza-Morales 1996
3.29 [0.73, 14.89	5.2 %		2/239	10/363	Kaaja 2003
5.27 [0.75, 11.07	0.0.0/		3/98	9/158	Kaneko 1999
1.86 [0.52, 6.7	8.0 %				
-	8.0 %		0/9	1/7	Kerala Pregnancy Registry
1.86 [0.52, 6.7			0/9	1/7 0/9	Kerala Pregnancy Registry Koch 1992

Favours CBZ Favours Controls

(Continued . . .)

Study or subgroup	CBZ n/N	Controls n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	(Continued) Risk Ratio M-H,Fixed,95% Cl
Mawer 2010	2/74	1/40		2.8 %	1.08 [0.10, 11.56]
Montreal Series	5/32	0/8		1.7 %	3.00 [0.18, 49.32]
UK Register	43/1657	13/541	-	42.3 %	1.08 [0.59, 1.99]
Waters 1994	1/33	0/15		1.5 %	1.41 [0.06, 32.78]
Subtotal (95% CI)	3058	1287	◆	100.0 %	1.50 [1.03, 2.19]
Total events: 116 (CBZ), 31 (Co	ontrols)				
Heterogeneity: Chi ² = 6.53, df =	= 14 (P = 0.95); I ² =0	.0%			
Test for overall effect: $Z = 2.13$	(P = 0.033)				
Test for subgroup differences: C	$hi^2 = 0.80, df = 1 (P =$	= 0.37), I ² =0.0%			

0.01 0.1 1 10 100

Favours CBZ Favours Controls

Analysis 1.2. Comparison | CBZ vs Controls, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: I CBZ vs Contro	ols				
Outcome: 2 Neural Tube Malf	ormations				
Study or subgroup	CBZ	Controls	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
I CBZ vs Women Without Epile	psy				
Israeli Teratogen Service	0/108	0/210			Not estimable
Koch 1992	0/9	0/116			Not estimable
Mawer 2010	0/74	1/315		100.0 %	1.40 [0.06, 34.14]
Subtotal (95% CI)	191	641		100.0 %	1.40 [0.06, 34.14]
Total events: 0 (CBZ), 1 (Control	ls)				
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.21$ (A	P = 0.83)				
2 CBZ vs WWE - No Medication	n				
Al Bunyan 1999	0/31	0/10			Not estimable
			0.01 0.1 1 10 100		
			Favours CBZ Favours Controls		

(Continued ...)

					(Continued)
Study or subgroup	CBZ	Controls	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	1/361	0/147		30.1 %	1.23 [0.05, 29.94]
Barqawi 2005	0/16	0/18			Not estimable
Canger 1999	1/113	0/25		34.5 %	0.68 [0.03, 6.32]
Fairgrieve 2000	0/109	0/48			Not estimable
Koch 1992	0/9	1/25		35.3 %	0.87 [0.04, 19.56]
Mawer 2010	0/74	0/40			Not estimable
Subtotal (95% CI)	713	313	-	100.0 %	0.91 [0.15, 5.61]
Total events: 2 (CBZ), 1 (Contr	ols)				
Heterogeneity: Chi ² = 0.07, df	= 2 (P = 0.97); I ² =	=0.0%			
Test for overall effect: Z = 0.10	(P = 0.92)				
Test for subgroup differences: C	$Chi^2 = 0.05, df = 1$	(P = 0.82), I ² =0.0%			
			0.01 0.1 1 10 100		
			0.01 0.1 1 10 100		

Favours CBZ Favours Controls

Analysis I.3. Comparison I CBZ vs Controls, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: I CBZ vs Controls

Outcome: 3 Cardiac Malformations

Risk Rati	Weight	Risk Ratio	Controls	CBZ	Study or subgroup
M-H,Fixed,95% (M-H,Fixed,95% Cl	n/N	n/N	
				epsy	I CBZ vs Women Without Epile
0.97 [0.09, 10.60	62.6 %		2/210	1/108	Israeli Teratogen Service
3.90 [0.17, 89.64	10.9 %		1/116	0/9	Koch 1992
1.40 [0.06, 34.14	26.5 %		1/315	0/74	Mawer 2010
1.41 [0.28, 7.02	100.0 %		641	,	Subtotal (95% CI) Total events: 1 (CBZ), 4 (Contro Heterogeneity: Chi ² = 0.50, df =
				(P = 0.68)	Test for overall effect: Z = 0.41 (2 CBZ vs WWE - No Medicatic
Not estimab			0/10	0/31	Al Bunyan 1999
1.22 [0.13, 11.65	67.3 %		1/147	3/361	Australian
Not estimab			0/18	0/16	Barqawi 2005
Not estimab			0/25	0/113	Canger 1999
3.12 [0.16, 59.22	32.7 %		0/48	3/109	Fairgrieve 2000
Not estimab			0/25	0/9	Koch 1992
Not estimab			0/40	0/74	Mawer 2010
1.84 [0.32, 10.71	100.0 %		313	,	Subtotal (95% CI) Total events: 6 (CBZ), 1 (Contro Heterogeneity: Chi ² = 0.25, df =
				(P = 0.50)	Test for overall effect: $Z = 0.68$ (Test for subgroup differences: CF
			- – 0.0 <i>2)</i> , 1 ² –0.0%	ni- – 0.03, dt – T (I	iest for subgroup differences: Cr

Analysis I.4. Comparison I CBZ vs Controls, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: I CBZ vs Controls

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	CBZ	Controls	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
I CBZ vs Women Without Epile	psy				
Israeli Teratogen Service	2/108	0/210	→	31.4 %	9.68 [0.47, 199.84]
Koch 1992	0/9	3/116		50.9 %	1.67 [0.09, 30.13]
Mawer 2010	1/74	0/315		17.7 %	12.64 [0.52, 307.22]
Subtotal (95% CI)	191	641	-	100.0 %	6.13 [1.19, 31.49]
Total events: 3 (CBZ), 3 (Contro	ls)				
Heterogeneity: $Chi^2 = 1.06$, df =	2 (P = 0.59); I ² =	0.0%			
Test for overall effect: $Z = 2.17$ (I	P = 0.030)				
2 CBZ vs WWE - No Medication	n				
Al Bunyan 1999	0/31	0/10			Not estimable
Australian	4/361	0/147		20.7 %	3.68 [0.20, 67.92]
Barqawi 2005	0/16	0/18			Not estimable
Canger 1999	0/113	0/25			Not estimable
Fairgrieve 2000	0/109	1/48		60.5 %	0.15 [0.01, 3.58]
Koch 1992	0/9	0/25			Not estimable
Mawer 2010	1/74	0/40		18.8 %	1.64 [0.07, 39.35]
Subtotal (95% CI)	713	313	-	100.0 %	1.16 [0.27, 5.00]
Total events: 5 (CBZ), I (Contro	ls)				
Heterogeneity: $Chi^2 = 2.25$, df =	2 (P = 0.32); I^2 =	11%			
Test for overall effect: $Z = 0.20$ (I	,				
Test for subgroup differences: Ch	$i^2 = 2.21, df = 1$ ($P = 0.14$), $I^2 = 55\%$			
			0.01 0.1 1 10 100		
			Favours CBZ Favours Control	s	

Analysis I.5. Comparison I CBZ vs Controls, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: I CBZ vs Controls

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	CBZ	Controls	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
I CBZ vs Woment Without Epile	epsy				
Israeli Teratogen Service	0/108	0/210			Not estimable
Koch 1992	0/9	1/116		100.0 %	3.90 [0.17, 89.64]
Mawer 2010	0/74	0/315			Not estimable
Subtotal (95% CI) Total events: 0 (CBZ), 1 (Control	191	641		100.0 %	3.90 [0.17, 89.64]
Heterogeneity: not applicable Test for overall effect: Z = 0.85 (f 2 CBZ vs WWE - No Medicatior	,				
Al Bunyan 1999	0/31	0/10			Not estimable
Australian	2/361	1/147		33.0 %	0.81 [0.07, 8.91]
Barqawi 2005	0/16	0/18			Not estimable
Canger 1999	4/113	0/25		18.9 %	2.05 [0.11, 36.95]
Fairgrieve 2000	0/109	1/48		48.1 %	0.15 [0.01, 3.58]
Koch 1992	0/9	0/25			Not estimable
Mawer 2010	0/74	0/40			Not estimable
Subtotal (95% CI) Total events: 6 (CBZ), 2 (Control	,	313	-	100.0 %	0.73 [0.18, 3.01]
Heterogeneity: $Chi^2 = 1.46$, df = Test for overall effect: $Z = 0.44$ (F	· /	0.0%			
Test for subgroup differences: Ch	,	$P = 0.24$ $l^2 = 0.09$			
rest for subgroup differences. Ch	i – 0.71, ul – 1 (і — 0.07), і — 0.0%			
			0.01 0.1 1 10 100 Favours CBZ Favours Contro	ls	

Analysis 2.1. Comparison 2 GBP vs Controls, Outcome 1 All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 2 GBP vs Controls

Outcome: I All Major Malformations

Risk Rati	Weight	Risk Ratio	Control	GBP	Study or subgroup
M-H,Fixed,95% C		M-H,Fixed,95% CI	n/N	n/N	
				у	I GBP vs Women Without Epileps
0.61 [0.07, 5.18	100.0 %		5/442	1/145	North American Register
0.61 [0.07, 5.18	100.0 %		442	145	Subtotal (95% CI)
					Total events: I (GBP), 5 (Control)
					Heterogeneity: not applicable
				= 0.65)	Test for overall effect: $Z = 0.45$ (P
					2 GBP vs WWE - No Medication
0.90 [0.05, 15.44	41.8 %		5/147	0/14	Australian
1.34 [0.18, 9.93	58.2 %	<mark>=</mark>	13/541	1/31	UK Register
1.16 [0.23, 5.93	100.0 %	-	688	45	Subtotal (95% CI)
					Total events: (GBP), 8 (Control)
			0%	$(P = 0.82); I^2 = 0.4$	Heterogeneity: $Chi^2 = 0.05$, df = 1
				= 0.86)	Test for overall effect: $Z = 0.17$ (P
			= 0.64), l ² =0.0%	= 0.22, df = 1 (P	Test for subgroup differences: Chi ²

Favours GBP Favours Controls

Analysis 3.1. Comparison 3 LEV vs Controls, Outcome 1 All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 3 LEV vs Controls

Outcome: I All Major Malformations

Study or subgroup	LEV	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
I LEV vs Women Without Epileps	sy				
North American Register	11/450	5/442		100.0 %	2.16 [0.76, 6.17]
Subtotal (95% CI)	450	442	-	100.0 %	2.16 [0.76, 6.17]
Total events: 11 (LEV), 5 (Control)				
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.44$ (P	= 0.15)				
2 LEV vs WWE - No Medication					
Australian	1/63	5/147		24.3 %	0.47 [0.06, 3.91]
UK Register	2/304	3/54		75.7 %	0.27 [0.06, 1.21]
Subtotal (95% CI)	367	688	-	100.0 %	0.32 [0.10, 1.07]
Total events: 3 (LEV), 18 (Control)				
Heterogeneity: $Chi^2 = 0.16$, df =	I (P = 0.69); I ² =0	.0%			
Test for overall effect: $Z = 1.84$ (P	= 0.065)				
Test for subgroup differences: Chi	² = 5.45, df = 1 (P	= 0.02), I ² =82%			
			0.01 0.1 1 10 100		
			Favours LEV Favours Control	s	

Analysis 4.1. Comparison 4 LTG vs Controls, Outcome 1 All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 4 LTG vs Controls

Outcome: I All Major Malformations

LTG	Controls	Risk Ratio	Weight	Risk Ratio
n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
sy				
0/26	25/803		15.3 %	0.58 [0.04, 9.34]
2/40	6/315		12.5 %	2.63 [0.55, 2.57]
31/1562	5/442		72.1 %	1.75 [0.69, 4.49]
1628	1560	•	100.0 %	1.68 [0.78, 3.65]
ols)				
2 (P = 0.65); $I^2 = 0.65$	0%			
= 0.19)				
3/3 5	5/147	-	23.9 %	1.21 [0.44, 3.34]
2/40	1/40		3.5 %	2.00 [0.19, 21.18]
49/2098	13/541	+	72.6 %	0.97 [0.53, 1.78]
2453	728	+	100.0 %	1.07 [0.64, 1.77]
ols)				
$2 (P = 0.8 I); I^2 = 0.$	0%			
= 0.80)				
$^{2} = 0.94$, df = 1 (P	= 0.33), I ² =0.0%			
		0.01 0.1 1 10 100		
	n/N sy 0/26 2/40 31/1562 1628 bls) 2 (P = 0.65); I ² =0.1 = 0.19) I 3/315 2/40 49/2098 2453 bls) 2 (P = 0.81); I ² =0.1 = 0.80)	n/N n/N sy $0/26$ $25/803$ $2/40$ $6/315$ $31/1562$ $5/442$ 1628 1560 obls) 2 2 (P = 0.65); $l^2 = 0.0\%$ $= 0.19$ $13/315$ $5/147$ $2/40$ $1/40$ $49/2098$ $13/541$ 2453 728 obls) 2 (P = 0.81); $l^2 = 0.0\%$ $= 0.80)$ e^2 e^2 = 0.94, df = 1 (P = 0.33), $l^2 = 0.0\%$	n/N n/N M-H, Fixed, 95% Cl sy $0/26 25/803 42$ $1628 1560 5/147 49/2098 13/511 49/2098 13/541 40/2008 10/2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Favours LTG Favours Controls

Analysis 4.2. Comparison 4 LTG vs Controls, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 4 LTG vs Controls

Outcome: 2 Neural Tube Malformations

Study or subgroup	LTG n/N	Controls n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
I LTG vs Women Without Ep	ilepsy				
Mawer 2010	0/40	1/315		100.0 %	2.57 [0.11, 62.03]
Subtotal (95% CI)	40	315		100.0 %	2.57 [0.11, 62.03]
Total events: 0 (LTG), 1 (Contr	rols)				
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.58$	3 (P = 0.56)				
2 LTG vs WWE - No Medicati	ion				
Australian	0/315	0/147			Not estimable
Mawer 2010	0/40	0/40			Not estimable
Subtotal (95% CI)	355	187			Not estimable
Total events: 0 (LTG), 0 (Contr	rols)				
Heterogeneity: not applicable					
Test for overall effect: not appli	icable				
Test for subgroup differences: I	Not applicable				
			0.01 0.1 1 10 100		
			Favours LTG Favours Contro	ols	

Analysis 4.3. Comparison 4 LTG vs Controls, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 4 LTG vs Controls

Outcome: 3 Cardiac Malformations

Study or subgroup	LTG n/N	Controls n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% CI
I LTG vs Women Without Epi	ilepsy				
Mawer 2010	0/40	1/315		100.0 %	2.57 [0.11, 62.03]
Subtotal (95% CI)	40	315		100.0 %	2.57 [0.11, 62.03]
Total events: 0 (LTG), 1 (Contr	rols)				
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.58$	8 (P = 0.56)				
2 LTG vs WWE - No Medicati	on				
Australian	3/315	1/147		100.0 %	1.40 [0.15, 13.35]
Mawer 2010	0/40	0/40			Not estimable
Subtotal (95% CI)	355	187		100.0 %	1.40 [0.15, 13.35]
Total events: 3 (LTG), 1 (Contr	rols)				
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.29$	9 (P = 0.77)				
Test for subgroup differences: ($Chi^2 = 0.09, df = 1$	(P = 0.76), $I^2 = 0.0\%$			
			0.01 0.1 1 10 100		
			Favours LTG Favours Control	s	

Analysis 4.4. Comparison 4 LTG vs Controls, Outcome 4 Oro-Facial Cleft / Crainofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 4 LTG vs Controls

Outcome: 4 Oro-Facial Cleft / Crainofacial Malformations

Not estimable Not estimable
Not estimable
5.15 [0.29, 92.56]
Not estimable
5.15 [0.29, 92.56]
5

Analysis 4.5. Comparison 4 LTG vs Controls, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 4 LTG vs Controls

Outcome: 5 Skeletal / Limb Malformations

	Weight	Risk Ratio	Controls	LTG	Study or subgroup
M-H,Fixed,95% CI		M-H,Fixed,95% Cl	n/N	n/N	
				ilepsy	I LTG vs Women Without Ep
23.12 [0.96, 558.25]	→ 100.0 %		0/315	1/40	Mawer 2010
23.12 [0.96, 558.25]	100.0 %		315	40	Subtotal (95% CI)
				rols)	Total events: (LTG), 0 (Conti
					Heterogeneity: not applicable
				8 (P = 0.053)	Test for overall effect: $Z = 1.93$
				ion	2 LTG vs WWE - No Medicat
0.16[0.01, 3.81]	80.3 %		1/147	0/315	Australian
3.00 [0.13, 71.51]	I9.7 %		0/40	1/40	Mawer 2010
0.72 [0.12, 4.12]	100.0 %	-	187	355	Subtotal (95% CI)
				rols)	Total events: (LTG), (Conti
			=40%	$r = 1 (P = 0.20); I^2$	Heterogeneity: Chi ² = 1.66, df
				7 (P = 0.71)	Test for overall effect: $Z = 0.37$
			(P = 0.06), I ² =72%	Chi ² = 3.5 I, df = 1	Test for subgroup differences: (
	100		(P = 0.06), I ² =72%	7 (P = 0.71)	overall effect: Z = 0.37
			,		
	100.0 %	0.01 0.1 1 10 100 Favours LTG Favours Contro	187 =40% (P = 0.06), I ² =72%	355 rols) r = 1 (P = 0.20); I ² 7 (P = 0.71)	Subtotal (95% CI) Total events: (LTG), (Contr Heterogeneity: $Chi^2 = 1.66$, df Test for overall effect: $Z = 0.37$

Analysis 5.1. Comparison 5 OXC vs Controls, Outcome 1 All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 5 OXC vs Controls

Outcome: I All Major Malformations

Study or subgroup	OXC n/N	Control n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
I OXC vs Women Without Epilep	psy				
North American Register	4/182	5/442		100.0 %	1.94 [0.53, 7.15]
Subtotal (95% CI)	182	442	-	100.0 %	1.94 [0.53, 7.15]
Total events: 4 (OXC), 5 (Control)				
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.00$ (P	= 0.32)				
2 OXC vs WWE - No Medication	r				
Australian	0/12	5/147		86.0 %	1.03 [0.06, 17.70]
Kaaja 2003	1/9	2/239		14.0 %	3.28 [.32, 33.28]
Subtotal (95% CI)	21	386		100.0 %	2.75 [0.53, 14.43]
Total events: I (OXC), 7 (Control)				
Heterogeneity: $Chi^2 = 2.24$, df =	$ (P = 0.13); ^2 = 5$	55%			
Test for overall effect: $Z = 1.20$ (P	= 0.23)				
Test for subgroup differences: Chi ²	$^{2} = 0.11, df = 1$ (F	P = 0.75), l ² =0.0%			
			0.01 0.1 1 10 100 Favours OXC Favours Contro	ls	

Analysis 6.1. Comparison 6 PB vs Controls, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 6 PB vs Controls

Outcome: I All Major Malformations

Study or subgroup	PB n/N	Control n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
I PB vs Women Without Epilepsy					
Cassina 2013	5/67	25/803		36.2 %	2.40 [0.95, 6.06]
Koch 1992	0/4	5/116		4.2 %	2.13 [0.14, 33.38]
North American Register	11/199	5/442		29.2 %	4.89 [1.72, 13.88]
Steegers-Theunissen 1994	0/12	2/106		5.1 %	1.65 [0.08, 32.45]
Tanganelli 1992	3/63	4/124		25.3 %	1.48 [0.34, 6.39]
Subtotal (95% CI)	345	1591	•	100.0 %	2.84 [1.57, 5.13]
Total events: 19 (PB), 41 (Control) Heterogeneity: $Chi^2 = 2.10$, df = 4 Test for overall effect: Z = 3.46 (P = 2 PB vs WWE - No Medication	. ,	0%			
Al Bunyan 1999	0/2	0/10			Not estimable
Australian	0/5	5/147		3.9 %	2.24 [0.14, 36.06
Canger 1999	4/83	0/25		6.9 %	2.79 [0.16, 50.05
D'Souza 1990	1/4	1/8		6.0 %	2.00 [0.16, 24.33
Delmiš 1991	4/58	0/10		7.6 %	1.68 [0.10, 29.01
Kaaja 2003	0/5	2/239		1.1 %	8.00 [0.43, 149.27
Kaneko 1999	4/79	3/98		24.1 %	1.65 [0.38, 7.17
Kelly 1984	4/79	1/23	_	14.0 %	1.16 [0.14, 9.91
Kerala Pregnancy Registry	1/9	0/9		4.5 %	3.00 [0.14, 65.16
Koch 1992	0/4	1/25		4.4 %	1.73 [0.08, 36.75
Lindhout 1992	1/26	2/28		17.4 %	0.54 [0.05, 5.59
Montreal Series	2/10	0/8		5.0 %	4.09 [0.22, 74.78
Waters 1994	3/21	0/15		5.2 %	5.09 [0.28, 91.82
Subtotal (95% CI)	385	645	•	100.0 %	1.95 [0.97, 3.93
Total events: 24 (PB), 15 (Control) Heterogeneity: Chi ² = 3.16, df = 11 Test for overall effect: Z = 1.87 (P = Test for subgroup differences: Chi ²	= 0.062)				

Analysis 6.2. Comparison 6 PB vs Controls, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 6 PB vs Controls

Outcome: 2 Neural Tube Malformations

Study or subgroup	PB n/N	Control n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
I PB vs Women Without Epilep					
Koch 1992	0/4	0/116			Not estimable
Subtotal (95% CI)	4	116			Not estimable
Total events: 0 (PB), 0 (Control)					
Heterogeneity: not applicable					
Test for overall effect: not applica	able				
2 PB vs WWE - No Medication					
Australian	0/5	0/147			Not estimable
Koch 1992	0/4	1/25	—— — —	100.0 %	1.73 [0.08, 36.75]
Subtotal (95% CI)	9	172		100.0 %	1.73 [0.08, 36.75]
Total events: 0 (PB), 1 (Control)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.35$ ((P = 0.72)				
Test for subgroup differences: No	ot applicable				
			0.01 0.1 1 10 100		
			Favours PB Favours Controls	5	

Analysis 6.3. Comparison 6 PB vs Controls, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 6 PB vs Controls

Outcome: 3 Cardiac Malformations

Study or subgroup	PB	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
I PB vs Women Without Epilep	sy				
Koch 1992	0/4	1/116		100.0 %	7.80 [0.36, 168.52]
Subtotal (95% CI)	4	116		100.0 %	7.80 [0.36, 168.52]
Total events: 0 (PB), 1 (Control)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.31$	(P = 0.19)				
2 PB vs WWE - No Medication					
Australian	0/5	1/147		100.0 %	8.22 [0.37, 181.57]
Koch 1992	0/4	0/25			Not estimable
Subtotal (95% CI)	9	172		100.0 %	8.22 [0.37, 181.57]
Total events: 0 (PB), 1 (Control)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.33$	(P = 0.18)				
Test for subgroup differences: Cl	$hi^2 = 0.00, df = 1$	(P = 0.98), I ² =0.0%			
			0.01 0.1 1 10 100		
			Favours PB Favours Controls		

Analysis 6.4. Comparison 6 PB vs Controls, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 6 PB vs Controls

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	PB	Control	Risk Difference	Weight	Risk Difference
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
I PB vs Women Without Epilep	osy				
Koch 1992	0/4	3/116		100.0 %	-0.03 [-0.29, 0.24]
Subtotal (95% CI)	4	116	-	100.0 %	-0.03 [-0.29, 0.24]
Total events: 0 (PB), 3 (Control)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.19$	(P = 0.85)				
2 PB vs WWE - No Medication					
Australian	0/5	0/147		58.4 %	0.0 [-0.22, 0.22]
Koch 1992	0/4	0/25		41.6 %	0.0 [-0.27, 0.27]
Subtotal (95% CI)	9	172	+	100.0 %	0.0 [-0.21, 0.21]
Total events: 0 (PB), 0 (Control)					
Heterogeneity: $Chi^2 = 0.0$, df =	$ (P = 1.00); ^2 =$	=0.0%			
Test for overall effect: $Z = 0.0$ (F	o = 1.0)				
Test for subgroup differences: Cl	$hi^2 = 0.02, df = 1$	(P = 0.88), I ² =0.0%			
			-I -0.5 0 0.5 I		
			Favours PB Favours Control:	5	

Analysis 6.5. Comparison 6 PB vs Controls, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 6 PB vs Controls

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	PB	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
I PB vs Women Without Epilep	sy				
Koch 1992	0/4	1/116		100.0 %	7.80 [0.36, 168.52]
Subtotal (95% CI)	4	116		100.0 %	7.80 [0.36, 168.52]
Total events: 0 (PB), 1 (Control)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.31$	(P = 0.19)				
2 PB vs WWE - No Medication					
Australian	0/5	1/147		100.0 %	8.22 [0.37, 181.57]
Koch 1992	0/4	0/25			Not estimable
Subtotal (95% CI)	9	172		100.0 %	8.22 [0.37, 181.57]
Total events: 0 (PB), 1 (Control)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.33$	(P = 0.18)				
Test for subgroup differences: Cl	$hi^2 = 0.00, df = 1$	(P = 0.98), I ² =0.0%			
			0.01 0.1 1 10 100		
			Favours PB Favours Control	ls	

Analysis 7.1. Comparison 7 PHT vs Controls, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 7 PHT vs Controls

Outcome: I All Major Malformations

Study or subgroup	PHT n/N	Control n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratic M-H,Fixed,95% C
I PHT vs Women Without Epileps					,,
D'Souza 1990	<i>.</i> 6/22	1/8		16.8 %	2.18 [0.31, 15.43
Koch 1992	2/24	5/116		19.6 %	1.93 [0.40, 9.38
Mawer 2010	0/7	6/315		3.7 %	3.04 [0.19, 49.45
North American Register	12/416	5/442		55.5 %	2.55 [0.91, 7.18
Steegers-Theunissen 1994	0/8	2/106		4.4 %	2.38 [0.12, 45.85]
Subtotal (95% CI)	477	98 7	•	100.0 %	2.38 [1.12, 5.03]
Total events: 20 (PHT), 19 (Contro Heterogeneity: Chi ² = 0.12, df = 4 Test for overall effect: Z = 2.27 (P 2 PHT vs WWE - No Medication	$(P = 1.00); I^2 = 0.1$	0%			
Al Bunyan 1999	0/9	0/10			Not estimable
Arulmozhi 2006	0/18	0/30			Not estimable
Australian	2/44	5/147		13.2 %	1.34 [0.27, 6.65
Canger 1999	3/31	0/25		3.2 %	5.69 [0.31, 105.21
Garza-Morales 1996	0/27	0/18			Not estimabl
Kaaja 2003	3/124	2/239		7.9 %	2.89 [0.49, 17.08
Kaneko 1999	12/132	3/98		19.8 %	2.97 [0.86, 10.24
Kelly 1984	1/24	1/23		5.9 %	0.96 [0.06, 4.43
Kerala Pregnancy Registry	0/5	0/9			Not estimable
Koch 1992	2/24	1/25		5.6 %	2.08 [0.20, 21.50
Lindhout 1992	1/17	2/28		8.7 %	0.82 [0.08, 8.41
Mawer 2010	0/7	1/40		2.8 %	1.71 [0.08, 38.29
Montreal Series	6/44	0/8		4.8 %	2.60 [0.16, 42.16
UK Register	7/106	3/54		24.5 %	2.75 [1.12, 6.73
Waters 1994	3/28	0/15		3.7 %	3.86 [0.21, 70.16
Subtotal (95% CI) Total events: 40 (PHT), 28 (Contro	640	1256	•	100.0 %	2.40 [1.42, 4.08

Favours PHT Favours Controls

(Continued . . .)

Study or subgroup	PHT n/N	Control n/N		M-H		: Ratio ,95% Cl		Weight	(Continued) Risk Ratio M-H,Fixed,95% Cl
Heterogeneity: Chi ² = 2.5 I, df = Test for overall effect: Z = 3.25 (F Test for subgroup differences: Ch	P = 0.0011)		·	·			I		
			0.01 Favo	0.1 ours PHT	I	10 Favours (100 Controls		

Analysis 7.2. Comparison 7 PHT vs Controls, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 7 PHT vs Controls

Outcome: 2 Neural Tube Malformations

Risk Ratic M-H,Fixed,95% C	Weight	Risk Ratio -H,Fixed,95% Cl		Control n/N	PHT n/N	Study or subgroup
					oilepsy	I PHT vs Women Without Ep
Not estimable				0/116	0/24	Koch 1992
13.17 [0.58, 299.00]	100.0 %	⊢		1/315	0/7	Mawer 2010
13.17 [0.58, 299.00]	100.0 %			431	,	Subtotal (95% CI) Total events: 0 (PHT), 1 (Contr Heterogeneity: not applicable Test for overall effect: Z = 1.62
9.87 [0.41, 238.01	13.7 %			0/147	ion 1/44	2 PHT vs WWE - No Medicat Australian
Not estimable	13.7 %			0/25	0/31	Canger 1999
Not estimable				0/18	0/27	Garza-Morales 1996
0.35 [0.01, 8.12]	86.3 %			1/25	0/24	Koch 1992
Not estimable				0/40	0/7	Mawer 2010
1.65 [0.32, 8.51]	100.0 %	-	25%		F = 1 (P = 0.14); I D (P = 0.55)	Subtotal (95% CI) Total events: 1 (PHT), 1 (Contr Heterogeneity: $Chi^2 = 2.15$, df Test for overall effect: $Z = 0.60$ Test for subgroup differences: C

Analysis 7.3. Comparison 7 PHT vs Controls, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 7 PHT vs Controls

Outcome: 3 Cardiac Malformations

Study or subgroup	dy or subgroup PHT Control Risk Ratio n/N n/N M-H,Fixed,95% CI		Risk Ratio	Weight	Risk Ratio
				M-H,Fixed,95% CI	
I PHT vs Women Without Epi	epsy				
Koch 1992	1/24	1/116		82.2 %	4.83 [0.31, 74.61]
Mawer 2010	0/7	1/315		17.8 %	13.17 [0.58, 299.00]
Subtotal (95% CI)	31	431		100.0 %	6.31 [0.75, 52.91]
Total events: 1 (PHT), 2 (Contr	ol)				
Heterogeneity: $Chi^2 = 0.25$, df	$= (P = 0.62); ^2$	=0.0%			
Test for overall effect: $Z = 1.70$	(P = 0.089)				
2 PHT vs WWE - No Medicati	on				
Australian	1/44	1/147		48.5 %	3.34 [0.21, 52.33]
Canger 1999	0/31	0/25			Not estimable
Garza-Morales 1996	0/27	0/18			Not estimable
Koch 1992	1/24	0/25		51.5 %	3.12 [0.13, 73.04]
Mawer 2010	0/7	0/40			Not estimable
Subtotal (95% CI)	133	255		100.0 %	3.23 [0.40, 26.25]
Total events: 2 (PHT), 1 (Contr	ol)				
Heterogeneity: $Chi^2 = 0.00$, df	= (P = 0.97); l ²	=0.0%			
Test for overall effect: $Z = 1.10$	(P = 0.27)				
Test for subgroup differences: C	$hi^2 = 0.19, df = 1$	$(P = 0.66), I^2 = 0.0\%$			

0.01 0.1 1 10 100 Favours PHT Favours Controls

Analysis 7.4. Comparison 7 PHT vs Controls, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 7 PHT vs Controls

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	PHT n/N	Control n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
I PHT vs Women Without Epi	ledsy				
Koch 1992	0/24	3/116		100.0 %	0.67 [0.04, 12.54]
Mawer 2010	0/7	0/315			Not estimable
Subtotal (95% CI)	31	431		100.0 %	0.67 [0.04, 12.54]
Total events: 0 (PHT), 3 (Contr Heterogeneity: not applicable	ol)				
Test for overall effect: $Z = 0.27$	(P = 0.79)				
2 PHT vs WWE - No Medicati	on				
Australian	0/44	0/147			Not estimable
Canger 1999	0/31	0/25			Not estimable
Garza-Morales 1996	0/27	0/18			Not estimable
Koch 1992	0/24	0/25			Not estimable
Mawer 2010	0/7	0/315			Not estimable
Subtotal (95% CI)	133	530			Not estimable
Total events: 0 (PHT), 0 (Contr	rol)				
Heterogeneity: not applicable					
Test for overall effect: not applie	cable				
Test for subgroup differences: N	lot applicable				
			0.01 0.1 1 10 100		
			Favours PHT Favours Controls		

Analysis 7.5. Comparison 7 PHT vs Controls, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 7 PHT vs Controls

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	PHT n/N	Control n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H.Fixed,95% CI
I PHT vs Women Without Epi					
Koch 1992	0/24	1/116		100.0 %	1.56 [0.07, 37.19]
				100.0 /0	
Mawer 2010	0/7	0/315			Not estimable
Subtotal (95% CI)	31	431		100.0 %	1.56 [0.07, 37.19]
Total events: 0 (PHT), 1 (Contr	ol)				
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.27$	(P = 0.78)				
2 PHT vs WWE - No Medicati	on				
Australian	0/44	1/147		55.9 %	1.10 [0.05, 26.45]
Canger 1999	1/31	0/25		44.1 %	2.44 [0.10, 57.37]
Garza-Morales 1996	0/27	0/18			Not estimable
Koch 1992	0/24	0/25			Not estimable
Mawer 2010	0/7	0/40			Not estimable
Subtotal (95% CI)	133	255		100.0 %	1.69 [0.19, 15.30]
Total events: (PHT), (Contr	ol)				
Heterogeneity: $Chi^2 = 0.12$, df	$= (P = 0.73); ^2$	=0.0%			
Test for overall effect: $Z = 0.47$	(P = 0.64)				
Test for subgroup differences: C	$Chi^2 = 0.00, df = 1$	$(P = 0.97), I^2 = 0.09$	6		
			0.01 0.1 1 10 100		
			Favours PHT Favours Controls	;	

Analysis 8.1. Comparison 8 PRM vs Controls, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 8 PRM vs Controls

Outcome: I All Major Malformations

Study or subgroup	PRM	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,959 Cl
I PRM vs Women Without Epiler	osy				
Koch 1992	0/21	5/116		100.0 %	0.48 [0.03, 8.43]
Subtotal (95% CI)	21	116		100.0 %	0.48 [0.03, 8.43]
Total events: 0 (PRM), 5 (Control))				
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.50$ (F	P = 0.62)				
2 PRM vs WWE - No Medication	ı				
Canger 1999	3/35	0/25		19.2 %	5.06 [0.27, 93.73]
Delmiš 1991	0/9	0/10			Not estimable
Kaaja 2003	1/6	2/239		25.5 %	19.92 [2.08, 190.79]
Kaneko 1999	5/35	3/98		36.6 %	4.67 [1.18, 18.52]
Koch 1992	0/21	2/25		18.7 %	0.24 [0.01, 4.67]
Subtotal (95% CI)	106	397	-	100.0 %	3.92 [0.76, 20.14]
Total events: 9 (PRM), 7 (Control))				
Heterogeneity: Tau ² = 1.41; Chi ²	= 6.20, df = 3 ($P = 0.10$; $I^2 = 52\%$			
Test for overall effect: $Z = 1.64$ (F	P = 0.10)				
Test for subgroup differences: Chi	² = 1.55, df = 1	$(P = 0.2), ^2 = 36\%$			

Favours PRM Favours Controls

Analysis 9.1. Comparison 9 TPM vs Controls, Outcome 1 All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 9 TPM vs Controls

Outcome: I All Major Malformations

Risk Rat	Weight	Risk Ratio	Control	TPM	Study or subgroup	
M-H,Fixed,95%		M-H,Fixed,95% Cl	n/N	n/N		
				sy	I TPM vs Women Without Epilep	
3.69 [1.36, 10.07	100.0 %		5/442	15/359	North American Register	
3.69 [1.36, 10.07	100.0 %	•	442	359	Subtotal (95% CI)	
				I)	Total events: 15 (TPM), 5 (Contro	
					Heterogeneity: not applicable	
				= 0.011)	Test for overall effect: Z = 2.55 (P	
					2 TPM vs WWE - No Medication	
3.34 [0.21, 52.33	13.4 %		1/147	1/44	Australian	
1.78 [0.52, 6.10	86.6 %		13/541	3/70	UK Register	
1.99 [0.65, 6.08	100.0 %	-	688	114	Subtotal (95% CI)	
				l)	Total events: 4 (TPM), 14 (Contro	
			.0%	(P = 0.68); I ² =0.	Heterogeneity: Chi ² = 0.17, df =	
				= 0.23)	Test for overall effect: $Z = 1.21$ (P	
			= 0.42), l ² =0.0%	= 0.65, df = 1 (P	Test for subgroup differences: Chi ²	

Favours TPM Favours Controls

Analysis 9.2. Comparison 9 TPM vs Controls, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 9 TPM vs Controls

Outcome: 2 Neural Tube Malformations

Study or subgroup	TPM	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% Cl
I TPM vs Women Without Epile	psy				
Subtotal (95% CI)	0	0			Not estimable
Total events: 0 (TPM), 0 (Control	l)				
Heterogeneity: not applicable					
Test for overall effect: not applica	ble				
2 TPM vs WWE - No Medication	n				
Australian	0/44	0/147			Not estimable
Subtotal (95% CI)	44	147			Not estimable
Total events: 0 (TPM), 0 (Control	l)				
Heterogeneity: not applicable					
Test for overall effect: not applica	ble				
Test for subgroup differences: Ch	$i^2 = 0.0, df = -1$ (P	= 0.0), I ² =0.0%			
			0.01 0.1 1 10 100		
			Favours TPM Favours Contro	bls	

Analysis 9.3. Comparison 9 TPM vs Controls, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 9 TPM vs Controls

Outcome: 3 Cardiac Malformations

Study or subgroup	TPM	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
I TPM vs Women Without Epile	psy				
Subtotal (95% CI)	0	0			Not estimable
Total events: 0 (TPM), 0 (Contro	I)				
Heterogeneity: not applicable					
Test for overall effect: not applica	ble				
2 TPM vs WWE - No Medication	n				
Australian	0/44	1/147		100.0 %	1.10 [0.05, 26.45]
Subtotal (95% CI)	44	147		100.0 %	1.10 [0.05, 26.45]
Total events: 0 (TPM), 1 (Contro	I)				
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.06$ (I	P = 0.95)				
Test for subgroup differences: No	ot applicable				
			0.01 0.1 1 10 100		
			Favours TPM Favours Control	s	

Analysis 9.4. Comparison 9 TPM vs Controls, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 9 TPM vs Controls

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	TPM	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
I TPM vs Women Without Epileps	ÿ				
Subtotal (95% CI)	0	0			Not estimable
Total events: 0 (TPM), 0 (Control)					
Heterogeneity: not applicable					
Test for overall effect: not applicable	e				
2 TPM vs WWE - No Medication					
Australian	0/44	0/147			Not estimable
Subtotal (95% CI)	44	147			Not estimable
Total events: 0 (TPM), 0 (Control)					
Heterogeneity: not applicable					
Test for overall effect: not applicable	e				
Test for subgroup differences: Chi ²	= 0.0, df = -1 (P	= 0.0), l ² =0.0%			
			0.01 0.1 1 10 100		
			Favours TPM Favours Contro	ls	

Analysis 9.5. Comparison 9 TPM vs Controls, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 9 TPM vs Controls

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	TPM	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
I TPM vs Women Without Epile	psy				
Subtotal (95% CI)	0	0			Not estimable
Total events: 0 (TPM), 0 (Control)				
Heterogeneity: not applicable					
Test for overall effect: not applica	ble				
2 TPM vs WWE - No Medication	ı				
Australian	0/44	1/147		100.0 %	1.10 [0.05, 26.45]
Subtotal (95% CI)	44	147		100.0 %	1.10 [0.05, 26.45]
Total events: 0 (TPM), I (Control)				
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.06$ (F	P = 0.95)				
Test for subgroup differences: No	t applicable				
Test for overall effect: $Z = 0.06$ (F	,		0.01 0.1 1 10 100		
				ls	
			0.01 0.1 I 10 100 Favours TPM Favours Contro	ls	

Analysis 10.1. Comparison 10 VPA vs Controls, Outcome 1 All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 10 VPA vs Controls

Outcome: I All Major Malformations

Study or subgroup	VPA n/N	WWE - No Meds n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratic M-H,Fixed,95% C
I VPA vs Women Without Epileps	ÿ				
Arulmozhi 2006	0/3	0/30			Not estimable
Cassina 2013	3/45	25/803	+ - -	24.4 %	2.14 [0.67, 6.83]
Koch 1992	3/14	5/116		9.9 %	4.97 [1.33, 18.60]
Mawer 2010	6/57	6/315		16.9 %	5.53 [1.85, 16.53]
North American Register	30/323	5/442		38.8 %	8.21 [3.22, 20.93]
Steegers-Theunissen 1994	3/19	2/106		5.6 %	8.37 [1.50, 46.79]
Tanganelli 1992	0/6	4/124		4.4 %	1.98 [0.12, 33.31]
Subtotal (95% CI)	467	1936	•	100.0 %	5.69 [3.33, 9.73]
Total events: 45 (VPA), 47 (WWE Heterogeneity: $Chi^2 = 4.09$, df = 5 Test for overall effect: Z = 6.35 (P	$(P = 0.54); I^2 = < 0.0000 I)$	-0.0%			
2 VPA vs WWE - No Med Contro Al Bunyan 1999	ols 0/5	0/10			Not estimable
Australian	37/271	5/147		6.8 %	4.01 [1.61, 9.99
	8/44	0/25		1.6 %	
Canger 1999	4/74	3/48		9.4 %	9.82 [0.59, 163.31
Fairgrieve 2000 Garza-Morales 1996	0/5	0/18		7.4 /0	0.86 [0.20, 3.70 Not estimable
	4/61	2/239		2.1 %	
Kaaja 2003					7.84 [1.47, 41.79
Kaneko 1999	9/81	3/98		7.0 %	3.63 [1.02, 12.96
Kelly 1984	0/4	1/23		1.3 %	1.60 [0.08, 33.86
Kerala Pregnancy Registry	2/6	0/9		1.1 %	7.14 [0.40, 127.07
Koch 1992	3/14	1/25	+	1.9 %	5.36 [0.61, 46.76
Lindhout 1992	5/66	2/28		7.3 %	1.06 [0.22, 5.14
Mawer 2010	6/57	1/40		3.0 %	4.21 [0.53, 33.64
Montreal Series	4/15	0/8		1.7 %	5.06 [0.31, 83.69
	82/1220	13/541		46.7 %	2.80 [1.57, 4.98

Favours VPA

Favours Controls

(Continued . . .)

Study or subgroup	VPA	WWE - No Meds		Risk Ratio	Weight	(Continued) Risk Ratio
	n/N	n/N	M-H,F	ixed,95% Cl		M-H,Fixed,95% CI
Subtotal (95% CI)	1923	1259		•	100.0 %	3.13 [2.16, 4.54]
Total events: 164 (VPA), 31 (WW	'E - No Meds)					
Heterogeneity: $Chi^2 = 8.02$, df =	$ (P = 0.71); ^2$	=0.0%				
Test for overall effect: $Z = 6.02$ (F	9 < 0.00001)					
Test for subgroup differences: Chi	² = 3.22, df = 1 (P = 0.07), I ² =69%				
					1	
			0.01 0.1	I IO I	00	
			Favours VPA	Favours Cor	itrols	

Analysis 10.2. Comparison 10 VPA vs Controls, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 10 VPA vs Controls

Outcome: 2 Neural Tube Malformations

	Weight	Risk Ratio	A WWE - No Meds Risk Ratio		Study or subgroup
M-H,Fixed,95% (M-H,Fixed,95% Cl	n/N	n/N	
				pilepsy	VPA vs Women Without Ep
23.40 [1.00, 548.88	19.6 %		0/116	1/14	Koch 1992
1.82 [0.07, 44.04	80.4 %		1/315	0/57	Mawer 2010
6.05 [0.94, 38.81	100.0 %		431	71	Subtotal (95% CI)
				VE - No Meds)	otal events: (VPA), (VVV
			l ² =20%	f = (P = 0.26);	Heterogeneity: Chi ² = 1.25, d
				90 (P = 0.058)	Test for overall effect: Z = 1.9
				ition	2 VPA vs WWE - No Medica
8.16 [0.47, 141.91	32.4 %		0/147	7/271	Australian
6.36 [0.37, 110.37	31.7 %		0/25	5/44	Canger 1999
Not estimab			0/48	0/74	Fairgrieve 2000
Not estimabl			0/18	0/5	Garza-Morales 1996
1.79 [0.12, 26.40	35.9 %		1/25	1/14	Koch 1992
Not estimab			0/40	0/57	Mawer 2010

					(Continued)
Study or subgroup	VPA	WWE - No Meds	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Subtotal (95% CI)	465	303	•	100.0 %	5.30 [1.05, 26.70]
Total events: 13 (VPA), 1 (VVA	/E - No Meds)				
Heterogeneity: $Chi^2 = 0.73$, df	= 2 (P = 0.69)	; l ² =0.0%			
Test for overall effect: Z = 2.02	(P = 0.043)				
Test for subgroup differences: ($Chi^2 = 0.01, df$	= I (P = 0.92), I ² =0.0%			
			0.01 0.1 1 10 100		
			Favours VPA Favours Contr	ols	

Analysis 10.3. Comparison 10 VPA vs Controls, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 10 VPA vs Controls

Outcome: 3 Cardiac Malformations

Study or subgroup	VPA	WWE - No Meds Risk Ratio		Weight	Risk Ratio	
	n/N	n/N	M-H,Fixed,95% CI	5% CI M-H,Fi		
I VPA vs Women without Me	edication					
Koch 1992	1/14	1/116	→	41.3 %	8.29 [0.55, 125.25]	
Mawer 2010	4/57	1/315	∎_ →	58.7 %	22.11 [2.52, 194.20]	
Subtotal (95% CI)	71	431		100.0 %	16.40 [3.05, 88.19]	
Total events: 5 (VPA), 2 (WW	/E - No Meds)					
Heterogeneity: $Chi^2 = 0.32$, d	f = 1 (P = 0.57)	l ² =0.0%				
Test for overall effect: $Z = 3.2$	6 (P = 0.0011)					
2 VPA vs WWE - No Medica	tion					
Australian	10/271	/ 47		45.4 %	5.42 [0.70, 41.96]	
Canger 1999	0/44	0/25			Not estimable	
Fairgrieve 2000	1/74	0/48		21.2 %	1.96 [0.08, 47.15]	
Garza-Morales 1996	0/5	0/18			Not estimable	
Koch 1992	1/14	0/25		12.8 %	5.20 [0.23, 119.77]	
Mawer 2010	4/57	0/40		20.5 %	6.36 [0.35, 114.96]	
			0.01 0.1 1 10 100			
			Favours VPA Favours Control	S	, , ,	

(Continued . . .)

Study or subgroup	VPA	WWE - No Meds			Risk Ratio		Weight	(Continued) Risk Ratio
	n/N	n/N		M-H,I	Fixed,95% (CI		M-H,Fixed,95% CI
Subtotal (95% CI)	465	303				-	100.0 %	4.85 [1.28, 18.47]
Total events: 16 (VPA), 1 (WW	/E - No Meds)							
Heterogeneity: $Chi^2 = 0.36$, df	= 3 (P = 0.95)	; l ² =0.0%						
Test for overall effect: $Z = 2.32$	(P = 0.021)							
Test for subgroup differences: ($Chi^2 = 1.23, df$	= I (P = 0.27), I ² = I 9%						
			0.01	0.1	I I0	100		
			Favo	ours VPA	Favou	rs Controls		

Analysis 10.4. Comparison 10 VPA vs Controls, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 10 VPA vs Controls

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

9.4 % 0.0 [-0.02, 0.02]	20.6 % 79.4 %	M-H,Fixed,95% Cl	n/N	n/N	
9.4 % 0.0 [-0.02, 0.02]		-#-	2007	pilepsy	
9.4 % 0.0 [-0.02, 0.02]		-	2/11/	==-/	I VPA vs Women Without Ep
	79.4 %		3/116	1/14	Koch 1992
0 % 0.01 [-0.03, 0.04]			0/315	0/57	Mawer 2010
	100.0 %		431	71	Subtotal (95% CI)
				'E - No Meds)	Total events: I (VPA), 3 (VVW
			l ² =0.0%	f = 1 (P = 0.36); I	Heterogeneity: Chi ² = 0.84, d [.]
				3 (P = 0.59)	Test for overall effect: $Z = 0.5$
				tion	2 VPA vs WWE - No Medicat
3.9 % 0.04 [0.02, 0.07]	53.9 %		0/147	12/271	Australian
9.0 % 0.0 [-0.06, 0.06]	9.0 %	+	0/25	0/44	Canger 1999
-0.01 [-0.06, 0.04]	16.5 %	+	1/48	1/74	Fairgrieve 2000
0.0 [-0.23, 0.23]	2.2 %		0/18	0/5	Garza-Morales 1996
5.1 % 0.07 [-0.09, 0.23]	5.1 %		0/25	/ 4	Koch 1992
3.3 % 0.0 [-0.04, 0.04]	13.3 %	+	0/40	0/57	Mawer 2010

(Continued . . .)

(... Continued) Risk Risk Difference Difference VPA WWF - No Meds Weight Study or subgroup n/N n/N M-H,Fixed,95% Cl M-H,Fixed,95% CI 465 303 Subtotal (95% CI) 0.03 [0.01, 0.05] 100.0 % Total events: 14 (VPA), 1 (WWE - No Meds) Heterogeneity: $Chi^2 = 6.26$, df = 5 (P = 0.28); $I^2 = 20\%$ Test for overall effect: Z = 2.44 (P = 0.015) Test for subgroup differences: $Chi^2 = 0.68$, df = 1 (P = 0.41), $l^2 = 0.0\%$ - | -0.5 0.5 Т 0 Favours VPA Favours Controls

Analysis 10.5. Comparison 10 VPA vs Controls, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 10 VPA vs Controls

Outcome: 5 Skeletal / Limb Malformations

Risk Rat M-H,Fixed,95% (Weight	Risk Ratio M-H,Fixed,95% Cl	Controls n/N	VPA n/N	Study or subgroup
				oilepsy	VPA vs Women Without Ep
16.57 [1.60, 171.26	58.1 %		1/116	2/14	Koch 1992
16.34 [0.67, 396.33	41.9 %	→	0/315	1/57	Mawer 2010
16.48 [2.46, 110.49	100.0 %	-	431	71	Subtotal (95% CI)
				rols)	Total events: 3 (VPA), 1 (Cont
			=0.0%	$f = (P = 0.99); ^2$	Heterogeneity: Chi ² = 0.00, d
				9 (P = 0.0039)	Test for overall effect: Z = 2.8
				tion	2 VPA vs WWE - No Medica
3.25 [0.40, 26.78	31.7 %		1/147	6/271	Australian
1.73 [0.07, 41.02	15.5 %		0/25	1/44	Canger 1999
0.65 [0.04, 10.13	29.6 %		1/48	1/74	Fairgrieve 2000
Not estimab			0/18	0/5	Garza-Morales 1996
8.67 [0.45, 168.78	8.9 %		0/25	2/14	Koch 1992
2.12 [0.09, 50.77	14.3 %		0/40	1/57	Mawer 2010

						(Continued)
Study or subgroup	VPA	Controls		Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,	Fixed,95% Cl		M-H,Fixed,95% CI
Subtotal (95% CI)	465	303		•	100.0 %	2.57 [0.82, 8.04]
Total events: 11 (VPA), 2 (Con	trols)					
Heterogeneity: $Chi^2 = 1.73$, df	= 4 (P = 0.79); I	² =0.0%				
Test for overall effect: $Z = 1.62$	P = (P = 0.11)					
Test for subgroup differences:	Chi ² = 2.70, df =	I (P = 0.10), I ² =63%				
			0.01 0.1	1 10 100		
			Favours VPA	Favours Contro	bls	
			rated 5 th			

Analysis 11.1. Comparison 11 ZNS vs Controls, Outcome 1 All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: II ZNS vs Controls

Outcome: I All Major Malformations

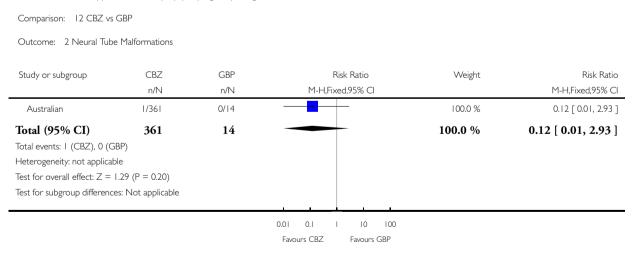
Study or subgroup	ZNS	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
I ZNS vs Women Without Epilepsy					
North American Register	0/90	5/442		100.0 %	0.44 [0.02, 7.93]
Subtotal (95% CI)	90	442		100.0 %	0.44 [0.02, 7.93]
Total events: 0 (ZNS), 5 (Control)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.55$ (P =	0.58)				
2 ZNS vs WWE - No Medication					
Subtotal (95% CI)	0	0			Not estimable
Total events: 0 (ZNS), 0 (Control)					
Heterogeneity: not applicable					
Test for overall effect: not applicable					
Test for subgroup differences: Not ap	plicable				
			0.01 0.1 1 10 100)	
			Favours ZNS Favours Contr	ols	

Analysis 12.1. Comparison 12 CBZ vs GBP, Outcome 1 All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 12 CBZ vs GBP

-


Outcome: I All Major Malformations

Study or subgroup	CBZ	GBP	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% Cl
Australian	18/361	0/14		20.5 %	1.53 [0.10, 24.25]
North American Register	31/1033	1/145		37.5 %	4.35 [0.60, 31.63]
UK Register	43/1657	1/31		42.0 %	0.80 [0.11, 5.66]
Total (95% CI)	3051	190	-	100.0 %	2.28 [0.67, 7.79]
Total events: 92 (CBZ), 2 (GBP)					
Heterogeneity: $Chi^2 = 1.59$, df =	2 (P = 0.45); I ² =0.0	%			
Test for overall effect: $Z = 1.32$ (F	P = 0.19)				
Test for subgroup differences: No	ot applicable				
			0.01 0.1 1 10 100		

0.01 0.1 I 10 100 Favours CBZ Favours GBP

Analysis 12.2. Comparison 12 CBZ vs GBP, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Analysis 12.3. Comparison 12 CBZ vs GBP, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 12 CBZ vs GBP

Outcome: 3 Cardiac Malformations

Study or subgroup	CBZ n/N	GBP n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	3/361	0/14		100.0 %	0.29 [0.02, 5.37]
Total (95% CI) Total events: 3 (CBZ), 0 (G	361	14		100.0 %	0.29 [0.02, 5.37]
Heterogeneity: not applicable Test for overall effect: $Z = 0$					
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100 Favours CBZ Favours GBP		

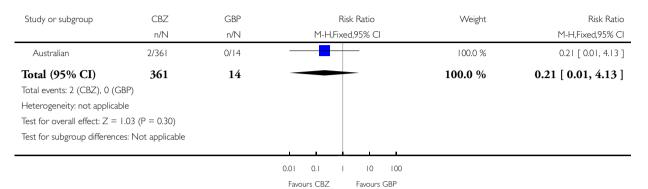
Analysis 12.4. Comparison 12 CBZ vs GBP, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 12 CBZ vs GBP

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	CBZ n/N	GBP n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	4/361	0/14		100.0 %	0.37 [0.02, 6.62]
Total (95% CI)	361	14		100.0 %	0.37 [0.02, 6.62]
Total events: 4 (CBZ), 0 (C	GBP)				
Heterogeneity: not applical	ble				
Test for overall effect: Z =	0.67 (P = 0.50)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 I IO IOO Favours CBZ Favours GBP		


Analysis 12.5. Comparison 12 CBZ vs GBP, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 12 CBZ vs GBP

Comparison: 13 CBZ vs LEV

Outcome: 5 Skeletal / Limb Malformations

Analysis 13.1. Comparison 13 CBZ vs LEV, Outcome 1 All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Outcome: I All Major Malform	ations				
Study or subgroup	CBZ	LEV	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	18/361	1/63		8.3 %	3.14 [0.43, 23.11]
North American Register	31/1033	11/450	+	75.1 %	1.23 [0.62, 2.42]
UK Register	43/1657	2/304		16.6 %	3.94 [0.96, 6.20]
Total (95% CI)	3051	817	•	100.0 %	1.84 [1.03, 3.29]
Total events: 92 (CBZ), 14 (LEV)					
Heterogeneity: $Chi^2 = 2.76$, df =	2 (P = 0.25); $I^2 = 27$	%			
Test for overall effect: $Z = 2.05$ (F	P = 0.040)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100		
			Favours CBZ Favours LEV		

Analysis 13.2. Comparison 13 CBZ vs LEV, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 13 CBZ vs LEV

Outcome: 2 Neural Tube Malformations

Study or subgroup	CBZ	LEV	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	1/361	0/63		27.5 %	0.53 [0.02, 2.88]
North American Register	3/1033	1/450	_	45.1 %	1.31 [0.14, 12.53]
UK Register	4/1657	0/304		27.4 %	1.66 [0.09, 30.67]
Total (95% CI)	3051	817	-	100.0 %	1.19 [0.25, 5.55]
Total events: 8 (CBZ), 1 (LEV)					
Heterogeneity: $Chi^2 = 0.30$, $df = 2$	$2 (P = 0.86); I^2 = 0.4$	0%			
Test for overall effect: $Z = 0.22$ (P	= 0.83)				
Test for subgroup differences: Not	applicable				

0.01 0.1 1 10 100 Favours CBZ Favours LEV

Analysis 13.3. Comparison 13 CBZ vs LEV, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 13 CBZ vs LEV

Outcome: 3 Cardiac Malformations

Study or subgroup	CBZ	LEV	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	3/361	1/63		43.2 %	0.52 [0.06, 4.95]
North American Register	3/1033	1/450	_	35.4 %	1.31 [0.14, 12.53]
UK Register	14/1657	0/304		21.4 %	5.33 [0.32, 89.19]
Total (95% CI)	3051	817	-	100.0 %	1.83 [0.48, 6.97]
Total events: 20 (CBZ), 2 (LEV)					
Heterogeneity: $Chi^2 = 1.83$, df = 2	2 (P = 0.40); $I^2 = 0.0$)%			
Test for overall effect: $Z = 0.89$ (P	= 0.37)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours CBZ Favours LEV		

Analysis 13.4. Comparison 13 CBZ vs LEV, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 13 CBZ vs LEV

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	CBZ n/N	LEV n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% CI
Australian	4/361	1/63		52.5 %	0.70 [0.08, 6.14]
North American Register	5/1033	0/450		21.5 %	4.80 [0.27, 86.58]
UK Register	4/1657	0/304		26.0 %	1.66 [0.09, 30.67]
Total (95% CI)	3051	817	-	100.0 %	1.83 [0.44, 7.61]
Total events: 13 (CBZ), 1 (LEV)					
Heterogeneity: Chi ² = 1.18, df = 1	2 (P = 0.55); I ² =0.	0%			
Test for overall effect: Z = 0.83 (P	= 0.41)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		

Favours CBZ Favours LEV

Analysis 13.5. Comparison 13 CBZ vs LEV, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 13 CBZ vs LEV

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	CBZ	LEV	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	2/361	0/63		35.5 %	0.88 [0.04, 18.20]
North American Register	5/1033	0/450		29.1 %	4.80 [0.27, 86.58]
UK Register	4/1657	0/304		35.3 %	1.66 [0.09, 30.67]
Total (95% CI)	3051	817		100.0 %	2.30 [0.44, 11.86]
Total events: 11 (CBZ), 0 (LEV)					
Heterogeneity: $Chi^2 = 0.68$, df = 2	$2 (P = 0.7 I); I^2 = 0$.0%			
Test for overall effect: Z = 0.99 (P	= 0.32)				
Test for subgroup differences: Not	applicable				

0.01 0.1 1 10 100 Favours CBZ Favours LEV

Analysis 14.1. Comparison 14 CBZ vs LTG, Outcome 1 All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 14 CBZ vs LTG

Outcome: I All Major Malformations

Study or subgroup	CBZ n/N	LTG n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	18/361	13/315		16.3 %	1.21 [0.60, 2.43]
Cassina 2013	5/88	0/26		0.9 %	3.34 [0.19, 58.44]
Martinez Ferri 2009	4/105	0/56		0.8 %	4.84 [0.27, 88.30]
Mawer 2010	2/31	0/9	,	0.9 %	1.56 [0.08, 29.92]
Meador 2006	5/110	1/98		1.2 %	4.45 [0.53, 37.47]
North American Register	31/1033	31/1562	+	29.0 %	1.51 [0.92, 2.47]
UK Register	43/1657	49/2098	-	50.8 %	1.11 [0.74, 1.66]
Total (95% CI) Total events: 108 (CBZ), 94 (LTG) Heterogeneity: Chi ² = 3.51 , df = Test for overall effect: Z = 2.06 (P Test for subgroup differences: Not	6 (P = 0.74); $I^2 = 0.039$)	4164	•	100.0 %	1.34 [1.01, 1.76]
			0.01 0.1 1 10 100		
			Favours CBZ Favours LTG		

Analysis 14.2. Comparison 14 CBZ vs LTG, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 14 CBZ vs LTG

Outcome: 2 Neural Tube Malformations

Study or subgroup	CBZ	LTG	Risk Ratio	Weight	Risk Ratio
, 0 ,	n/N	n/N	M-H,Fixed,95% Cl	C C	M-H,Fixed,95% Cl
Australian	1/361	0/315		11.8 %	2.62 [0.11, 64.06]
Cassina 2013	0/88	0/26			Not estimable
Martinez Ferri 2009	1/105	0/56		14.3 %	1.61 [0.07, 38.96]
Meador 2006	0/110	0/98			Not estimable
North American Register	3/1033	2/1562		35.1 %	2.27 [0.38, 13.55]
UK Register	4/1657	2/2098		38.9 %	2.53 [0.46, 3.8]
Total (95% CI)	3354	4155	•	100.0 %	2.32 [0.79, 6.82]
Total events: 9 (CBZ), 4 (LTG)					
Heterogeneity: $Chi^2 = 0.07$, df =	$3 (P = 1.00); I^2 = 0$.0%			
Test for overall effect: $Z = 1.53$ (P	= 0.13)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		

Favours CBZ Favours LTG

Analysis 14.3. Comparison 14 CBZ vs LTG, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 14 CBZ vs LTG

Outcome: 3 Cardiac Malformations

Study or subgroup	CBZ	LTG	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	3/361	3/315		19.4 %	0.87 [0.18, 4.29]
Cassina 2013	3/88	0/26	·	4.6 %	2.12 [0.11, 39.84]
Martinez Ferri 2009	2/105	0/56		3.9 %	2.69 [0.13, 55.05]
Meador 2006	0/110	1/98		9.6 %	0.30 [0.01, 7.21]
North American Register	3/1033	3/1562		14.4 %	1.51 [0.31, 7.48]
UK Register	14/1657	9/2098		48.0 %	1.97 [0.85, 4.54]
Total (95% CI)	3354	4155	•	100.0 %	1.57 [0.85, 2.89]
Total events: 25 (CBZ), 16 (LTG)					
Heterogeneity: $Chi^2 = 2.02$, df = 5	5 (P = 0.85); $I^2 = 0.0$	0%			
Test for overall effect: $Z = 1.44$ (P	= 0.15)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		

Favours CBZ Favours LTG

Analysis 14.4. Comparison 14 CBZ vs LTG, Outcome 4 Oro-Facial Cleft / Crainofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 14 CBZ vs LTG

Outcome: 4 Oro-Facial Cleft / Crainofacial Malformations

Study or subgroup	CBZ	LTG	Risk Ratio	Weight	Risk Ratio
otady of saogroup	n/N	n/N	M-H,Fixed,95% Cl	1101811	M-H,Fixed,95% Cl
Australian	4/361	5/315		42.1 %	0.70 [0.19, 2.58]
Cassina 2013	0/88	0/26			Not estimable
Martinez Ferri 2009	0/105	0/56			Not estimable
Meador 2006	0/110	0/98			Not estimable
North American Register	5/1033	7/1562		44.0 %	1.08 [0.34, 3.39]
UK Register	4/1657	2/2098		13.9 %	2.53 [0.46, 3.8]
Total (95% CI)	3354	4155	+	100.0 %	1.12 [0.53, 2.37]
Total events: 13 (CBZ), 14 (LTG)					
Heterogeneity: $Chi^2 = 1.40$, df = 1	2 (P = 0.50); $I^2 = 0$.0%			
Test for overall effect: $Z = 0.30$ (P	9 = 0.76)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		
			Favours CBZ Favours LTG		

Analysis 14.5. Comparison 14 CBZ vs LTG, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 14 CBZ vs LTG

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	CBZ	LTG	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI	-	M-H,Fixed,95% CI
Australian	2/361	0/315		9.8 %	4.36 [0.21, 90.57]
Cassina 2013	0/88	0/26			Not estimable
Martinez Ferri 2009	1/105	0/56		12.0 %	1.61 [0.07, 38.96]
Meador 2006	0/110	0/98			Not estimable
North American Register	5/1033	2/1562		29.4 %	3.78 [0.73, 19.45]
UK Register	4/1657	3/2098		48.8 %	1.69 [0.38, 7.53]
Total (95% CI) Total events: 12 (CBZ), 5 (LTG)	3354	4155	-	100.0 %	2.56 [0.97, 6.73]
Heterogeneity: $Chi^2 = 0.71$, df = 3	$P = 0.87$; $I^2 = 0$.0%			
Test for overall effect: $Z = 1.90$ (P	. ,				
Test for subgroup differences: Not	applicable				

Favours CBZ Favours LTG

Analysis 15.1. Comparison 15 CBZ vs OXC, Outcome 1 All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 15 CBZ vs OXC

Outcome: I All Major Malformations

Study or subgroup	CBZ	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	18/361	0/12		9.6 %	1.33 [0.08, 20.87]
Kaaja 2003	10/363	1/9		19.4 %	0.25 [0.04, 1.74]
Meischenguiser 2004	2/16	0/35		3.2 %	10.59 [0.54, 208.68]
North American Register	31/1033	4/182	-	67.7 %	1.37 [0.49, 3.82]
Total (95% CI)	1773	238	+	100.0 %	1.44 [0.66, 3.16]
Total events: 61 (CBZ), 5 (OXC)					
Heterogeneity: $Chi^2 = 4.87$, df =	3 (P = 0.18); I ² = 38	%			
Test for overall effect: $Z = 0.91$ (F	^o = 0.36)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100		

Favours CBZ Favours OXC

Analysis 15.2. Comparison 15 CBZ vs OXC, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 15 CBZ vs OXC

Outcome: 2 Neural Tube Malformations

Study or subgroup	CBZ	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	1/361	0/12	• •	34.6 %	0.11 [0.00, 2.52]
Kaaja 2003	3/363	0/9		34.9 %	0.19 [0.01, 3.48]
Meischenguiser 2004	0/16	0/35			Not estimable
North American Register	3/1033	0/182	_	30.5 %	1.24 [0.06, 23.88]
Total (95% CI)	1773	238	-	100.0 %	0.48 [0.09, 2.54]
Total events: 7 (CBZ), 0 (OXC)					
Heterogeneity: Chi ² = 1.65, df = 1	2 (P = 0.44); I ² =0.	0%			
Test for overall effect: Z = 0.86 (P	9 = 0.39)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		

Favours CBZ Favours OXC

Analysis 15.3. Comparison 15 CBZ vs OXC, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 15 CBZ vs OXC

Outcome: 3 Cardiac Malformations

Study or subgroup	CBZ	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	3/361	0/12		34.6 %	0.25 [0.01, 4.62]
Kaaja 2003	2/363	0/9		34.9 %	0.14 [0.01, 2.68]
Meischenguiser 2004	0/16	0/35			Not estimable
North American Register	3/1033	0/182	_	30.5 %	1.24 [0.06, 23.88]
Total (95% CI)	1773	238		100.0 %	0.51 [0.10, 2.69]
Total events: 8 (CBZ), 0 (OXC)					
Heterogeneity: Chi ² = 1.33, df =	2 (P = 0.52); I ² =0.	0%			
Test for overall effect: $Z = 0.79$ (F	P = 0.43)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100		

Favours CBZ Favours OXC

Analysis 15.4. Comparison 15 CBZ vs OXC, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 15 CBZ vs OXC

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	CBZ	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	4/361	0/12		26.5 %	0.32 [0.02, 5.69]
Kaaja 2003	2/363	0/9		26.7 %	0.14 [0.01, 2.68]
Meischenguiser 2004	0/16	0/35			Not estimable
North American Register	5/1033	1/182	_	46.7 %	0.88 [0.10, 7.50]
Total (95% CI)	1773	238		100.0 %	0.53 [0.12, 2.33]
Total events: (CBZ), (OXC)					
Heterogeneity: Chi ² = 1.13, df =	2 (P = 0.57); I ² =0.	0%			
Test for overall effect: $Z = 0.84$ (F	P = 0.40)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100		

Favours CBZ Favours OXC

Analysis 15.5. Comparison 15 CBZ vs OXC, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 15 CBZ vs OXC

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	CBZ	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	2/361	0/12		26.5 %	0.18 [0.01, 3.55]
Kaaja 2003	1/363	0/9	· •	26.7 %	0.08 [0.00, 1.90]
Meischenguiser 2004	0/16	0/35			Not estimable
North American Register	5/1033	1/182		46.7 %	0.88 [0.10, 7.50]
Total (95% CI)	1773	238	-	100.0 %	0.48 [0.11, 2.11]
Total events: 8 (CBZ), 1 (OXC)					
Heterogeneity: Chi ² = 1.94, df =	2 (P = 0.38); I ² =0.	0%			
Test for overall effect: $Z = 0.97$ (F	P = 0.33)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100		

Favours CBZ Favours OXC

Analysis 16.1. Comparison 16 CBZ vs PB, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 16 CBZ vs PB

Outcome: I All Major Malformations

Risk Rati M-H,Fixed,95% C	Weight	Risk Ratio M-H,Fixed,95% Cl	PB n/N	CBZ n/N	Study or subgroup
0.28 [0.01, 5.50	1.5 %		0/2	1/31	Al Bunyan 1999
0.61 [0.04, 9.04	1.6 %		0/5	18/361	Australian
2.20 [0.74, 6.59	7.4 %		4/83	12/113	Canger 1999
0.76 [0.23, 2.52	9.1 %		5/67	5/88	Cassina 2013
1.33 [0.13, 13.74	1.4 %		1/4	1/3	D'Souza 1990
3.22 [0.89, 11.60	3.0 %		4/58	4/18	Delmiš 1991
0.33 [0.04, 2.57	2.9 %	-	1/5	3/46	Eroglu 2008
0.32 [0.04, 2.93	2.8 %		1/5	2/31	Froscher 1991
0.35 [0.02, 5.25	1.6 %	·	0/5	10/363	Kaaja 2003
1.13 [0.36, 3.54	8.6 %	_ _	4/79	9/158	Kaneko 1999
1.29 [0.10, 17.14	1.4 %		1/9	1/7	Kerala Pregnancy Registry
Not estimab			0/4	0/9	Koch 1992
2.60 [0.32, 21.11	2.1 %		1/26	5/50	Lindhout 1992
0.42 [0.05, 3.43	2.9 %		1/11	4/105	Martinez Ferri 2009
0.63 [0.07, 5.53	2.4 %		1/5	2/16	Meischenguiser 2004
0.78 [0.18, 3.43	4.9 %		2/10	5/32	Montreal Series
0.54 [0.28, 1.06	29.6 %		/ 99	31/1033	North American Register
0.21 [0.05, 0.86	8.3 %	_ _	3/18	4/114	Omtzigt 1992
Not estimab			0/12	0/6	Pardi 1982
0.98 [0.04, 22.50	1.2 %		0/12	1/39	Steegers-Theunissen 1994
0.91 [0.05, 16.41	1.5 %		3/63	0/9	Tanganelli 1992
0.21 [0.02, 1.91	5.9 %		3/21	1/33	Waters 1994
0.84 [0.60, 1.16]	100.0 %	•	703	2665	Total (95% CI)
			0.0%	= 0.29)	Total events: 119 (CBZ), 46 (PB) Heterogeneity: Chi ² = 18.68, df = Test for overall effect: $Z = 1.06$ (P Test for subgroup differences: Not

Analysis 16.2. Comparison 16 CBZ vs PB, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 16 CBZ vs PB

Outcome: 2 Neural Tube Malformations

Risk Ratio	Weight	Risk Ratio	PB	CBZ	Study or subgroup
M-H,Fixed,95% C		M-H,Fixed,95% CI	n/N	n/N	
0.05 [0.00, 1.10]	41.0 %	← ■	0/5	1/361	Australian
2.21 [0.09, 53.59]	24.0 %		0/83	1/113	Canger 1999
Not estimable			0/67	0/88	Cassina 2013
Not estimable			0/4	0/3	D'Souza 1990
Not estimable			0/5	0/49	Eroglu 2008
Not estimable			0/5	0/31	Froscher 1991
Not estimable			0/9	0/7	Kerala Pregnancy Registry
Not estimat			0/4	0/9	Koch 1992
Not estimable			0/5	0/16	Meischenguiser 2004
1.35 [0.07, 26.11]	35.0 %	_	0/199	3/1033	North American Register
Not estimable			0/18	0/114	Omtzigt 1992
Not estimable			0/12	0/6	Pardi 1982
1.02 [0.19, 5.39]	100.0 %	-	416	1830	Fotal (95% CI)
					otal events: 5 (CBZ), 0 (PB)
			9%	$P = 0.14$; $I^2 = 49$	Heterogeneity: $Chi^2 = 3.92$, $df = 2$
				= 0.98)	est for overall effect: Z = 0.03 (P
				applicable	est for subgroup differences: Not

Favours CBZ Favours PB

Analysis 16.3. Comparison 16 CBZ vs PB, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 16 CBZ vs PB

Outcome: 3 Cardiac Malformations

Study or subgroup	CBZ	PB	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	3/361	0/5		3.6 %	0.12 [0.01, 2.01]
Canger 1999	0/113	1/83		6.3 %	0.25 [0.01, 5.95]
Cassina 2013	3/88	2/67		8.3 %	1.14 [0.20, 6.64]
D'Souza 1990	0/3	1/4		4.9 %	0.42 [0.02, 7.71]
Eroglu 2008	0/49	0/5			Not estimable
Froscher 1991	1/31	1/5		6.3 %	0.16[0.01, 2.18]
Kerala Pregnancy Registry	7/112	3/43		15.9 %	0.90 [0.24, 3.31]
Koch 1992	0/9	0/4			Not estimable
Meischenguiser 2004	0/16	1/5		8.1 %	0.12 [0.01, 2.51]
North American Register	3/1033	5/199		30.8 %	0.12 [0.03, 0.48]
Omtzigt 1992	0/114	2/18	← ∎	15.7 %	0.03 [0.00, 0.66]
Pardi 1982	0/6	0/12			Not estimable
Total (95% CI)	1935	450	•	100.0 %	0.34 [0.18, 0.62]
Total events: 17 (CBZ), 16 (PB)					
Heterogeneity: Chi ² = 9.84, df = 8	$(P = 0.28); ^2 = 9 $	9%			
Test for overall effect: $Z = 3.51$ (P	= 0.00045)				
Test for subgroup differences: Not	applicable				

Favours CBZ Favours PB

Analysis 16.4. Comparison 16 CBZ vs PB, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 16 CBZ vs PB

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

CBZ	PB	Risk Ratio	Weight	Risk Ratio
n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% Cl
4/361	0/5		8.1 %	0.15 [0.01, 2.47]
0/113	0/83			Not estimable
0/88	0/67			Not estimable
0/3	0/4			Not estimable
0/49	1/5		22.1 %	0.04 [0.00, 0.88]
0/31	0/5			Not estimable
0/7	0/9			Not estimable
0/9	0/4			Not estimable
0/16	0/5			Not estimable
5/1033	4/199		55.4 %	0.24 [0.07, 0.89]
1/114	1/18		14.3 %	0.16[0.01, 2.41]
0/6	0/12			Not estimable
1830 $P = 0.77$; $I^2 = 0.0$ = 0.00068) applicable	416	• · · · · · ·	100.0 %	0.18 [0.07, 0.48]
	n/N 4/361 0/113 0/88 0/3 0/49 0/31 0/7 0/9 0/16 5/1033 1/114 0/6 1830 8 (P = 0.77); l ² =0.0 = 0.00068)	n/N n/N $4/361$ 0/5 $0/113$ 0/83 $0/88$ 0/67 $0/3$ 0/4 $0/49$ 1/5 $0/31$ 0/5 $0/7$ 0/9 $0/9$ 0/4 $0/16$ 0/5 $5/1033$ $4/199$ $1/114$ $1/18$ $0/6$ $0/12$ 1830 416 $8 (P = 0.77); 1^2 = 0.0\%$ $= 0.00068)$ $1/10$	n/N n/N M-H,Fixed,95% Cl $4/361$ $0/5$ $0/113$ $0/83$ $0/88$ $0/67$ $0/3$ $0/4$ $0/49$ $1/5$ $0/7$ $0/9$ $0/7$ $0/9$ $0/7$ $0/9$ $0/7$ $0/9$ $0/16$ $0/5$ $5/1033$ $4/199$ $1/114$ $1/18$ $0/6$ $0/12$ 1830 416 $e_1(P = 0.77); 1^2 = 0.0\%$ $= 0.00068)$	n/N n/N M-H,Fixed,95% Cl 4/361 0/5 8.1 % 0/113 0/83 0/8 0/88 0/67 22.1 % 0/3 0/4 22.1 % 0/31 0/5 22.1 % 0/7 0/9 0/4 0/16 0/5 55.4 % 1/114 1/18 14.3 % 0/6 0/12 100.0 % 8 (P = 0.77); 1 ² =0.0% = 100.0 %

Favours CBZ Favours PB

Analysis 16.5. Comparison 16 CBZ vs PB, Outcome 5 Skeletal / Limb Malformation.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 16 CBZ vs PB

Outcome: 5 Skeletal / Limb Malformation

Study or subgroup	CBZ	PB	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	2/361	0/5	• • • • • • • • • • • • • • • • • • •	15.3 %	0.08 [0.00, 1.55]
Canger 1999	4/113	1/83		17.9 %	2.94 [0.33, 25.81]
Cassina 2013	0/88	0/67			Not estimable
D'Souza 1990	1/3	0/4		6.9 %	3.75 [0.20, 69.40]
Eroglu 2008	0/49	0/5			Not estimable
Froscher 1991	0/31	0/5			Not estimable
Kerala Pregnancy Registry	0/7	1/9		20.7 %	0.42 [0.02, 8.91]
Koch 1992	0/9	0/4			Not estimable
Meischenguiser 2004	0/16	0/5			Not estimable
North American Register	5/1033	1/199	_	26.0 %	0.96 [0.11, 8.20]
Omtzigt 1992	/ 4	0/18		13.3 %	0.50 [0.02, .72]
Pardi 1982	0/6	0/12			Not estimable
Total (95% CI) Total events: 13 (CBZ), 3 (PB)	1830	416	•	100.0 %	1.20 [0.45, 3.21]
Heterogeneity: $Chi^2 = 5.24$, df =	5 (P = 0.39); I ² =5%	6			
Test for overall effect: Z = 0.36 (P	= 0.72)				
Test for subgroup differences: Not	t applicable				
Heterogeneity: $Chi^2 = 5.24$, df = Test for overall effect: Z = 0.36 (P	= 0.72)	6			

0.01 0.1 1 10 100 Favours CBZ Favours PB

Analysis 17.1. Comparison 17 CBZ vs PHT, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 17 CBZ vs PHT

Outcome: I All Major Malformations

Study or subgroup	CBZ n/N	PHT n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Rati M-H,Fixed,95% (
Al Bunyan 1999	1/31	0/9		0.9 %	0.94 [0.04, 21.25
Arulmozhi 2006	0/7	0/18			Not estimab
Australian	18/361	2/44		4.4 %	1.10 [0.26, 4.57
Bag 1989	0/4	0/20			Not estimat
Canger 1999	12/113	3/31	_ _	5.8 %	1.10 [0.33, 3.65
D'Souza 1990	1/3	6/22	<u> </u>	1.8 %	1.22 [0.21, 6.96
Eroglu 2008	3/46	2/14		3.7 %	0.46 [0.08, 2.46
Froscher 1991	2/31	0/3		1.1 %	0.63 [0.04, 10.84
Garza-Morales 1996	0/24	0/27			Not estimat
Kaaja 2003	10/363	3/124	-	5.5 %	1.14 [0.32, 4.07
Kaneko 1999	9/158	12/132		16.0 %	0.63 [0.27, 1.44
Kerala Pregnancy Registry	1/7	0/5		0.7 %	2.25 [0.11, 46.13
Koch 1992	0/9	2/24		1.7 %	0.50 [0.03, 9.5
Lindhout 1992	5/50	1/17		1.8 %	1.70 [0.21, 13.54
Mawer 2010	2/31	0/2		1.1 %	0.47 [0.03, 7.6
Meador 2006	5/110	4/56		6.5 %	0.64 [0.18, 2.2
Montreal Series	5/32	6/44	-	6.2 %	1.15 [0.38, 3.4
North American Register	31/1033	12/416	-	20.9 %	1.04 [0.54, 2.0
Omtzigt 1992	4/114	0/28		1.0 %	2.27 [0.13, 40.97
Pardi 1982	0/6	0/5			Not estimat
Steegers-Theunissen 1994	1/39	0/8		1.0 %	0.68 [0.03, 15.2
UK Register	43/1657	7/106		16.1 %	0.39 [0.18, 0.8
Waters 1994	1/33	3/28		4.0 %	0.28 [0.03, 2.5]
Fotal (95% CI) Total events: 154 (CBZ), 63 (PHT)	4262	1183	•	100.0 %	0.82 [0.61, 1.11
deterogeneity: $Chi^2 = 8.78$, df = 1 est for overall effect: Z = 1.28 (P est for subgroup differences: Not	= 0.20)	0%			

Analysis 17.2. Comparison 17 CBZ vs PHT, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 17 CBZ vs PHT

Outcome: 2 Neural Tube Malformations

Risk Rat	Weight	Risk Ratio	PHT	CBZ	Study or subgroup
M-H,Fixed,95% (M-H,Fixed,95% Cl	n/N	n/N	
0.12 [0.01, 1.91	35.8 %		1/44	1/361	Australian
Not estimab			0/20	0/4	Bag 1989
0.84 [0.04, 20.18	15.7 %		0/31	1/113	Canger 1999
Not estimab			0/22	0/3	D'Souza 1990
Not estimab			0/14	0/49	Eroglu 2008
Not estimab			0/3	0/31	Froscher 1991
2.40 [0.13, 46.21	15.0 %		0/124	3/363	Kaaja 2003
Not estimab			0/5	0/7	Kerala Pregnancy Registry
Not estimat			0/24	0/9	Koch 1992
			0/56	0/110	Meador 2006
2.82 [0.15, 54.53	14.3 %		0/416	3/1033	North American Register
Not estimab			0/28	0/114	Omtzigt 1992
Not estimab			0/5	0/6	Pardi 1982
0.45 [0.02, 8.30	19.2 %		0/82	4/1657	UK Register
1.03 [0.31, 3.37]	100.0 %	-	874	3860	Fotal (95% CI)
					Fotal events: 12 (CBZ), 1 (PHT)
)%	· ,	Heterogeneity: $Chi^2 = 3.39$, df = 4
				9 = 0.97)	Test for overall effect: $Z = 0.04$ (P
				t applicable	Fest for subgroup differences: Not

Favours CBZ Favours PHT

Analysis 17.3. Comparison 17 CBZ vs PHT, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 17 CBZ vs PHT

Outcome: 3 Cardiac Malformations

Risk Rat	Weight	Risk Ratio	PHT	CBZ	Study or subgroup
M-H,Fixed,95%		M-H,Fixed,95% Cl	n/N	n/N	
0.37 [0.04, 3.44	11.5 %		1/44	3/361	Australian
Not estimat			0/20	0/4	Bag 1989
Not estimat			0/31	0/113	Canger 1999
1.15 [0.07, 19.78	4.8 %		2/22	0/3	D'Souza 1990
0.10 [0.00, 2.3]	14.9 %	· • •	/ 4	0/49	Eroglu 2008
0.38 [0.02, 7.74	5.8 %		0/3	1/31	Froscher 1991
1.72 [0.08, 35.52	4.8 %		0/124	2/363	Kaaja 2003
3.4 [0.78, 23 .80	3.4 %		0/100	7/112	Kerala Pregnancy Registry
0.83 [0.04, 18.79	5.5 %		1/24	0/9	Koch 1992
Not estimat			0/56	0/110	Meador 2006
0.30 [0.07, 1.34	36.9 %		4/416	3/1033	North American Register
Not estimat			0/28	0/114	Omtzigt 1992
Not estimat			0/5	0/6	Pardi 1982
0.69 [0.09, 5.20	12.3 %		1/82	14/1657	UK Register
0.92 [0.47, 1.78	100.0 %	+	969	3965	Total (95% CI)
					Total events: 30 (CBZ), 10 (PHT)
				B (P = 0.37); $ ^2 = 8\%$	Heterogeneity: $Chi^2 = 8.68$, df = 8
				= 0.80)	Test for overall effect: $Z = 0.26$ (P
				applicable	Fest for subgroup differences: Not

Favours CBZ Favours PHT

Analysis 17.4. Comparison 17 CBZ vs PHT, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 17 CBZ vs PHT

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	CBZ	PHT	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	4/361	0/44		10.6 %	1.12 [0.06, 20.44]
Bag 1989	0/4	0/20			Not estimable
Canger 1999	0/113	0/31			Not estimable
D'Souza 1990	0/3	1/22		5.3 %	1.92 [0.09, 39.25]
Eroglu 2008	0/49	0/14			Not estimable
Froscher 1991	0/31	0/3			Not estimable
Kaaja 2003	2/363	1/124		17.8 %	0.68 [0.06, 7.47]
Kerala Pregnancy Registry	0/7	0/5			Not estimable
Koch 1992	0/9	0/24			Not estimable
Meador 2006	0/110	0/56			Not estimable
North American Register	5/1033	2/416	_ -	34.0 %	1.01 [0.20, 5.17]
Omtzigt 1992	/ 4	0/28		9.5 %	0.76 [0.03, 18.09]
Pardi 1982	0/6	0/5			Not estimable
UK Register	4/1657	1/82		22.7 %	0.20 [0.02, 1.75]
Total (95% CI) Total events: 16 (CBZ), 5 (PHT) Heterogeneity: $Chi^2 = 2.04$, df = 5 Test for overall effect: Z = 0.46 (P Test for subgroup differences: Not	= 0.64)	874		1 00.0 %	0.80 [0.31, 2.05]
			0.01 0.1 I 10 100 Favours CBZ Favours PHT		

Analysis 17.5. Comparison 17 CBZ vs PHT, Outcome 5 Skeletal / Limb Malformation.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 17 CBZ vs PHT

Outcome: 5 Skeletal / Limb Malformation

Study or subgroup	CBZ	PHT	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	2/361	0/44		8.0 %	0.62 [0.03, 12.74]
Bag 1989	0/4	0/20			Not estimable
Canger 1999	4/113	1/31		4. %	1.10 [0.13, 9.47]
D'Souza 1990	1/3	2/22		4.3 %	3.67 [0.46, 29.21]
Eroglu 2008	0/49	0/14			Not estimable
Froscher 1991	0/31	0/3			Not estimable
Kaaja 2003	1/363	0/124		6.7 %	1.03 [0.04, 25.13]
Kerala Pregnancy Registry	0/7	0/5			Not estimable
Koch 1992	0/9	0/24			Not estimable
Meador 2006	0/110	0/56			Not estimable
North American Register	5/1033	4/416		51.2 %	0.50 [0.14, 1.87]
Omtzigt 1992	/ 4	0/28		7.2 %	0.76 [0.03, 18.09]
Pardi 1982	0/6	0/5			Not estimable
UK Register	4/1657	0/82		8.6 %	0.45 [0.02, 8.30]
Total (95% CI) Total events: 18 (CBZ), 7 (PHT)	3860	874	-	100.0 %	0.78 [0.35, 1.75]
Heterogeneity: $Chi^2 = 2.85$, $df = 6$	6 (P = 0.83); $I^2 = 0.0$)%			
Test for overall effect: Z = 0.60 (P	,				
Test for subgroup differences: Not	,				
			0.01 0.1 1 10 100		

Favours CBZ Favours PHT

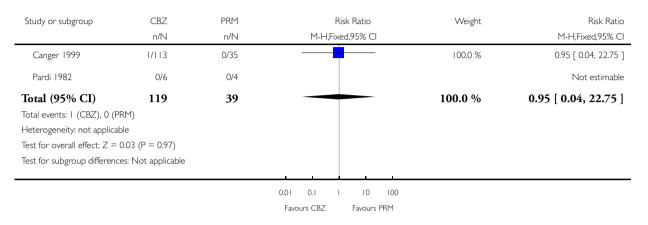
Analysis 18.1. Comparison 18 CBZ vs PRM, Outcome 1 All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 18 CBZ vs PRM

Outcome: I All Major Malformations

Study or subgroup	CBZ	PRM	Risk Ratio	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
Canger 1999	12/113	3/35		31.7 %	1.24 [0.37, 4.14]
Delmiš 1991	4/18	0/9		12.3 %	4.74 [0.28, 79.44]
Kaaja 2003	10/363	1/6		20.9 %	0.17 [0.02, 1.09]
Kaneko 1999	9/158	5/35		35.1 %	0.40 [0.14, 1.12]
Koch 1992	0/9	0/21			Not estimable
Pardi 1982	0/6	0/4			Not estimable
Total (95% CI)	667	110	-	100.0 %	0.64 [0.21, 2.01]
Total events: 35 (CBZ), 9	(PRM)				
Heterogeneity: $Tau^2 = 0.6$	9; Chi ² = 6.48, df = 3	(P = 0.09); I ² =54%			
Test for overall effect: Z =	0.76 (P = 0.45)				
Test for subgroup differen	ces: Not applicable				
			0.01 0.1 1 10 100		


Favours CBZ Favours PRM

Analysis 18.2. Comparison 18 CBZ vs PRM, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 18 CBZ vs PRM

Outcome: 2 Neural Tube Malformations

Analysis 18.3. Comparison 18 CBZ vs PRM, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 18 CBZ vs PRM

Outcome: 3 Cardiac Malformations

Study or subgroup	CBZ	PRM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Canger 1999	0/113	1/35		100.0 %	0.11 [0.00, 2.53]
Pardi 1982	0/6	0/4			Not estimable
Total (95% CI)	119	39		100.0 %	0.11 [0.00, 2.53]
Total events: 0 (CBZ), 1 (P	RM)				
Heterogeneity: not applicat	ole				
Test for overall effect: Z =	I.39 (P = 0.17)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		
			Favours CBZ Favours PRM		

Analysis 18.4. Comparison 18 CBZ vs PRM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 18 CBZ vs PRM

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	CBZ n/N	PRM n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
	11/1 N	11/15	11-1 i,i ixed,75% Ci		11-11,11Xed,75% CI
Canger 1999	0/113	0/35			Not estimable
Pardi 1982	0/6	0/4			Not estimable
Total (95% CI)	119	39			Not estimable
Total events: 0 (CBZ), 0 (PRM)					
Heterogeneity: not applicable					
Test for overall effect: not appli	cable				
Test for subgroup differences: N	Vot applicable				

Favours CBZ Favours PRM

Analysis 18.5. Comparison 18 CBZ vs PRM, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 18 CBZ vs PRM

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	CBZ	PRM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Canger 1999	4/113	0/35		100.0 %	2.84 [0.16, 51.53]
Pardi 1982	0/6	0/4			Not estimable
Total (95% CI)	119	39		100.0 %	2.84 [0.16, 51.53]
Total events: 4 (CBZ), 0 (F	PRM)				
Heterogeneity: not applica	ble				
Test for overall effect: Z =	0.71 (P = 0.48)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		
			Favours CBZ Favours PRM		

Analysis 19.1. Comparison 19 CBZ vs TPM, Outcome 1 All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 19 CBZ vs TPM

Outcome: I All Major Malformations

Study or subgroup	CBZ	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	18/361	1/44		6.0 %	2.19 [0.30, 16.04]
North American Register	31/1033	15/359	-	74.7 %	0.72 [0.39, .3]
UK Register	43/1657	3/70		19.3 %	0.61 [0.19, 1.90]
Total (95% CI)	3051	473	•	100.0 %	0.78 [0.47, 1.31]
Total events: 92 (CBZ), 19 (TPM)					
Heterogeneity: $Chi^2 = 1.31$, $df = 1$	2 (P = 0.52); $I^2 = 0.0$)%			
Test for overall effect: Z = 0.92 (P	= 0.36)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		

Favours CBZ Favours TPM

Analysis 19.2. Comparison 19 CBZ vs TPM, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 19 CBZ vs TPM

Outcome: 2 Neural Tube Malformations

Study or subgroup	CBZ	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	1/361	0/44		34.3 %	0.37 [0.02, 9.02]
North American Register	3/1033	0/359		28.6 %	2.44 [0.13, 47.07]
UK Register	4/1657	0/70		37.0 %	0.39 [0.02, 7.09]
Total (95% CI)	3051	473	-	100.0 %	0.97 [0.19, 5.06]
Total events: 8 (CBZ), 0 (TPM)					
Heterogeneity: $Chi^2 = 1.10$, df = 1	2 (P = 0.58); I ² =0.	0%			
Test for overall effect: Z = 0.04 (P	= 0.97)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours CBZ Favours TPM		

Analysis 19.3. Comparison 19 CBZ vs TPM, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 19 CBZ vs TPM

Outcome: 3 Cardiac Malformations

Study or subgroup	CBZ n/N	TPM n/N		M-H	Risk Ratic Fixed,95%		Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	3/361	0/44			-	-	26.7 %	0.87 [0.05, 16.57]
North American Register	3/1033	1/359			-		44.5 %	1.04 [0.11, 9.99]
UK Register	14/1657	0/70			-	-	28.8 %	1.24 [0.07, 20.61]
Total (95% CI)	3051	473		-			100.0 %	1.05 [0.23, 4.78]
Total events: 20 (CBZ), 1 (TPM)								
Heterogeneity: $Chi^2 = 0.03$, df = 2	2 (P = 0.99); I ² =0.0	%						
Test for overall effect: $Z = 0.07$ (P	= 0.95)							
Test for subgroup differences: Not	applicable							
			0.01	0.1	I I0	001		

Favours CBZ Favours TPM

Analysis 19.4. Comparison 19 CBZ vs TPM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 19 CBZ vs TPM

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	CBZ	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	4/361	0/44		7.3 %	1.12 [0.06, 20.44]
North American Register	5/1033	5/359		61.1 %	0.35 [0.10, 1.19]
UK Register	4/1657	2/70		31.6 %	0.08 [0.02, 0.45]
Total (95% CI)	3051	473	•	100.0 %	0.32 [0.13, 0.81]
Total events: 13 (CBZ), 7 (TPM)					
Heterogeneity: $Chi^2 = 3.15$, df = 2 (P	= 0.21); I ² =36	5%			
Test for overall effect: $Z = 2.42$ (P = 0	0.016)				
Test for subgroup differences: Not app	olicable				

0.01 0.1 1 10 100 Favours CBZ Favours TPM

Analysis 19.5. Comparison 19 CBZ vs TPM, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 19 CBZ vs TPM

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	CBZ	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	2/361	0/44		9.6 %	0.62 [0.03, 12.74]
North American Register	5/1033	5/359		80.1 %	0.35 [0.10, 1.19]
UK Register	4/1657	0/70		10.3 %	0.39 [0.02, 7.09]
Total (95% CI)	3051	473	•	100.0 %	0.38 [0.13, 1.09]
Total events: 11 (CBZ), 5 (TPM)					
Heterogeneity: $Chi^2 = 0.12$, df =	2 (P = 0.94); I ² =0.	0%			
Test for overall effect: $Z = 1.80$ (F	P = 0.072)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100		
			Favours CBZ Favours TPM		

Analysis 20.1. Comparison 20 CBZ vs VPA, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 20 CBZ vs VPA

Outcome: I All Major Malformations

n/N n/N M-H,Fixed,95% Cl M-H,Fixed,95% Cl 1/31 0/5 0.3 % 0.56 [0.03, 12.23] 0/7 0/3 Not estimable 18/361 37/271 - 12/113 8/44 4.1 % 0.58 [0.26, 1.33]
0/7 0/3 Not estimable 18/361 37/271
18/361 37/271
12/113 8/44 4.1% 0.58 [0.26, 1.33]
5/88 3/45
3/46 2/15 .1 % 0.49 [0.09, 2.66]
4/109 4/74
2/31 1/12 0.5 % 0.77 [0.08, 7.77]
96 0/24 0/5 Not estimable
10/363 4/61 2.4 % 0.42 [0.14, 1.30]
9/158 9/81 4.2 % 0.51 [0.21, 1.24]
Registry 1/7 2/6 0.8 % 0.43 [0.05, 3.64]
0/9 3/14 1.0 % 0.21 [0.01, 3.72]
5/50 5/66 1.5 % 1.32 [0.40, 4.31]
99 4/105 7/68 3.0 % 0.37 [0.11, 1.22]
2/31 3/25
5/110 12/69 5.2 % 0.26 [0.10, 0.71]
04 2/16 3/21 0.9 % 0.88 [0.17, 4.63]
5/32 4/15 1.9 % 0.59 [0.18, 1.87]
Register 31/1033 30/323 16.1 % 0.32 [0.20, 0.53]
4/114 7/60 3.2 % 0.30 [0.09, 0.99]
0/6 0/1 Not estimable

0.01 0.1 1 10 100

Favours CBZ Favours VPA

(Continued . . .)

Study or subgroup	CBZ n/N	VPA n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	(Continued) Risk Ratio M-H,Fixed,95% Cl
Steegers-Theunissen 1994	1/39	3/19		1.4 %	0.16 [0.02, 1.46]
Tanganelli 1992	0/9	0/6			Not estimable
UK Register	43/1657	82/1220	-	33.3 %	0.39 [0.27, 0.55]
Total (95% CI)	4549	2529	•	100.0 %	0.41 [0.34, 0.50]
Total events: 167 (CBZ), 229 (VPA	4)				
Heterogeneity: Chi ² = 11.08, df =	20 (P = 0.94); I ² =	0.0%			
Test for overall effect: $Z = 8.88$ (P	< 0.00001)				
Test for subgroup differences: Not	applicable				
				1	
			0.01 0.1 1 10 1	00	
			Favours CBZ Favours VPA	A	

Analysis 20.2. Comparison 20 CBZ vs VPA, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 20 CBZ vs VPA

Outcome: 2 Neural Tube Malformations

Study or subgroup	CBZ	VPA	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	1/361	7/271		14.2 %	0.11 [0.01, 0.87]
Canger 1999	1/113	5/44		12.7 %	0.08 [0.01, 0.65]
Cassina 2013	0/88	1/45		3.5 %	0.17[0.01,4.15]
Eroglu 2008	0/49	0/16			Not estimable
Fairgrieve 2000	0/109	0/74			Not estimable
Froscher 1991	0/31	0/12			Not estimable
Kaaja 2003	3/363	2/61		6.1 %	0.25 [0.04, 1.48]
Kerala Pregnancy Registry	0/7	2/6		4.7 %	0.18[0.01, 3.06]
Koch 1992	0/9	1/14		2.1 %	0.50 [0.02, 11.09]
Martinez Ferri 2009	1/105	2/68		4.3 %	0.32 [0.03, 3.50]
			0.01 0.1 1 10 100		
			Favours CBZ Favours VPA		

(Continued . . .)

Study or subgroup	CBZ	VPA	Risk Ratio	Weight	(Continued) Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% Cl
Meador 2006	0/110	0/69			Not estimable
Meischenguiser 2004	0/16	0/21			Not estimable
North American Register	3/1033	4/323		10.8 %	0.23 [0.05, 1.04]
Omtzigt 1992	0/114	6/60	← ∎ ───	15.0 %	0.04 [0.00, 0.71]
Pardi 1982	0/6	0/1			Not estimable
UK Register	4/1657	3/ 220		26.5 %	0.23 [0.07, 0.69]
Total (95% CI)	4171	2305	•	100.0 %	0.17 [0.09, 0.31]
Total events: 13 (CBZ), 43 (VPA)					
Heterogeneity: $Chi^2 = 3.02$, df = 9	$P(P = 0.96); I^2 = 0$.0%			
Test for overall effect: $Z = 5.73$ (P	< 0.00001)				
Test for subgroup differences: Not	applicable				
<u> </u>					
			0.01 0.1 1 10 100		

Favours CBZ Favours VPA

Analysis 20.3. Comparison 20 CBZ vs VPA, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 20 CBZ vs VPA

-

Outcome: 3 Cardiac Malformations

Study or subgroup	CBZ	VPA	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% Cl
Australian	3/361	10/271		17.1 %	0.23 [0.06, 0.81]
Canger 1999	0/113	0/44			Not estimable
Cassina 2013	3/88	2/45		4.0 %	0.77 [0.13, 4.43]
Eroglu 2008	0/49	0/16			Not estimable
Fairgrieve 2000	3/109	1/74		1.8 %	2.04 [0.22, 19.20]
Froscher 1991	1/31	0/12		1.1 %	1.22 [0.05, 28.02]
Kaaja 2003	2/363	2/61		5.1 %	0.17[0.02, 1.17]
Kerala Pregnancy Registry	7/112	7/71		12.8 %	0.63 [0.23, 1.73]
Koch 1992	0/9	1/14		1.8 %	0.50 [0.02, .09]
Martinez Ferri 2009	2/105	2/68		3.6 %	0.65 [0.09, 4.49]
Meador 2006	0/110	4/69	·	8.3 %	0.07 [0.00, 1.28]
Meischenguiser 2004	0/16	1/21		2.0 %	0.43 [0.02, 9.94]
North American Register	3/1033	8/323		18.3 %	0.12 [0.03, 0.44]
Omtzigt 1992	0/114	0/60			Not estimable
Pardi 1982	0/6	0/1			Not estimable
UK Register	14/1657	14/1220		24.2 %	0.74 [0.35, 1.54]
Total (95% CI)	4276	2370	•	100.0 %	0.45 [0.31, 0.68]
Total events: 38 (CBZ), 52 (VPA)					
Heterogeneity: Chi ² = 12.43, df =	II (P = 0.33); I ² =	12%			
Test for overall effect: $Z = 3.88$ (P	= 0.000 0)				
Test for subgroup differences: Not	applicable				

Favours CBZ Favours VPA

Analysis 20.4. Comparison 20 CBZ vs VPA, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 20 CBZ vs VPA

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	CBZ	VPA	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	4/361	12/271		28.4 %	0.25 [0.08, 0.77]
Canger 1999	0/113	0/44			Not estimable
Cassina 2013	0/88	0/45			Not estimable
Eroglu 2008	0/49	1/16	•	4.6 %	0.11 [0.00, 2.65]
Fairgrieve 2000	0/109	1/74		3.7 %	0.23 [0.01, 5.50]
Froscher 1991	0/31	0/12			Not estimable
Kaaja 2003	2/363	1/61		3.6 %	0.34 [0.03, 3.65]
Kerala Pregnancy Registry	0/7	0/6			Not estimable
Koch 1992	0/9	/ 4		2.5 %	0.50 [0.02, .09]
Martinez Ferri 2009	0/105	1/68		3.8 %	0.22 [0.01, 5.25]
Meador 2006	0/110	1/69		3.8 %	0.21 [0.01, 5.09]
Meischenguiser 2004	0/16	2/21		4.5 %	0.26 [0.01, 5.04]
North American Register	5/1033	4/323		12.6 %	0.39 [0.11, 1.45]
Omtzigt 1992	/ 4	0/60		1.4 %	1.59 [0.07, 38.48]
Pardi 1982	0/6	0/1			Not estimable
UK Register	4/1657	13/1220		31.1 %	0.23 [0.07, 0.69]
Total (95% CI)	4171	2305	•	100.0 %	0.28 [0.16, 0.49]
Total events: 16 (CBZ), 37 (VPA)					
Heterogeneity: $Chi^2 = 2.12$, df =	· /	0.0%			
Test for overall effect: $Z = 4.45$ (P	,				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours CBZ Favours VPA		

Analysis 20.5. Comparison 20 CBZ vs VPA, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 20 CBZ vs VPA

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	CBZ	VPA	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	2/361	6/271		15.7 %	0.25 [0.05, 1.23]
Canger 1999	4/113	1/44		3.3 %	1.56 [0.18, 13.55]
Cassina 2013	0/88	2/45		7.5 %	0.10[0.01, 2.11]
Eroglu 2008	0/49	0/16			Not estimable
Fairgrieve 2000	0/109	1/74		4.1 %	0.23 [0.01, 5.50]
Froscher 1991	0/31	1/12		4.9 %	0.14[0.01,3.11]
Kaaja 2003	1/363	1/61		3.9 %	0.17 [0.01, 2.65]
Kerala Pregnancy Registry	0/7	1/6		3.7 %	0.29 [0.01, 6.07]
Koch 1992	0/9	2/14		4.6 %	0.30 [0.02, 5.61]
Martinez Ferri 2009	1/105	0/68	<u> </u>	1.4 %	1.95 [0.08, 47.25]
Meador 2006	0/110	1/69		4.2 %	0.21 [0.01, 5.09]
Meischenguiser 2004	0/16	0/21			Not estimable
North American Register	5/1033	5/323		17.4 %	0.31 [0.09, 1.07]
Omtzigt 1992	/ 4	1/60		3.0 %	0.53 [0.03, 8.27]
Pardi 1982	0/6	0/1			Not estimable
UK Register	4/1657	10/1220		26.4 %	0.29 [0.09, 0.94]
Total (95% CI)	4171	2305	•	100.0 %	0.33 [0.19, 0.57]
Total events: 18 (CBZ), 32 (VPA)					
Heterogeneity: $Chi^2 = 4.69$, df = 1	2 (P = 0.97); I ² =	0.0%			
Test for overall effect: $Z = 3.96$ (P	= 0.000076)				
Test for subgroup differences: Not	applicable				
			<u> </u>		

Favours CBZ Favours VPA

Analysis 21.1. Comparison 21 CBZ vs ZNS, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 21 CBZ vs ZNS

Outcome: I All Major Malformations

Study or subgroup	CBZ	ZNS	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
North American Register	31/1033	0/90		100.0 %	5.54 [0.34, 89.86]
Total (95% CI)	1033	90		100.0 %	5.54 [0.34, 89.86]
Total events: 31 (CBZ), 0 (ZNS)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.21$ (F	P = 0.23)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100)	
			Favours CBZ Favours ZNS		

Analysis 22.1. Comparison 22 GBP vs LTG, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 22 GBP vs LTG

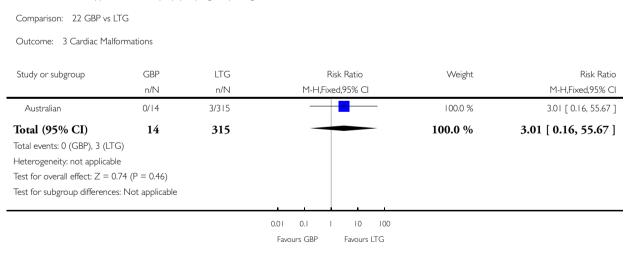
Outcome: I All Major Malformations

Study or subgroup	GBP	LTG	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	0/14	3/3 5		15.5 %	0.78 [0.05, 12.51]
North American Register	1/145	31/1562		66.5 %	0.35 [0.05, 2.53]
UK Register	1/31	49/2098		18.0 %	1.38 [0.20, 9.69]
Total (95% CI)	190	3975	-	100.0 %	0.60 [0.17, 2.07]
Total events: 2 (GBP), 93 (LTG)					
Heterogeneity: $Chi^2 = 1.03$, df = 2	2 (P = 0.60); $I^2 = 0$	0.0%			
Test for overall effect: $Z = 0.81$ (P	= 0.42)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours GBP Favours LTG		

Analysis 22.2. Comparison 22 GBP vs LTG, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 22 GBP vs LTG

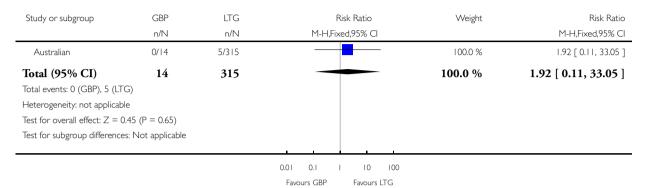

Outcome: 2 Neural Tube Malformations

Study or subgroup	GBP	LTG	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	0/14	0/315			Not estimable
Total (95% CI)	14	315			Not estimable
Total events: 0 (GBP), 0 (LTC	G)				
Heterogeneity: not applicable	e				
Test for overall effect: not ap	plicable				
Test for subgroup differences	: Not applicable				
				I	
				100	

0.01 0.1 1 10 100 Favours GBP Favours LTG

Analysis 22.3. Comparison 22 GBP vs LTG, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child



Analysis 22.4. Comparison 22 GBP vs LTG, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 22 GBP vs LTG

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Analysis 22.5. Comparison 22 GBP vs LTG, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 22 GBP vs L	TG					
Outcome: 5 Skeletal / Lim	b Malformations					
Study or subgroup	GBP n/N	LTG n/N		Risk Ratio Red,95% Cl	Weight	Risk Ratio M-H,Fixed,95% CI
Australian	0/14	0/315				Not estimable
Total (95% CI) Total events: 0 (GBP), 0 (LTC Heterogeneity: not applicable Test for overall effect: not ap Test for subgroup differences	e plicable	315				Not estimable
			0.01 0.1 Favours GBP	I IO IOO Favours LTG		

Analysis 23.1. Comparison 23 GBP vs OXC, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 23 GBP vs OXC

Outcome: I All Major Malformations

Study or subgroup	GBP	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	0/14	0/12			Not estimable
North American Register	1/145	4/182		100.0 %	0.31 [0.04, 2.78]
Total (95% CI)	159	194		100.0 %	0.31 [0.04, 2.78]
Total events: I (GBP), 4 (OXC)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.04$ (P	= 0.30)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours GBP Favours OCX		

Analysis 23.2. Comparison 23 GBP vs OXC, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 23 GBP vs OXC

-

-

Outcome: 2 Neural Tube Malformations

Study or subgroup	GBP	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	0/14	0/12			Not estimable
Total (95% CI)	14	12			Not estimable
Total events: 0 (GBP), 0 (OX	(C)				
Heterogeneity: not applicable	e				
Test for overall effect: not ap	plicable				
Test for subgroup differences	s: Not applicable				
			0.01 0.1 1 10 100		
			Favours GBP Favours OXC		

Analysis 23.3. Comparison 23 GBP vs OXC, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 23 GBP vs OXC

Outcome: 3 Cardiac Malformations

Study or subgroup	GBP	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	0/14	0/12			Not estimable
Total (95% CI)	14	12			Not estimable
Total events: 0 (GBP), 0 (O>	KC)				
Heterogeneity: not applicabl	e				
Test for overall effect: not ap	oplicable				
Test for subgroup difference	s: Not applicable				
			0.01 0.1 1 10 100		

Favours GBP Favours OXC

Analysis 23.4. Comparison 23 GBP vs OXC, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 23 GBP vs OXC

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	GBP	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% Cl
Australian	0/14	0/12			Not estimable
Total (95% CI)	14	12			Not estimable
Total events: 0 (GBP), 0 (OX	(C)				
Heterogeneity: not applicable	e				
Test for overall effect: not ap	plicable				
Test for subgroup differences	: Not applicable				
			0.01 0.1 1 10 100		
			Favours GBP Favours OXC		

Analysis 23.5. Comparison 23 GBP vs OXC, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 23 GBP vs OXC

Outcome: 5 Skeletal / Limb Malformations

N n/N	M-H,Fi	and DEV/CI		
		IXEU,7376 CI		M-H,Fixed,95% Cl
4 0/12				Not estimable
ú 12				Not estimable
able				
4		4 12	4 12	4 12

Favours GBP Favours OXC

Analysis 24.1. Comparison 24 GBP vs PB, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 24 GBP vs PB

Outcome: I All Major Malformations

Study or subgroup	GBP	PB	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	0/14	0/5			Not estimable
North American Register	1/145	11/199		100.0 %	0.12 [0.02, 0.96]
Total (95% CI)	159	204		100.0 %	0.12 [0.02, 0.96]
Total events: (GBP), (PB)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 2.00$ (P	= 0.045)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours GBP Favours PB		

Analysis 24.2. Comparison 24 GBP vs PB, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 24 GBP vs PB

Outcome: 2 Neural Tube Malformations

Study or subgroup	GBP	PB			Risk F	Ratio		Weight	Risk Ratio
	n/N	n/N		M-H	Fixed,9	5% CI			M-H,Fixed,95% CI
Australian	0/14	0/5							Not estimable
Total (95% CI)	14	5							Not estimable
Total events: 0 (GBP), 0 (PB))								
Heterogeneity: not applicabl	e								
Test for overall effect: not ap	plicable								
Test for subgroup difference	s: Not applicable								
							1		
			0.01	0.1	I	10	100		

Favours GBP Favours PB

Analysis 24.3. Comparison 24 GBP vs PB, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 24 GBP vs P	РВ				
Outcome: 3 Cardiac Malfo	ormations				
Study or subgroup	GBP	PB	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% C
Australian	0/14	0/5			Not estimable
Total (95% CI)	14	5			Not estimable
Total events: 0 (GBP), 0 (PB))				
Heterogeneity: not applicable	e				
Test for overall effect: not ap	plicable				
Test for subgroup differences	s: Not applicable				
			0.01 0.1 1 10 100		
			Favours GBP Favours PB		

Analysis 24.4. Comparison 24 GBP vs PB, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 24 GBP vs PB

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	GBP n/N	PB n/N			iisk Ratio ed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	0/14	0/5					Not estimable
Total (95% CI)	14	5					Not estimable
Total events: 0 (GBP), 0 (PB))						
Heterogeneity: not applicabl	e						
Test for overall effect: not ap	plicable						
Test for subgroup difference	s: Not applicable						
			0.01	0.1	10 100		

Favours GBP Favours PB

Analysis 24.5. Comparison 24 GBP vs PB, Outcome 5 Skeletal / Limb Malformations.

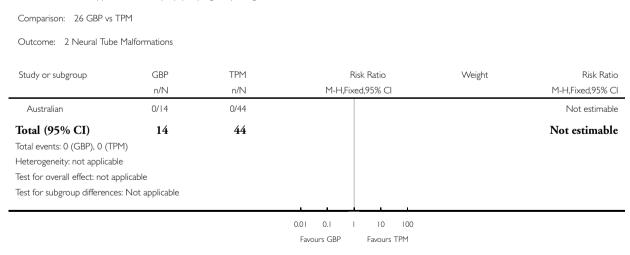
Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 24 GBP vs F	PB				
Outcome: 5 Skeletal / Lim	nb Malformations				
Study or subgroup	GBP n/N	PB n/N	Risk Ratio M-H,Fixed,95% CI	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	0/14	0/5			Not estimable
Total (95% CI) Total events: 0 (GBP), 0 (PB) Heterogeneity: not applicabl Test for overall effect: not ap Test for subgroup difference	e oplicable	5			Not estimable
			0.01 0.1 I IO Favours GBP Favours	100 PB	

Analysis 26.1. Comparison 26 GBP vs TPM, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 26 GBP vs TPM


Outcome: I All Major Malformations

Study or subgroup	GBP	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	0/14	1/44		6.7 %	1.00 [0.04, 23.26]
North American Register	1/145	15/359		76.9 %	0.17 [0.02, 1.24]
UK Register	1/31	3/70		16.4 %	0.75 [0.08, 6.95]
Total (95% CI)	190	473		100.0 %	0.32 [0.09, 1.17]
Total events: 2 (GBP), 19 (TPM)					
Heterogeneity: $Chi^2 = 1.50$, df = 2	2 (P = 0.47); $I^2 = 0$.0%			
Test for overall effect: Z = 1.72 (P	= 0.085)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		

Favours GBP Favours TPM

Analysis 26.2. Comparison 26 GBP vs TPM, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Analysis 26.3. Comparison 26 GBP vs TPM, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 26 GBP vs TPM

Outcome: 3 Cardiac Malformations

Study or subgroup	GBP	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	0/14	0/44			Not estimable
Total (95% CI)	14	44			Not estimable
Total events: 0 (GBP), 0 (TPN	4)				
Heterogeneity: not applicable	2				
Test for overall effect: not ap	plicable				
Test for subgroup differences	: Not applicable				

6.01 0.1 1 10 100 Favours GBP Favours TPM

Analysis 26.4. Comparison 26 GBP vs TPM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 26 GBP vs TPM

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	GBP	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	0/14	0/44			Not estimable
Total (95% CI)	14	44			Not estimable
Total events: 0 (GBP), 0 (TPN	1)				
Heterogeneity: not applicable	:				
Test for overall effect: not app	olicable				
Test for subgroup differences	Not applicable				
			0.01 0.1 1 10 100	1	
			Favours GBP Favours TPM		

Analysis 26.5. Comparison 26 GBP vs TPM, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 26 GBP vs TPM

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	GBP	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% Cl
Australian	0/14	0/44			Not estimable
Total (95% CI)	14	44			Not estimable
Total events: 0 (GBP), 0 (TPI	M)				
Heterogeneity: not applicabl	e				
Test for overall effect: not ap	plicable				
Test for subgroup differences	s: Not applicable				
			0.01 0.1 1 10 100		

Favours GBP Favours TPM

Analysis 27.1. Comparison 27 GBP vs ZNS, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

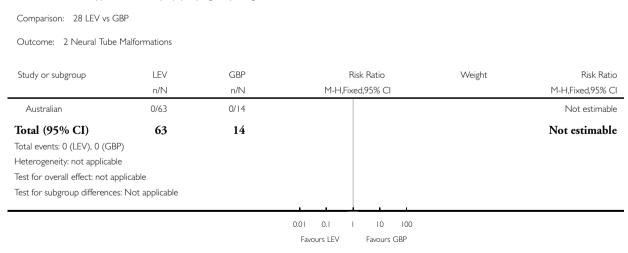
Comparison: 27 GBP vs ZNS					
Outcome: I All Major Malforma	itions				
Study or subgroup	GBP n/N	ZNS n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
North American Register	1/145	0/90		100.0 %	1.87 [0.08, 45.41]
Total (95% CI) Total events: I (GBP), 0 (ZNS)	145	90		100.0 %	1.87 [0.08, 45.41]
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.38$ (P	= 0.70)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100 Favours GBP Favours ZNS		

Analysis 28.1. Comparison 28 LEV vs GBP, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 28 LEV vs GBP

-

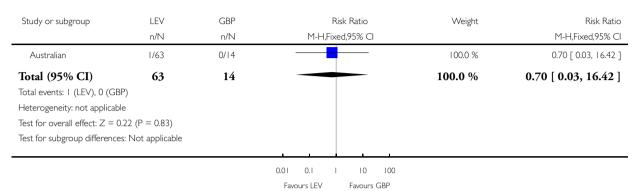

Outcome: I All Major Malformations

Study or subgroup	LEV	GBP	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	1/63	0/14		19.6 %	0.70 [0.03, 16.42]
North American Register	11/450	1/145		36.6 %	3.54 [0.46, 27.22]
UK Register	2/304	1/31		43.9 %	0.20 [0.02, 2.19]
Total (95% CI)	817	190	-	100.0 %	1.52 [0.43, 5.42]
Total events: 14 (LEV), 2 (GBP)					
Heterogeneity: $Chi^2 = 3.65$, df =	2 (P = 0.16); l ² =45	%			
Test for overall effect: $Z = 0.65$ (F	P = 0.52)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100		

Favours LEV Favours GBP

Analysis 28.2. Comparison 28 LEV vs GBP, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child



Analysis 28.3. Comparison 28 LEV vs GBP, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 28 LEV vs GBP

Outcome: 3 Cardiac Malformations

Analysis 28.4. Comparison 28 LEV vs GBP, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 28 LEV vs GBP

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	LEV	GBP	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	1/63	0/14		100.0 %	0.70 [0.03, 16.42]
Total (95% CI)	63	14		100.0 %	0.70 [0.03, 16.42]
Total events: (LEV), 0 (GE	BP)				
Heterogeneity: not applicab	le				
Test for overall effect: $Z = 0$	0.22 (P = 0.83)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		
			Favours LEV Favours GBP		

Analysis 28.5. Comparison 28 LEV vs GBP, Outcome 5 Skeletal / Limb Malformation.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 28 LEV vs GBP

Outcome: 5 Skeletal / Limb Malformation

Study or subgroup	LEV	GBP	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% C		M-H,Fixed,95% CI
Australian	0/63	0/14			Not estimable
Total (95% CI)	63	14			Not estimable
Total events: 0 (LEV), 0 (GBI	P)				
Heterogeneity: not applicabl	le				
Test for overall effect: not ap	oplicable				
Test for subgroup difference	s: Not applicable				
				1	
			0.01 0.1 1 10	100	

Favours LEV Favours GBP

Analysis 29.1. Comparison 29 LEV vs LTG, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 29 LEV vs LTG Outcome: I All Major Malformations Study or subgroup LEV LTG Risk Ratio Weight Risk Ratio M-H,Random,95% M-H,Random,95% n/N n/N CI Australian 1/63 13/315 20.2 % 0.38 [0.05, 2.89] North American Register 11/450 31/1562 49.3 % 1.23 [0.62, 2.43] UK Register 0.28 [0.07, 1.15] 2/304 49/2098 30.6 % Total (95% CI) 0.62 [0.20, 1.88] 817 3975 100.0 % Total events: 14 (LEV), 93 (LTG) Heterogeneity: Tau² = 0.53; Chi² = 4.44, df = 2 (P = 0.11); I² = 55% Test for overall effect: Z = 0.84 (P = 0.40) Test for subgroup differences: Not applicable 100 0.01 0.1 10 T Favours LEV Favours LTG

Analysis 29.2. Comparison 29 LEV vs LTG, Outcome 2 Neural Tude Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 29 LEV vs LTG

Outcome: 2 Neural Tude Malformations

Study or subgroup	LEV	LTG	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	0/63	0/315			Not estimable
North American Register	1/450	2/1562		58.5 %	1.74 [0.16, 19.10]
UK Register	0/304	2/2098	_	41.5 %	1.38 [0.07, 28.60]
Total (95% CI)	817	3975		100.0 %	1.59 [0.24, 10.38]
Total events: I (LEV), 4 (LTG)					
Heterogeneity: $Chi^2 = 0.01$, df =	$(P = 0.9 I); I^2 = 0.9 I$	0.0%			
Test for overall effect: $Z = 0.48$ (P	= 0.63)				
Test for subgroup differences: Not	applicable				

0.01 0.1 1 10 100 Favours LEV Favours LTG

Analysis 29.3. Comparison 29 LEV vs LTG, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 29 LEV vs LTG

Outcome: 3 Cardiac Malformations

Study or subgroup	LEV n/N	LTG n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	1/63	3/315		21.0 %	1.67 [0.18, 15.76]
North American Register	1/450	3/1562	_	28.2 %	1.16[0.12,11.10]
UK Register	0/304	9/2098		50.7 %	0.36 [0.02, 6.21]
Total (95% CI)	817	3975	-	100.0 %	0.86 [0.22, 3.36]
Total events: 2 (LEV), 15 (LTG) Heterogeneity: Chi ² = 0.75, df = 2 Test for overall effect: Z = 0.22 (P Test for subgroup differences: Not	= 0.83)	0.0%			
			0.01 0.1 I 10 100 Favours LEV Favours LTG		

Analysis 29.4. Comparison 29 LEV vs LTG, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 29 LEV vs LTG

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	LEV	LTG	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	1/63	5/315		29.4 %	1.00 [0.12, 8.41]
North American Register	0/450	7/1562		59.3 %	0.23 [0.01, 4.04]
UK Register	0/304	2/2098		11.2 %	1.38 [0.07, 28.60]
Total (95% CI)	817	3975	-	100.0 %	0.59 [0.14, 2.48]
Total events: I (LEV), I4 (LTG)					
Heterogeneity: $Chi^2 = 0.95$, df = 2	$2 (P = 0.62); I^2 = 0$	0.0%			
Test for overall effect: Z = 0.73 (P	= 0.47)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		

Favours LEV Favours LTG

Analysis 29.5. Comparison 29 LEV vs LTG, Outcome 5 Skeletal / Limb Malformation.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 29 LEV vs LTG

Outcome: 5 Skeletal / Limb Malformation

Study or subgroup	LEV n/N	LTG n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	0/63	0/315			Not estimable
North American Register	0/450	2/1562	-	55.8 %	0.69 [0.03, 4.4]
UK Register	0/304	3/2098	_	44.2 %	0.98 [0.05, 18.99]
Total (95% CI)	817	3975		100.0 %	0.82 [0.10, 6.80]
Total events: 0 (LEV), 5 (LTG)					
Heterogeneity: Chi ² = 0.03, df =	$ (P = 0.87); ^2 = 0$.0%			
Test for overall effect: $Z = 0.18$ (P	= 0.86)				
Test for subgroup differences: Not	applicable				

0.01 0.1 1 10 100 Favours LEV Favours LTG

Analysis 30.1. Comparison 30 LEV vs OXC, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 30 LEV vs OXC

Outcome: I All Major Malformations

Study or subgroup	LEV	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	1/63	0/12		12.7 %	0.61 [0.03, 14.14]
North American Register	11/450	4/182		87.3 %	1.11 [0.36, 3.45]
Total (95% CI)	513	194	•	100.0 %	1.05 [0.36, 3.03]
Total events: 12 (LEV), 4 (OXC)					
Heterogeneity: $Chi^2 = 0.12$, df =	$ (P = 0.72); ^2 = 0.$	0%			
Test for overall effect: $Z = 0.09$ (P	= 0.93)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours LEV Favours OXC		

Analysis 30.2. Comparison 30 LEV vs OXC, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 30 LEV vs OXC

Outcome: 2 Neural Tube Malformations

Study or subgroup	LEV	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% Cl
Australian	0/63	0/12			Not estimable
North American Register	1/450	0/182		100.0 %	1.22 [0.05, 29.74]
Total (95% CI)	513	194		100.0 %	1.22 [0.05, 29.74]
Total events: 1 (LEV), 0 (OXC)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.12$ (P	= 0.90)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours LEV Favours OXC		

Analysis 30.3. Comparison 30 LEV vs OXC, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 30 LEV vs OXC

Outcome: 3 Cardiac Malformations

Study or subgroup	LEV	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl	-	M-H,Fixed,95% CI
Australian	1/63	0/12		53.9 %	0.61 [0.03, 14.14]
North American Register	1/450	0/182	_	46.1 %	1.22 [0.05, 29.74]
Total (95% CI)	513	194		100.0 %	0.89 [0.10, 8.21]
Total events: 2 (LEV), 0 (OXC)					
Heterogeneity: $Chi^2 = 0.09$, df = 1	(P = 0.76); I ² =0	.0%			
Test for overall effect: $Z = 0.10$ (P	= 0.92)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours LEV Favours OXC		

Analysis 30.4. Comparison 30 LEV vs OXC, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 30 LEV vs OXC

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	LEV	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	1/63	0/12		28.0 %	0.61 [0.03, 14.14]
North American Register	0/450	1/182		72.0 %	0.14 [0.01, 3.30]
Total (95% CI)	513	194		100.0 %	0.27 [0.03, 2.20]
Total events: (LEV), (OXC)					
Heterogeneity: $Chi^2 = 0.44$, df = 1	(P = 0.5 I); I ² =0.	.0%			
Test for overall effect: $Z = 1.23$ (P	= 0.22)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours LEV Favours OXC		

Analysis 30.5. Comparison 30 LEV vs OXC, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 30 LEV vs OXC

-

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	LEV	OXC	Risk Ratio	Weight	Risk Ratio	
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI	
Australian	0/63	0/12			Not estimable	
North American Register	0/450	1/182		100.0 %	0.14 [0.01, 3.30]	
Total (95% CI)	513	194		100.0 %	0.14 [0.01, 3.30]	
Total events: 0 (LEV), 1 (OXC)						
Heterogeneity: not applicable						
Test for overall effect: $Z = 1.23$ (P = 0.22)						
Test for subgroup differences: Not	applicable					
			<u> </u>			
			0.01 0.1 1 10 100			
			Favours LEV Favours OXC			

Analysis 31.1. Comparison 31 LEV vs PB, Outcome 1 All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 31 LEV vs PB

Outcome: I All Major Malformations

Study or subgroup	LEV	PB	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	1/63	0/5		5.7 %	0.28 [0.01, 6.18]
North American Register	11/450	11/199		94.3 %	0.44 [0.19, 1.00]
Total (95% CI)	513	204	•	100.0 %	0.43 [0.20, 0.96]
Total events: 12 (LEV), 11 (PB)					
Heterogeneity: Chi ² = 0.08, df =	I (P = 0.78); I ² =0.	.0%			
Test for overall effect: $Z = 2.07$ (F	P = 0.039)				
Test for subgroup differences: No	t applicable				
			<u> </u>		
			0.01 0.1 1 10 100	1	
			Favours LEV Favours PB		

Analysis 31.2. Comparison 31 LEV vs PB, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 31 LEV vs PB

Outcome: 2 Neural Tube Malformations

Study or subgroup	LEV	PB	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl	-	M-H,Fixed,95% Cl
Australian	0/63	0/5			Not estimable
North American Register	1/450	0/199	-	100.0 %	1.33 [0.05, 32.52]
Total (95% CI)	513	204		100.0 %	1.33 [0.05, 32.52]
Total events: 1 (LEV), 0 (PB)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.18$ (P	= 0.86)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours LEV Favours PB		

Analysis 31.3. Comparison 31 LEV vs PB, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 31 LEV vs PB

Outcome: 3 Cardiac Malformations

Study or subgroup	LEV n/N	PB n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	1/63	0/5		11.6 %	0.28 [0.01, 6.18]
North American Register	1/450	5/199		88.4 %	0.09 [0.01, 0.75]
Total (95% CI)	513	204	-	100.0 %	0.11 [0.02, 0.66]
Total events: 2 (LEV), 5 (PB) Heterogeneity: $Chi^2 = 0.39$, df = Test for overall effect: Z = 2.42 (P	. ,	.0%			
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100 Favours LEV Favours PB		

Analysis 31.4. Comparison 31 LEV vs PB, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 31 LEV vs PB

_

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	LEV	PB	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	1/63	0/5		12.8 %	0.28 [0.01, 6.18]
North American Register	0/450	4/199	← ₩	87.2 %	0.05 [0.00, 0.91]
Total (95% CI)	513	204		100.0 %	0.08 [0.01, 0.67]
Total events: I (LEV), 4 (PB)					
Heterogeneity: $Chi^2 = 0.75$, df =	$ (P = 0.39); ^2 = 0.1$	0%			
Test for overall effect: $Z = 2.32$ (P	= 0.020)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours LEV Favours PB		

Analysis 31.5. Comparison 31 LEV vs PB, Outcome 5 Skeletal / Limb Malformation.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 31 LEV vs PB

Outcome: 5 Skeletal / Limb Malformation

Study or subgroup	LEV n/N	PB n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	0/63	0/5			Not estimable
North American Register	0/450	1/199		100.0 %	0.15 [0.01, 3.61]
Total (95% CI)	513	204		100.0 %	0.15 [0.01, 3.61]
Total events: 0 (LEV), 1 (PB)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.17$ (P	= 0.24)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours LEV Favours PB		

Analysis 32.1. Comparison 32 LEV vs PHT, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 32 LEV vs PHT

Outcome: I All Major Malformations

Study or subgroup	LEV	PHT			Risk R	atio		Weight	Risk Ratio
	n/N	n/N		M-H,I	ixed,95	5% CI			M-H,Fixed,95% CI
Australian	1/63	2/44			+-			9.3 %	0.35 [0.03, 3.73]
North American Register	11/450	12/416		-	•			49.5 %	0.85 [0.38, 1.90]
UK Register	2/304	7/106	-	-				41.2 %	0.10 [0.02, 0.47]
Total (95% CI)	817	566		-	•			100.0 %	0.49 [0.26, 0.92]
Total events: 14 (LEV), 21 (PHT)									
Heterogeneity: $Chi^2 = 5.87$, $df = 2$	2 (P = 0.05); I ² =66	5%							
Test for overall effect: $Z = 2.21$ (P	= 0.027)								
Test for subgroup differences: Not	t applicable								
			0.01	0.1	I.	10	100		

Favours LEV Favours PHT

Analysis 32.2. Comparison 32 LEV vs PHT, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 32 LEV vs PHT

Outcome: 2 Neural Tube Malformations

Study or subgroup	LEV	PHT	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	0/63	1/44		77.2 %	0.23 [0.01, 5.62]
North American Register	1/450	0/416		22.8 %	2.77 [0.11, 67.90]
UK Register	0/304	0/82			Not estimable
Total (95% CI)	817	542		100.0 %	0.81 [0.12, 5.34]
Total events: (LEV), (PHT)					
Heterogeneity: $Chi^2 = 1.15$, df = 1	$(P = 0.28); I^2 = I$	3%			
Test for overall effect: $Z = 0.22$ (P	= 0.83)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours LEV Favours PHT		

Analysis 32.3. Comparison 32 LEV vs PHT, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 32 LEV vs PHT

Outcome: 3 Cardiac Malformations

Study or subgroup	LEV	PHT	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	1/63	1/44		15.3 %	0.70 [0.04, 10.87]
North American Register	1/450	4/416		54.0 %	0.23 [0.03, 2.06]
UK Register	0/304	1/82	·	30.7 %	0.09 [0.00, 2.21]
Total (95% CI)	817	542	-	100.0 %	0.26 [0.06, 1.09]
Total events: 2 (LEV), 6 (PHT)					
Heterogeneity: $Chi^2 = 0.93$, df = 2	2 (P = 0.63); I ² =0.	.0%			
Test for overall effect: Z = 1.84 (P	= 0.065)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		

Favours LEV Favours PHT

Analysis 32.4. Comparison 32 LEV vs PHT, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 32 LEV vs PHT

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	LEV	PHT	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	1/63	0/44		10.6 %	2.11 [0.09, 50.61]
North American Register	0/450	2/416		46.9 %	0.18 [0.01, 3.84]
UK Register	0/304	1/82	← ∎	42.5 %	0.09 [0.00, 2.21]
Total (95% CI)	817	542	-	100.0 %	0.35 [0.08, 1.56]
Total events: I (LEV), 3 (PHT)					
Heterogeneity: $Chi^2 = 2.08$, df = 2	$P = 0.35$; $I^2 = 49$	%			
Test for overall effect: Z = 1.38 (P	= 0.17)				
Test for subgroup differences: Not	applicable				

0.01 0.1 1 10 100 Favours LEV Favours PHT

Analysis 32.5. Comparison 32 LEV vs PHT, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 32 LEV vs PHT

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	LEV n/N	PHT n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	0/63	0/44			Not estimable
North American Register	0/450	4/416		100.0 %	0.10[0.01, 1.90]
UK Register	0/304	0/82			Not estimable
Total (95% CI)	817	542		100.0 %	0.10 [0.01, 1.90]
Total events: 0 (LEV), 4 (PHT) Heterogeneity: not applicable Test for overall effect: Z = 1.53 (P Test for subgroup differences: Not	,				
			0.01 0.1 1 10 100 Favours LEV Favours PHT		

Analysis 34.1. Comparison 34 LEV vs TPM, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 34 LEV vs TPM

Outcome: I All Major Malformations

/N n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
			If intedpose of
63 1/44		5.2 %	0.70 [0.04, 10.87]
50 15/359		73.4 %	0.59 [0.27, 1.26]
04 3/70		21.4 %	0.15 [0.03, 0.90]
473	•	100.0 %	0.50 [0.26, 0.97]
i); l ² =0.0%			
1 1	304 3/70	104 3/70 17 473 3); 12 = 0.0% 100 10	$104 3/70 21.4 \%$ $17 473 100.0 \%$ $3); 1^2 = 0.0\%$

0.01 0.1 1 10 100 Favours LEV Favours TPM

Analysis 34.2. Comparison 34 LEV vs TPM, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 34 LEV vs TPM

Outcome: 2 Neural Tube Malformations

Study or subgroup	LEV	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	0/63	0/44			Not estimable
North American Register	1/450	0/359		100.0 %	2.39 [0.10, 58.61]
UK Register	0/304	0/70			Not estimable
Total (95% CI)	817	473		100.0 %	2.39 [0.10, 58.61]
Fotal events: I (LEV), 0 (TPM)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.54 (P =	= 0.59)				
Test for subgroup differences: Not a	applicable				

0.01 0.1 1 10 100 Favours LEV Favours TPM

Analysis 34.3. Comparison 34 LEV vs TPM, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 34 LEV vs TPM

Outcome: 3 Cardiac Malformations

Study or subgroup	LEV	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	1/63	0/44		34.5 %	2.11 [0.09, 50.61]
North American Register	1/450	1/359		65.5 %	0.80 [0.05, 2.7]
UK Register	0/304	0/70			Not estimable
Total (95% CI)	817	473		100.0 %	1.25 [0.16, 9.54]
Total events: 2 (LEV), 1 (TPM)					
Heterogeneity: $Chi^2 = 0.21$, df =	(P = 0.65); I ² =0.	.0%			
Test for overall effect: $Z = 0.22$ (P	= 0.83)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours LEV Favours TPM		

Analysis 34.4. Comparison 34 LEV vs TPM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 34 LEV vs TPM

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	LEV	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	1/63	0/44		5.5 %	2.11 [0.09, 50.61]
North American Register	0/450	5/359	• •	56.8 %	0.07 [0.00, 1.31]
UK Register	0/304	2/70	← ∎	37.7 %	0.05 [0.00, 0.96]
Total (95% CI)	817	473	-	100.0 %	0.17 [0.04, 0.68]
Total events: 1 (LEV), 7 (TPM)					
Heterogeneity: $Chi^2 = 3.45$, df = 2	$2 (P = 0.18); I^2 = 4$	2%			
Test for overall effect: Z = 2.53 (P	= 0.012)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			5 157 5 7514		

Favours LEV Favours TPM

Analysis 34.5. Comparison 34 LEV vs TPM, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 34 LEV vs TPM

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	LEV n/N	TPM n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	0/63	0/44			Not estimable
North American Register	0/450	5/359	• • • • • • • • • • • • • • • • • • •	100.0 %	0.07 [0.00, 1.31]
UK Register	0/304	0/70			Not estimable
Total (95% CI) Total events: 0 (LEV), 5 (TPM) Heterogeneity: not applicable Test for overall effect: $Z = 1.78$ (P Test for subgroup differences: Not	,	473		100.0 %	0.07 [0.00, 1.31]
			0.01 0.1 1 10 100 Favours LEV Favours TPM		

Analysis 35.1. Comparison 35 LEV vs ZNS, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 35 LEV vs ZNS Outcome: I All Major Malformations Study or subgroup LEV ZNS Risk Ratio Weight Risk Ratio n/N n/N M-H,Fixed,95% CI M-H,Fixed,95% Cl 4.64 [0.28, 78.05] 11/450 0/90 100.0 % North American Register Total (95% CI) 4.64 [0.28, 78.05] 450 90 100.0 % Total events: 11 (LEV), 0 (ZNS) Heterogeneity: not applicable Test for overall effect: Z = 1.07 (P = 0.29) Test for subgroup differences: Not applicable 0.01 01 10 100 T. Favours LEV Favours ZNS

Analysis 36.1. Comparison 36 LTG vs OXC, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 36 LTG vs OXC

Outcome: I All Major Malformations

Study or subgroup	LTG	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% Cl
Australian	3/3 5	0/12		11.8 %	. [0.07, 17.68]
North American Register	31/1562	4/182		88.2 %	0.90 [0.32, 2.53]
Total (95% CI)	1877	194	+	100.0 %	0.93 [0.35, 2.43]
Total events: 44 (LTG), 4 (OXC)					
Heterogeneity: $Chi^2 = 0.02$, df =	$ (P = 0.89); ^2 = 0.0$)%			
Test for overall effect: $Z = 0.15$ (P	= 0.88)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours LTG Favours OXC		

Analysis 36.2. Comparison 36 LTG vs OXC, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 36 LTG vs OXC

Outcome: 2 Neural Tube Malformations

Study or subgroup	LTG	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	0/315	0/12			Not estimable
North American Register	2/1562	0/182	_	100.0 %	0.59 [0.03, 12.15]
Total (95% CI)	1877	194		100.0 %	0.59 [0.03, 12.15]
Total events: 2 (LTG), 0 (OXC)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.35$ (P	= 0.73)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours LTG Favours OXC		

Analysis 36.3. Comparison 36 LTG vs OXC, Outcome 3 Cardiac Malformation.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 36 LTG vs OXC

-

-

Outcome: 3 Cardiac Malformation

Study or subgroup	LTG	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	3/315	0/12		51.8 %	0.29 [0.02, 5.29]
North American Register	3/1562	0/182		48.2 %	0.82 [0.04, 15.80]
Total (95% CI)	1877	194		100.0 %	0.54 [0.07, 4.30]
Total events: 6 (LTG), 0 (OXC)					
Heterogeneity: $Chi^2 = 0.26$, df =	$ (P = 0.6); ^2 = 0.0$)%			
Test for overall effect: $Z = 0.58$ (F	9 = 0.56)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100		
			Favours LTG Favours OXC		

Analysis 36.4. Comparison 36 LTG vs OXC, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 36 LTG vs OXC

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	LTG	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	5/315	0/12		34.9 %	0.45 [0.03, 7.76]
North American Register	7/1562	1/182		65.1 %	0.82 [0.10, 6.59]
Total (95% CI)	1877	194	-	100.0 %	0.69 [0.13, 3.71]
Total events: 12 (LTG), 1 (OXC)					
Heterogeneity: $Chi^2 = 0.11$, df =	$ (P = 0.74); ^2 = 0.4$	0%			
Test for overall effect: $Z = 0.43$ (P	= 0.66)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours LTG Favours OXC		

Analysis 36.5. Comparison 36 LTG vs OXC, Outcome 5 Skeletal / Limb Malformation.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 36 LTG vs OXC

Outcome: 5 Skeletal / Limb Malformation

Study or subgroup	LTG n/N	OXC n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	0/315	0/12			Not estimable
North American Register	2/1562	1/182		100.0 %	0.23 [0.02, 2.56]
Total (95% CI)	1877	194		100.0 %	0.23 [0.02, 2.56]
Total events: 2 (LTG), 1 (OXC)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.19$ (P	9 = 0.23)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		
			Favours LTG Favours OXC		

Analysis 37.1. Comparison 37 LTG vs PB, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 37 LTG vs PB

Outcome: I All Major Malformations

Study or subgroup	LTG	PB	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% Cl
Australian	3/3 5	0/5		3.8 %	0.5 [0.03, 7.66]
Cassina 2013	0/26	5/67		12.0 %	0.23 [0.01, 4.00]
Martinez Ferri 2009	0/56	1/11	· • •	9.5 %	0.07 [0.00, 1.62]
North American Register	31/1562	/ 99	-	74.8 %	0.36 [0.18, 0.70]
Total (95% CI)	1959	282	•	100.0 %	0.32 [0.17, 0.61]
Total events: 44 (LTG), 17 (PB)					
Heterogeneity: Chi ² = 1.17, df =	3 (P = 0.76); I ² =0.0)%			
Test for overall effect: $Z = 3.51$ (F	9 = 0.00045)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100		
			Favours LTG Favours PB		

Analysis 37.2. Comparison 37 LTG vs PB, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 37 LTG vs PB

Outcome: 2 Neural Tube Malformations

Study or subgroup	LTG	PB	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	0/315	0/5			Not estimable
Cassina 2013	0/26	0/67			Not estimable
North American Register	2/1562	0/199		100.0 %	0.64 [0.03, 3.28]
Total (95% CI)	1903	271		100.0 %	0.64 [0.03, 13.28]
Total events: 2 (LTG), 0 (PB)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.29$ (P	= 0.77)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		

Favours LTG Favours PB

Analysis 37.3. Comparison 37 LTG vs PB, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 37 LTG vs PB

Outcome: 3 Cardiac Malformations

Study or subgroup	LTG n/N	PB n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	3/315	0/5		8.7 %	0.13 [0.01, 2.30]
Cassina 2013	0/26	2/67		12.6 %	0.50 [0.02, 10.15]
North American Register	3/1562	5/199		78.7 %	0.08 [0.02, 0.32]
Total (95% CI)	1903	271	-	100.0 %	0.14 [0.04, 0.42]
Total events: 6 (LTG), 7 (PB)					
Heterogeneity: Chi ² = 1.35, df =	2 (P = 0.5 I); $I^2 = 0.5$	0%			
Test for overall effect: $Z = 3.43$ (F	9 = 0.00059)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100		

0.01 0.1 1 10 100 Favours LTG Favours PB

Analysis 37.4. Comparison 37 LTG vs PB, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 37 LTG vs PB

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	LTG	PB	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	5/315	0/5		12.1 %	0.21 [0.01, 3.37]
Cassina 2013	0/26	0/67			Not estimable
North American Register	7/1562	4/199		87.9 %	0.22 [0.07, 0.75]
Total (95% CI)	1903	271	-	100.0 %	0.22 [0.07, 0.68]
Total events: 12 (LTG), 4 (PB)					
Heterogeneity: $Chi^2 = 0.00$, df =	I (P = 0.97); I ² =0.	0%			
Test for overall effect: $Z = 2.63$ (F	^D = 0.0086)				
Test for subgroup differences: No	ot applicable				
				L	
			0.01 0.1 1 10 10	00	
			Favours LTG Favours PB		

Analysis 37.5. Comparison 37 LTG vs PB, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 37 LTG vs PB

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	LTG	PB	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	0/315	0/5			Not estimable
Cassina 2013	0/26	0/67			Not estimable
North American Register	2/1562	1/199		100.0 %	0.25 [0.02, 2.80]
Total (95% CI)	1903	271		100.0 %	0.25 [0.02, 2.80]
Total events: 2 (LTG), 1 (PB)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.12$ (F	9 = 0.26)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100		
			Favours LTG Favours PB		

Analysis 38.1. Comparison 38 LTG vs PHT, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 38 LTG vs PHT

Outcome: I All Major Malformations

Study or subgroup	LTG	PHT	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	13/315	2/44	_	8.6 %	0.91 [0.21, 3.89]
Mawer 2010	0/9	0/2			Not estimable
Meador 2006	1/98	4/56		12.5 %	0.14 [0.02, 1.25]
North American Register	31/1562	12/416	-	46.4 %	0.69 [0.36, 1.33]
UK Register	49/2098	7/106		32.6 %	0.35 [0.16, 0.76]
Total (95% CI)	4082	624	•	100.0 %	0.53 [0.34, 0.84]
Total events: 94 (LTG), 25 (PHT)					
Heterogeneity: $Chi^2 = 3.60$, $df = 1$	3 (P = 0.3 I); I ² = I7	%			
Test for overall effect: $Z = 2.72$ (P	= 0.0065)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		

0.01 0.1 1 10 100

Favours PHT Favours LTG

Analysis 38.2. Comparison 38 LTG vs PHT, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 38 LTG vs PHT

Outcome: 2 Neural Tube Malformations

Study or subgroup	LTG	PHT	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	0/315	1/44	• •	60.0 %	0.05 [0.00, 1.15]
Meador 2006	0/98	0/56			Not estimable
North American Register	2/1562	0/416		18.0 %	1.33 [0.06, 27.73]
UK Register	2/2098	0/82		22.0 %	0.20 [0.01, 4.09]
Total (95% CI)	4073	598	-	100.0 %	0.31 [0.07, 1.34]
Total events: 4 (LTG), 1 (PHT)					
Heterogeneity: $Chi^2 = 2.3I$, df =	2 (P = 0.31); I ² = 13	3%			
Test for overall effect: $Z = 1.57$ (F	P = 0.12)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100		

Favours LTG Favours PHT

Analysis 38.3. Comparison 38 LTG vs PHT, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 38 LTG vs PHT

Outcome: 3 Cardiac Malformations

Study or subgroup	LTG	PHT	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	3/315	1/44		16.5 %	0.42 [0.04, 3.94]
Meador 2006	1/98	0/56		6.0 %	1.73 [0.07, 41.70]
North American Register	3/1562	4/416		59.4 %	0.20 [0.04, 0.89]
UK Register	9/2098	1/82		18.1 %	0.35 [0.05, 2.74]
Total (95% CI)	4073	598	•	100.0 %	0.35 [0.14, 0.92]
Total events: 16 (LTG), 6 (PHT)					
Heterogeneity: $Chi^2 = 1.54$, df = 1	3 (P = 0.67); I ² =0.	.0%			
Test for overall effect: Z = 2.12 (P	= 0.034)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		

Favours LTG Favours PHT

Analysis 38.4. Comparison 38 LTG vs PHT, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 38 LTG vs PHT

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	LTG	PHT			Risk Ratio		Weight	Risk Ratio
	n/N	n/N		M-H,	Fixed,95% C]		M-H,Fixed,95% CI
Australian	5/315	0/44				-	14.7 %	1.57 [0.09, 27.85]
Meador 2006	0/98	0/56						Not estimable
North American Register	7/1562	2/416					53.0 %	0.93 [0.19, 4.47]
UK Register	2/2098	1/82	_	•	_		32.3 %	0.08 [0.01, 0.85]
Total (95% CI)	4073	598		-	•		100.0 %	0.75 [0.24, 2.34]
Total events: 14 (LTG), 3 (PHT)								
Heterogeneity: $Chi^2 = 3.76$, df = 2	2 (P = 0.15); $I^2 = 47$	7%						
Test for overall effect: Z = 0.50 (P	= 0.62)							
Test for subgroup differences: Not	t applicable							
			1					
			0.01	0.1	I I0	100		

Favours LTG Favours PHT

Analysis 38.5. Comparison 38 LTG vs PHT, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 38 LTG vs PHT

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	LTG	PHT	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	0/315	0/44			Not estimable
Meador 2006	0/98	0/56			Not estimable
North American Register	2/1562	4/416		86.8 %	0.13 [0.02, 0.72]
UK Register	3/2098	0/82		13.2 %	0.28 [0.01, 5.32]
Total (95% CI)	4073	598	•	100.0 %	0.15 [0.03, 0.66]
Total events: 5 (LTG), 4 (PHT)					
Heterogeneity: $Chi^2 = 0.18$, df =	$ (P = 0.67); ^2 = 0.67$	0%			
Test for overall effect: $Z = 2.51$ (F	P = 0.012)				
Test for subgroup differences: No	t applicable				
			<u> </u>		
			0.01 0.1 1 10 100		
			Favours LTG Favours PHT		

Analysis 39.1. Comparison 39 LTG vs TPM, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 39 LTG vs TPM

Outcome: I All Major Malformations

Study or subgroup	LTG	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	3/3 5	1/44		5.5 %	1.82 [0.24, 13.54]
North American Register	31/1562	15/359	-	76.3 %	0.47 [0.26, 0.87]
UK Register	49/2098	3/70		18.2 %	0.54 [0.17, 1.71]
Total (95% CI)	3975	473	•	100.0 %	0.56 [0.34, 0.94]
Total events: 93 (LTG), 19 (TPM)					
Heterogeneity: $Chi^2 = 1.61$, df = 2	2 (P = 0.45); $I^2 = 0.0$)%			
Test for overall effect: $Z = 2.21$ (P	= 0.027)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		

Favours LTG Favours TPM

Analysis 39.2. Comparison 39 LTG vs TPM, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 39 LTG vs TPM

Outcome: 2 Neural Tube Malformations

Study or subgroup	LTG	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	0/315	0/44			Not estimable
North American Register	2/1562	0/359		45.7 %	1.15 [0.06, 23.94]
UK Register	2/2098	0/70		54.3 %	0.17 [0.01, 3.49]
Total (95% CI)	3975	473		100.0 %	0.62 [0.08, 4.94]
Total events: 4 (LTG), 0 (TPM)					
Heterogeneity: $Chi^2 = 0.87$, df =	I (P = 0.35); I ² =0.	0%			
Test for overall effect: Z = 0.45 (P	= 0.65)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours LTG Favours TPM		

Analysis 39.3. Comparison 39 LTG vs TPM, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 39 LTG vs TPM

Outcome: 3 Cardiac Malformations

Study or subgroup	LTG n/N	TPM n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	3/315	0/44		25.2 %	1.00 [0.05, 18.98]
North American Register	3/1562	1/359		46.9 %	0.69 [0.07, 6.61]
UK Register	9/2098	0/70		27.9 %	0.64 [0.04, 10.93]
Total (95% CI)	3975	473	-	100.0 %	0.75 [0.17, 3.42]
Total events: 15 (LTG), 1 (TPM)					
Heterogeneity: $Chi^2 = 0.05$, df = 2	2 (P = 0.97); I ² =0.	0%			
Test for overall effect: Z = 0.37 (P	= 0.71)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		

Favours LTG Favours TPM

Analysis 39.4. Comparison 39 LTG vs TPM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 39 LTG vs TPM

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	LTG	TPM	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
Australian	5/315	0/44		24.0 %	1.57 [0.09, 27.85]
North American Register	7/1562	5/359		42.6 %	0.32 [0.10, 1.01]
UK Register	2/2098	2/70	←∎ ──	33.4 %	0.03 [0.00, 0.23]
Total (95% CI)	3975	473		100.0 %	0.22 [0.03, 1.56]
Total events: 14 (LTG), 7 (TPM)					
Heterogeneity: Tau ² = 2.00; Chi ²	= 6.35, df = 2 (P =	0.04); l ² =69%			
Test for overall effect: $Z = 1.51$ (P	= 0.13)				
Test for subgroup differences: Not	applicable				

0.01 0.1 1 10 100 Favours LTG Favours TPM

Analysis 39.5. Comparison 39 LTG vs TPM, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 39 LTG vs TPM

Outcome: 5 Skeletal / Limb Malformations

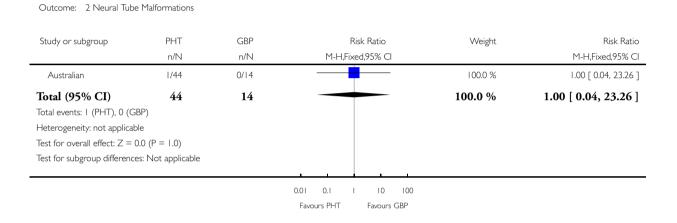
Study or subgroup	LTG n/N	TPM n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	0/315	0/44			Not estimable
North American Register	2/1562	5/359		89.4 %	0.09 [0.02, 0.47]
UK Register	3/2098	0/70		10.6 %	0.24 [0.01, 4.54]
Total (95% CI)	3975	473	-	100.0 %	0.11 [0.03, 0.45]
Total events: 5 (LTG), 5 (TPM)					
Heterogeneity: Chi ² = 0.31, df =	I (P = 0.58); I ² =0.	0%			
Test for overall effect: Z = 3.06 (P	= 0.0022)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		

0.01 0.1 I 10 100 Favours LTG Favours TPM

Analysis 40.1. Comparison 40 PHT vs GBP, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 40 PHT vs GBP

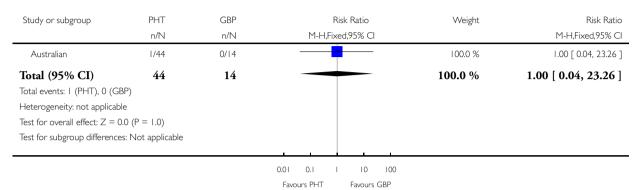

Outcome: I All Major Malformations

Study or subgroup	PHT	GBP	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	2/44	0/14		19.8 %	1.67 [0.08, 32.80]
North American Register	12/416	1/145		39.2 %	4.18 [0.55, 31.89]
UK Register	7/106	1/31		40.9 %	2.05 [0.26, 6.0]
Total (95% CI)	566	190	-	100.0 %	2.81 [0.77, 10.23]
Total events: 21 (PHT), 2 (GBP)					
Heterogeneity: $Chi^2 = 0.36$, df = 1	2 (P = 0.84); I ² =0	.0%			
Test for overall effect: Z = 1.57 (P	= 0.12)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		
			Favours PHT Favours GBP		

Analysis 40.2. Comparison 40 PHT vs GBP, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 40 PHT vs GBP



Analysis 40.3. Comparison 40 PHT vs GBP, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 40 PHT vs GBP

Outcome: 3 Cardiac Malformations

Analysis 40.4. Comparison 40 PHT vs GBP, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 40 PHT vs GBP

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	PHT n/N	GBP n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	0/44	0/14			Not estimable
Total (95% CI)	44	14			Not estimable
Total events: 0 (PHT), 0 (GE	BP)				
Heterogeneity: not applicabl	e				
Test for overall effect: not ap	oplicable				
Test for subgroup difference	s: Not applicable				
			0.01 0.1 1 10 100		
			Favours PHT Favours GBP		

Analysis 40.5. Comparison 40 PHT vs GBP, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 40 PHT vs GBP

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	PHT	GBP	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	0/44	0/14			Not estimable
Total (95% CI)	44	14			Not estimable
Total events: 0 (PHT), 0 (GB	SP)				
Heterogeneity: not applicabl	e				
Test for overall effect: not ap	plicable				
Test for subgroup differences	s: Not applicable				
			0.01 0.1 1 10 100		

Favours PHT Favours GBP

Analysis 41.1. Comparison 41 PHT vs OXC, Outcome 1 All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 41 PHT vs OXC

Outcome: I All Major Malformations

Study or subgroup	PHT	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	2/44	0/12		9.5 %	1.44 [0.07, 28.24]
Kaaja 2003	3/124	1/9		22.7 %	0.22 [0.03, 1.89]
North American Register	12/416	4/182		67.8 %	1.31 [0.43, 4.01]
Total (95% CI)	584	203	+	100.0 %	1.08 [0.43, 2.71]
Total events: 17 (PHT), 5 (OXC)					
Heterogeneity: $Chi^2 = 2.26$, df = 2	2 (P = 0.32); $I^2 = I^2$	2%			
Test for overall effect: $Z = 0.16$ (P	= 0.88)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		
			Favours PHT Favours OXC		

Analysis 41.2. Comparison 41 PHT vs OXC, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 41 PHT vs OXC

Outcome: 2 Neural Tube Malformations

PHT	OXC	Risk Ratio	Weight	Risk Ratio
n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
1/44	0/12		100.0 %	0.87 [0.04, 20.03]
0/124	0/9			Not estimable
0/416	0/182			Not estimable
584	203		100.0 %	0.87 [0.04, 20.03]
= 0.93)				
applicable				
	n/N 1/44 0/124 0/416	n/N n/N 1/44 0/12 0/124 0/9 0/416 0/182 584 203 = 0.93)	n/N n/N M-H,Fixed,95% Cl 1/44 0/12 0/124 0/9 0/416 0/182 584 203 = 0.93)	n/N n/N M-H,Fixed,95% Cl 1/44 0/12 100.0 % 0/124 0/9 0/416 0/182 584 203 100.0 % = 0.93)

0.01 0.1 1 10 100 Favours PHT Favours OXC

Analysis 41.3. Comparison 41 PHT vs OXC, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 41 PHT vs OXC

Outcome: 3 Cardiac Malformations

Study or subgroup	PHT	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	1/44	0/12		52.7 %	0.87 [0.04, 20.03]
Kaaja 2003	0/124	0/9			Not estimable
North American Register	4/416	0/182		47.3 %	3.95 [0.21, 72.98]
Total (95% CI)	584	203		100.0 %	2.32 [0.30, 18.27]
Total events: 5 (PHT), 0 (OXC)					
Heterogeneity: Chi ² = 0.5 I, df =	$ (P = 0.48); ^2 = 0$).0%			
Test for overall effect: $Z = 0.80$ (P	= 0.42)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours PHT Favours OXC		

Analysis 41.4. Comparison 41 PHT vs OXC, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 41 PHT vs OXC

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	PHT n/N	OXC n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	0/44	0/12			Not estimable
Kaaja 2003	1/124	0/9		40.0 %	0.24 [0.01, 5.52]
North American Register	2/416	1/182	_	60.0 %	0.88 [0.08, 9.59]
Total (95% CI)	584	203		100.0 %	0.62 [0.10, 4.05]
Total events: 3 (PHT), 1 (OXC)					
Heterogeneity: Chi ² = 0.43, df =	$ (P = 0.5); ^2 = 0.5$.0%			
Test for overall effect: Z = 0.50 (P	= 0.62)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours PHT Favours OXC		

Analysis 41.5. Comparison 41 PHT vs OXC, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 41 PHT vs OXC

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	PHT	OXC	Risk Ratio	Weight	Risk Ratio	
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI	
Australian	0/44	0/12			Not estimable	
Kaaja 2003	0/124	0/9			Not estimable	
North American Register	4/416	1/182		100.0 %	1.75 [0.20, 15.55]	
Total (95% CI)	584	203		100.0 %	1.75 [0.20, 15.55]	
Total events: 4 (PHT), 1 (OXC)						
Heterogeneity: not applicable						
Test for overall effect: Z = 0.50 (P =	= 0.62)					
Test for subgroup differences: Not a	applicable					

0.01 0.1 1 10 100 Favours PHT Favours OXC

Analysis 42.1. Comparison 42 PHT vs PB, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 42 PHT vs PB

Outcome: I All Major Malformations

Study or subgroup	PHT	PB	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Al Bunyan 1999	0/9	0/2			Not estimable
Australian	2/44	0/5		2.1 %	0.67 [0.04, 12.29]
Canger 1999	3/31	4/83		5.1 %	2.01 [0.48, 8.47]
D'Souza 1990	6/22	1/4		4.0 %	1.09 [0.18, 6.80]
Eroglu 2008	2/14	1/5		3.5 %	0.71 [0.08, 6.27]
Froscher 1991	0/3	1/5		2.8 %	0.50 [0.03, 9.46]
Kaaja 2003	3/124	0/5		2.2 %	0.34 [0.02, 5.80]
Kaneko 1999	12/132	4/79		11.7 %	1.80 [0.60, 5.38]
Kelly 1984	1/24	0/6		1.8 %	0.84 [0.04, 18.44]
Kerala Pregnancy Registry	0/5	1/9		2.6 %	0.56 [0.03, 11.57]
Koch 1992	2/24	0/4		2.0 %	1.00 [0.06, 17.82]
Lindhout 1992	1/17	1/26		1.9 %	1.53 [0.10, 22.84]
Montreal Series	6/44	2/10		7.6 %	0.68 [0.16, 2.89]
North American Register	12/416	11/199		34.8 %	0.52 [0.23, 1.16]
Omtzigt 1992	0/28	3/18		9.9 %	0.09 [0.01, 1.71]
Pardi 1982	0/5	0/12			Not estimable
Steegers-Theunissen 1994	0/8	0/12			Not estimable
Waters 1994	3/28	3/21	_	8.0 %	0.75 [0.17, 3.35]
Total (95% CI) Total events: 53 (PHT), 32 (PB) Heterogeneity: Chi ² = 7.79, df = 14 Test for overall effect: $Z = 1.07$ (P = Test for subgroup differences: Not	= 0.29)	505 0.0%	*	100.0 %	0.80 [0.53, 1.21]
ica ioi subgioup uniciences. Not	αγγιταυισ		0.01 0.1 1 10 100 Favours PHT Favours PB		

-

Analysis 42.2. Comparison 42 PHT vs PB, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 42 PHT vs PB

Outcome: 2 Neural Tube Malformations

Study or subgroup	PHT	PB	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	1/44	0/5		100.0 %	0.40 [0.02, 8.75]
Canger 1999	0/31	0/83			Not estimable
D'Souza 1990	0/22	0/4			Not estimable
Eroglu 2008	0/14	0/5			Not estimable
Froscher 1991	0/3	0/5			Not estimable
Kerala Pregnancy Registry	0/5	0/9			Not estimable
Koch 1992	0/24	0/4			Not estimable
North American Register	0/416	0/199			Not estimable
Omtzigt 1992	0/28	0/18			Not estimable
Pardi 1982	0/5	0/12			Not estimable
Total (95% CI) Total events: I (PHT), 0 (PB) Heterogeneity: not applicable Test for overall effect: Z = 0.58 (P Test for subgroup differences: Not	,	344		1 00.0 %	0.40 [0.02, 8.75]

0.01 0.1 1 10 100 Favours PHT Favours PB

Analysis 42.3. Comparison 42 PHT vs PB, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 42 PHT vs PB

Outcome: 3 Cardiac Malformations

Study or subgroup	PHT n/N	PB n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	1/44	0/5		4.2 %	0.40 [0.02, 8.75]
Canger 1999	0/31	1/83		4.0 %	0.88 [0.04, 20.93]
D'Souza 1990	2/22	1/4		8.1 %	0.36 [0.04, 3.13]
Eroglu 2008	/ 4	0/5		3.4 %	1.20 [0.06, 25.53]
Froscher 1991	0/3	1/5		5.8 %	0.50 [0.03, 9.46]
Kerala Pregnancy Registry	0/100	3/43	• •	23.4 %	0.06 [0.00, 1.18]
Koch 1992	1/24	0/4		4.0 %	0.60 [0.03, 2.7]
North American Register	4/416	5/199		32.5 %	0.38 [0.10, 1.41]
Omtzigt 1992	0/28	2/18		14.5 %	0.13 [0.01, 2.58]
Pardi 1982	0/5	0/12			Not estimable
Total (95% CI) Total events: 9 (PHT), 13 (PB) Heterogeneity: Chi ² = 2.93, df = 8 Test for overall effect: Z = 2.84 (P Test for subgroup differences: Not	= 0.0045)	378	•	100.0 %	0.33 [0.16, 0.71]

0.01 0.1 1 10 100 Favours PHT Favours PB

Analysis 42.4. Comparison 42 PHT vs PB, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 42 PHT vs PB

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	PHT n/N	PB n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	0/44	0/5			Not estimable
Canger 1999	0/31	0/83			Not estimable
D'Souza 1990	1/22	0/4		8.1 %	0.65 [0.03, 13.78]
Eroglu 2008	0/14	1/5		21.0 %	0.13 [0.01, 2.84]
Froscher 1991	0/3	0/5			Not estimable
Kerala Pregnancy Registry	0/5	0/9			Not estimable
Koch 1992	0/24	0/4			Not estimable
North American Register	2/416	4/199		53.1 %	0.24 [0.04, 1.29]
Omtzigt 1992	0/28	1/18		17.8 %	0.22 [0.01, 5.09]
Pardi 1982	0/5	0/12			Not estimable
Total (95% CI) Total events: 3 (PHT), 6 (PB) Heterogeneity: Chi ² = 0.55, df = 3 Test for overall effect: Z = 2.29 (P Test for subgroup differences: Not	= 0.022)	344 0%	-	100.0 %	0.25 [0.07, 0.82]

0.01 0.1 1 10 100 Favours PHT Favours PB

Analysis 42.5. Comparison 42 PHT vs PB, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 42 PHT vs PB

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	PHT	PB	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	0/44	0/5			Not estimable
Canger 1999	1/31	1/83		14.2 %	2.68 [0.17, 41.50]
D'Souza 1990	2/22	0/4	_	21.4 %	1.09 [0.06, 19.33]
Eroglu 2008	0/14	0/5			Not estimable
Froscher 1991	0/3	0/5			Not estimable
Kerala Pregnancy Registry	0/5	1/9		29.3 %	0.56 [0.03, 11.57]
Koch 1992	0/24	0/4			Not estimable
North American Register	4/416	1/199		35.2 %	1.91 [0.22, 17.01]
Omtzigt 1992	0/28	0/18			Not estimable
Pardi 1982	0/5	0/12			Not estimable
Total (95% CI)	592	344	-	100.0 %	1.45 [0.40, 5.22]
Total events: 7 (PHT), 3 (PB)					
Heterogeneity: $Chi^2 = 0.68$, df = 3	$B (P = 0.88); I^2 = 0.0$	0%			
Test for overall effect: Z = 0.56 (P	= 0.57)				
Test for subgroup differences: Not	applicable				

0.01 0.1 1 10 100 Favours PHT Favours PB

Analysis 43.1. Comparison 43 PHT vs TPM, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 43 PHT vs TPM

Outcome: I All Major Malformations

Study or subgroup	PHT	TPM			Risk F	Ratio		Weight	Risk Ratio
	n/N	n/N		M-H	,Fixed,9	5% CI			M-H,Fixed,95% CI
Australian	2/44	1/44		_				4.8 %	2.00 [0.19, 21.26]
North American Register	12/416	15/359						77.7 %	0.69 [0.33, 1.46]
UK Register	7/106	3/70				-		17.4 %	1.54 [0.41, 5.76]
Total (95% CI)	566	473			•			100.0 %	0.90 [0.49, 1.67]
Total events: 21 (PHT), 19 (TPM)									
Heterogeneity: $Chi^2 = 1.56$, df = 2	2 (P = 0.46); I ² =0.	.0%							
Test for overall effect: Z = 0.33 (P	= 0.74)								
Test for subgroup differences: Not	applicable								
			0.01	0.1	I.	10	100		

Favours PHT Favours TPM

Analysis 43.2. Comparison 43 PHT vs TPM, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 43 PHT vs TPM

Outcome: 2 Neural Tube Malformations

Study or subgroup	PHT n/N	TPM n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	1/44	0/44		100.0 %	3.00 [0.13, 71.70]
North American Register	0/416	0/359			Not estimable
UK Register	0/82	0/70			Not estimable
Total (95% CI)	542	473		100.0 %	3.00 [0.13, 71.70]
Total events: I (PHT), 0 (TPM) Heterogeneity: not applicable Test for overall effect: Z = 0.68 (P Test for subgroup differences: Not	,				
			0.01 0.1 I 10 100 Favours PHT Favours TPM		

Analysis 43.3. Comparison 43 PHT vs TPM, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 43 PHT vs TPM

Outcome: 3 Cardiac Malformations

Study or subgroup	PHT n/N	TPM n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	1/44	0/44		23.7 %	3.00 [0.13, 71.70]
North American Register	4/416	1/359	- -	50.8 %	3.45 [0.39, 30.74]
UK Register	1/82	0/70		25.5 %	2.57 [0.11, 62.01]
Total (95% CI)	542	473	-	100.0 %	3.12 [0.65, 14.93]
Total events: 6 (PHT), 1 (TPM)					
Heterogeneity: $Chi^2 = 0.02$, $df = 2$	2 (P = 0.99); $I^2 = 0$.0%			
Test for overall effect: $Z = 1.42$ (P	= 0.15)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100)	

Favours PHT Favours TPM

Analysis 43.4. Comparison 43 PHT vs TPM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 43 PHT vs TPM

-

-

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	PHT	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	0/44	0/44			Not estimable
North American Register	2/416	5/359		71.3 %	0.35 [0.07, 1.77]
UK Register	1/82	2/70		28.7 %	0.43 [0.04, 4.61]
Total (95% CI)	542	473		100.0 %	0.37 [0.10, 1.42]
Total events: 3 (PHT), 7 (TPM)					
Heterogeneity: $Chi^2 = 0.02$, df =	$(P = 0.89); I^2 = 0.89)$.0%			
Test for overall effect: $Z = 1.45$ (P	= 0.15)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		

0.01 0.1 1 10 100 Favours PHT Favours TPM

Analysis 43.5. Comparison 43 PHT vs TPM, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 43 PHT vs TPM

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	PHT	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	0/44	0/44			Not estimable
North American Register	4/416	5/359		100.0 %	0.69 [0.19, 2.55]
UK Register	0/82	0/70			Not estimable
Total (95% CI)	542	473	-	100.0 %	0.69 [0.19, 2.55]
Total events: 4 (PHT), 5 (TPM)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.56$ (P	= 0.58)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours PHT Favours TPM		

Analysis 44.1. Comparison 44 PB vs OXC, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 44 PB vs OXC

Outcome: I All Major Malformations

Study or subgroup	PB	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	0/5	0/12			Not estimable
Kaaja 2003	0/5	1/9		20.7 %	0.56 [0.03, .57]
Meischenguiser 2004	1/5	0/35		2.6 %	8.00 [0.83, 392.32]
North American Register	11/199	4/182		76.7 %	2.52 [0.82, 7.76]
Total (95% CI)	214	238	•	100.0 %	2.52 [0.98, 6.43]
Total events: 12 (PB), 5 (OXC)					
Heterogeneity: $Chi^2 = 2.52$, $df = 2$	2 (P = 0.28); I ² =2	%			
Test for overall effect: $Z = 1.93$ (P	= 0.054)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		

Favours PB Favours OXC

Analysis 44.2. Comparison 44 PB vs OXC, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 44 PB vs OXC

Outcome: 2 Neural Tube Malformations

PB	OXC	Risk Ratio	Weight	Risk Ratio
n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
0/5	0/12			Not estimable
0/5	0/35			Not estimable
0/199	0/182			Not estimable
209	229			Not estimable
pplicable				
	n/N 0/5 0/199 209	n/N n/N 0/5 0/12 0/5 0/35 0/199 0/182 209 229	n/N M-H,Fixed,95% Cl 0/5 0/12 0/5 0/35 0/199 0/182 209 229	n/N n/N M-H,Fixed,95% Cl 0/5 0/12 0/5 0/35 0/199 0/182 209 229

0.01 0.1 1 10 100 Favours PB Favours OXC

Analysis 44.3. Comparison 44 PB vs OXC, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 44 PB vs OXC

Outcome: 3 Cardiac Malformations

Study or subgroup	PB	OXC	R	isk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fix	ed,95% Cl		M-H,Fixed,95% Cl
Australian	0/5	0/12				Not estimable
Meischenguiser 2004	1/5	0/35	-	 →	21.5 %	8.00 [0.83, 392.32]
North American Register	5/199	0/182	_		78.5 %	10.07 [0.56, 180.76]
Total (95% CI)	209	229			100.0 %	11.77 [1.24, 111.80]
Total events: 6 (PB), 0 (OXC)						
Heterogeneity: $Chi^2 = 0.08$, df =	$ (P = 0.77); ^2 =$	0.0%				
Test for overall effect: $Z = 2.15$ (F	P = 0.032)					
Test for subgroup differences: No	t applicable					
			0.01 0.1 1	10 100		
			Favours PB	Favours OXC		

Analysis 44.4. Comparison 44 PB vs OXC, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 44 PB vs OXC

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	PB n/N	OXC n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	0/5	0/12			Not estimable
Meischenguiser 2004	0/5	0/35			Not estimable
North American Register	4/199	1/182		100.0 %	3.66 [0.41, 32.43]
Total (95% CI)	209	229		100.0 %	3.66 [0.41, 32.43]
Total events: 4 (PB), 1 (OXC)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.16$ (P	= 0.24)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		

Favours PB Favours OXC

Analysis 44.5. Comparison 44 PB vs OXC, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 44 PB vs OXC

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	PB n/N	OXC n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	0/5	0/12			Not estimable
Meischenguiser 2004	0/5	0/35			Not estimable
North American Register	1/199	1/182		100.0 %	0.91 [0.06, 14.52]
Total (95% CI)	209	229		100.0 %	0.91 [0.06, 14.52]
Total events: I (PB), I (OXC)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.06$ (P	= 0.95)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		

0.01 0.1 1 10 100 Favours PB Favours OXC

Analysis 45.1. Comparison 45 PB vs TPM, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 45 PB vs TPM

Outcome: I All Major Malformations

Study or subgroup	PB	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	0/5	1/44		3.2 %	2.50 [0.11, 54.68]
North American Register	11/199	15/359		96.8 %	1.32 [0.62, 2.82]
Total (95% CI)	204	403	•	100.0 %	1.36 [0.65, 2.84]
Total events: 11 (PB), 16 (TPM)					
Heterogeneity: $Chi^2 = 0.15$, df =	I (P = 0.69); I ² =0	.0%			
Test for overall effect: $Z = 0.82$ (P	= 0.41)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		
			Favours PB Favours TPM		

Analysis 45.2. Comparison 45 PB vs TPM, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 45 PB vs TPM

Outcome: 2 Neural Tube Malformations

Study or subgroup	PB n/N	TPM n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	0/5	0/44			Not estimable
North American Register	0/199	0/359			Not estimable
Total (95% CI)	204	403			Not estimable
Total events: 0 (PB), 0 (TPM)					
Heterogeneity: not applicable					
Test for overall effect: not applicable	le				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours PB Favours TPM		

Analysis 45.3. Comparison 45 PB vs TPM, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 45 PB vs TPM

Outcome: 3 Cardiac Malformations

Study or subgroup	PB	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	0/5	0/44			Not estimable
North American Register	5/199	1/359		100.0 %	9.02 [1.06, 76.67]
Total (95% CI)	204	403		100.0 %	9.02 [1.06, 76.67]
Total events: 5 (PB), 1 (TPM)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 2.01$ (P	= 0.044)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours PB Favours TPM		

Analysis 45.4. Comparison 45 PB vs TPM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 45 PB vs TPM

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	PB	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	0/5	0/44			Not estimable
North American Register	4/199	5/359		100.0 %	1.44 [0.39, 5.31]
Total (95% CI)	204	403	-	100.0 %	1.44 [0.39, 5.31]
Total events: 4 (PB), 5 (TPM)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.55$ (P	= 0.58)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours PB Favours TPM		

Analysis 45.5. Comparison 45 PB vs TPM, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 45 PB vs TPM

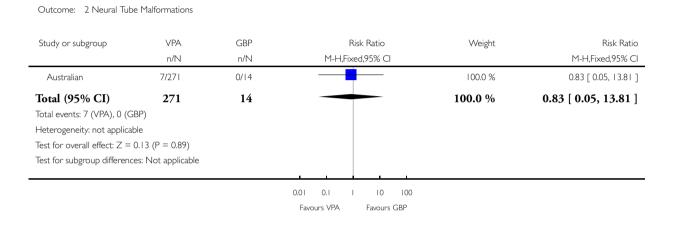
Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	PB n/N	TPM n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	0/5	0/44			Not estimable
North American Register	1/199	5/359		100.0 %	0.36 [0.04, 3.07]
Total (95% CI)	204	403		100.0 %	0.36 [0.04, 3.07]
Total events: I (PB), 5 (TPM)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.93$ (P	= 0.35)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours PB Favours TPM		

Analysis 46.1. Comparison 46 VPA vs GBP, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 46 VPA vs GBP


Outcome: I All Major Malformations

Study or subgroup	VPA	GBP	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	37/271	0/14		22.2 %	4.14 [0.27, 64.14]
North American Register	30/323	1/145		32.3 %	3.47 [.85, 97.8]
UK Register	82/1220	1/31		45.6 %	2.08 [0.30, 14.49]
Total (95% CI)	1814	190	•	100.0 %	6.21 [1.91, 20.23]
Total events: 149 (VPA), 2 (GBP)					
Heterogeneity: $Chi^2 = 1.89$, df =	2 (P = 0.39); I ² =0.0)%			
Test for overall effect: Z = 3.03 (F	P = 0.0024)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100		
			Favours VPA Favours GBP		

Analysis 46.2. Comparison 46 VPA vs GBP, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 46 VPA vs GBP

Analysis 46.3. Comparison 46 VPA vs GBP, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 46 VPA vs GBP

Outcome: 3 Cardiac Malformations

Study or subgroup	VPA n/N	GBP n/N	Risk M-H,Fixed,	Ratio 95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	10/271	0/14			100.0 %	1.16 [0.07, 18.84]
Total (95% CI)	271	14			100.0 %	1.16 [0.07, 18.84]
Total events: 10 (VPA), 0 (GBP)					
Heterogeneity: not applica	ble					
Test for overall effect: Z =	0.10 (P = 0.92)					
Test for subgroup difference	es: Not applicable					
			0.0 0.	10 100		

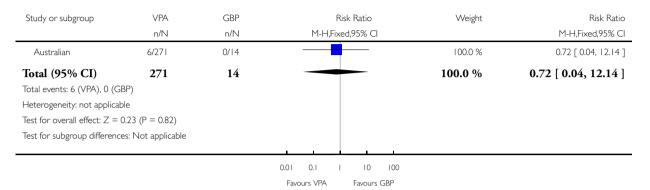
Favours VPA Favours GBP

Analysis 46.4. Comparison 46 VPA vs GBP, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 46 VPA vs GBP

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations


Study or subgroup	VPA	GBP	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% Cl
Australian	12/271	0/14		100.0 %	1.38 [0.09, 22.19]
Total (95% CI)	271	14		100.0 %	1.38 [0.09, 22.19]
Total events: 12 (VPA), 0 (GBP)				
Heterogeneity: not applica	ble				
Test for overall effect: Z =	0.23 (P = 0.82)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		
			Favours VPA Favours GBP		

Analysis 46.5. Comparison 46 VPA vs GBP, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 46 VPA vs GBP

Outcome: 5 Skeletal / Limb Malformations

Analysis 47.1. Comparison 47 VPA vs LEV, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 47 VPA vs LEV

Outcome: I All Major Malformations

Study or subgroup	VPA	LEV	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	37/271	1/63		11.6 %	8.60 [1.20, 61.51]
North American Register	30/323	11/450	-	65.6 %	3.80 [1.93, 7.47]
UK Register	82/1220	2/304		22.8 %	10.22 [2.53, 41.31]
Total (95% CI)	1814	817	•	100.0 %	5.82 [3.13, 10.81]
Total events: 149 (VPA), 14 (LEV))				
Heterogeneity: Chi ² = 2.30, df =	2 (P = 0.32); $I^2 = I_3^2$	3%			
Test for overall effect: Z = 5.57 (F	P < 0.0000∣)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100		
			Favours VPA Favours LEV		

Analysis 47.2. Comparison 47 VPA vs LEV, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 47 VPA vs LEV

Outcome: 2 Neural Tube Malformations

Study or subgroup	VPA	LEV	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	7/271	0/63		33.1 %	3.53 [0.20, 61.00]
North American Register	4/323	1/450		34.2 %	5.57 [0.63, 49.63]
UK Register	13/1220	0/304		32.7 %	6.74 [0.40, 113.14]
Total (95% CI)	1814	817	•	100.0 %	5.28 [1.17, 23.83]
Total events: 24 (VPA), 1 (LEV)					
Heterogeneity: $Chi^2 = 0.11$, df = 2	2 (P = 0.95); $I^2 = 0.0$)%			
Test for overall effect: Z = 2.16 (P	= 0.030)				
Test for subgroup differences: Not	applicable				
-					

0.01 0.1 1 10 100 Favours VPA Favours LEV

Analysis 47.3. Comparison 47 VPA vs LEV, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 47 VPA vs LEV

Outcome: 3 Cardiac Malformations

Study or subgroup	VPA n/N	LEV n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	10/271	1/63		49.8 %	2.32 [0.30, 17.83]
North American Register	8/323	1/450		25.6 %	. 5 [.40, 88.67]
UK Register	4/ 220	0/304		24.6 %	7.24 [0.43, 121.10]
Total (95% CI) Total events: 32 (VPA), 2 (LEV) Heterogeneity: Chi ² = 1.18, df = Test for overall effect: Z = 2.76 (P Test for subgroup differences: No	9 = 0.0058)	817	•	100.0 %	5.79 [1.67, 20.16]
			0.01 0.1 I 10 100 Favours VPA Favours LEV		

Analysis 47.4. Comparison 47 VPA vs LEV, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 47 VPA vs LEV

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	VPA n/N	LEV n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	12/271	1/63		57.1 %	2.79 [0.37, 21.06]
North American Register	4/323	0/450		14.7 %	12.53 [0.68, 231.88]
UK Register	3/ 220	0/304		28.2 %	6.74 [0.40, 113.14]
Total (95% CI)	1814	817	-	100.0 %	5.34 [1.33, 21.39]
Total events: 29 (VPA), 1 (LEV)					
Heterogeneity: $Chi^2 = 0.75$, df = 1	2 (P = 0.69); I ² =0.0)%			
Test for overall effect: Z = 2.36 (P	= 0.0 8)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		

Favours VPA Favours LEV

Analysis 47.5. Comparison 47 VPA vs LEV, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 47 VPA vs LEV

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	VPA	LEV	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	6/271	0/63		39.9 %	3.06 [0.17, 53.60]
North American Register	5/323	0/450		20.6 %	5.3 [0.85, 275.93]
UK Register	10/1220	0/304		39.5 %	5.25 [0.31, 89.27]
Total (95% CI)	1814	817	-	100.0 %	6.45 [1.33, 31.16]
Total events: 21 (VPA), 0 (LEV)					
Heterogeneity: $Chi^2 = 0.62$, df = 2	2 (P = 0.73); $I^2 = 0.0$)%			
Test for overall effect: Z = 2.32 (P	= 0.020)				
Test for subgroup differences: Not	applicable				

0.01 0.1 1 10 100 Favours VPA Favours LEV

Analysis 48.1. Comparison 48 VPA vs LTG, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 48 VPA vs LTG

Outcome: I All Major Malformations

Study or subgroup	VPA	LTG	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% Cl
Australian	37/271	13/315		19.6 %	3.3 [1.80, 6.09]
Cassina 2013	3/45	0/26		1.0 %	4.11 [0.22, 76.55]
Martinez Ferri 2009	7/68	0/56	++	0.9 %	12.39 [0.72, 212.33]
Mawer 2010	3/25	0/9		1.2 %	2.69 [0.15, 47.58]
Meador 2006	12/69	1/98		1.3 %	17.04 [2.27, 128.04]
North American Register	30/323	31/1562	-	17.3 %	4.68 [2.87, 7.62]
UK Register	82/1220	49/2098	•	58.7 %	2.88 [2.03, 4.07]
Total (95% CI)	2021	4164	•	100.0 %	3.56 [2.77, 4.58]
Total events: 174 (VPA), 94 (LTG)					
Heterogeneity: $Chi^2 = 5.81$, df =	6 (P = 0.44); I ² =0.	0%			
Test for overall effect: Z = 9.85 (P	< 0.00001)				
Test for subgroup differences: Not	t applicable				
5 1					
			0.01 0.1 1 10 100		

Favours VPA Favours LTG

Analysis 48.2. Comparison 48 VPA vs LTG, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 48 VPA vs LTG

Outcome: 2 Neural Tube Malformations

Study or subgroup	VPA	LTG	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl	-	M-H,Fixed,95% CI
Australian	7/271	0/315		12.2 %	17.43 [1.00, 303.72]
Cassina 2013	1/45	0/26		16.6 %	1.76 [0.07, 41.72]
Martinez Ferri 2009	2/68	0/56		14.4 %	4.13 [0.20, 84.30]
Meador 2006	0/69	0/98			Not estimable
North American Register	4/323	2/1562		18.1 %	9.67 [1.78, 52.58]
UK Register	13/1220	2/2098		38.7 %	. 8 [2.53, 49.45]
Fotal (95% CI)	1996	4155	•	100.0 %	9.09 [3.56, 23.22]
otal events: 27 (VPA), 4 (LTG)					
Heterogeneity: Chi ² = 1.57, df = 4	$(P = 0.8 I); I^2 = 0.$	0%			
est for overall effect: $Z = 4.61$ (P	< 0.00001)				
est for subgroup differences: Not	applicable				
est for subgroup differences. I vot					

Favours VPA Favours LTG

Analysis 48.3. Comparison 48 VPA vs LTG, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 48 VPA vs LTG

Outcome: 3 Cardiac Malformations

Study or subgroup	VPA	LTG	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% Cl
Australian	10/271	3/315		22.3 %	3.87 [1.08, 13.93]
Cassina 2013	2/45	0/26		5.1 %	2.93 [0.15, 58.88]
Martinez Ferri 2009	2/68	0/56		4.4 %	4.13 [0.20, 84.30]
Meador 2006	4/69	1/98		6.7 %	5.68 [0.65, 49.73]
North American Register	8/323	3/1562		8.3 %	2.90 [3.44, 48.35]
UK Register	4/ 220	9/2098		53.3 %	2.68 [1.16, 6.16]
Total (95% CI)	1996	4155	•	100.0 %	4.07 [2.33, 7.09]
Total events: 40 (VPA), 16 (LTG) Heterogeneity: $Chi^2 = 4.04$, df = 5 Test for overall effect: $Z = 4.94$ (P Test for subgroup differences: Not	< 0.00001))%			

Favours VPA Favours LTG

Analysis 48.4. Comparison 48 VPA vs LTG, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 48 VPA vs LTG

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	VPA n/N	LTG n/N	Risk Difference M-H.Fixed,95% Cl	Weight	Risk Difference M-H,Fixed,95% Cl
Australian	12/271	5/315	•	11.4 %	0.03 [0.00, 0.06]
Cassina 2013	0/45	0/26	+	1.3 %	0.0 [-0.06, 0.06]
Martinez Ferri 2009	1/68	0/56	+	2.4 %	0.01 [-0.03, 0.06]
Meador 2006	1/69	0/98	+	3.2 %	0.01 [-0.02, 0.05]
North American Register	4/323	7/1562	•	21.0 %	0.01 [0.00, 0.02]
UK Register	13/1220	2/2098	•	60.6 %	0.01 [0.00, 0.02]
Total (95% CI) Total events: 31 (VPA), 14 (LTG) Heterogeneity: Chi ² = 2.30, df = Test for overall effect: Z = 3.95 (F Test for subgroup differences: No	P = 0.000078)	4155		100.0 %	0.01 [0.01, 0.02]

-I -0.5 0 0.5 I

Favours VPA Favours LTG

Analysis 48.5. Comparison 48 VPA vs LTG, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 48 VPA vs LTG

Outcome: 5 Skeletal / Limb Malformations

Risk Ratio	Weight	Risk Ratio	LTG	VPA	Study or subgroup
M-H,Fixed,95% C		M-H,Fixed,95% Cl	n/N	n/N	
15.10 [0.85, 266.87	10.5 %		0/315	6/271	Australian
2.93 [0.15, 58.88	14.3 %		0/26	2/45	Cassina 2013
Not estimable			0/56	0/68	Martinez Ferri 2009
4.24 [0.18, 102.63	9.4 %		0/98	1/69	Meador 2006
12.09 [2.36, 62.04	15.6 %		2/1562	5/323	North American Register
5.73 [1.58, 20.79	50.2 %		3/2098	10/1220	UK Register
7.17 [2.99, 17.18]	100.0 %	•	4155	1996	Total (95% CI)
					Total events: 24 (VPA), 5 (LTG)
)%	P = 0.88; $P = 0.08$; $P = 0.00$	Heterogeneity: $Chi^2 = 1.21$, df = 4
				= 0.000010)	Test for overall effect: $Z = 4.41$ (P
				applicable	Test for subgroup differences: Not

Favours VPA Favours LTG

Analysis 49.1. Comparison 49 VPA vs TPM, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 49 VPA vs TPM

Outcome: I All Major Malformations

Study or subgroup	VPA n/N	TPM n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	37/271	1/44		8.0 %	6.01 [0.85, 42.67]
North American Register	30/323	15/359	-	65.8 %	2.22 [1.22, 4.06]
UK Register	82/1220	3/70		26.3 %	1.57 [0.51, 4.84]
Total (95% CI)	1814	473	•	100.0 %	2.35 [1.40, 3.95]
Total events: 149 (VPA), 19 (TPM))				
Heterogeneity: $Chi^2 = 1.41$, df = 2	2 (P = 0.49); I ² =0.0)%			
Test for overall effect: Z = 3.24 (P	= 0.0012)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		

0.01 0.1 1 10 100 Favours VPA Favours TPM

Analysis 49.2. Comparison 49 VPA vs TPM, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 49 VPA vs TPM

Outcome: 2 Neural Tube Malformations

Study or subgroup	VPA	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	7/271	0/44		37.7 %	2.48 [0.14, 42.70]
North American Register	4/323	0/359		20.8 %	10.00 [0.54, 185.02]
UK Register	13/1220	0/70		41.5 %	1.57 [0.09, 26.14]
Total (95% CI)	1814	473		100.0 %	3.67 [0.79, 17.08]
Total events: 24 (VPA), 0 (TPM)					
Heterogeneity: $Chi^2 = 0.88$, df =	2 (P = 0.65); $I^2 = 0.0$	0%			
Test for overall effect: $Z = 1.66$ (F	= 0.098)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100		
			Favours VPA Favours TPM		

Analysis 49.3. Comparison 49 VPA vs TPM, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 49 VPA vs TPM

Outcome: 3 Cardiac Malformations

Study or subgroup	VPA n/N	TPM n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% CI
Australian	10/271	0/44		31.2 %	3.47 [0.21, 58.26]
North American Register	8/323	1/359		34.4 %	8.89 [1.12, 70.71]
UK Register	4/ 220	0/70		34.4 %	1.69 [0.10, 27.98]
Total (95% CI)	1814	473	-	100.0 %	4.73 [1.21, 18.49]
Total events: 32 (VPA), I (TPM)					
Heterogeneity: $Chi^2 = 0.92$, df = 1	2 (P = 0.63); I ² =0.0)%			
Test for overall effect: Z = 2.23 (P	9 = 0.026)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		

Favours VPA Favours TPM

Analysis 49.4. Comparison 49 VPA vs TPM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 49 VPA vs TPM

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	VPA	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	12/271	0/44		9.2 %	4.14 [0.25, 68.63]
North American Register	4/323	5/359		50.5 %	0.89 [0.24, 3.28]
UK Register	13/1220	2/70		40.3 %	0.37 [0.09, 1.62]
Total (95% CI)	1814	473	+	100.0 %	0.98 [0.40, 2.40]
Total events: 29 (VPA), 7 (TPM)					
Heterogeneity: $Chi^2 = 2.69$, $df = 2$	$P = 0.26$; $I^2 = 26$	%			
Test for overall effect: $Z = 0.05$ (P	= 0.96)				
Test for subgroup differences: Not	applicable				

0.01 0.1 1 10 100 Favours VPA Favours TPM

Analysis 49.5. Comparison 49 VPA vs TPM, Outcome 5 Skeletal / Limb Malformation.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 49 VPA vs TPM

Outcome: 5 Skeletal / Limb Malformation

Study or subgroup	VPA	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	6/271	0/44		13.1 %	2.15 [0.12, 37.52]
North American Register	5/323	5/359		72.4 %	. [0.32, 3.80]
UK Register	10/1220	0/70	_	14.5 %	1.22 [0.07, 20.63]
Total (95% CI)	1814	473	-	100.0 %	1.26 [0.44, 3.61]
Total events: 21 (VPA), 5 (TPM)					
Heterogeneity: $Chi^2 = 0.18$, df =	2 (P = 0.92); $I^2 = 0.0$	%			
Test for overall effect: $Z = 0.44$ (P	= 0.66)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		
			Favours VPA Favours TPM		

Analysis 50.1. Comparison 50 VPA vs OXC, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 50 VPA vs OXC

Outcome: I All Major Malformations

Study or subgroup	VPA	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	37/271	0/12		11.6 %	3.58 [0.23, 55.19]
Kaaja 2003	4/61	1/9		21.3 %	0.59 [0.07, 4.71]
Meischenguiser 2004	3/21	0/35	+	4.6 %	.45 [0.62, 2 .39]
North American Register	30/323	4/182		62.5 %	4.23 [1.51, 11.81]
Total (95% CI)	676	238	◆	100.0 %	3.71 [1.65, 8.33]
Total events: 74 (VPA), 5 (OXC)					
Heterogeneity: Chi ² = 3.65, df =	3 (P = 0.30); I ² = I	3%			
Test for overall effect: $Z = 3.18$ (F	P = 0.0015)				
Test for subgroup differences: No	ot applicable				
			0.01 0.1 1 10 100		

Favours VPA Favours OXC

Analysis 50.2. Comparison 50 VPA vs OXC, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 50 VPA vs OXC

Outcome: 2 Neural Tube Malformations

Study or subgroup	VPA	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	7/271	0/12		38.9 %	0.72 [0.04, .89]
Kaaja 2003	2/61	0/9	_	35.1 %	0.81 [0.04, 15.59]
Meischenguiser 2004	0/21	0/35			Not estimable
North American Register	4/323	0/182		26.0 %	5.08 [0.28, 93.89]
Total (95% CI)	676	238	-	100.0 %	1.89 [0.39, 9.07]
Total events: 13 (VPA), 0 (OXC)					
Heterogeneity: $Chi^2 = 1.22$, $df = 2$	2 (P = 0.54); I ² =0	.0%			
Test for overall effect: $Z = 0.79$ (P	= 0.43)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		

Favours VPA Favours OXC

Analysis 50.3. Comparison 50 VPA vs OXC, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 50 VPA vs OXC

Outcome: 3 Cardiac Malformations

Study or subgroup	VPA	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	10/271	0/12		33.7 %	1.00 [0.06, 16.21]
Kaaja 2003	2/61	0/9	_	30.4 %	0.81 [0.04, 15.59]
Meischenguiser 2004	1/21	0/35		13.4 %	4.91 [0.21, 115.29]
North American Register	8/323	0/182	+- • •	22.6 %	9.60 [0.56, 165.40]
Total (95% CI)	676	238	-	100.0 %	3.41 [0.87, 13.37]
Total events: 21 (VPA), 0 (OXC)					
Heterogeneity: $Chi^2 = 2.21$, df = 3	$B (P = 0.53); I^2 = 0$.0%			
Test for overall effect: Z = 1.76 (P	= 0.079)				
Test for subgroup differences: Not	applicable				

Favours VPA Favours OXC

Analysis 50.4. Comparison 50 VPA vs OXC, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 50 VPA vs OXC

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	VPA	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	12/271	0/12		27.5 %	1.19 [0.07, 19.09]
Kaaja 2003	1/61	0/9		24.8 %	0.48 [0.02, .07]
Meischenguiser 2004	2/21	0/35		10.9 %	8.18 [0.41, 162.65]
North American Register	4/323	1/182		36.8 %	2.25 [0.25, 20.01]
Total (95% CI)	676	238	-	100.0 %	2.17 [0.63, 7.47]
Total events: 19 (VPA), 1 (OXC)					
Heterogeneity: $Chi^2 = 1.82$, df =	$3 (P = 0.6 I); I^2 = 0.$	0%			
Test for overall effect: Z = 1.23 (P	= 0.22)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		

Favours VPA Favours OXC

Analysis 50.5. Comparison 50 VPA vs OXC, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 50 VPA vs OXC

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	VPA	OXC	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	6/271	0/12		30.8 %	0.62 [0.04, 10.45]
Kaaja 2003	1/61	0/9		27.8 %	0.48 [0.02, .07]
Meischenguiser 2004	0/21	0/35			Not estimable
North American Register	5/323	1/182		41.3 %	2.82 [0.33, 23.93]
Total (95% CI)	676	238	-	100.0 %	1.49 [0.36, 6.22]
Total events: 12 (VPA), 1 (OXC)					
Heterogeneity: $Chi^2 = 1.21$, df = 2	2 (P = 0.55); I ² =0	.0%			
Test for overall effect: Z = 0.55 (P	= 0.58)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		

Favours VPA Favours OXC

Analysis 51.1. Comparison 51 VPA vs PB, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 51 VPA vs PB

Outcome: I All Major Malformations

Risk Ratic M-H,Fixed,95% C	Weight	Risk Ratio M-H,Fixed,95% Cl	PB n/N	VPA n/N	Study or subgroup
Not estimable		Г-п,гіхец,75% Сі	0/2	0/5	Al Bunyan 1999
1.65 [0.11, 23.90]	2.2 %	,	0/5	37/271	Australian
3.77 [1.20, 11.83	6.3 %		4/83	8/44	Canger 1999
0.89 [0.22, 3.55	9.2 %	_	5/67	3/45	Cassina 2013
0.67 [0.08, 5.88	3.4 %		1/5	2/15	Eroglu 2008
0.42 [0.03, 5.43	3.2 %		1/5	1/12	Froscher 1991
0.87 [0.05, 14.31]	2.1 %		0/5	4/61	Kaaja 2003
2.19 [0.70, 6.84	9.2 %	_ _ _	4/79	9/81	Kaneko 1999
Not estimable	7.2 /0		0/6	0/4	Kelly 1984
3.00 [0.34, 26.19]	1.8 %		1/9	2/6	Kerala Pregnancy Registry
2.33 [0.14, 37.80]	1.7 %		0/4	3/14	Koch 1992
			1/26	5/66	Lindhout 1992
1.97 [0.24, 16.06]	3.3 %				
1.13 [0.15, 8.33]	3.9 %		/	7/68	Martinez Ferri 2009
0.71 [0.09, 5.51]	3.7 %		1/5	3/21	Meischenguiser 2004
1.33 [0.30, 5.96]	5.5 %		2/10	4/15	Montreal Series
1.68 [0.86, 3.28]	31.0 %		11/199	30/323	North American Register
0.70 [0.20, 2.43]	10.5 %		3/18	7/60	Omtzigt 1992
Not estimable			0/12	0/1	Pardi 1982
4.55 [0.26, 81.03]	1.4 %		0/12	3/19	Steegers-Theunissen 1994
1.31 [0.07, 22.78]	1.6 %		3/63	0/6	Tanganelli 1992
1.59 [1.11, 2.29]	100.0 %	•	626	= 0.011)	Total (95% CI) Total events: 128 (VPA), 38 (PB) Heterogeneity: $Chi^2 = 8.43$, $df = 1$ Test for overall effect: $Z = 2.54$ (P Test for subgroup differences: Not

Analysis 51.2. Comparison 51 VPA vs PB, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 51 VPA vs PB

Outcome: 2 Neural Tube Malformations

Study or subgroup	VPA	PB	Risk Difference M-	Weight	Risk Difference M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
Australian	7/271	0/5		4.3 %	0.03 [-0.20, 0.25]
Canger 1999	5/44	0/83	-	14.1 %	0.11 [0.02, 0.21]
Cassina 2013	1/45	0/67	+	22.4 %	0.02 [-0.03, 0.08]
Eroglu 2008	0/16	0/5		3.9 %	0.0 [-0.24, 0.24]
Froscher 1991	0/12	0/5		3.6 %	0.0 [-0.24, 0.24]
Kerala Pregnancy Registry	2/6	0/9		1.6 %	0.33 [-0.05, 0.71]
Koch 1992	1/14	0/4		2.4 %	0.07 [-0.23, 0.38]
Meischenguiser 2004	0/21	0/5		4.0 %	0.0 [-0.23, 0.23]
North American Register	4/323	0/199	-	30.2 %	0.01 [0.00, 0.03]
Omtzigt 1992	6/60	0/18	-	12.8 %	0.10 [-0.01, 0.21]
Pardi 1982	0/1	0/12		0.6 %	0.0 [-0.61, 0.61]
Total (95% CI)	813	412	•	100.0 %	0.05 [0.00, 0.10]
Total events: 26 (VPA), 0 (PB)					
Heterogeneity: $Tau^2 = 0.00$; Chi ² =	= 19.03, df = 10 (F	$P = 0.04$); $I^2 = 47\%$			
Test for overall effect: $Z = 1.81$ (P	= 0.070)				
Test for subgroup differences: Not	applicable				
			-1 -0.5 0 0.5 1		

Favours VPA Favours PB

Analysis 51.3. Comparison 51 VPA vs PB, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 51 VPA vs PB

Outcome: 3 Cardiac Malformations

Study or subgroup	VPA	PB	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	10/271	0/5		4.5 %	0.46 [0.03, 7.03]
Canger 1999	0/44	1/83		4.8 %	0.62 [0.03, 14.96]
Cassina 2013	2/45	2/67		7.4 %	1.49 [0.22, 10.19]
Eroglu 2008	0/16	0/5			Not estimable
Froscher 1991	0/12	1/5		9.4 %	0.15 [0.01, 3.25]
Kerala Pregnancy Registry	7/71	3/43		17.2 %	1.41 [0.39, 5.18]
Koch 1992	/ 4	0/4		3.4 %	1.00 [0.05, 20.83]
Meischenguiser 2004	1/21	1/5		7.4 %	0.24 [0.02, 3.19]
North American Register	8/323	5/199	+	28.4 %	0.99 [0.33, 2.97]
Omtzigt 1992	0/60	2/18	· •	17.5 %	0.06 [0.00, 1.24]
Pardi 1982	0/1	0/12			Not estimable
Total (95% CI) Total events: 29 (VPA), 15 (PB) Heterogeneity: Chi ² = 6.24, df = 8 Test for overall effect: Z = 0.90 (P Test for subgroup differences: Not	= 0.37)	446	•	100.0 %	0.76 [0.42, 1.38]
Test for subgroup differences: Not	applicable				

0.01 0.1 1 10 100 Favours VPA Favours PB

Analysis 51.4. Comparison 51 VPA vs PB, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 51 VPA vs PB

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	VPA	PB	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	12/271	0/5		8.7 %	0.55 [0.04, 8.28]
Canger 1999	0/44	0/83			Not estimable
Cassina 2013	0/45	0/67			Not estimable
Eroglu 2008	1/16	1/5		13.5 %	0.31 [0.02, 4.14]
Froscher 1991	0/12	0/5			Not estimable
Kerala Pregnancy Registry	0/6	0/9			Not estimable
Koch 1992	/ 4	0/4		6.7 %	1.00 [0.05, 20.83]
Meischenguiser 2004	2/21	0/5		7.0 %	1.36 [0.08, 24.76]
North American Register	4/323	4/199		43.9 %	0.62 [0.16, 2.44]
Omtzigt 1992	0/60	1/18	·	20.3 %	0.10 [0.00, 2.44]
Pardi 1982	0/1	0/12			Not estimable
Total (95% CI)	813	412	-	100.0 %	0.54 [0.22, 1.33]
Total events: 20 (VPA), 6 (PB)					
Heterogeneity: $Chi^2 = 1.80$, df = 5	$5 (P = 0.88); I^2 = 0.0$	0%			
Test for overall effect: $Z = 1.34$ (P	= 0.18)				
Test for subgroup differences: Not	applicable				

0.01 0.1 1 10 100 Favours VPA Favours PB

Analysis 51.5. Comparison 51 VPA vs PB, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 51 VPA vs PB

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	VPA	РВ	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	6/271	0/5		15.5 %	0.29 [0.02, 4.53]
Canger 1999	1/44	1/83		11.0 %	1.89 [0.12, 29.44]
Cassina 2013	2/45	0/67		6.4 %	7.39 [0.36, 150.43]
Eroglu 2008	0/16	0/5			Not estimable
Froscher 1991	1/12	0/5		10.8 %	1.38 [0.07, 29.26]
Kerala Pregnancy Registry	1/6	1/9		12.7 %	1.50 [0.11, 19.64]
Koch 1992	2/14	0/4		11.9 %	1.67 [0.10, 29.18]
Meischenguiser 2004	0/21	0/5			Not estimable
North American Register	5/323	1/199		19.6 %	3.08 [0.36, 26.18]
Omtzigt 1992	1/60	0/18		12.1 %	0.93 [0.04, 22.00]
Pardi 1982	0/1	0/12			Not estimable
Total (95% CI)	813	412	-	100.0 %	1.98 [0.79, 4.98]
Total events: 19 (VPA), 3 (PB)					
Heterogeneity: $Chi^2 = 3.11$, $df = 1$	7 (P = 0.87); $I^2 = 0.87$	0%			
Test for overall effect: $Z = 1.45$ (P	= 0.15)				
Test for subgroup differences: Not	applicable				

0.01 0.1 1 10 100 Favours VPA Favours PB

Analysis 52.1. Comparison 52 VPA vs PHT, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 52 VPA vs PHT

_

Outcome: I All Major Malformations

Study or subgroup	VPA	PHT	Risk Ratio	Weight	Risk Ratio
AL D. 1000	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Al Bunyan 1999	0/5	0/9			Not estimable
Arulmozhi 2006	0/3	0/18			Not estimable
Australian	37/271	2/44		5.9 %	3.00 [0.75, 12.02]
Canger 1999	8/44	3/31		6.1 %	1.88 [0.54, 6.52]
Eroglu 2008	2/15	2/14		3.6 %	0.93 [0.15, 5.76]
Froscher 1991	1/12	0/3		1.3 %	0.92 [0.05, 18.50]
Garza-Morales 1996	0/5	0/27			Not estimable
Kaaja 2003	4/61	3/124		3.4 %	2.71 [0.63, 11.73]
Kaneko 1999	9/81	12/132		15.7 %	1.22 [0.54, 2.77]
Kelly 1984	0/4	1/24		0.9 %	1.67 [0.08, 35.30]
Kerala Pregnancy Registry	2/6	0/5		0.9 %	4.29 [0.25, 72.90]
Koch 1992	3/14	2/24		2.5 %	2.57 [0.49, 13.57]
Lindhout 1992	5/66	1/17	<u> </u>	2.7 %	1.29 [0.16, 10.31]
Mawer 2010	3/25	0/2		1.5 %	0.81 [0.05, 12.16]
Meador 2006	12/69	4/56		7.6 %	2.43 [0.83, 7.14]
Montreal Series	4/15	6/44		5.3 %	1.96 [0.64, 6.00]
North American Register	30/323	12/416	-	18.1 %	3.22 [1.68, 6.19]
Omtzigt 1992	7/60	0/28		1.2 %	7.13 [0.42, 120.64]
Pardi 1982	0/1	0/5			Not estimable
Steegers-Theunissen 1994	3/19	0/8		1.2 %	3.15 [0.18, 54.83]
UK Register	82/1220	7/106		22.2 %	1.02 [0.48, 2.15]
Total (95% CI)	2319	1137	•	100.0 %	2.00 [1.48, 2.71]
Total events: 212 (VPA), 55 (PHT) Heterogeneity: $Chi^2 = 10.01$, df = Test for overall effect: $Z = 4.49$ (P Test for subgroup differences: Not	< 0.00001)	0.0%			
			0.01 0.1 1 10 100		
			Favours VPA Favours PHT		

Analysis 52.2. Comparison 52 VPA vs PHT, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 52 VPA vs PHT

Outcome: 2 Neural Tube Malformations

l	Risk Ratio	Weight	Risk Ratio
M-H,Fi:	H,Fixed,95% Cl		M-H,Fixed,95% C
		30.7 %	1.14 [0.14, 9.02]
_		10.4 %	7.82 [0.45, 136.50]
			Not estimable
			Not estimable
			Not estimable
-		5.9 %	10.08 [0.49, 206.78]
—		9.6 %	4.29 [0.25, 72.90]
		6.7 %	5.00 [0.22, 5.05
			Not estimable
-		7.8 %	11.58 [0.63, 214.37]
_		12.1 %	6.18 [0.36, 106.02]
			Not estimable
		16.7 %	1.84 [0.11, 30.60]
	•	100.0 %	4.47 [1.79, 11.17]

0.01 0.1 1 10 100 Favours VPA Favours PHT

Analysis 52.3. Comparison 52 VPA vs PHT, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 52 VPA vs PHT

Outcome: 3 Cardiac Malformations

Risk Rat	Weight	Risk Ratio	PHT	VPA	Study or subgroup
M-H,Fixed,95% (M-H,Fixed,95% Cl	n/N	n/N	
1.62 [0.21, 12.37	16.0 %		1/44	0/271	Australian
Not estimab			0/31	0/44	Canger 1999
0.29 [0.01, 6.69	14.9 %		1/14	0/16	Eroglu 2008
Not estimab			0/3	0/12	Froscher 1991
Not estimab			0/27	0/5	Garza-Morales 1996
10.08 [0.49, 206.78	3.1 %		0/124	2/61	Kaaja 2003
21.04 [1.22, 362.57	3.9 %		0/100	7/71	Kerala Pregnancy Registry
1.71 [0.12, 25.31	6.9 %		1/24	1/14	Koch 1992
7.33 [0.40, 133.29	5.1 %		0/56	4/69	Meador 2006
2.58 [0.78, 8.48	32.6 %		4/416	8/323	North American Register
Not estimab			0/28	0/60	Omtzigt 1992
Not estimab			0/5	0/1	Pardi 1982
0.94 [0.13, 7.07	17.5 %	_	1/82	14/1220	UK Register
2.93 [1.50, 5.72	100.0 %	•	954	2167	Total (95% CI)
					otal events: 46 (VPA), 8 (PHT)
			%	$P = 0.46$; $I^2 = 0.05$	Heterogeneity: $Chi^2 = 6.69$, df = 7
				= 0.0016)	est for overall effect: $Z = 3.16$ (P
				applicable	est for subgroup differences: Not

0.01 0.1 1 10 100 Favours VPA Favours PHT

Analysis 52.4. Comparison 52 VPA vs PHT, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 52 VPA vs PHT

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Risk Ratio	Weight	Risk Ratio	PHT	VPA	Study or subgroup
M-H,Fixed,95% C		M-H,Fixed,95% Cl	n/N	n/N	
4.14 [0.25, 68.63]	13.0 %		0/44	12/271	Australian
Not estimable			0/31	0/44	Canger 1999
2.65 [0.12, 60.21]	8.1 %		0/14	1/16	Eroglu 2008
Not estimable			0/3	0/12	Froscher 1991
Not estimable			0/27	0/5	Garza-Morales 1996
2.03 [0.13, 31.95]	10.0 %		1/124	1/61	Kaaja 2003
Not estimable			0/5	0/6	Kerala Pregnancy Registry
5.00 [0.22, 115.05]	5.7 %		0/24	1/14	Koch 1992
2.44 [0.10, 58.83]	8.4 %		0/56	1/69	Meador 2006
2.58 [0.47, 13.98]	26.5 %	—	2/416	4/323	North American Register
Not estimable			0/28	0/60	Omtzigt 1992
Not estimable			0/5	0/1	Pardi 1982
0.87 [0.12, 6.60]	28.4 %	_	1/82	13/1220	UK Register
2.37 [0.95, 5.96]	100.0 %	•	859	2102	Total (95% CI)
					Total events: 33 (VPA), 4 (PHT)
			%	$P = 0.97$; $I^2 = 0.09$	Heterogeneity: Chi ² = 1.33, df = 6
				= 0.066)	Test for overall effect: $Z = 1.84$ (P
				applicable	Test for subgroup differences: Not

0.01 0.1 1 10 100 Favours VPA Favours PHT

Analysis 52.5. Comparison 52 VPA vs PHT, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 52 VPA vs PHT

Outcome: 5 Skeletal / Limb Malformations

Risk Ratio	Weight	Risk Ratio	PHT	VPA	Study or subgroup
M-H,Fixed,95% C		M-H,Fixed,95% Cl	n/N	n/N	
2.15 [0.12, 37.52]	8.8 %		0/44	6/271	Australian
0.70 [0.05, 10.84	12.1 %		1/31	1/44	Canger 1999
Not estimable			0/14	0/16	Eroglu 2008
0.92 [0.05, 18.50	7.9 %		0/3	1/12	Froscher 1991
Not estimable			0/27	0/5	Garza-Morales 1996
6.05 [0.25, 146.33	3.4 %		0/124	1/61	Kaaja 2003
2.57 [0.13, 52.12	5.5 %		0/5	1/6	Kerala Pregnancy Registry
8.33 [0.43, 162.13	3.9 %		0/24	2/14	Koch 1992
2.44 [0.10, 58.83	5.7 %		0/56	1/69	Meador 2006
1.61 [0.44, 5.95	36.0 %		4/416	5/323	North American Register
1.43 [0.06, 33.95	7.0 %		0/28	1/60	Omtzigt 1992
Not estimable			0/5	0/1	Pardi 1982
1.43 [0.08, 24.15	9.7 %		0/82	10/1220	UK Register
1.98 [0.93, 4.21	100.0 %	-	859 %	= 0.078)	Total (95% CI) Total events: 29 (VPA), 5 (PHT) Heterogeneity: Chi ² = 2.41, df = 9 Test for overall effect: Z = 1.76 (P Test for subgroup differences: Not

0.01 0.1 1 10 100 Favours VPA Favours PHT

Analysis 54.1. Comparison 54 PHT vs PRM, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 54 PHT vs PRM

Outcome: I All Major Malformations

Study or subgroup	PHT	PRM	Risk Ratio	Weight	Risk Ratio
,	n/N	n/N	M-H,Fixed,95% Cl	-	M-H,Fixed,95% Cl
Canger 1999	3/31	3/35	— — —	21.4 %	1.13 [0.25, 5.19]
Kaaja 2003	3/124	1/6		14.5 %	0.15 [0.02, 1.20]
Kaneko 1999	12/132	5/35		60.1 %	0.64 [0.24, 1.69]
Koch 1992	2/24	0/21		4.0 %	4.40 [0.22, 86.78]
Pardi 1982	0/5	0/4			Not estimable
Total (95% CI)	316	101	-	100.0 %	0.82 [0.40, 1.68]
Total events: 20 (PHT), 9 (PRM)				
Heterogeneity: Chi ² = 4.24	4, df = 3 (P = 0.24); I	2 =29%			
Test for overall effect: Z =	0.54 (P = 0.59)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		

Favours PHT Favours PRM

Analysis 54.2. Comparison 54 PHT vs PRM, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 54 PHT vs PRM

Outcome: 2 Neural Tube Malformations

Study or subgroup	PHT	PRM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Canger 1999	0/31	0/35			Not estimable
Pardi 1982	0/5	0/4			Not estimable
Total (95% CI)	36	39			Not estimable
Total events: 0 (PHT), 0 (PR	M)				
Heterogeneity: not applicabl	e				
Test for overall effect: not ap	oplicable				
Test for subgroup difference	s: Not applicable				
			0.01 0.1 1 10 100		

Favours PHT Favours PRM

Analysis 54.3. Comparison 54 PHT vs PRM, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 54 PHT vs PRM

Outcome: 3 Cardiac Malformations

Study or subgroup	PHT n/N	PRM n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H.Fixed,95% Cl
Canger 1999	0/31	1/35		100.0 %	0.38 [0.02, 8.88]
Pardi 1982	0/5	0/4			Not estimable
Total (95% CI)	36	39		100.0 %	0.38 [0.02, 8.88]
Total events: 0 (PHT), 1 (P	RM)				
Heterogeneity: not applical	ole				
Test for overall effect: Z =	0.61 (P = 0.54)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		
			Favours PHT Favours PRM		

Analysis 54.4. Comparison 54 PHT vs PRM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 54 PHT vs PRM

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	PHT n/N	PRM n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Canger 1999	0/31	0/35			Not estimable
Pardi 1982	0/5	0/4			Not estimable
Total (95% CI)	36	39			Not estimable
Total events: 0 (PHT), 0 (PR	RM)				
Heterogeneity: not applicab	le				
Test for overall effect: not ap	oplicable				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		

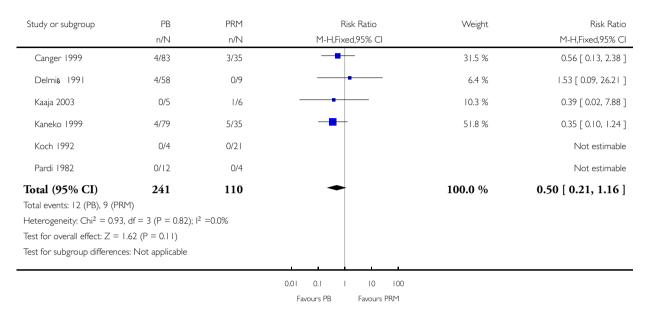
Favours PHT Favours PRM

Analysis 54.5. Comparison 54 PHT vs PRM, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 54 PHT vs PRM

Outcome: 5 Skeletal / Limb Malformations


Study or subgroup	PHT	PRM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Canger 1999	1/31	0/35		100.0 %	3.38 [0.14, 79.95]
Pardi 1982	0/5	0/4			Not estimable
Total (95% CI)	36	39		100.0 %	3.38 [0.14, 79.95]
Total events: I (PHT), 0 (PI	RM)				
Heterogeneity: not applicat	ble				
Test for overall effect: $Z = 0$	0.75 (P = 0.45)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		
			Favours PHT Favours PRM		

Analysis 55.1. Comparison 55 PB vs PRM, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 55 PB vs PRM

Outcome: I All Major Malformations

Analysis 55.2. Comparison 55 PB vs PRM, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 55 PB vs PRM

Outcome: 2 Neural Tube Malformations

Study or subgroup	PB n/N	PRM n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Canger 1999	0/83	0/35			Not estimable
Pardi 1982	0/12	0/4			Not estimable
Total (95% CI)	95	39			Not estimable
Total events: 0 (PB), 0 (PRM)				
Heterogeneity: not applicabl	e				
Test for overall effect: not ap	oplicable				
Test for subgroup difference	s: Not applicable				
			0.01 0.1 1 10 100		

Favours PB Favours PRM

Analysis 55.3. Comparison 55 PB vs PRM, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 55 PB vs PRM

Outcome: 3 Cardiac Malformations

Study or subgroup	PB	PRM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Canger 1999	1/83	1/35		100.0 %	0.42 [0.03, 6.55]
Pardi 1982	0/12	0/4			Not estimable
Total (95% CI)	95	39		100.0 %	0.42 [0.03, 6.55]
Total events: (PB), (PRN	1)				
Heterogeneity: not applicat	ble				
Test for overall effect: $Z = 0$	0.62 (P = 0.54)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		
			Favours PB Favours PRM		

Analysis 55.4. Comparison 55 PB vs PRM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 55 PB vs PRM

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	PB	PRM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Canger 1999	0/83	0/35			Not estimable
Pardi 1982	0/12	0/4			Not estimable
Total (95% CI)	95	39			Not estimable
Total events: 0 (PB), 0 (PRM)				
Heterogeneity: not applicabl	e				
Test for overall effect: not ap	plicable				
Test for subgroup difference	s: Not applicable				
			0.01 0.1 1 10 100		

Favours PB Favours PRM

Analysis 55.5. Comparison 55 PB vs PRM, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 55 PB vs PRM

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	PB	PRM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Canger 1999	1/83	0/35		100.0 %	1.29 [0.05, 30.82]
Pardi 1982	0/12	0/4			Not estimable
Total (95% CI)	95	39		100.0 %	1.29 [0.05, 30.82]
Total events: I (PB), 0 (PRN	1)				
Heterogeneity: not applicat	ble				
Test for overall effect: $Z = 0$	0.16 (P = 0.88)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		
			Favours PB Favours PRM		

Analysis 56.1. Comparison 56 LTG vs ZNS, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 56 LTG vs ZNS

Outcome: I All Major Malformations

Study or subgroup	LTG	ZNS	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
North American Register	31/1562	0/90		100.0 %	3.67 [0.23, 59.46]
Total (95% CI)	1562	90		100.0 %	3.67 [0.23, 59.46]
Total events: 31 (LTG), 0 (ZNS)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.91$ (F	= 0.36)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100		
			Favours LTG Favours ZNS		

Analysis 57.1. Comparison 57 OXC vs PRM, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 57 OXC v	s PRM				
Outcome: I All Major M	1alformations				
Study or subgroup	OXC	PRM	Risk Ratio	Weight	Risk Ratio
Kaaja 2003	n/N	n/N	M-H,Fixed,95% Cl	100.0 %	M-H,Fixed,95% Cl
Total (95% CI)	9	6		100.0 %	0.67 [0.05, 8.73]
Total events: (OXC), (F	PRM)				
Heterogeneity: not applical	ble				
Test for overall effect: Z =	0.31 (P = 0.76)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 I IO Favours OXC Favours	100 PRM	

Analysis 58.1. Comparison 58 OXC vs TPM, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 58 OXC vs TPM

Outcome: I All Major Malformations

Study or subgroup	OXC	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Australian	0/12	1/44		6.2 %	1.15 [0.05, 26.67]
North American Register	4/182	15/359		93.8 %	0.53 [0.18, 1.56]
Total (95% CI)	194	403	-	100.0 %	0.57 [0.20, 1.57]
Total events: 4 (OXC), 16 (TPM)					
Heterogeneity: $Chi^2 = 0.22$, df = 1	$(P = 0.64); I^2 = 0$	0.0%			
Test for overall effect: $Z = 1.09$ (P	= 0.27)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours OXC Favours TPM		

Analysis 58.2. Comparison 58 OXC vs TPM, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 58 OXC vs TPM

Outcome: 2 Neural Tube Malformations

Study or subgroup	OXC n/N	TPM n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Australian	0/12	0/44			Not estimable
North American Register	0/182	0/359			Not estimable
Total (95% CI)	194	403			Not estimable
Total events: 0 (OXC), 0 (TPM)					
Heterogeneity: not applicable					
Test for overall effect: not applicabl	e				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 10	D	
			Favours OXC Favours TPM		

Analysis 58.3. Comparison 58 OXC vs TPM, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 58 OXC vs TPM

-

Outcome: 3 Cardiac Malformations

Study or subgroup	OXC	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	0/12	0/44			Not estimable
North American Register	0/182	1/359		100.0 %	0.66 [0.03, 6.02]
Total (95% CI)	194	403		100.0 %	0.66 [0.03, 16.02]
Total events: 0 (OXC), 1 (TPM)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.26 (P	P = 0.80)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		
			Favours OXC Favours TPM		

Analysis 58.4. Comparison 58 OXC vs TPM, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 58 OXC vs TPM

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	OXC	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Australian	0/12	0/44			Not estimable
North American Register	1/182	5/359		100.0 %	0.39 [0.05, 3.35]
Total (95% CI)	194	403		100.0 %	0.39 [0.05, 3.35]
Total events: I (OXC), 5 (TPM)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.85$ (P	= 0.39)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours OXC Favours TPM		

Analysis 58.5. Comparison 58 OXC vs TPM, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 58 OXC vs TPM

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	OXC	TPM	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Australian	0/12	0/44			Not estimable
North American Register	1/182	5/359		100.0 %	0.39 [0.05, 3.35]
Total (95% CI)	194	403	-	100.0 %	0.39 [0.05, 3.35]
Total events: I (OXC), 5 (TPM)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.85$ (P	= 0.39)				
Test for subgroup differences: Not	applicable				
lest for subgroup differences. Not	аррисаріе		0.01 0.1 1 10 100		
			Favours OXC Favours TPM		

Analysis 59.1. Comparison 59 OXC vs ZNS, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 59 OXC vs ZNS

Outcome: I All Major Malformations

Study or subgroup	OXC	ZNS	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
North American Register	4/182	0/90		100.0 %	4.48 [0.24, 82.23]
Total (95% CI)	182	90		100.0 %	4.48 [0.24, 82.23]
Total events: 4 (OXC), 0 (ZNS)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.01$ (P	= 0.31)				
Test for subgroup differences: Not	applicable				
			0.01 0.1 1 10 100		
			Favours OXC Favours ZNS		

Analysis 60.1. Comparison 60 PB vs ZNS, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 60 PB vs ZNS

-

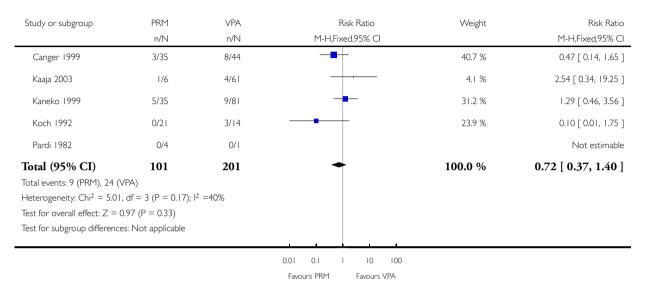
-

Outcome: I All Major Malformations

Study or subgroup	PB	ZNS	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
North American Register	11/199	0/90	+	100.0 %	10.47 [0.62, 175.67]
Total (95% CI)	199	90		100.0 %	10.47 [0.62, 175.67]
Total events: 11 (PB), 0 (ZNS)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.63$ (F	P = 0.10)				
Test for subgroup differences: No	t applicable				
			0.01 0.1 1 10 100	D	
			Favours PB Favours ZNS		

Analysis 61.1. Comparison 61 PHT vs ZNS, Outcome 1 All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child


Comparison: 61 PHT vs ZNS					
Outcome: I All Major Malforma	ations				
Study or subgroup	PHT n/N	ZNS n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
North American Register	12/416	0/90		100.0 %	5.46 [0.33, 91.31]
Total (95% CI) Total events: 12 (PHT), 0 (ZNS) Heterogeneity: not applicable Test for overall effect: Z = 1.18 (P Test for subgroup differences: Not	,	90		100.0 %	5.46 [0.33, 91.31]
			0.01 0.1 1 10 100 Favours PHT Favours ZNS		

Analysis 63.1. Comparison 63 PRM vs VPA, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 63 PRM vs VPA

Outcome: I All Major Malformations

Analysis 63.2. Comparison 63 PRM vs VPA, Outcome 2 Neural Tube Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 63 PRM vs VPA

Outcome: 2 Neural Tube Malformations

n/N 5/44	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
5/44			
		100.0 %	0.11[0.01, 1.99]
0/1			Not estimable
45		100.0 %	0.11 [0.01, 1.99]

Analysis 63.3. Comparison 63 PRM vs VPA, Outcome 3 Cardiac Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 63 PRM vs VPA

Outcome: 3 Cardiac Malformations

Study or subgroup	PRM	VPA	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Canger 1999	1/35	0/44		100.0 %	3.75 [0.16, 89.32]
Pardi 1982	0/4	0/1			Not estimable
Total (95% CI)	39	45		100.0 %	3.75 [0.16, 89.32]
Total events: I (PRM), 0 (V	'PA)				
Heterogeneity: not applicat	ole				
Test for overall effect: $Z = 0$	0.82 (P = 0.41)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		
			Favours PRM Favours VPA		

Analysis 63.4. Comparison 63 PRM vs VPA, Outcome 4 Oro-Facial Cleft / Craniofacial Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 63 PRM vs VPA

Outcome: 4 Oro-Facial Cleft / Craniofacial Malformations

Study or subgroup	PRM	VPA	Risk Ratio	o Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95%	CI	M-H,Fixed,95% Cl
Canger 1999	0/35	0/44			Not estimable
Pardi 1982	0/4	0/1			Not estimable
Total (95% CI)	39	45			Not estimable
Total events: 0 (PRM), 0 (VF	A)				
Heterogeneity: not applicab	le				
Test for overall effect: not ap	oplicable				
Test for subgroup difference	s: Not applicable				
				L	
			0.01 0.1 1 10	001 0	

Favours PRM Favours VPA

Analysis 63.5. Comparison 63 PRM vs VPA, Outcome 5 Skeletal / Limb Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 63 PRM vs VPA

Outcome: 5 Skeletal / Limb Malformations

Study or subgroup	PRM	VPA	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% CI
Canger 1999	0/35	1/44		100.0 %	0.42 [0.02, 9.92]
Pardi 1982	0/4	0/1			Not estimable
Total (95% CI)	39	45		100.0 %	0.42 [0.02, 9.92]
Total events: 0 (PRM), 1 (V	'PA)				
Heterogeneity: not applicat	ole				
Test for overall effect: $Z =$	0.54 (P = 0.59)				
Test for subgroup difference	es: Not applicable				
			0.01 0.1 1 10 100		
			Favours PRM Favours VPA		

Analysis 65.1. Comparison 65 TPM vs ZNS, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 65 TPM vs ZNS

Outcome: I All Major Malformations

Study or subgroup	TPM	ZNS	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
North American Register	15/359	0/90		100.0 %	7.84 [0.47, 129.74]
Total (95% CI)	359	90		100.0 %	7.84 [0.47, 129.74]
Total events: 15 (TPM), 0 (ZNS)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.44$ (P	= 0.15)				
Test for subgroup differences: Not	t applicable				
			0.01 0.1 1 10 100		
			Favours TPM Favours ZNS		

Analysis 66.1. Comparison 66 VPA vs ZNS, Outcome I All Major Malformations.

Review: Monotherapy treatment of epilepsy in pregnancy: congenital malformation outcomes in the child

Comparison: 66 VPA vs ZNS						
Outcome: I All Major Malform	ations					
Study or subgroup	VPA	ZNS	F	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fi>	ked,95% Cl		M-H,Fixed,95% CI
North American Register	30/323	0/90		───	100.0 %	17.13 [1.06, 277.48]
Total (95% CI)	323	90			100.0 %	17.13 [1.06, 277.48]
Total events: 30 (VPA), 0 (ZNS)						
Heterogeneity: not applicable						
Test for overall effect: $Z = 2.00$ (F	P = 0.046)					
Test for subgroup differences: No	t applicable					
			0.01 0.1	1 10 100		
			Favours VPA	Favours ZNS		

ADDITIONAL TABLES

Table 1. Risk of bias scale parameters

	1 Low risk	2	3	4	5 High risk
Confounding	All important ¹ con- founders considered ² and suitable method of adjustment ³ em- ployed. Out- come unlikely to be affected.	⁴ confounders con- sidered and suit- able method of ad- justment employed. Outcome unlikely	Some confounders ⁵ considered and full or partial ad- justment employed ^{6.} Possible implica- tion on outcome.	founders considered and no adjustment employed. Likely to	No important con- founders considered and no adjustment employed. Likely to affect outcome
Blinding	participant's drug regimen and par-	participants drug regimen. Out- come unlikely to be	Partial blinding ⁷ in- volved in study. Pos- sible implication on outcome.	ing involved	involved in study. Outcome likely to
Incomplete outcome data	No missing data and/or appropriate analysis ⁸ used to deal with missing data. Un- likely to affect out- come.	amount (<25%) of missing data with reasons given, bal-	Larger amount of miss- ing data (>25%) with or without rea- sons given, balanced across groups. Pos- sible implication on outcome.	amount (>25%) of missing data, imbal- ance across groups.	No information provided regarding missing data. Likely to affect outcome.
Selective outcome reporting	A pri- ori outcomes mea- sured, analysed and reported in main re- port. Protocol avail- able. Unlikely to af- fect outcome	ysed and reported in main report ⁹ . Pro- tocol not available.	formation regarding a priori outcomes and measures. Pos- sible implication on	ysed or reported. Outcome likely to	Outcomes mea- sured but not anal- ysed or reported and clinical judgement infers the presence of an unreported measured outcome ¹⁰ . Likely to affect outcome.
Other bias	No other bias iden- tified.	Bias identified. Un- likely to affect out- come.	Bias identified. Pos- sible implication on outcome.		Bias identified. Ex- tremely likely to af- fect outcome.

¹ Important confounders include: maternal factors (socio-economic status, folate use, age, parity, epilepsy type, seizure exposure, polytherapy, other concomitant disease, smoking, alcohol and child factors (family history of malformations, gestational age, birth weight, sex and ethnicity).

² Reported demographic information and other confounders.

³ Matching scores, multiple regression, analysis of co-variance, stratification.

⁴ At least five out of eight of important confounders include: socio-economic status, folate use, gestational age, family history of malformations.

⁵ At least two out of eight of important confounders.

⁶ Full adjustment of confounding variables e.g. see footnote 2 or partial adjustment e.g. researchers select limited number of variables to adjust for.

⁷ Assessors of outcome are only blinded to certain groups e.g. blinded to intervention group but not controls.

⁸ Intention-to-treat analysis.

⁹ An a priori statement is made in methods section of main report regarding measurement and analysis of outcome.

¹⁰ For example, no data reported on number of deaths when obvious this outcome must have been recorded.

Table 2. Risk Ratios and Risk Differences- Overall Malformation Risk

Active	CBZ	GBP	LEV	LTG	OXC	РВ	РНТ	PRM	ТРМ	VPA	ZNS
Com- parator											
Women without epilepsy	RR: 2. 01 (1.20, 3. 36) RD: 0.02 (0. 00*, 0. 03)	RR: 0. 61 (0.07, 5. 18) RD: -0. 00 (-0. 02, 0. 01)	16 (0.76, 6. 17) RD: 0. 01 (-0.	RR: 1. 68 (0.78, 3. 65) RD: 0.01 (-0.00, 0.02)	94 (0.53, 7. 15) RD: 0. 01 (-0.	84 (1.57, 5. 13)	RD: 2. 38 (1.12, 5. 03) RD: 0. 02 (-0. 00, 0. 04)	48 (0.03, 8. 43)	RR: 3.69 (1. 36, 10. 07) RD: 0. 03 (0.01, 0. 05)	RR: 5. 69 (3.33, 9. 73) RD: 0. 08 (0.05, 0. 11)	RR: 0. 44 (0.02, 7. 93) RD: -0. 01 (-0. 03, 0. 01)
Women with epilepsy un- treated	RR: 1. 50 (1.03, 2. 19) RD: 0.01 (0. 00*, 0. 03)		RR: 0. 32 (0.10, 1. 07) RD: -0. 02 (-0. 03, -0. 00)	07 (0.64, 1. 77) RD: 0. 00 (-0.	RR: 2.75 (0. 53, 14. 43) RD: 0. 03 (-0. 09, 0. 14)	95 (0.97, 3. 93), P = 0.06 RD: 0. 03 (-0.		RR(FE): 2.81 (1.13, 7. 02) RR(RE) : 3.92 (0. 76, 20. 14), P = 0.10 RD: 0.07 (-0.00, 0.14)	RR: 1. 99 (0.65, 6. 08) RD: 0. 02 (-0. 02, 0. 05)	RR: 3. 13 (2.16, 4. 54), p<0. 00001 RD: 0. 06 (0.04, 0. 08)	RR: No studies RD: No studies
CBZ		RR: 0. 44 (0.13, 1. 49) RD: -0. 02 (-0. 04, -0. 00)	54 (0.30, 0. 97) RD: -0. 01 (-0.	75 (0.57, 0. 990) RD: -0. 01 (-0.	69 (0.32, 1. 52) RD: 0. 01 (-0. 01, 0.	19 (0.86, 1. 67) RD: 0. 01 (-0.	RR: 1. 22 (0.90, 1. 64) RD: 0. 01 (-0. 01, 0. 02)	RR(FE): 1.25 (0.64, 2. 44) RR(RE): 1.56 (0.50, 4. 76) RD: 0.	RR: 1. 28 (0.76, 2. 13) RD: 0. 01 (-0. 01, 0. 03)	RR: 2. 44 (2.00, 2. 94) RD: 0. 05 (0.04, 0. 07)	RR: 0. 18 (0.01, 2. 94), RD: −0.03 (−0.05, −0.01)

								$\begin{array}{c} 02 & (-0. \\ 05, & 0. \\ 09) \end{array}$			
GBP	RR: 2. 28 (0.67, 7. 79) RD: 0.02 (0. 00*, 0. 04)		52 (0.43, 5. 42) RD: 0. 01 (-0.	RR: 1.67 (0. 48,5.88) RD: 0. 01 (-0. 01, 0. 03)	00) RD: 0. 01 (-0.	RR: 8.33 (1. 04, 50. 00) RD: 0. 05 (0.01, 0. 08)	23) RD: 0.03 (0.	RR: No studies RD: No studies	85, 11. 11)		RR: 0.53 (0. 02, 12. 50) RD: -0. 01 (-0. 03, 0. 02)
LEV	84 (1.03, 3. 29) RD:	33) RD: -0. 01 (-0.		RR(FE): 1.37 (0.78, 2. 44) RR(RE): 1.61 (0.53, 5. 00) RD: 0. 01 (-0. 00, 0. 02)	95 (0.33, 2. 78) RD: -0. 00 (-0.	33 (1.04, 5. 00) RD: 0. 03 (-0.	2.04	RR: No studies RD: No studies	00 (1.03, 3. 85) RD: 0. 02 (-0.	5.82 (3. 13, 10. 81)	
LTG		60 (0.17, 2. 07)			08 (0.41, 2. 86) RD: -0. 00 (-0.	RR: 3. 13 (1.64, 5. 88) RD: 0. 04 (0.01, 0. 07)	89 (1.19, 2. 94) RD: 0.02 (0. 00*, 0.	RR: No studies RD: No studies	79 (1.06, 2. 94) RD: 0. 02 (-0.	56 (2.77, 4. 58)	04, -0.

Table 2. Risk Ratios and Risk Differences- Overall Malformation Risk (Continued)

 Table 2. Risk Ratios and Risk Differences- Overall Malformation Risk
 (Continued)

OXC	44 (0.66, 3. 16) RD: 0. 01 (-0.	31 (0.04, 2. 78) RD: -0. 01 (-0.	05 (0.36, 3. 03) RD: 0. 00 (-0.			52 (0.98, 6. 43) RD: 0. 03 (-0.	08 (0.43, 2. 71) RD: 0. 00 (-0.	00) RD: 0. 06 (-0.	75 (0.64, 5. 00) RD: 0. 02 (-0.	RR: 3. 71 (1.65, 8. 33) RD: 0. 08 (0.04, 0. 11)	22 (0.01, 4. 17)
РВ	84 (0.60, 1. 16) RD: -0. 01 (-0.	12	43 (0.20, 0. 96) RD: -0. 03 (-0. 06, 0.	32 (0.17, 0. 61) RD:	RR: 0. 40 (0.16, 1. 02) RD: -0. 03 (-0. 08, 0. 01)		80 (0.53, 1. 21) RD: -0. 01 (-0.	76)	74 (0.35, 1. 54) RD: -0. 01 (-0.	29) RD: 0. 04	RR: 0. 10 (0.01, 1. 61) RD: -0. 06 (-0. 09, -0. 02)
PHT	82 (0.61, 1. 11) RD: -0. 01 (-0.	36 (0.10, 1. 30) RD:	RR(FE): 0.49 (0.26, 0. 92) RR(RE): 0.34 (0.08, 1. 50) RD(FE) : -0.02 (-0.04, -0.00) RD(RE) : -0.03 (-0.06, 0.01)	53 (0.34, 0. 84) RD: -0.	93 (0.37, 2. 33) RD: -0. 00 (-0. 03, 0.	RR: 1. 25 (0.83, 1. 89) RD: 0. 01 (-0. 02, 0. 04)		22 (0.60, 2. 50) RD: 0. 02 (-0.	11 (0.60, 2. 04) RD: 0.	2.00 (1.48, 2. 71) RD: 0.05	RR: 0. 18 (0.01, 3. 03) RD: -0. 03 (-0. 05, -0. 01)
PRM	0.80	RR: No studies RD: No studies	studies	RR: No studies RD: No studies	67 (0.05, 8. 73) RD: -0. 06 (-0.	50 (0.21, 1. 16) RD: -0. 05 (-0.	82 (0.40, 1. 68) RD: -0.		RR: No studies RD: No studies	RR: 1. 39 (0.71, 2. 70) RD: 0. 04 (-0. 05, 0. 13)	RR: No studies RD: No studies

 Table 2. Risk Ratios and Risk Differences- Overall Malformation Risk
 (Continued)

ТРМ	78 (0.47, 1. 31) RD: -0. 01 (-0.	32 (0.09, 1. 17) RD:	50 (0.26, 0. 97) RD: -0. 02 (-0. 04, 0.	RR: 0. 56 (0.34, 0. 94) RD: -0. 02 (-0. 04, 0. 00)	57 (0.20, 1. 57) RD: -0. 02 (-0.	36 (0.65, 2. 84) RD: 0. 01 (-0.	90 (0.49, 1. 67) RD: -0.	RR: No studies RD: No studies		RR: 2. 35 (1.40, 3. 95) RD(FE) : 0.05 (0.03, 0. 08) RD(RE) : 0.06 (0.01, 0. 10)	13 (0.01, 2. 13) RD: - 0.
VPA	41 (0.34, 0. 50) RD: -0. 05 (-0.	RR: 0. 16 (0.05, 0. 52) RD: -0. 08 (-0. 11, -0. 05)	RR: 0. 17 (0.09, 0. 32) RD(FE) : -0.07 (-0.09, -0.05) RD(RE) : -0.08 (-0.10, -0.05)	RR: 0. 28 (0.22, 0. 36) RD(FE) : -0.06 (-0.07, -0.05) RD(RE) : -0.08 (-0.11, -0.05)	27 (0.12, 0. 61) RD: -0. 08 (-0.	63 (0.44, 0. 90) RD: -0. 04 (-0.	RR: 0. 50 (0.37, 0. 68) RD: -0. 05 (-0. 03)	72 (0.37, 1. 40) RD: -0. 04 (-0. 13, 0.	71) RD(FE)		RR: 0.06 (0. 004, 0. 94) RD: -0. 09 (-0. 13, -0. 06)
ZNS	RR: 5.54 (0. 34, 89. 86) RD: 0. 03 (0.01, 0. 05)	08, 45. 41) RD: 0. 01 (-0.	28, 78. 05) RD: 0.02 (0.	46) RD:	24, 82. 23) RD: 0. 02 (-0.	62, 175. 67) RD: 0.	5.46 (0. 33, 91. 31) RD: 0. 03	RR: No studies RD: No studies	RR: 7.84 (0. 47, 129. 74) RD: 0. 04 (0.02, 0. 07)	48) RD: 0. 09	

Results highlighted bold were statistically significant

*Confidence limit rounded to be on boundary of significance.

Table 3. Comparison Matrix

	Active	CBZ	GBP	LEV	LTG	OXC	РВ	PHT	PRM	TPM	VPA	ZNS
Con- trols		Analy- sis 1.1	Analy- sis 2.1	Analy- sis 3.1	Analy- sis 4.1	Analy- sis 5.1	sis	Analy- sis 7.1	Analy- sis 8.1	Analy- sis 9.1	Analy- sis 10.1	Analy- sis 11.1

Table 3.	Comparison Matri	x (Continued)
----------	-------------------------	----------------------

CBZ	Analy- sis 1.1		Analy- sis 12.1	Analy- sis 13.1	Analy- sis 14.1	Analy- sis 15.1	Analy- sis 16.1	Analy- sis 17.1	Analy- sis 18.1	Analy- sis 19.1	Analy- sis 20.1	Analy- sis 21.1
GBP	Analy- sis 2.1	Analy- sis 12.1		Analy- sis 28.1	Analy- sis 22.1	Analy- sis 23.1	Analy- sis 24.1	Analy- sis 40.1	Analy- sis 25.1	Analy- sis 26.1	Analy- sis 46.1	Analy- sis 27.1
LEV	Analy- sis 3.1	Analy- sis 13.1	Analy- sis 28.1		Analy- sis 29.1	Analy- sis 30.1	Analy- sis 31.1	Analy- sis 32.1	Analy- sis 33.1	Analy- sis 34.1	Analy- sis 47.1	Analy- sis 35.1
LTG	Analy- sis 4.1	Analy- sis 14.1	Analy- sis 22.1	Analy- sis 29.1		Analy- sis 36.1	Analy- sis 37.1	Analy- sis 38.1	Analy- sis 53.1	Analy- sis 39.1	Analy- sis 48.1	Analy- sis 56.1
OXC	Analy- sis 5.1	Analy- sis 15.1	Analy- sis 23.1	Analy- sis 30.1	Analy- sis 36.1		Analy- sis 44.1	Analy- sis 41.1	Analy- sis 57.1	Analy- sis 58.1	Analy- sis 50.1	Analy- sis 59.1
РВ	Analy- sis 6.1	Analy- sis 16.1	Analy- sis 24.1	Analy- sis 31.1	Analy- sis 37.1	Analy- sis 44.1		Analy- sis 42.1	Analy- sis 55.1	Analy- sis 45.1	Analy- sis 51.1	Analy- sis 60.1
PHT	Analy- sis 7.1	Analy- sis 17.1	Analy- sis 40.1	Analy- sis 32.1	Analy- sis 38.1	Analy- sis 41.1	Analy- sis 42.1		Analy- sis 54.1	Analy- sis 43.1	Analy- sis 52.1	Analy- sis 61.1
PRM	Analy- sis 8.1	Analy- sis 18.1	Analy- sis 25.1	Analy- sis 33.1	Analy- sis 53.1	Analy- sis 57.1	Analy- sis 55.1	Analy- sis 54.1		Analy- sis 62.1	Analy- sis 63.1	Analy- sis 64.1
ТРМ	Analy- sis 9.1	Analy- sis 19.1	Analy- sis 26.1	Analy- sis 34.1	Analy- sis 39.1	Analy- sis 58.1	Analy- sis 45.1	Analy- sis 43.1	Analy- sis 62.1		Analy- sis 49.1	Analy- sis 65.1
VPA	Analy- sis 10.1	Analy- sis 20.1	Analy- sis 46.1	Analy- sis 47.1	Analy- sis 48.1	Analy- sis 50.1	Analy- sis 51.1	Analy- sis 52.1	Analy- sis 63.1	Analy- sis 49.1		Analy- sis 66.1
ZNS	Analy- sis 11.1	Analy- sis 21.1	Analy- sis 27.1	Analy- sis 35.1	Analy- sis 56.1	Analy- sis 59.1	Analy- sis 60.1	Analy- sis 61.1	Analy- sis 64.1	Analy- sis 65.1	Analy- sis 66.1	

Table displays links to specific analyses to assist with navigation around the review.

APPENDICES

Appendix I. Search strategy for Cochrane Epilepsy Group's Specialized Register

#1 MeSH DESCRIPTOR Pregnancy Explode All
#2 MeSH DESCRIPTOR Pregnancy Complications Explode All
#3 MeSH DESCRIPTOR Prenatal Exposure Delayed Effects Explode All
#4 fetal or foetal or fetus or foetus or prenatal or pregnant or pregnanc*
#5 newborn or infant
#6 MeSH DESCRIPTOR Teratogens Explode All
#7 teratogen*
#8 in NEXT utero
#9 "intra uterine" or intrauterine
#10 MeSH DESCRIPTOR Fetal Development Explode All
#11 MeSH DESCRIPTOR Infant, Newborn Explode All
#12 birth maternal
#13 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12

Appendix 2. Search strategy for CENTRAL (*The Cochrane Library*)

- #1 MeSH descriptor Pregnancy explode all trees
- #2 MeSH descriptor Pregnancy Complications explode all trees
- #3 MeSH descriptor Prenatal Exposure Delayed Effects explode all trees
- #4 (fetal OR foetal OR fetus OR foetus OR prenatal)
- #5 (newborn OR infant)
- #6 MeSH descriptor Teratogens explode all trees
- #7 (teratogen*)
- #8 (in NEXT utero)
- #9 (intra uterine) or (intrauterine)
- #10 MeSH descriptor Fetal Development explode all trees
- #11 MeSH descriptor Infant, Newborn explode all trees
- #12 (#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11)
- #13 MeSH descriptor Fetal Diseases explode all trees
- #14 MeSH descriptor Fetal Death explode all trees
- #15 MeSH descriptor Infant Mortality explode all trees
- #16 MeSH descriptor Birth Weight explode all trees
- #17 MeSH descriptor Abnormalities, Drug-Induced explode all trees
- #18 MeSH descriptor Congenital Abnormalities explode all trees
- #19 (congenital NEXT defec*)
- #20 (congenital NEXT malformation*)
- #21 (congenital NEXT anomal*)
- #22 (birth NEXT defec*)
- #23 (minor NEXT anomal*)
- #24 (dysmorph*)
- #25 (maternal NEXT mortality)
- #26 MeSH descriptor Intellectual Disability explode all trees
- #27 (intellectual* NEXT impair*)
- #28 (IQ)
- #29 (intellectual NEXT ability)
- #30 neurodevelopment
- #31 (mental* NEXT retard*)
- #32 "educational needs"
- #33 "longer term outcome"

- #34 MeSH descriptor Child Development explode all trees
- #35 "child development"
- #36 MeSH descriptor Autistic Disorder explode all trees
- #37 (autism OR autistic)
- #38 MeSH descriptor Attention Deficit Disorder with Hyperactivity explode all trees
- #39 "attention deficit"
- #40 MeSH descriptor Apraxias explode all trees
- #41 dyspraxia
- #42 MeSH descriptor Memory explode all trees
- #43 (memory)
- #44 MeSH descriptor Language Disorders explode all trees
- #45 language
- #46 MeSH descriptor Executive Function explode all trees
- #47 (executive NEXT function*)
- #48 cognitive
- #49 MeSH descriptor Neuropsychology explode all trees
- #50 neuropsycholog*

#51 (#13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21 OR #22 OR #23 OR #24 OR #25 OR #26 OR #27 OR #28 OR #29 OR #30 OR #31 OR #32 OR #33 OR #34 OR #35 OR #36 OR #37 OR #38 OR #39 OR #40 OR #41 OR

- #42 OR #43 OR #44 OR #45 OR #46 OR #47 OR #48 OR #49 OR #50)
- #52 MeSH descriptor Phenytoin explode all trees
- #53 MeSH descriptor Carbamazepine explode all trees
- #54 MeSH descriptor Valproic Acid explode all trees
- #55 MeSH descriptor Phenobarbital explode all trees
- #56 MeSH descriptor Ethosuximide explode all trees
- #57 MeSH descriptor Clonazepam explode all trees
- #58 MeSH descriptor Anticonvulsants explode all trees
- #59 (phenytoin) or (carbamazepine) or (valproate) or (valproic) or (phenobarb*)
- #60 (lamotrigine) or (gabapentin) or (vigabatrin) or (levetiracetam) or (topiramate)
- #61 (tiagabine) or (zonisamide) or (pregabalin) or (lacosamide) or (rufinamide)
- #62 (retigabine) or (ezogabine) or (oxcarbazepine) or (ethosuximide) or (sulthiame)
- #63 (clonazepam) or (clobazam) or (anti-epilep*) or (antiepilep*)
- #64 MeSH descriptor Epilepsy explode all trees
- #65 MeSH descriptor Seizures explode all trees
- #66 (seizure*) or (epilep*) or (convuls*)
- #67 (#52 OR #53 OR #54 OR #55 OR #56 OR #57 OR #58 OR #59 OR #60 OR #61 OR #62 OR #63 OR #64 OR #65 OR
- #66)
- #68 (#12 AND #51 AND #67) in Trials

Appendix 3. Search strategy for MEDLINE (Ovid)

- 1. exp Pregnancy/
- 2. exp Pregnancy Complications/
- 3. exp Prenatal Exposure Delayed Effects/
- 4. (fetal or foetal or fetus or foetus or prenatal).tw.
- 5. (newborn or infant).tw.
- 6. exp Teratogens/
- 7. teratogen\$.tw.
- 8. (in adj utero).tw.
- 9. (intra uterine or intrauterine).tw.
- 10. exp Fetal Development/
- 11. exp Infant, Newborn/

12. or/1-11 13. exp Fetal Diseases/ 14. exp Fetal Death/ 15. exp Infant Mortality/ 16. exp Birth Weight/ 17. exp Abnormalities, Drug-Induced/ or exp Congenital Abnormalities/ 18. (congenital adj defec\$).tw. 19. (congenital adj malformation\$).tw. 20. (congenital adj anomal\$).tw. 21. (birth adj defec\$).tw. 22. (minor adj anomal\$).tw. 23. dysmorph\$.tw. 24. (maternal adj mortality).tw. 25. exp Intellectual Disability/ 26. (intellectual\$ adj impair\$).tw. 27. IQ.tw. 28. (intellectual adj ability).tw. 29. neurodevelopment.tw. 30. (mental\$ adj retard\$).tw. 31. educational needs.tw. 32. longer term outcome.tw. 33. exp Child Development/ 34. child development.tw. 35. exp Autistic Disorder/ 36. (autism or autistic).tw. 37. exp Attention Deficit Disorder with Hyperactivity/ 38. attention deficit.tw. 39. exp Apraxias/ 40. dyspraxia.tw. 41. exp Memory/ 42. memory.tw. 43. exp Language Disorders/ 44. language.tw. 45. exp Executive Function/ 46. executive function\$.tw. 47. cognitive.tw. 48. exp Neuropsychology/ 49. neuropsycholog\$.tw. 50. or/13-49 51. phenytoin.tw. 52. exp Carbamazepine/ 53. carbamazepine.tw. 54. exp Valproic Acid/ 55. (valproic or valproate).tw. 56. exp Phenobarbital/ 57. phenobarb\$.tw. 58. lamotrigine.tw. 59. gabapentin.tw. 60. vigabatrin.tw. 61. levetiracetam.tw. 62. topiramate.tw. 63. tiagabine.tw.

64. zonisamide.tw.

65. pregabalin.tw. 66. lacosamide.tw. 67. (retigabine or ezogabine).tw. 68. rufinamide.tw. 69. oxcarbazepine.tw. 70. exp Ethosuximide/ 71. ethosuximide.tw. 72. sulthiame.tw. 73. exp Clonazepam/ 74. clonazepam.tw. 75. clobazam.tw. 76. antiepilep\$.tw. 77. anti-epilep\$.tw. 78. exp Anticonvulsants/ 79. exp Epilepsy/ 80. exp Seizures/ 81. (seizure\$ or epilep\$ or convuls\$).tw. 82. or/51-81 83. 12 and 50 and 82 84. exp animals/ not humans.sh. 85. 83 not 84

Appendix 4. Extended risk of bias tool for non-randomised studies

Studies for which the risk of bias tool is intended

Only suitable for 'cohort-like' studies, individually or cluster-allocated. This can include secondary analyses of clinical databases providing the analysis is clearly structured as a comparison of control and intervention participants (Higgins 2011):

Individually allocated study designs

- Randomised controlled trial
- Quasi randomised controlled trial
- Non-randomised controlled trial
- Controlled before and after study (not common use of this label, see controlled cohort before and after study below)
- Prospective cohort study
- Retrospective cohort study

Cluster allocated study designs

- Cluster randomised controlled trial
- Cluster quasi randomised controlled trial
- Cluster non-randomised controlled trial
- Controlled interrupted time series
- Controlled cohort before and after study

Assessment of risk of bias

Issues when using modified risk of bias tool to assess cohort-like non-randomised studies:

• follow principle for existing Cochrane Collaboration's tool for assessing risk of bias: score judgement and provide information (preferably direct quote) to support judgement

- modified risk of bias tool include an additional item on confounding.
- five-point scale for some items (distinguish "unclear" from intermediate risk of bias).

• keep in mind the general philosophy-assessment is <u>not</u> about whether researchers could have done better but about risk of bias; the assessment tool must be used in a standard way whatever the difficulty / circumstances of investigating the research question of interest and whatever study design features were used.

• use of a five-point scale is uncharted territory; very interested to know whether this makes things easier or more difficult for reviewers.

• anchors for five-point scale: "1/No/low risk' of bias should correspond to a high quality RCT. "5/high risk" of bias should correspond to a risk of bias that means the findings should not be considered (too risky, too much bias, more likely to mislead than inform).

Sequence generation

- · Low/high/unclear risk of bias item
- Always high risk of bias (not random) for a non-randomised study

• Might argue that this item redundant for non-randomised studies since always high risk of bias - but important to include in risk of bias table ('level playing field' argument)

Allocation concealment

• Low/high/unclear risk of bias item

• Potentially <u>low</u> risk of bias for a <u>non-randomised study</u>, e.g. quasi-randomised (high risk of bias to sequence generation) but concealed (reviewer judges that the people making decisions about including participants didn't know how allocation was being done, e.g. odd/even date of birth/hospital number)

Risk of bias from confounding (additional item for non-randomised studies; assess for each outcome)

- Assumes a prespecified list of potential confounders defined in the protocol for the systematic review
- Low(1) / 2 / 3 / 4 / high(5) / unclear risk of bias item
- Judgement needs to factor in (see 'worksheet'):
 - proportion of confounders (from prespecified list) that were considered;
 - o whether most important confounders (from prespecified list) were considered;
 - resolution / precision with which confounders were measured;
 - extent of imbalance between groups at baseline;
 - care with which adjustment was done (typically a judgement about the statistical modelling carried out by authors).
- Low risk of bias requires that all important confounders are balanced at baseline, i.e.
 - o not primarily/not only a statistical judgement; or
 - o measured 'well' and 'carefully' controlled for in the analysis.

We have provided an optional 'worksheet' to help reviewers to focus on the task (rows = confounders and columns = factors to consider). Reviewers should make a risk of bias judgement about each factor first and then combine these (by eyeballing rather than quantitatively) to make the judgement in the main risk of bias table.

Risk of bias from lack of blinding (assess for each outcome, as per existing risk of bias tool)

- Low(1) / 2 / 3 / 4 / high(5) / unclear risk of bias item
- Judgement needs to factor in:
 - nature of outcome (subjective/objective; source of information);
 - o who was / was not blinded and the risk that those who were not blinded could introduce performance or detection bias.

Risk of bias from incomplete outcome data (assess for each outcome, as per existing risk of bias tool)

- Low(1) / 2 / 3 / 4 / high(5) / unclear risk of bias item
- Judgement needs to factor in:
 - reasons for missing data;
 - o whether amount of missing data balanced across groups, with similar reasons;
 - o whether group comparison appropriate (e.g. 'analysed in allocated group' issue).

Risk of bias from selective reporting (assess for each outcome)

• More wide ranging than existing recommendation; key issue is whether outcomes were clearly defined, and methods of analysis were pre-specified and adhered to

- Low(1) / 2 / 3 / 4 / high(5) /unclear risk of bias item
- Judgement needs to factor in:
 - o existing risk of bias guidance on selective outcome reporting;
 - o also, extent to which analyses (and potentially other choices) could have been manipulated to bias the findings reported,
- e.g. choice of method of model fitting, potential confounders considered/included;

 look for evidence that there was a protocol in advance of doing any analysis or obtaining the data (difficult unless explicitly reported); non-randomised studies very different from RCTs. RCTs must have a protocol in advance of starting to recruit (for research ethics committee/institutional review board/other regulatory approval); non-randomised studies need not (especially older studies);

• Hence, separate yes/no items asking reviewers whether they think the researchers had a prespecified protocol and analysis plan.

Appendix 5. Assessment of confounding variables

Assessment of how researchers dealt with confounding

Method for *identifying* relevant confounders described by researchers: Yes/No

If yes, describe the method used:

Relevant confounders described: Yes/No

List confounders described below

Method used for controlling for confounding At design stage: matching by characteristics of subjects (see below for matching by propensity score)

Variables on which subjects matched:

.....

At analysis stage: stratification

multivariable regression propensity scores (matching)

propensity scores (multivariable regression)

Describe confounders controlled for below

Confounders described by researchers

Enter / preprint prespecified list of confounders (rank order in importance? Important in bold?)

(Continued)

Tick (yes/no judgement) if confounder considered by the researchers [Cons'd?] Score (1 to 5) precision with which confounder measured Score (1 to 5) imbalance between groups Score (1 to 5) care with which adjustment for confounder was carried out

Confounder	Considered	Precision	Imbalance	Adjustment
	0	0	0	0
	0	0	0	0
	0	0	0	0

CONTRIBUTIONS OF AUTHORS

JW and RB wrote this review with input from CJ, NA, JG, AJM, CT, JCS and AM. Data extraction and risk of bias assessments were undertaken by RB, JW, JH, CJ, NA, JCS and AJM. JCS assisted extensively with the classification of malformations within this review.

DECLARATIONS OF INTEREST

RB and JCS have provided expert testimony regarding child outcomes following prenatal exposure to AEDs and has worked on research projects funded by Sanofi Aventis and UCB Pharma with the funds going to their employing institutions. RB has also received consultancy fees from UCB Pharma on one occasion for a matter unrelated to this subject area.

NA has been sponsored to attend educational meetings and conferences in epilepsy over the last five years by UCB Pharma, GSK and Boehringer Ingelheim, and has participated in regional advisory Board meetings for Eisai on their product Eslicarbazepine and Zonisamide.

AM has been sponsored to attend a conference and has had research funding from Pfizer Ltd. Also a consortium of pharmaceutical companies (GSK, EISAI, UCB Pharma) funded the National Audit of Seizure Management in Hospitals (NASH) through grants paid to University of Liverpool.

No other conflicts of interest declared.

SOURCES OF SUPPORT

Internal sources

• No sources of support supplied

External sources

• National Institute for Health Research, UK.

This review was supported by the National Institute for Health Research, via Cochrane Infrastructure funding to the Epilepsy Group. The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the Systematic Reviews Programme, NIHR, NHS or the Department of Health.

• National Institute for Health Research, UK.

This report is independent research supported by the National Institute for Health Research (Post Doctoral Fellowship, Dr Rebecca Bromley, PDF-2013-06-041). The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health.

DIFFERENCES BETWEEN PROTOCOL AND REVIEW

In the protocol it stated that, where possible, we would conduct meta-analysis at the monotherapy and polytherapy group level. However, given the bias likely to be included in any analysis including polytherapy combinations and on recommendation of one of the peer reviewers we have not included these comparisons. The authors feel that given the heterogenous nature of the results across the included medications that this was the best course of action to ensure reliable results.

In the protocol it was stated that we would look at the specific malformations of genitourinary and gastrointestinal nature, however at the point of data extraction it became apparent that there was too little data reported from the included studies to be able to do this. Therefore the included studies were consulted and the four most commonly reported specific malformation types were selected and reported on.

Due to the small amount of data pertaining to minor malformations meta-analysis was not possible and therefore outcomes pertaining to this secondary outcome are reviewed narratively.

Within the protocol it was stated that, if appropriate, summary of findings tables using the GRADE approach would be presented. However, due to the inclusion of more than one AED across a number of outcomes, the creating and presenting of all data would be difficult to produce in a manner that could be understood and used appropriately.

In the protocol it was also stated that both fixed-effect and random-effects model analyses would be implemented, however the authors did not state exactly how these would be utilised and therefore we have elaborated on the methods here to clarify the situation. It was always the intention that fixed-effect models would be carried out primarily, with random-effects model analysis to explore potential heterogeneity. In addition, due to data being sparse in some comparisons, and with some studies reporting zero events in one or both groups, the risk difference (RD) was calculated and this was not stipulated within the protocol as we were not expecting to find such sparse data.

INDEX TERMS

Medical Subject Headings (MeSH)

*Abnormalities, Drug-Induced [classification]; Anticonvulsants [*adverse effects]; Cardiovascular Abnormalities; Craniofacial Abnormalities; Epilepsy [*drug therapy]; Musculoskeletal Abnormalities; Neural Tube Defects; Pregnancy Complications [*drug therapy]

MeSH check words

Female; Humans; Infant, Newborn; Pregnancy