
Ball-pen probes (BPP) have been deployed in the SOL of numerous toka-
mak experiments and low-temperature magnetised plasmas to make direct
measurements of the plasma potential and electron temperature. Despite
strong empirical evidence for the success of the BPP it lacks a theoretical
underpinning of its collection mechanism. In this paper we investigate the
capability of the probe to measure the plasma potential by means of Particle-
In-Cell simulations. The BPP is found to float at a potential offset from the
plasma potential by a factor TeαBPP . By simulating BPPs and Langmuir
probes, excellent agreement has been found between the measured electron
temperature and the specified source temperature. The transport mechanism
for both ions and electrons has been determined. E x B drifts are observed
to drive electrons and ions down the tunnel. This mechanism is sensitive to
the diameter of the probe.
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1 Introduction

Measurements of the plasma potential (Φ) and its fluctuations are vital for
modelling transport phenomena in the edge region of tokamaks [1]. Turbulent
structures (blobs) in the scrape-off layer are electrostatic and are advected
towards the first-wall by E x B drifts arising from plasma potential fluctu-
ations across the blob cross-section [2]. The strength and spatial scale of
these potential fluctuations can be predicted, however robust measurements
of such fluctuations are lacking making it difficult to fully validate models
of radial transport in the SOL [3]. The theory of Langmuir probes allows
the value of the plasma potential to be determined from the current (I) -
voltage (V) curve of a Langmuir probe. Assuming the probe operates in the
thin sheath limit, a simple expression [4] relates the floating potential of the
probe (VLP ) to the local plasma potential

VLP = Φ− Te ln(R) (1)
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where Te is the electron temperature in eV and R the ratio of the electron
saturation current(I−sat) divided by the ion saturation current (I+

sat). The
logarithm of R is often denoted as α such that

αLP = ln(R) = ln

(
I−sat

I+
sat

)
(2)

In principle it is possible to sweep the bias voltage applied to a Langmuir
probe to derive VLP , Te and αLP . The local plasma potential can then be
obtained from equation 1. However, in practice, especially in fusion plasmas,
it is not possible to measure R. In these plasmas, probes operate in a re-
stricted region of the I - V curve from floating to ion saturation. This allows
measurements of ne and Te to be made whilst avoiding damage to the probe
and the problem of spuriously high Te measurements [5], [6], [7], [8].

Various advanced probe techniques have been developed that aim to mea-
sure the plasma potential directly without needing an electron temperature
measurement. These include emissive probes [9] and the Ball-Pen Probe
(BPP) [10]. The emissive probe is not well suited to fusion plasmas as it
requires a thin filament of wire to be exposed to the plasma making it struc-
turally weak. Although this problem can be overcome with the use of laser
heated emissive probes that do not require a thin filament of wire for oper-
ation and are therefore more robust [11]. The BPP is a robust diagnostic
capable of surviving high heat loads [12]. The BPP was designed to reduce
the ratio of saturation currents to unity so that the probe would float at the
plasma potential as evident from equation 1. However, experiments find that
αBPP = 0.6 ± 0.3 [13]. The BPP therefore gives a more direct estimate of
the plasma potential than a conventional Langmuir probe but still requires
a measurement of Te. With a typical blob filament size on the order of a cm
and velocities on the order of km/s, microsecond time resolution is required
to track the evolution of the potential between and during filament events
[14]. The capability of the BPP to measure the plasma potential using a
DC, floating measurement allows sufficient time resolution to measure these
potential fluctuations [15].

The conventional BPP has a conical shaped collector, however, BPPs with
flat collectors have been employed on MAST [12] and CASTOR [16]. The
potential measurements from the CASTOR collectors were in good agree-
ment with a conventional BPP. Despite empirical confirmation of the BPPs
capabilities [1], [10],[17], [18], [19] the probe is lacking a model based on first
principles to confirm the collection mechanism. In experiments, electron and
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ion currents reach the probe even when the collector is recessed beyond an
ion Larmor radius. This was not predicted by the initial proposal for the
collection mechanism [10].

Presented in this paper are the results of 3D Particle-In-Cell simulations of
the flat BPP design, for a range of probe diameters and depths. The main aim
of this study is to determine if the BPP is capable of measuring the plasma
potential and gain insight into how particles travel down the tunnel, against
the magnetic field, to the probe collector. The paper will also investigate
the capability of the BPP, in conjunction with a floating Langmuir probe, to
make electron temperature measurements. These simulations were carried
out in three spatial and three velocity dimensions (3D3V), using VSim [20].
Collisions between ions and electrons are not included in these simulations
and secondary electron emission is not considered. The simulation model is
introduced in section 2 followed by a description of the transport mechanism
in section 3. The capability of the probe to measure the plasma potential
and electron temperature is explored in sections 4 and 5 respectively. The
paper then moves on to explain the effects of probe diameter in section 6.1.

2 The Simulation Model

The simulation model is fully three dimensional (3D3V). The simulation do-
main captures a region of the probe head, the entire BPP tunnel down to the
collector and a region of plasma above the probe at least four ion gyro-radii
in depth in order to capture the magnetic presheath (MPS). The simulation
domain is a cubic 3D Cartesian grid. The length of the domain varied for
different probe diameters and depths. Lengths ranged between 3.5→ 5 mm
for the x axis and 4.5→ 5.5 mm for the y and z axes. The collector lies in the
y-z plane at the bottom of the probe tunnel as illustrated in figure 1. At the
beginning of the simulation the plasma region is filled with a quasi-neutral
plasma, with velocities sampled from a Maxwellian distribution. The motion
of individual particles is tracked as they move due to self-consistent electric
fields and an imposed uniform magnetic field. Particles that hit the probe
structure deposit their charge to that location and are then deleted from the
system. A charge density and electrostatic potential evolve naturally, to a
steady state without imposing additional boundary conditions on the walls.
Particles are injected along the top plane of the simulation at x = 0 to re-
plenish those lost to the probe. The component of the velocity parallel to
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Magnetic field strength B 0.54 T
Magnetic field inclination θ 10◦

Plasma density n 6.5 × 1017m−3

Electron temperature Te 60 eV
Ion temperature Ti 60 eV

Ion Larmor radius ρi 1 mm
Electron Mass me 9.11× 10−31 kg

Ion Mass mi 900 me

Ion Charge Z 1.6× 10−19 C

Table 1: Typical plasma parameters used in the simulations of the BPP.

the magnetic field is sampled from the Emmert distribution [21]. The two
perpendicular components are sampled from Maxwellian distributions. The
y and z axis are periodic and the magnetic field makes an angle θ with the
y-axis. The plasma potential is fixed at the top of the simulation to be 0 V.

The plasma density and temperature, modelled in the simulations was re-
stricted by computational demands. Typical simulated parameters are shown
in table 1. These values are close to those found in the SOL of MAST [22],
however the simulated density is an order of magnitude lower than in ex-
periments. Each grid cell in the PIC simulation was half a Debye length to
prevent unphysical plasma heating in the simulations [23]. Increasing the
density reduces the required grid spacing and so more grid cells are needed
to simulate the same spatial region. To determine the effect of density, a se-
lection of comparison simulations were carried out with an increased density
of n = 1.0 × 1018m−3 which is more in line with MAST’s conditions. The
increased density had no significant effect on the simulation results and so
lower density simulations were run to produce the results presented in this
paper.
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Figure 1: On the left - The BPP simulation domain as viewed from above
looking along the x-axis. The collector sits at the bottom of the tunnel. On
the right - A cross-section of the domain. h is the recession depth.

BPPs in experiments are typically aligned such that the axis of the probe
tunnel is perpendicular to the magnetic field, however, perfect alignment is
rarely achieved. In these simulations, an angle θ was introduced as this was
necessary for the particle injection algorithm. The source function and rate
of injection required for perpendicular particle injection is not known. Sim-
ulations were carried out to determine the impact of θ. In these simulations
θ was varied from 5◦ → 15◦. Varying θ had no significant effect on the simu-
lation results. The results presented in this paper are for a value of θ = 10◦.
This value was chosen as it reduces the time it takes for the simulation to
reach a steady state compared to the 5◦ case.

Collisions between charged particles are neglected in these simulations.
The mean-free path (λ) for both electrons and ions significantly exceeds
the length of the simulation domain (≈ 5 mm) for the plasma parameters
used. From [24], using the stated simulated plasma parameters in table
1, λelectron = 7.2 cm and λion = 10 cm. As a result, particles can travel
across the simulation domain multiple times without experiencing a collision.
The simulation plasma consists of electrons and singly charged ions with
no neutrals or impurities present. Charge exchange collisions between ions
and neutrals are therefore neglected. Taking typical values for the MAST
SOL, the neutral species present is deuterium with a density of n = 1.0 ×
1019m−3 and energy of 2.2 eV. Under these conditions the mean-free path for
charge exchange interactions between the neutral atoms and the 60eV ions
is calculated to be 23.1 mm using reaction rates provided by Stangeby [25].
The ions are therefore able to traverse the simulation domain multiple times
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without experiencing a charge exchange collision. Plasma-surface interaction
effects such as secondary electron emission and sputtering have also been
neglected.

3 Transport Mechanism

Electrons and ions are observed to reach the collector in both experiments
[10] and the simulations even for collector recession depths beyond 2 ρi. This
observation implies that a cross-field transport mechanism is present driving
particles down the tunnel. In the bulk plasma, particles are born at the
top of the domain and travel along field lines towards the probe where they
will either encounter the top surface of the probe head or will enter the
tunnel. From the viewpoint of an observer looking along magnetic field lines,
the electron’s clockwise orbit takes them towards the left hand side of the
tunnel, whilst the anti-clockwise orbit of the ions takes them deep into the
right hand side. This results in an electric field across the tunnel of the probe
in the negative z direction. The potential structure within the probe tunnel
and the resulting electric field is shown in figure 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
z [mm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

x
 [

m
m

]

3.2

2.4

1.6

0.8

0.0

0.8

1.6

2.4

3.2

V [Te ]

B

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
z [mm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

x
 [

m
m

]

16000

12000

8000

4000

0

4000

8000

12000

16000

Ez [V/m]

B

Figure 2: On the left - cross section of the electric potential. On the right
- cross section of the resulting electric field in the z direction. Recession
depth, h = 1.1 mm. Particles follow the magnetic field lines into and out
of the plane shown. Their orbits can take them into contact with the walls,
running parallel to the magnetic field, resulting in the potential structure
shown.

The electric field in the z direction and magnetic field in the y direction
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results in an E x B drift that drives particles down the x-axis to the collector
(for directions of coordinate axes the reader is referred to figure 1). Although
the driving mechanism for the cross-field transport is the same for both
species, their trajectories down the tunnel are very different. Once in the
tunnel, particles will still continue to travel parallel to the field lines (along
the y-axis) towards the tunnel wall. If a particle comes into contact with the
tunnel wall it deposits it’s charge there and is lost from the simulation. In
terms of motion parallel to the field, electrons are the more mobile species
due to their low mass. As a result, a sheath forms in front of the floating
tunnel wall to retard the flow of electrons. Only the most energetic electrons
overcome this sheath potential to reach the wall. The less energetic electrons
will reflect off the sheath and travel towards the other side of the tunnel. At
the same time the electrons are driven down the tunnel due to the E x B
drift. As a result, the electrons follow an oscillatory path down the tunnel.
The trajectory of an electron, taken from the simulation, that reaches the
collector is shown in figure 3.
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Figure 3: The trajectory of electrons and ions in the x-y plane is shown
in green and blue respectively. Red lines show the walls of the probe. The
electron follows the field across the periodic simulation domain until it enters
the tunnel. Once in the tunnel the electron reflects back and forth due to the
sheath potential. Vertical lines represent the electron leaving the simulation
on one side of the periodic boundary and re-emerging on the other side. Ions
simply travel down the tunnel due to their orbit whilst travelling parallel to
the field. h = 1.1 mm.

The tunnel sheath acts to accelerate ions towards the wall so any ions
that enter the sheath will be lost to the walls and unable to make it to the
probe. Once entering the tunnel, an ion will continue its Larmor orbit whilst
travelling parallel to the magnetic field towards the wall. To be collected an
ion must have sufficient perpendicular velocity to make it to the probe before
it’s parallel velocity takes it to the wall i.e.(

h

v⊥

)
<

(
d

v‖

)
(3)

where h is the recession depth of the probe and d the tunnel diameter. Ions
that reach the probe collector have a higher perpendicular energy than paral-
lel energy when they enter the tunnel. Their perpendicular speed is increased
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in the tunnel due to the E x B drift. The Larmor radius of the ion must also
be sufficiently large so that the ion can reach the collector, i.e.

ρi ≥ h (4)

The contract in the collection mechanism for ions and electrons was pre-
dicted in [18]. The collection mechanism suggests that the proportion of the
electron population that can make it to the collector should not be sensi-
tive to the probe tunnel diameter. The electron parallel velocity will always
exceed the E x B drift velocity so electrons will encounter the wall sheath
multiple times before they are able to drift to the collector. On the other
hand, the collection of ions should be sensitive to the probe diameter. If the
probe is too narrow, ions will not have time to complete enough of their orbit
to make it to the collector before encountering the tunnel wall. The tunnel
must be sufficiently wide so as not to hinder the collection of the ions. This
is investigated in section 6.1.

4 Does the Probe Measure the Plasma Po-

tential?

In order to test the capability of the BPP to measure the plasma poten-
tial, simulations were carried out for a probe of diameter 3.2 mm and a
depth of 1.04 mm. A simulation was carried out with the probe operating in
floating mode to obtain a floating potential measurement (VBPP ). Further
simulations were carried out in order to determine R and αBPP . In these
simulations, the probe was biased positively and negatively with respect to
the plasma potential in order to determine I−sat and I+

sat respectively. It was
observed that the currents for both species did not saturate. This behaviour
has also been observed in experiments [26]. Following the method of [26],
it was necessary to carry out further simulations with different probe bias
voltages. The currents obtained at each voltage could then be extrapolated
to obtain the value of R at the plasma potential.

The saturation currents increase linearly with probe bias, therefore it was
possible to estimate R by linearly interpolating both currents to the plasma
potential and defining their saturation values to be at this point. The values
for the currents give R = 3.02 corresponding to a value αBPP = 1.1. These
values are higher than what is typically observed in experiments where αBPP
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is in the range
αBPP = 0.6± 0.3 (5)

However, these estimates were obtained using probes of at least 4 mm in
diameter. In section 6.1, it is shown that a larger probe size reduces R closer
to the value measured in experiments. Nevertheless, if it can be demonstrated
that the BPP floats at a potential offset from the plasma potential by the
product of TeαBPP then the BPP mechanism will be validated. Shown in
figure 4 is a plot of the potential across the simulation domain along the
x-axis. The potential at each point represents the average potential across a
circular cross-section centered over the BPP collector. The plasma potential
is defined as the value at the top of the domain, where the profile is flat
before the magnetic presheath (MPS) potential drop. The probe is found
to float at a potential of −69 V relative to plasma potential. Based on the
values of αBPP and Te = 60 eV, equation 1 predicts the plasma potential
should be −3.8 V. This is very close to the value for the plasma potential in
the simulation (0 V). The BPP will therefore float at a potential offset from
the plasma potential by a factor of TeαBPP . An αBPP = 0 would be required
for the BPP to truly float at the plasma potential.

Simulations were carried out with an increased electron and ion tempera-
ture of 120 eV to determine if particle temperature had an impact on αBPP .
As before, multiple simulations were carried out for different probe bias volt-
ages so that αBPP could be measured by interpolating the currents. For these
runs, a value of αBPP = 1.38 was observed, which is not significantly higher
than the value found for Te = 60 eV (αBPP = 1.1). It does not appear that
the temperature strongly effects the operation of the BPP over the range of
60eV ≤ Te ≤ 120eV considered in this study.

5 Can the probe be used to make Tempera-

ture measurements?

A combination of a BPP and a Langmuir probe can provide fast measure-
ments of the electron temperature using a floating potential from each probe.
By rearranging equation 1 for a Langmuir probe and a BPP we obtain

Te =
VBPP − VLP

αLP − αBPP

(6)
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Figure 4: The plasma potential across the simulation domain, the dashed
line shows the location of the BPP tunnel entrance.

This has yielded excellent agreement with Thomson scattering data on mul-
tiple tokamak experiments [27], [18]. For a planar Langmuir probe

αLP = −1

2
ln
(

2π
me

mi

(
1 +

Ti

Te

))
(7)

The BPP-LP method, using two DC measurements, then offers better time
resolution compared to extracting Te from the I - V curve of a Langmuir
probe.

Additional simulations were carried out in order to test the capability of
the BPP-LP pair to make electron temperature measurements. The BPP
was replaced with a flush-mounted probe (FMP) and operated in floating
mode to obtain VLP . As discussed previously in section 4, αBPP and VBPP

have already been measured. As in experiments, our simulations are not
capable of measuring αLP . In magnetised plasma the collection length of
the probe operating in electron collection mode can extend very far into the
plasma. It is not possible to capture this region in our simulation domain
and so it is not possible to collect I−sat. Following experimental procedure we
will therefore use the theoretical value for αLP provided by equation 7.

12



As before, results are stated for the 3mm diameter probe with an electron
temperature of 60eV . The FMP is found to float at a potential VLP = −129
V. Combining this with αBPP = 1.1, VBPP = −69 V and the theoretical
value of αLP = 2.14 for the reduced ion mass we obtain a value of Te = 58.3
eV which is in very good agreement with the specified temperature. This
method is a viable way of making fast electron temperature measurements
provided αBPP is known. The measurement of Te can be combined with
VBPP to determine the true plasma potential.

6 Ball-Pen Probe Design Considerations

6.1 Effects of Probe Diameter

In order to investigate the effects of probe diameter, three probes of different
width were simulated. The probe diameters were a) 1.08 mm, b) 2.16 mm
and c) 3.24 mm. All probes were recessed to the same depth of 1.04 mm.
The ion Larmor radius in the simulations was ρi = 1.02 mm. For each probe
diameter, three simulations were carried out: one with the probe operating in
floating mode and two biased cases where the collector was in ion collection
and electron collection mode. The floating potential of the collectors is shown
in figure 5 along with the measured value of R. The ratios presented were
obtained by dividing one current for each species. A linear interpolation has
not been carried out so the true value of R is not known. The values are
presented here as they demonstrate the effects of probe diameter on BPP
measurements even if their absolute value is not correct.
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Figure 5: The potential structure across the simulation domain. The floating
potential of the probe varies with tunnel diameter as does the value of R. The
potential structure near x = 0 is a result of the source sheath, an artefact of
particle injection in this region.

With increasing width, a lower ratio R and a less negative value for VBPP

is observed. Beginning with the ions we find the current per unit area in-
creases as the diameter increases. This is consistent with the collection mech-
anism: with a wider probe, ions have more time to reach the probe before
their parallel motion brings them to a tunnel wall, therefore a higher propor-
tion of the ion population reaches the probe. The electron current per unit
area remains approximately constant with increasing probe diameter.

In order to allow a direct comparison with experiments, a set of simula-
tions with a probe diameter of 4 mm and depth of 1 mm were carried out
using a realistic ion mass and a field strength of 1.3 T, equivalent to the
conditions used by Adámek et al in [10]. The following measurements were
obtained.

R = 2.8 αBPP = 1.04 VBPP = −67.6V (8)

which are in good agreement with equation 1. However, the value for αBPP

obtained in the simulations is outside the accepted range derived from exper-
iments given in equation 5. This range is obtained using conical collectors
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where as the simulated probe was flat. The effects of BPP diameter were
investigated on the linear plasma device Mirabelle [28]. However, due to the
low magnetic field strength used in the experiments, the electron Larmor
radius was comparable to the tunnel diameter. This regime of operation
has not been considered in this paper. To the authors knowledge, an exper-
imental comparison of the influence of probe diameter on the value R, for
fusion relevant plasmas, has not been reported. However, in [16], three BPPs
with a flat collector were placed into the edge region of CASTOR together
with a BPP with a conical collector to make simultaneous measurements of
the plasma potential. The flat collector probes were of different diameter:
1 mm, 2 mm and 4 mm and the conical collector had a diameter of 2 mm.
The authors concluded that the diameter was not a critical construction pa-
rameter but differences in the value of the measured plasma potential were
observed. Values for R were not reported. Differences in the plasma poten-
tial measurements were attributed to a misalignment of the probes with the
magnetic field. However, in the region of minimal curvature of the poloidal
field, where the misalignment was lowest, it was found that the floating po-
tential of the flat collector probes increased with probe diameter. If the
floating potential of the probe varied with probe diameter, this could indi-
cate that the value of R also changes with probe diameter. Out of the four
probes, the 2mm conical BPP was consistently found to float at the highest
potential. This would suggest a smaller diameter conical BPP can achieve
the same ratio R as a larger, flat collector BPP. The differences in potential
measured in experiment were not as extreme as the differences found in the
simulations. However, in the simulations, Te = 60 eV compared with Te =
20 eV in this experiment. This does not effect the capability of either probe
to make plasma potential or electron temperature measurements, provided
αBPP is known for the probe that is employed.

6.2 Effect of Probe Recession

In the experiment described in [10] it was found that the value of R reached
a minimum when the probe was recessed 0.5mm (1ρi). Once the probe was
recessed beyond this depth, the value of R increased. Simulations have been
carried out to test the sensitivity of R on collector recession and have found
a similar trend. Both electron and ion currents to the probe decrease as the
probe is recessed deeper into the tunnel, as more particles are absorbed by
the tunnel walls. However, the electron current decreases less strongly than
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the ion current as electrons can reflect off the sheath formed along the interior
walls of the probe while being driven towards the collector by E x B drifts.
The reduced electron current is a result of the potential on the tunnel wall
decreasing with depth into the tunnel, i.e. it becomes closer to the plasma
potential. As a result, less of the electron population will be reflected by the
weaker sheath potential. Increasing the probe depth makes it more likely
that an ion’s parallel velocity will take it into a tunnel wall before it can
make it down to the collector. It appears that as long as the BPP is recessed
beyond a few ρe the electrons become magnetically shielded and can only
access the collector with E x B drifts. The probe then operates as a BPP.
As long as this criteria is met and the probe depth is fixed with known αBPP

the probe depth is not thought to be an important parameter. However,
beyond a certain depth, most ions will be absorbed before making it to the
collector and the measurements will become dominated by noise. Simulations
and experiments suggest a depth of 1 mm is sufficient for tokamak plasma
conditions in order to reduce αBPP .

7 Conclusions

3D3V PIC simulations have verified that the BPP measures a potential offset
from the plasma potential by a factor TeαBPP . BPPs in practice have ob-
tained values as low as αBPP = 0.6. For electron temperatures on the order
of 10 eV, the difference between the floating potential of the BPP and the
plasma potential will then be several volts. By simulating both an LP and a
BPP the source temperature for the electrons was recovered, validating the
BPP-LP method for making fast electron temperature measurements.

The mechanism that allows electrons to reach the collector even when
it is recessed far beyond their Larmor radius has been confirmed. Inside
the tunnel, electrons oscillate along field lines, reflected by the wall sheaths,
whilst simultaneously undergoing E x B drift motion towards the collector.
This mechanism suggests probe diameter could be an important construction
parameter. Further experimental measurements are needed to verify this.
Probe depth is not an important consideration, provided the collector is
recessed sufficiently such that the electrons are magnetically shielded from the
collector. It was found that recessing the probe a depth greater than several
ρe is sufficient. The voltage applied to a BPP should be swept initially in
experiments to measure αBPP . Once this value is acquired it is then possible
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to use the BPP to extract the electron temperature and plasma potential.
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[15] J. J. Adámek, J. Horacek, V. Rohde, H. Müller, C. Ionita, R. Schrit-
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