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When a droplet of water impacts a heated surface, the drop may be observed to bounce. Recently
is has been found that small quantities (∼100 ppm) of polymer additives such as polyethylene oxide
(PEO) can significantly increase the maximum bouncing height of drops. This effect has been
explained in terms of the reduction of energy dissipation caused by polymer additives during the
drop retraction and rebound, resulting in higher mechanical energy available for bouncing. Here
we demonstrate, by comparing three types of fluids (Newtonian, shear-thinning and viscoelastic),
that the total kinetic energy carried by low-viscosity Newtonian drops during retraction is partly
transformed into rotational kinetic energy rather than dissipated when compared with high-viscosity
or non-Newtonian drops. We also show that non-Newtonian effects play little role in the energy
distribution during drop impact while the main effect is due to the symmetry break observed during
the retraction of low viscosity drops.

PACS numbers: 47.55.D-, 47.50.-d, 47.80.Jk

When a liquid droplet impacts on a high-temperature
surface, one may observe bouncing back of the droplet
off the surface due to the creation of a thin vapour
film between the drop and surface upon impact. This
phenomenon is known as ”dynamic Leidenfrost phe-
nomenon” [1–3], and is encountered in various industrial
applications including spray cooling, fire suffocation [4]
and spray quenching [5]. So far research efforts to under-
stand the Leidenfrost phenomenon were mainly focused
on Newtonian fluids such as water [6, 7]. However, there
is a growing interest in non-Newtonian drops because of
their role in food, cosmetics, and biopharmaceutical in-
dustries, among others. Thus a better understanding of
Leidenfrost drop impact behaviours of both Newtonian
and non-Newtonian fluids and the physical mechanisms
behind them is necessary to improve such industrial pro-
cesses.

The impact morphology of Leidenfrost drops is rela-
tively simple: upon impact, the drop spreads over the
vapor film in a short time (about 5 ms); after maximum
spreading, two different outcomes are possible depending
on the impact velocity, the fluid properties, and the sur-
face temperature. For high impact kinetic energies, the
drop will disintegrate into smaller droplets; otherwise, it
will recoil under the action of surface forces, to minimize
the surface energy, and eventually bounce off the surface
if there is sufficient kinetic energy at the end of the recoil.
The drop impact dynamics is characterised by competi-
tion between inertial and capillary forces, represented by
the dimensionless Weber number We = ρv2zD0/σ, where ρ
is the fluid density, vz denotes the vertical impact veloc-
ity, and D0 denotes the equilibrium drop diameter prior
to impact. However drops of viscous fluids can dissipate
rather than convert most of their kinetic energy on im-
pact. To account for viscous effects, one can introduce
the Reynolds number Re = ρvzD0/µ, representing the ra-
tio of inertial to viscous forces, and the Ohnesorge num-

ber Oh =
√

We/Re, representing the ratio of viscous to
capillary forces, where µ is the shear viscosity of the fluid.
Rebound is eased by the vapour film [8], which acts as
a lubricant layer, reducing frictional energy dissipation
both during the initial inertial spreading of the drop and
the following recoil. Since the liquid is not in contact
with the surface, bouncing Leidenfrost drops represent a
unique model system to investigate the dynamics of drop
impact independently of wetting and contact angle hys-
teresis [9, 10]. In particular, the energy dissipation dur-
ing the whole impact process and rebound can be easily
calculated as the difference between the gravity potential
energies of the drop when it is released at its initial po-
sition above the target surface and when it reaches the
maximum bouncing height.

Recently, it has been found that small quantities (∼100
ppm) of polymer additives such as polyethylene oxide
(PEO) can significantly increase the maximum bouncing
height of drops at relatively high Weber numbers (We
∼100) [10–12]. It has been suggested that this effect may
be due to a reduction of energy dissipation during the
drop retraction and rebound, resulting in higher mechan-
ical energy for bouncing in the case of non-Newtonian
drops. This is surprising because the apparent shear vis-
cosity of a polymer solution is higher than that of the sol-
vent. However, it was also observed that the retraction
velocity of non-Newtonian drops is of the same order of
magnitude as water drops [10]; if there was significant re-
duction of energy dissipation during the retraction stage,
one would expect to see an increased velocity.

In the present work, we show that frictional energy
dissipation and non-Newtonian effects do not explain the
higher rebounds observed in polymer solutions, but the
bouncing height differences are likely to be caused by
a redistribution of mechanical energy among the differ-
ent degrees of freedom of the drop. Our experimental
results enable us to find a reasonable physical mecha-
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nism which explains why low-viscosity Newtonian drops
bounce much lower than high-viscosity Newtonian or
non-Newtonian drops in Leidenfrost regime. This is
achieved by comparing the virtual maximum bouncing
height (calculated by transforming rotational kinetic en-
ergy into additional potential energy) of low-viscosity
Newtonian drops with the maximum bouncing height
of high-viscosity Newtonian and non-Newtonian drops
with the same rheology. Top view images of the re-
tracting droplet show ”fingers” developing on the rim
surrounding the lamella, which may coalesce to create
non-axisymmetric flow, resulting into a rotation of low-
viscosity Newtonian drops at high impact We numbers.

FIG. 1. Flow curves of the model fluids measured with an
MCR302 rheometer (Anton Paar) equipped with a cone-plate
geometry (75 mm diameter; 2○ angle): # 100 ppm XG, ▲ 80
ppm PAA, 2 400 ppm XG and  300 ppm PAA. Solid lines
represent the Carreau-Yasuda model fit curves of the aver-
age values of measured XG and PAA data. Dashed lines and
dot-dashed lines indicate the constant viscosities of GLY with
infinite-shear viscosity and GLY with zero-shear viscosity, re-
spectively.

To disentangle different non-Newtonian effects, model
fluids with different rheological behaviour (Newto-
nian, shear-thinning, and viscoelastic) were prepared
by dissolving in de-ionised water (Barnstead Easy-

pure) glycerol (ρ = 1250 kg/m
3
) , xanthan gum (ρ =

1500kg/m
3
; average MW = 4×106-12×106Da) and poly-

acrylamide (ρ = 1130kg/m
3
; average MW = 27×106Da),

respectively. Whilst xanthan gum (XG) solutions are
purely shear-thinning, polyacrylamide (PAA) solutions
exhibit both shear-thinning and viscoelastic behaviours;
to isolate viscoelastic effects, polymer concentrations
were adjusted to obtain fluids with matching flow curves,
as shown in Fig. 1. Flow curves were fitted with the
Carreau-Yasuda model, to obtain the values of the zero-

shear viscosity (µ0) and infinite-shear viscosity (µ∞):

µCY = µ∞ + (µ0 − µ∞)/[1 + (λCY ⋅ γ)
a
]
n/a. (1)

Finally, Newtonian glycerol solutions (GLY) were pre-
pared with viscosities equal to the zero-shear viscosity
(µ0) and infinite-shear viscosity (µ∞) of the correspond-
ing XG and PAA solutions.

In the case of Leidenfrost drops, the vapour film be-
tween the drop and the surface removes the no-slip
boundary condition, therefore the velocity gradient in the
vertical direction is likely to be very small. As a conse-
quence, the rate of shear will be small, and the relevant
part of the flow curves will be near the zero-shear-rate.

Drops with an equilibrium diameter of ∼3 mm were
generated using a blunt hypodermic (gauge 21, i.d. 0.495
mm) and impacted on a polished aluminium surface, kept
at the temperature of 400○C. Temperature could be con-
trolled within ±1○C by a PID controller driven by a K-
thermocouple placed 1 mm below the point of impact.
This temperature is high enough to keep the vapour film
stable and avoid the formation of secondary droplets [13].
Adjusting the position of the dispensing needle with a
digital height gauge allowed changing the impact velocity
hence the impact Weber number. A detailed description
of the experimental setup can be found in [10].

Figure 2 displays the normalised maximum bouncing
height of XG, PAA and the matching GLY drops as a
function of the impact Weber number. The maximum
bouncing height (Hmax) denotes the maximum height
reached by the drop centre of mass during rebound. Un-
der certain conditions satellite drop(s) may be created
during rebound (see Fig. 3 (A)), therefore the corre-
sponding reported data in Fig. 2 were corrected by taking
the kinetic energy of satellite drop(s) into account. As
shown in Fig. 2 (A), the maximum bouncing heights of
100 ppm XG, 80 ppm PAA and GLY with zero-shear vis-
cosity drops are almost consistent in the considered We-
ber number range. It can also be observed that the max-
imum bouncing height tends to reach a constant value
at high Weber numbers for these three fluids. However,
the maximum bouncing height of GLY with infinite-shear
viscosity drops starts to decrease at a critical Weber num-
ber ∼30. Coincidentally, this feature can also be seen in
a higher concentration case with the same critical Weber
number as shown in Fig. 2 (B). One may conclude that
the GLY with infinite-shear viscosity drops (i.e., those
with the lowest viscosity) are subjected to large energy
dissipation during impact, which leads to less potential
energy restored when reaching maximum height.

Interestingly, the bouncing drops of glycerol with
infinite-shear viscosity were observed to ”somersault” be-
yond this critical Weber number (∼30) and no distinct
rotational motion can be observed below this critical We-
ber number for all types of drops. Figure 3 (A) shows
the rebound morphology of Leidenfrost drops of different
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FIG. 2. Maximum bouncing height of the drops normalised
with respect to the equilibrium drop diameter of model fluids
as a function of the impact Weber number: (A) ◯ 100 ppm
XG, ◇ 80 ppm PAA ,▲ GLY with infinite-shear viscosity
and ∎ GLY with zero-shear viscosity; (B) ◯ 400 ppm XG,
◇ 300 ppm PAA, ▲ GLY with infinite-shear viscosity and
∎ GLY with zero-shear viscosity.

model fluids at We ≈ 70. It can be clearly seen that the
GLY with infinite-shear viscosity drops rotate during re-
bound, while drops of the other three model fluids exhibit
only symmetric oscillations in the direction of rebound
(see supplementary video 1 (DOI: 10.1039/b000000x/)
for a non-rotating drop and supplementary video 2 (DOI:
10.1039/b000000x/) for a rotating drop, respectively).
The dashed red lines parallel to the stretching direction
of the drops in the first row of images in Figure 3 (A) ap-
proximately represent the transient vibrational direction
of the bouncing drops while the vibrational directions of
other three types of drops remain almost vertical. Thus,
the angular velocity of the rotating drops can be roughly
estimated as the ratio of the angle of rotation in two im-
ages over the time between the images: ω = ∆θ/∆t. In
general, this introduces an error because the rotation an-

gle is measured in the plane of the field of view, while
the actual rotation occurs in a three-dimensional space;
however, the error can be removed provided the rotation
angle is measured taking reference points on the axes of
an orthogonal Cartesian coordinate system (for example,
the angle corresponding to one revolution, ∆θ = 2π, re-
mains the same for any reciprocal position of the rotation
plane and the field of view). Thus, there is only one case
where the angular velocity is not measurable, that is,
when the rotation is exactly in the plane perpendicular
to the field of view.

The calculated values of mean angular velocities of
infinite-viscosity GLY drops are displayed in Fig. 4 for
Weber numbers beyond ∼30 (critical We). The overall re-
sult of this complex oscillation dynamics is that the drop
centre of mass does not move along the same vertical
trajectory during drop rebound, but combines the verti-
cal, ascending movement with a rotational movement of
smaller amplitude. The energy associated with the drop
dynamics must be independent of the reference frame;
thus, we estimate this energy in a reference frame moving
with the drop centre of mass, as if the drop was rotating
instead of oscillating. In order to estimate the rotational
kinetic energy of the tumbling drops we use the moment
of inertia of a solid cylinder as an approximation, al-
though the shape of the bouncing drop is changing due
to vibration:

I =m(

R2

4
+

l2

12
) =

1

72
πρD5

0 (

1 + 2k3

2k
) . (2)

where l = kD0 is the cylinder length, measured from im-
ages, and R is the cylinder radius, calculated imposing
volume conservation. By inserting the moment of inertia
into Equation 2 the rotational kinetic energy can then be
expressed as:

Erot =
1

2
Iω2
=

1

144
πρω2D5

0 (

1 + 2k3

2k
) . (3)

The increment in maximum bouncing height (normalised
with respect to the equilibrium drop diameter) if all the
rotational kinetic energy was converted into potential en-
ergy can be written as:

∆h

D0
=

Erot

mgD0
=

D0ω
2

24g
(

1 + 2k3

2k
) , (4)

where ω denotes the mean angular velocity, and g the
gravity acceleration.

If ∆h/D0 defined by Equation 4 is added to the original
maximum bouncing height data of the infinite-viscosity
GLY drops for Weber numbers higher than ∼30, a new
graph which displays the normalised maximum bouncing
height of XG, PAA and the matching GLY drops with
respect to the equilibrium drop diameter as a function of
the impact Weber number can be plotted (see Fig. 4).
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FIG. 3. (A) Rebound morphology of Leidenfrost drops of different model fluids at We ≈ 70. The time between two consecutive
images is 5 ms; (B) Spreading and retracting morphology of Leidenfrost drops of different model fluids at We ≈ 70. The time
between two consecutive images is 1 ms.

It is important to observe that the measured angu-
lar velocities are in quantitative agreement with the
shape oscillation frequencies reported in [12], which con-
firms that the drop rotation in the relative coordi-
nate system corresponds to non-symmetric drop oscilla-
tions/deformations in a fixed reference frame.

The fact the ”virtual maximum bouncing height” of
infinite-viscosity GLY drops are consistent with mea-
sured maximum bouncing height of other types of drops
indicates that the total kinetic energy carried by low-
viscosity Newtonian drops during retraction is only
partly transformed into rotational kinetic energy rather
than dissipated. The small difference of maximum
bouncing height between Newtonian and non-Newtonian
drops in Fig. 4 (B) implies that non-Newtonian effects
play little role in the energy distribution.

To investigate the physical mechanism of symmetry
break (i.e., why some drops exhibit symmetric oscilla-
tions during rebound, and others do not), the high-speed
camera was inclined with respect to the impact surface
with an angle of ∼ 20○ in order to view the morphology
of spreading and retracting drop from the top (see Fig. 3
(B)). One can observe distinct finger-like protrusions on
the rim in the case of GLY with infinite-shear viscosity
drops at Weber numbers beyond ∼30, which indicate the
onset of the well-known rim instability eventually lead-
ing to splashing. Similar disturbances on the rim are also
observed for drop impact onto a solid surface [14] and, as
it is well-known, they become more pronounced in case
of low-viscosity fluids [14, 15]. These protrusions grow
during the inertial spreading stage, and form an axisym-
metric crown at maximum spreading; however, at the on-
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FIG. 4. Maximum bouncing height (modified data for GLY
with infinite-shear viscosity) of the drops normalised with re-
spect to the equilibrium drop diameter of model fluids as a
function of the impact Weber number: (A) ◯ 100 ppm XG,
◇ 80 ppm PAA ,▲ GLY with infinite-shear viscosity and
∎ GLY with zero-shear viscosity; (B) ◯ 400 ppm XG, ◇
300 ppm PAA, ▲ GLY with infinite-shear viscosity and ∎
GLY with zero-shear viscosity. Error bars represent the mean
square value of the errors on the centre of mass height and on
the virtual lengths obtained from Eq. 4.

set of recoil one can observe that some of the protrusions
coalesce to create bigger fingers during retraction, while
others do not. This is likely to be caused by another in-
stability of the rim, which can be modelled as a toroidal
ring subject to radial compression. Thus, the mass dis-
tribution in the retracting droplet becomes non-uniform,
which induces asymmetries both in the drop shape and in
the internal flows, and eventually causes the drop to ro-
tate during rebound. (see supplementary video 3 (DOI:
10.1039/b000000x/) for the generation of asymmetry).

In conclusion, our work demonstrates that the to-
tal kinetic energy carried by low-viscosity Newtonian

drops during retraction is partly transformed into rota-
tional kinetic energy rather than dissipated when com-
pared with high-viscosity or non-Newtonian drops. By
comparing the virtual maximum bouncing height (cal-
culated by transforming rotational kinetic energy into
extra potential energy) and top view images in retrac-
tion phase of low-viscosity Newtonian drops with those of
high-viscosity Newtonian and non-Newtonian drops, we
showed that the ”somersault” effect is due to the symme-
try break observed during the retraction of low viscosity
drops.

NOTE - As the present work was under peer review,
we became aware of a very recent paper where a very
similar approach is used to investigate drop tumbling on
an inclined plate [16]; this paper also includes Lattice
Boltzmann simulations showing that tumbling is due to
the internal angular velocity of the fluid, which justifies
the analogy with a tumbling solid body.
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