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ABSTRACT 
 
This paper presents probabilistic analysis of structural capacity of pre-stressed concrete containments 
subjected to internal pressure. The conventional design methods for containments are based on allowable 
stress codes which ensure certain factor of safety between expected load and expected structural strength. 
Such an approach may give different values of structural reliability in different situations. In recent years, 
two international round robin exercises have been conducted aimed at predicting the capacity of lined and 
unlined pre-stressed concrete containments used in nuclear industry. These exercises involved 
experimental testing and numerical analysis of the models. The first exercise involved ¼ scale steel-lined 
Pre-stressed Concrete Containment Vessel (PCCV) which was tested at Sandia National Laboratories 
(SNL) in USA. The second used an unlined containment being tested by the Bhabha Atomic Research 
Centre (BARC), Tarapur, India. These studies are essentially deterministic studies that have helped 
validate the analysis methodology and modelling techniques that can be used to predict pre-stressed 
concrete containment capacity and failure modes. The paper uses these two examples to apply structural 
reliability method to estimate the probability of failure of the containment. 

 
The two international round robin exercises have already established the ultimate structural collapse mode 
of the containments under internal pressure loading which indicate that the failure takes place in the 
general field of the containment wall around mid-height and away from any major structural 
discontinuities like the penetrations. This is because robust design procedures have been used to avoid 
structural failure at discontinuities by providing adequate compensation. Based on these experimental 
studies and the attendant numerical analyses a failure function is presented that assumes first yielding in 
the hoop direction at mid-height of the cylinder wall. A failure function equating the free-field membrane 
hoop stress to the hoop strength as a function of cross-sectional area (per unit height) and yield stresses of 
concrete, rebar, liner plate and tendons is developed. 
 
First Order Reliability Method (FORM) is applied to predict probability of failure of the containments. 
Probability of failure vs internal pressure is presented for both types of containments. The paper presents 
a simple method to establish structural reliability of a pre-stressed concrete containment which can be 
useful for probabilistic safety assessment when considering extreme events that lead to over-
pressurisation of the containment. The FORM approach was validated by comparison to the results of 
analogous calculations using Subset Simulation and Importance Sampling techniques for Monte Carlo 
simulation. It was found that at high pressures the Advanced FORM approach yields a good 
approximation to the true probability of failure.  
 
The sensitivity of the probability of failure to the assumed coefficients of variation of properties of the 
containment was studied using the Sobol and Total Effects Indices. At design pressure it was found that 
the coefficients of variation of the tendon yield and tendon area are the most important parameters 
followed by the applied pressure and containment radius. At higher pressures it was found that the 
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coefficients of variation of the applied pressure and containment radius are the most important 
parameters. The variability of the probability of failure is decreased at higher pressures, but the 
coefficients of variation still play an important role. 
 
KEYWORDS 
 
Concrete containment, structural reliability, containment capacity, probabilistic safety assessment, 
fragility, sensitivity analysis, coefficient of variation. 
 
INTRODUCTION 
 
A pre-stressed concrete containment is an important safety related structure as it acts as one of the final 
barriers to radioactive release. These structures are normally designed in accordance with the allowable 
stress codes to sustain the specified loading conditions. However, the compliance with the industry 
standard allowable stress codes does not give any reliable indication of the probability of failure (Pf) if the 
containment is over-pressurised under postulated beyond design basis events. In the past few years, two 
international round robin exercises have been conducted which have provided valuable test data related to 
failure under over-pressurisation. The first exercise involved the numerical analysis of the ¼ scale steel-
lined Pre-stressed Concrete Containment Vessel (PCCV) with design pressure (Pd) of 0.39MPa which 
was tested at Sandia National Laboratories (SNL) in USA and has been analysed by Prinja and Shepherd 
(2003). The second exercise involved the unlined Bhabha Atomic Research Centre (BARC) Containment 
test model (BARCOM) with Pd of 0.1413 MPa that is being tested by the BARC in Tarapur, India and 
has been analysed by Kamatam and Prinja (2011). These studies are essentially deterministic studies that 
have helped validate the analysis methodology and modelling techniques that can be used to predict pre-
stressed concrete containment capacity and failure modes. Such deterministic analytical and experimental 
studies have helped to establish the mode of failure but do not give any indication of Pf. Furthermore, the 
conventional allowable stress codes used to design such containments also do not provide Pf information. 
The aim of this paper is to present a simple method to establish structural reliability of a pre-stressed 
concrete containment which can be useful for probabilistic safety assessment when considering over-
pressurisation under extreme events. 
 
The method used to perform the analysis was Advanced FORM, a computationally efficient approximate 
method. In addition, Sensitivity Analysis was used in order to justify some arbitrary parameters used in 
the structural reliability analysis. Sensitivity Analysis is the process of attributing the uncertainty in the 
output of a mathematical model to the different sources of uncertainty in its inputs. In this paper we 
determine the sensitivity of the probability of failure of a concrete containment vessel to the assumed 
coefficients of variation of input parameters to the structural reliability analysis. These input parameters 
are physical properties of the containment. Before the sensitivity analysis was completed, the FORM 
method was validated for the containment at the design pressure and at 5.4 times the design pressure to 
provide an indication of the credibility of the FORM. This calculation was performed by comparing the 
results from the FORM to the true value of the probability of failure obtained from Subset Simulation and 
Importance Sampling as it was found that the failure probability was too small to be evaluated in a short 
time using standard Monte Carlo simulation. Once this was completed the parameters whose variance had 
the greatest contribution to the variance of the output were determined using the Sobol and Total Effects 
indices, and the effect on Pf of varying these parameters was considered in greater detail. 

 
FAILURE MODE 

 
Both SNL and BARCOM tests have shown that the collapse of the containment structure subjected to 
internal pressure is not expected to occur soon after the design pressure is exceeded. There is no ‘cliff 
edge’ but a gradual progressive damage of the containment structure under over-pressurisation which 
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indicates safety margin against collapse. The structure may suffer local failures leading to functional 
failure well before the ultimate structural collapse. The experiments and the attendant numerical analyses 
have established the ultimate structural collapse mode of the containments under internal pressure loading 
which indicates that the failure takes place in the general field of the containment wall around mid-height 
and away from any major structural discontinuities like the penetrations. This is because robust design 
procedures have been used that provide adequate compensation and local strengthening to avoid structural 
failure at discontinuities. Based on these experimental studies and the attendant numerical analyses a 
failure function is presented that assumes first yielding in the hoop direction at mid-height of the cylinder 
wall. 
 
In the case of the SNL model shown in Figure 1, the failure location at applied pressure (P) of 3.65 Pd 
was accurately predicted by the computational model at mid-height of the cylinder in the general area 
away from the buttress and main penetrations. The BARCOM model is also predicted to fail at mid-
height of the cylinder wall as indicated in the deformed shape shown in Figure 2.  

 
Load-deflection curve obtained from the test is compared against that predicted by analysis for the SNL 
model in Figure 3 at location 14 near the failure location. Note that in the test the internal pressure is 
released soon after the break but in the analysis the pressure is maintained. The SNL model failed at 
P/Pd=3.65 in test and was predicted to fail at P/Pd=3.35 in the analysis. 

 
 
FAILURE FUNCTION 
 
Failure of a containment structure is dictated by the strain levels experienced by the tendons, rebars and 
the liner following the tensile cracking of the concrete. The first membrane yield is expected to occur in 
the  
hoop direction in the cylinder wall. If the failure state is defined as the tensile cracking of the concrete and 
yielding of the tendons, rebars and the liner, then the internal pressure at a specific deformed shape is 
given by: 

! =
#

$
((&' ∗ )' + &+ ∗ )+ + &, ∗ ), + &- ∗ )-)																																												(1)        

 
Where As, Ac, Al, At are cross-sectional areas of the rebar steel, concrete, liner plate and tendons 
respectively given as area per unit height of the cylinder wall. Fs, Fl and Ft are yield stress of rebar steel, 
liner plate and tendons respectively and Fc is the tensile strength of the concrete. R is the mid-radius of 
the cylinder wall. 

 
The failure function 'g' can be written as: 

1 = !2 − (&' ∗ )' + &+ ∗ )+ + &, ∗ ), + &- ∗ )-)																																													(2)   
 

FORM Analysis 
 

If Z is a function of many basic variables then Z = g(x1, x2,……. xn) = 0 can be written using Taylor series 
as: 
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The mean μZ and standard deviation σZ of Z are given as: 
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The reliability index, β is given by 

Z

Z

s
µb = with probability of failure, )( bf -=fP  and reliability, )(1 bf --=R     (7) 

where f is the standardised cumulative normal distribution. 
 
In structural reliability, eqn (2) can also be written in terms of load (L) and strength (S) terms as follows: 

 
Z = g(x1, x2,……. xn) = S – L                                                                                           (8) 

where S= (&' ∗ )' + &+ ∗ )+ + &, ∗ ), + &- ∗ )-) and L= PR 
 
If µS and µL are mean values and VS and VL are coefficient of variation (CoV) of the strength and the load 
terms (S and L) respectively, then the reliability index, β can be written in terms of Central Factor of 
Safety (η) defined as the ratio of the mean values of S and L terms (η= µS / µL ) : 
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The above equation has been used to obtain Pf for various values of the Central Factor of Safety assuming 
that CoV of both load and strength terms are equal. Figure 4 shows the Pf vs η plots for CoV of 0.1 and 
0.2. It can be seen that when VS = VL, the probability of failure is 50% when the load term equals the 
strength term. 

 
 
Advanced FORM Analysis 
 
The failure function of the containment structure given in eqn (2) has ten variables. When all ten variables 
are used, the failure function becomes nonlinear and advanced FORM analysis is used following the 
iterative algorithm recommend by Rackwitz (1976):- 

 
1. Guess an initial value of 5 typically starting with 5 =3 
2. Set 67∗ = 87 for all i. All variables set to their respective mean value μ at the start. 
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3. Compute partial derivative of 91
96:

 also known as ai for all i at  6 = 6∗  

 
4. Compute Sensitivity factors, ∝7=

<=∗>=

( (<?∗>?)@
?AB
?AC

 

5. Compute new 6∗ values using 67∗ = 87 − D75E7  
6. Repeat step 3 to 5 to get stable values of all 6∗ 
7. Evaluate F = 1(6#

∗,, 6H
∗,, …… , 6J

∗,) 

8. Evaluate KL
KM

 using  KL
KM
= −N7 ∗∝7∗ E7 

9.  5JOP = 5Q,K − RJ
KL

KM
 

10. Compute modified design values 67∗ = 87 − D75E7  
11. Repeat steps 3 to 11 till stable value of β is achieved. 
12. Calculate probability of failure, 		!S = T(−5) 

 
PROBABILITY OF FAILURE CALCULATIONS 
 
The cross-sectional area properties were obtained from the geometric data as follows:- 
 
Steel	rebar	area/unit	height, Ac = nc ∗ π ∗ rc

H/hs 
Where nc = number	of	steel	rebars	through	wall	thickness 
rs is radius of steel rebar and hs is the vertical spacing. 
 
Liner	area/unit	height, Am = thicknessof	the	plate	x	1 
 
Tendon	area/unit	height, Ar = nr ∗ π ∗ rr

H/ht 
Where nr = number	of	tendons	through	wall	thickness.	 rr	is	tendon radius and ht is tendon vertical 
spacing.  
 
Concrete area/unit height, Ac = ((ro – ri) – (Al + As + At )) 
ro and ri are outer and inner radii of the wall and mid-radius of the wall, R= (ro + ri)/2. 

 
SNL Containment Data 
 
In the SNL model, each tendon is built from 3 wires of 13.7mm diameter so and there were 90 hoop 
tendons in the wall height of 10750mm giving tendon vertical spacing, ht = 119.4mm. 
With nr = 3 and rr = 6.85mm 
Ar = (3 ∗ 3.14 ∗ 6.85 ∗ 6.85)/119.4 = 3.70	mmH/mm 
 
There are two hoop rebars (inner and outer) of 22.2mm dia which are vertically spaced at 113mm 
interval. With nc = 2 and rc = 11.1mm 
Ac = (2 ∗ 3.142 ∗ 11.1 ∗ 11.1)/113 = 6.85mmH/mm 
 
Am = thickness	of	the	plate	x	1 = 1.6mmH/mm 
 
Ac	= 312.85mmH/mm 
Where r| = 5700mm, r} = 5375mm	and	R = 5537.5mm 
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BARCOM Containment Data 
 
The BARCOM model has no liner so Al=0.  In the area of failure there are two steel rebars of 12mm dia 
used as hoop reinforcement  through the thickness of the wall at intervals of 200mm. Therefore, 
As = (2*3.14*6*6)/200=1.1304 mmH/mm 
 
One 24mm dia hoop tendon (horizontal cable) is placed at vertical interval of 110mm giving  
At = 4.11 mmH/mm. The wall is 188mm thick and goes from elevation level -2.25m to +9.025m giving 
wall height of 11275mm. 
 
ro = 6376mm, ri = 6188mm and R= 6282mm. 
Therefore, Ac = 182.76mmH/mm. 
 
The geometric data is summarised in table 1. 
 
The applied internal pressure (P) is increased from 0 MPa till probability of failure (Pf) of 1.0 is achieved.  
 
Statistical Data for Material and Geometry 
 
In structural reliability analysis for concrete containment capacities, tensile strength of two different types 
of materials need to be considered: concrete and steel. Concrete behaves like a brittle material whereas 
steel components like the tendons, rebars and liner plate will exhibit plastic behaviour when loaded 
beyond their yield stress. In case of concrete, variability in strength can be traced to two fundamentally 
different sources: variability in the properties of the concrete mixture and ingredients and variability in 
the way the strength is tested and measured. Similarly variability in yield strength of a given steel varies 
due to variation in chemistry, heat treatment and mechanical processing. Typically, it is the compressive 
strength concrete which is specified and measured. The tensile strength of concrete is taken to be about	
10%	of	its compressive	strength	at	room	temperature. At higher temperatures, the strength tends to 
decrease	and any loss in the tensile strength is proportional to	the	corresponding	loss	in the	compressive	
strength. 
 
Variability in geometric dimensions of engineered components depends on the manufacturing process and 
the specified tolerances. Usually tolerances in manufacturing processes are tight and tend to follow 
normal distribution.  
 
In this example, all material, geometric and loading parameters are assumed to have CoV of 0.2 with 
normal distribution. In practice, the CoV in yield strength of steel components could be less than 0.1 and 
the CoV of geometric dimensions could be even lower.  
 
Mean values and coefficient of variation used for strength and loading variables are given in table 2. 
 
Results 
 
Figure 5 presents P/Pd vs Pf curves for both SNL and BARCOM models obtained by using the advanced 
FORM analysis. Two curves for each model are presented. One in which all ten variables were considered 
and the other in which the concrete was assumed to be totally damaged due to previous testing and was 
assigned zero strength. Similar sensitivity exercises can be conducted to study the influence of variation 
in material, loading and geometric parameters. Failure curves of the kind depicted in Figure 5 can be used 
to define the fragility of concrete containments under over-pressure. 
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DISCUSSION AND CONCLUSIONS 

 
The available test data and the FEA results (Kamatam & Prinja (2011) and Prinja & Shepherd (2003)) 
showed that the structural response of the pressurised PCCV is indicated by progressive damage in three 
stages. The first stage up to the design pressure (P/Pd=1)  is predominantly elastic response and can be 
predicted with very good accuracy. The second stage involving inelastic response with extensive concrete 
cracking with local yielding or rupture may lead to loss of functionality (leakage) or breach of pressure 
boundary. The third stage involves gross deformation leading to the structural collapse.  The Pf  of this 
gross structural collapse depends on the amount of steel and concrete used in the design as given in 
equation 1. The strength terms (given by area x yield stress) for rebar, liner, tendon and concrete are 
compared in Table 3 for the SNL and BARCOM models along with the design load term (given by Pd x 
mid-radius of the wall). It can be seen that whilst the overall strength of the two containment models is 
almost similar, the load term of the BARCOM model is only 40% of the SNL model. The strength/load 
ratio (γ) for the SNL is 5.4 but for the BARCOM model it is 9.7 so overall the BARCOM model is nearly 
twice as strong as the SNL model. This is reflected in the Pf vs P/Pd curves presented in Fig 5.  In case of 
the SNL model, the load term equals the strength term when P=5.4Pd but for the BARCOM model it is 
when P=9.7Pd. Therefore, the Pf for SNL is 50% when P=5.4Pd but in the test, the SNL model failed 
catastrophically at P=3.65Pd. Catastrophic failure at pressure lower than 5.4Pd could be because of 
extensive damage to the concrete and the liner due to earlier testing. If similar trend is to be followed then 
the BARCOM model has to be pressurised beyond 9.7Pd. Such pressurisation in a test may not be easily 
achieved due to problems with localised failures and leakage.  

 
Table 1 Summary of geometric data for the SNL and BARCOM models 

Geometric	Data	 SNL	 BARCOM	
Outside radius of the wall, ro (mm)	 5700 6376 
Inner radius of the wall, ri (mm)	 5375 6188 
Wall thickness (mm) 325 188 
Wall height (mm) 10750 11275 
Mid-radius, R (mm) 5537.5 6282 
No. of tendons through wall, nt 3 1 
Tendon vertical spacing, ht (mm) 119.4 110 
Tendon radius, rt (mm) 6.85 12 
Tendon area, At (mm2/mm) 3.70 4.11 
No. of rebars through wall, ns 2 2 
Rebar vertical spacing, hs (mm) 113 200 
Rebar radius, rs (mm) 11.1 6 
Steel rebar area, As (mm2/mm) 6.85 1.13 
Liner plate thickness (mm) 1.6 0 
Liner area, Al (mm2/mm) 1.6 0 
Concrete area, Ac (mm2/mm) 312.85 182.76 
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Table 2 Mean values of parameters used for SNL and BARCOM containments 

Load	and	Strength	Data	
Mean	Values	(μ)	

BARCOM/SNL	 CoV	
SNL	 BARCOM	

Concrete tensile strength, Fc 4.4 3.018 69% 0.2 
Liner yield, Fl 382 0  0.2 

Rebar Yield, Fs 465 415 89% 0.2 
Tendon yield, Ft 1740 1848 106% 0.2 

Design Pressure, Pd 0.39 0.1413  0.2 
Radius, R 5537.5 6282.0 113% 0.2 

Concrete Area, Ac 312.85 182.76 58% 0.2 
Liner area, Al 1.6 0 0% 0.2 

Rebar Area, As 6.85 1.13 17% 0.2 
Tendon area, At 3.70 4.11 111% 0.2 

 
Table 3 Relative Strength and Load Terms for SNL and BARCOM containments 

Strength Term SNL BARCOM BARCOM/SNL 
Rebar	(As	x	Fs)	 3184.1	 469.1	 0.1	
Liner (Al	x	Fl)	 611.2	 0.0	 0.0	

Tendon (At	x	Ft)	 6439.0	 7596.3	 1.2	
Concrete	(Ac	x	Fc)	 1376.5	 551.6	 0.4	

Total Strength term, S	 11610.8	 8617.0	 0.7	
Design Load Term (L = Pd x R)	 2159.6	 887.6	 0.4	

Strength/Load Ratio	(γ)	 5.4	 9.7	 1.8	
 
 

SIMPLIFIED METHOD FOR STRUCTURAL RELIABILITY OF CONCRETE 
CONTAINMENTS 

 
Assuming that the structural collapse of a containment occurs at the mid-height of the wall, the Pf of the 
containment can be estimated using the simplified procedure presented in Fig 6. All that is required is 
mean values of the five geometric (As, Ac, Al, At and R ) and four material (Fs, Fl , Ft and Fc ) variables 
to establish the strength/design load ratio (γ ). The Pf = 0.5 when the applied pressure, P = γ Pd. Pf at  
other pressures can be obtained by using either the simple FORM (eqn 10) or advanced FORM for which 
CoV values for all ten variables are required. 
 
VALIDATION OF ADVANCED FORM  
 
As advanced FORM is an approximate method, the method will be validated by comparing the obtained 
Pf from FORM to the equivalent Pf from Monte Carlo sampling. As the failure probability when the mean 
pressure is equal to the design pressure is small, the variance of the estimator of Pf is large. This is 
because it is difficult to obtain enough samples to sufficiently reduce the variance in a reasonable 
computational time. Therefore the variance reduction strategies of Subset Simulation and Importance 
Sampling were used to obtain Pf, and these were compared with the result from Advanced FORM. For 
both of these algorithms the implementation in the generalized uncertainty quantification software 
OpenCOSSAN was used (Patelli, 2014 and Patelli, 2016).  
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Pf was also calculated with an increased value of the mean value of P, ! = 5.4	Pd, using the advanced 
FORM and compared to the result from standard Monte Carlo simulation. Standard Monte Carlo 
simulation was applicable for this calculation because variance reduction strategies are not required when 
Pf is large. 
 
The input parameter values assumed in this analysis were taken from the Sandia National Laboratories 
tests (Table 2), and in order to make a fair comparison it was assumed that the random variables were 
normally distributed. 
 
IMPORTANCE SAMPLING 
 
The Monte Carlo estimator of failure probability is given by 

ò å
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== )(1)()(
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fXff xI
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dxxfxIP ,       (11) 

where xi are samples drawn from fX(x), the probability density function of the random variables, and If(x) 
is the indicator function for the failure domain (i.e. If(x) is non-zero only in the failure region given by 
g(x)≥0 from Equation 2). In Importance Sampling samples are drawn from a distribution with a higher 
density in the failure region, thereby reducing the variance of the estimator. Therefore the estimator is 
written as  
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where xi are drawn from h(x). By finding the design point with an approximate method an appropriate 
h(x) can be chosen. A more complete discussion of the technique is given in (Schuëller & Stix, 1987). 
 
SUBSET SIMULATION 
 
Subset simulation aims to calculate Pf by decomposing the space of the random variables into several 
intermediate failure events with decreasing failure probability. The conditional probabilities for the 
intermediate failure regions can then be used to calculate Pf which is given by 
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where Fi represents intermediate failure event i. By making the conditional probability of samples falling 
in the intermediate failure regions large the variance of each individual failure event can be minimised, 
thereby minimising the variance of Pf. Markov chains are used to generate conditional samples from one 
failure region to the next in order to calculate P(Fi+1|Fi). A complete description of the method is given in 
Au & Beck (2001). 
 
RESULTS 
 
The probability of failure for the system at design pressure is shown in Table 4. The probability of failure 
for the system at ! = 5.4!K is shown in Table 5. 
 
Table 4: Probability of failure at ! = !K computed by different methods. 
Method Pf Variance of Pf 
Advanced FORM 2.7×10-8 Not Applicable 
Subset Simulation 7.8×10-8 2.4×10-9 

Importance Sampling 6.7×10-8 1.8×10-9 
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Table 5: Probability of failure at ! = 5.4!K computed by different methods. 
Method Pf Variance of Pf 
Advanced FORM 0.507 Not Applicable 
Monte Carlo 0.489 0.005 

 
DISCUSSION 
 
Although the advanced FORM result at the design pressure has slight disagreement with the Monte Carlo 
value of Pf, it is correct to an order of magnitude and therefore serves as a useful estimator for Pf. In 
addition, the percentage error of the FORM is reduced at higher values of Pf (for example, at ! = 5.4!K 
the probability of failure computed by FORM is 0.51 and the value computed by Monte Carlo is 0.49), 
and therefore for most of the fragility curve the FORM gives a reasonably accurate approximation. 

  
SENSITIVITY ANALYIS 
 
We would like to know which uncertainties make important contributions to our calculated measure of 
uncertainty, which in this case is the uncertainty in Pf. The uncertainty in Pf is caused by uncertainty in 
coefficients of variation of input parameters to the advanced FORM analysis. This type of sensitivity 
analysis, where parameters are ranked in order of their importance, is known as Factors Prioritisation (FP) 
(Saltelli, 2008). 
 
A wide variety of methods exist for performing sensitivity analysis, and these methods fall into several 
broad categories. Sensitivity analysis methods can be local or global, by considering the sensitivity at just 
one point in the input space or many. In addition the methods can consider the sensitivity to variables on 
their own or to several variables at a time. 
 
SOBOL INDICES 
 
One frequently used method of sensitivity analysis is the so called Sobol indices or variance based 
sensitivity indices. The purpose of Sobol indices is to decompose the variance of the output into variances 
attributable to each input. Therefore, Sobol indices are a global method of sensitivity analysis. A 
derivation is available in Sobol (2001). 
 
The Sobol indices are 
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       (14) 

 
for the single input Xi, where Y is the output of interest. V and E represent the variance and expected 
value, respectively. The total sensitivity indices are given by 
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which measures the effect of the variable Xi including all interactions. The Sobol and Total sensitivity 
indices can be computed by Monte Carlo simulation. In some cases, for example when the model has too 
many parameters or the model is very computationally expensive, it is necessary to use a more complex 
method to compute the Sobol and total sensitivity indices. 
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For example, the upper bound of the Total Sensitivity index can be efficiently calculated by integrating 
the local sensitivity analysis over the whole space of the inputs (Patelli et al, 2010), and the Sobol indices 
can be efficiently calculated by use of the FAST method given in Tarantola et al. (2006). 
 
METHOD 
 
The Sobol indices for the sensitivity of Pf, calculated by the advanced FORM method, with respect to the 
coefficients of variation of each parameter in Table 2 were calculated using OpenCOSSAN. A uniform 
distribution between 0 and 1 was applied for the coefficients of variation of the input parameters to the 
advanced FORM, i.e. any value for the coefficients of variation was equally likely, as this is a commonly 
used uninformative distribution. This assumption is somewhat unjustified as even if the coefficients of 
variation all fall within this interval there is no reason to assume that each value is equally likely in 
reality. However, in this case it is a useful approximation as it allows us to study the effect of an arbitrary 
variation in this parameter. The mean values for the parameters were taken from Table 2. 
 
The analysis was then repeated with	! = 5.4!K (chosen for the strength to design load ratio calculated in 
the previous section in order to make Pf=0.5) and ! = 5!K. At increased pressures the variance in the 
Sobol and Total Sensitivity indices computed by Monte Carlo simulation was impracticably high and so it 
was necessary to compute the Sobol indices using the FAST method (Tarantola et al, 2006) and the upper 
bound of the Total Sensitivity indices using Patelli's method (Patelli et al, 2010), both of which have been 
implemented in OpenCOSSAN. This allowed the calculation to be completed in a shorter time as fewer 
samples were required. 
 
RESULTS 
 
The calculated Sobol Indices and Total Effects Indices when ! = !K are shown in a bar plot in Figure 7. 
It is clear that the biggest contributors to uncertainty in the output are the coefficients of variation of At 
and Ft. The bar plots show error bars to represent our uncertainty in the Monte Carlo estimators for the 
indices. 
 
Figures 8 and 9 show the effect of varying At and Ft separately, whilst keeping the other variables fixed at 
their values from Table 2. There is a sharp increase in failure probability when the coefficient of variation 
is larger than 0.2. Further analysis shows that the location for this ‘knee’ in the graph depends upon the 
value of the other parameters, i.e. if the other coefficients of variation are set as 0.3 then the location of 
the knee changes to 0.3. Figure 10 shows the effect of varying both of these parameters simultaneously. 
 
The calculated Sobol Indices and Total Effects Indices upper bounds for ! = 5.4!K are shown in a bar 
plot in Figure 11. It is clear that the biggest contributors to uncertainty in the output are the coefficients of 
variation of R and P, followed by Ft and At. Figure 12 shows the effect of varying P and R simultaneously 
when ! = 5.4!K, whilst keeping the other variables fixed at their values from Table 2. 
 
The calculated Sobol Indices and Total Effects Indices upper bounds for ! = 5!K are shown in a bar plot 
in Figure 13. Again, it is clear that the biggest contributors to uncertainty in the output are the coefficients 
of variation of R and P, followed by Ft and At. Figure 14 shows the effect of varying P and R 
simultaneously when ! = 5!K, whilst keeping the other variables fixed at their values from Table 2. 
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DISCUSSION 
 
The results show a large variability of the failure probability at the design pressure for changing 
coefficients of variation of At and Ft, and this could possibly be explained by the large mean value of 
these variables. At increased pressures it is clear that the coefficients of variation of P and R play a greater 
role in the variability of Pf.  
 
It is interesting to note that the variability of Pf is greatly decreased when ! = 5.4!K, implying that the 
choice of coefficient of variation is unimportant when Pf=0.5, which justifies the use of the simplified 
method for when the applied pressure is equal to the strength. Intuitively it is clear that if a distribution is 
centred on the edge of the failure region (i.e. on the limit state function) then changing the coefficient of 
variation of the input variables should not significantly move the probability density from the safe region 
into the failure region. 
 
There is significant variability of Pf when ! = 5!K, however the failure probability appears to plateau 
when the coefficients of variation of P and R are above approximately 0.5. This implies that if there is no 
data to determine of the Coefficient of Variation then a larger coefficient of variation would be a 
conservative choice for this pressure. In this context a conservative choice is one which gives an 
overestimate of Pf. An overestimate is preferable to an underestimate as implying a structure is safer than 
it is in reality could have severe consequences. However, we also wish for our estimates to be as close as 
possible to the true value of Pf as large overestimates can cause unnecessary over engineering which is 
undesirable as this can lead to increased costs. The size of coefficient for which this plateau takes place is 
dependent on mean applied pressure, and this should be considered when attempting to find a 
conservative value of the coefficients of variation. Moreover, for applied pressures above the strength 
Figure 14 shows that choosing a lower value of the coefficients of variation would be conservative in this 
case. 
 
Our analysis appears to justify the choice of coefficients of variation chosen in this work, as the values 
given in Spencer et al. (2006) and Sundararajan (1995) are less than those chosen here, and hence the 
assumptions for these parameters in this paper can be considered conservative for applied pressures below 
the strength. 
 
If engineering judgement can be used to justify the irrelevance of the tails of the fragility curve to the 
analysis being performed then the impact of using an approximate value of the Coefficient of Variation is 
lessened, however appropriate conservatism should still be applied. 
 
In future calculations, in order to accurately describe our epistemic uncertainty in these parameters, 
particularly in the tails of the fragility curve, we should use a more considered approach to uncertainty 
where possible. For example if a more accurate estimation of the coefficient of variation cannot be 
obtained it may be necessary to construct a probability box by defining the coefficient of variation as an 
interval (Ferson, 2003). This approach can be understood as the engineer testing many different values for 
the coefficient of variation of each variable and choosing the most and least conservative values to give 
an interval for Pf (in practice the engineer would use a sophisticated optimisation algorithm coupled with 
conventional reliability analysis to perform the calculation).  
 
If the coefficients of variation were assumed to be fuzzy variables it would be possible to determine the 
range of possible values of these coefficients which maintain an acceptably low Pf, with no requirement to 
repeat the analysis multiple times (Beer, 2011). This presents a significant computational benefit. The 
acceptable range for Pf would be specified by the engineer and could be taken from an appropriate design 
code. Such an approach is known as Factor Mapping (FM), and could be particularly useful for industrial 
design applications. 
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CONCLUSIONS 

 
First Order Reliability Method (FORM) is applied to predict probability of failure of the containments. 
Probability of failure vs internal pressure is presented for both types of containments (with and without 
steel liner). Previous studies undertaken as part of the two international roundrobin exercises have 
established the ultimate structural collapse mode of the containments under internal pressure loading 
which indicates that the failure takes place in the general field of the containment wall around mid-height 
and away from any major structural discontinuities. This is because robust design procedures have been 
used that provide adequate compensation and local strengthening to avoid structural failure at 
discontinuities. Based on these experimental studies and the attendant numerical analyses a failure 
function is presented that assumes first yielding in the hoop direction at mid-height of the cylinder wall. It 
is shown that when the load term (given by P x mid-radius of the wall) equalises the strength terms (given 
by crosssectional area/unit height x yield stress) for rebar, liner, tendon and concrete then the probability 
of failure of structural collapse of the containment is 50%. The paper presents a simple method to 
establish structural reliability of a pre-stressed concrete containment which can be useful for probabilistic 
safety assessment when considering extreme events that lead to over-pressurisation of the containment. 
 
It has been shown that there is a strong dependence of the probability of failure of a concrete containment 
computed by advanced FORM on the coefficients of variation of the Rebar Yield and Rebar Area at the 
design pressure. The coefficients of variation of the pressure and radius are also important parameters, 
especially in the centre of the fragility curve when the applied pressure is increased. The variability of the 
probability of failure is decreased at this applied pressure; however it is still important to apply 
conservatism in scenarios where we lack knowledge of the true value of these parameters. This illustrates 
the importance of ensuring that the choice of these parameters is justified by evidence from real models, 
as a failure to choose an appropriate value could result in an order of magnitude error on the probability 
of failure at the design pressure. However, less caution is required when we simply wish to find the 
pressure at which Pf=0.5. 
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ABBREVIATIONS 
 
BARCOM   Bhabha Atomic Research Centre (BARC) Containment test model 
CoV             Coefficient of Variation 
FEA             Finite Element Analysis 
FORM         First Order Reliability Method 
PCCV          Pre-stressed Concrete Containment Vessel 
SNL             Sandia National Laboratories 



 

Figure 1. Predicted failure mode of the SNL model (a) FEA results vs (b) test at P=3.65 Pd 
 

(Figure in colour please) 
 
 

(a) (b) 

buttress 

Failure location 

penetration 



 

 
 

 
Figure 2. Predicted response of the BARC model (a) under prestress only and (b) at P=2.89 Pd 

 
(Figure in colour please) 

 
 

(a) (b) 

Failure 
location 



 

 
 

 
 

 
Figure 3. SNL test vs analysis comparison of deflection near failure location 
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Figure 4. Probability of failure vs Central Factor of Safety 

 
 
 
 



 

 
 

 
 
 

 
 

 
Figure 5. Containment P/Pd vs Pf 
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Figure 6. Simplified method to establish Pf of concrete containment 
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Figure 7. Plot of Sobol Indices and Total Sensitivity Indices for uncertain coefficient of variation for all 

input parameters to advanced FORM at P = #$. The error bars represent one standard deviation. 
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Figure 8. Plot of failure probability at 𝑃 = 𝑃𝑑 for varying coefficient of variation of tendon area, At, while 

keeping other variables fixed. 
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Figure 9. Plot of failure probability at 𝑃 = 𝑃𝑑 for varying coefficient of variation of tendon yield, Ft, 

while keeping other variables fixed. 
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Figure 10. Plot of failure probability at ! = !#for varying coefficient of variation of tendon yield, Ft, and 

tendon area, At, while keeping other variables fixed. 
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Figure 11. Plot of Sobol Indices and Total Sensitivity (upper bound) Indices for uncertain coefficient of 

variation for input parameters to advanced FORM at P = 5.4&'. In this figure the error bars represent the 
5%-95% confidence interval. 
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Figure 12. Plot of failure probability at P = 5.4&' for varying coefficient of variation of applied pressure, 

P, and radius, R, while keeping other variables fixed. 
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Figure 13. Plot of Sobol Indices and Total Sensitivity (upper bound) Indices for uncertain coefficient of 
variation for input parameters to advanced FORM at P = 5$%. In this figure the error bars represent the 

5%-95% confidence interval. 
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Figure 14. Plot of failure probability at P = 5$% for varying coefficient of variation of applied pressure, P, 

and radius, R, while keeping other variables fixed. 
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